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Abstract

Various notions of geometric ergodicity for Markov chains on general state spaces exist. In this
paper, we review certain relations and implications among them. We then apply these results to
a collection of chains commonly used in Markov chain Monte Carlo simulation algorithms, the
so-called hybrid chains. We prove that under certain conditions, a hybrid chain will “inherit”
the geometric ergodicity of its constituent parts.

1 Introduction

A question of increasing importance in the Markov chain Monte Carlo literature (Gelfand
and Smith, 1990; Smith and Roberts, 1993) is the issue of geometric ergodicity of Markov
chains (Tierney, 1994, Section 3.2; Meyn and Tweedie, 1993, Chapters 15 and 16; Roberts and
Tweedie, 1996). However, there are a number of different notions of the phrase “geometrically
ergodic”, depending on perspective (total variation distance vs. in L2; with reference to a
particular V -function; etc.). One goal of this paper is to review and clarify the relationship
between such differing notions.
We first discuss a general result (Proposition 1) giving the equivalence of a number of related
ergodicity notions, involving total variation distance and V -uniform norms. Some of these
equivalences follow from standard treatments of general state space Markov chains (Nummelin,
1984; Asmussen, 1987; Meyn and Tweedie, 1993), though they may not have previously been
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stated explicitly. Others of these equivalences are related to “solidarity properties” (Nummelin
and Tweedie, 1978; Vere-Jones, 1962), regarding when a geometric rate of convergence can be
chosen independently of the starting position.

We then turn to L2 theory, and discuss (Theorem 2) a number of equivalences of geometric
ergodicity of reversible Markov chains, on L1 and L2. The essence of our analysis is the
spectral theorem (e.g. Rudin, 1991; Reed and Simon, 1972; Conway, 1985) for bounded self-
adjoint operators on a Hilbert space. Again, we believe that these equivalences are known,
though they may not have been explicitly stated in this way.

We further show that the conditions of Proposition 1 imply the conditions of Theorem 2.
We are unable to establish the converse in complete generality, however we do note that the
two sets of conditions are equivalent for most chains which arise in practice. We also argue
(Corollary 3) that any of these equivalent conditions are sufficient to establish a functional
central limit theorem for empirical averages of L2 functions.

We then turn our attention (Section 3) to the geometric ergodicity of various “hybrid” Markov
chains which have been suggested in the literature (Tierney, 1994, Section 2.4; Chan and Geyer,
1994; Green, 1994). After a few preliminary observations, we prove (Theorem 6) that under
suitable conditions, hybrid chains will “inherit” the geometric ergodicity of their constituent
chains. This suggests the possibility of establishing the geometric ergodicity of large and
complicated Markov chain algorithms, simply by verifying the geometric ergodicity of the
simpler chains which give rise to them.

We note that there are various alternatives to considering distributional convergence properties
of Markov chains, such as considering the asymptotic variance of empirical estimators (cf.
Geyer, 1992; Greenwood et al., 1995). But we do not pursue that here.

2 Equivalences of geometric ergodicity

We now turn our attention to results for geometric convergence. We consider a φ-irreducible,
aperiodic Markov chain P (x, ·) on a state space X , with stationary distribution π(·). [Recall
that a chain is φ-irreducible if there is a non-zero measure φ on X , such that if φ(A) > 0, then
Px(τA <∞) > 0 for all x ∈ X .] We shall sometimes assume that the underlying σ-algebra on
X is countably generated; this is assumed in much of general state space Markov chain theory
(cf. Jain and Jamison, 1967; Meyn and Tweedie, 1993, pp. 107 and 516), and is also necessary
to ensure that the function x 7→ ‖P (x, ·)− π(·)‖var is measurable (see Appendix).

We recall that P acts to the right on functions and to the left on measures, so that

µP (A) =

∫
P (x, A)µ(dx), P f(x) =

∫
f(y)P (x, dy).

Call a subset S ⊆ X hyper-small if π(S) > 0 and there is δS > 0 and k ∈ IN such that
d(Pk(x,·))

dπ ≥ δS1S(x), where
d(Pk(x,·))

dπ is the density with respect to π of the absolutely contin-
uous component of P k(x, ·). A fundamental result of Jain and Jamison (1967), see also Orey
(1971), states that on a countably generated measure space, every set of positive π-measure
contains a hyper-small set.

Following Meyn and Tweedie (1993, p. 385), given a positive function V : X → IR, we let L∞V
be the vector space of all functions from X to IR for which the norm |f |V = sup

x∈X

|f(x)|
V (x) is finite.
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We let L∞V,0 = {f ∈ L∞V ;
∫
X fdπ = 0}. We denote operator norms as usual, viz.

‖T‖L∞
V

= sup
f∈L∞

V
|f|V =1

|Tf |V ; ‖T‖L∞
V,0

= sup
f∈L∞

V,0
|f|V =1

|Tf |V .

Finally, we write µ(f) for
∫
X fdµ, and let Π be the operator defined by Π(f)(x) = π(f).

The following proposition borrows heavily from Meyn and Tweedie (1993) and Nummelin and
Tweedie (1978). Note that the equivalence of (i) and (i’) below shows that the geometric rate
ρ may be chosen independently of the starting point x ∈ X , though in general (i.e. for chains
that are not “uniformly ergodic”), the multiplicative constants Cx will depend on x. Most of
the remaining conditions concern the existence and properties of a geometric drift function V .

Proposition 2.1 The following are equivalent, for a φ-irreducible, aperiodic Markov chain
P (x, ·) on a countably generated state space X , with stationary distribution π(·).
(i) The chain is π-a.e. geometrically ergodic, i.e. there is ρ < 1, and constants Cx < ∞ for
each x ∈ X , such that for π-a.e. x ∈ X ,

‖P n(x, ·)− π(·)‖var ≤ Cx ρ
n , n ∈ IN ,

where ‖µ(·)‖var = 1
2

sup
|f|≤1

|µ(f)| = sup
A⊆X

|µ(A)|;

(i’) There are constants ρx < 1 and Cx <∞ for each x ∈ X , such that for π-a.e. x ∈ X ,

‖P n(x, ·)− π(·)‖var ≤ Cx ρ
n
x , n ∈ IN ;

(i”) There is a hyper-small set S ⊆ X , and constants ρS < 1 and CS <∞, such that

‖
∫
S

π(dy)

π(S)
P n(y, ·)− π(·)‖var ≤ CS ρ

n
S , n ∈ IN ;

(ii) There exists a π-a.e.-finite measurable function V : X → [1,∞], which may be taken to
have π(V j) <∞ for any fixed j ∈ IN, such that the chain is V -uniformly ergodic, i.e. for some
ρ < 1 and some fixed constant C <∞,

‖P n(x, ·)− π(·)‖V ≤ C V (x) ρn , x ∈ X , n ∈ IN ,

where ‖µ(·)‖V = sup
|f|≤V

|µ(f)|;

(iii) There exists a π-a.e.-finite measurable function V : X → [1,∞], which may be taken to
have π(V j) <∞ for any fixed j ∈ IN, and a positive integer n, such that

‖P n −Π‖L∞
V

< 1 ;

(iv) There exists a π-a.e.-finite measurable function V : X → [1,∞], which may be taken to
have π(V j) <∞ for any fixed j ∈ IN, and a positive integer n, such that

‖P n‖L∞
V,0

< 1 .
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Remark 2.1 1. By the spectral radius formula (e.g. Rudin, 1991, Theorem 10.13), r(T ) =
inf
n≥1
‖Tn‖1/n, so that the displayed equations in (iii) and (iv) above can be restated as r(P −

Π) < 1 and r(P
∣∣
L∞
V,0

) < 1, respectively.

2. We may use the same function V for each of (ii), (iii), and (iv) above.

Proof:
(i) =⇒ (i′) : Immediate.
(i′) =⇒ (i′′): We note that ρx and Cx may not be measurable as functions of x ∈ X . However,
since X is countably generated, the function ‖P n(x, ·)−π(·)‖var is measurable (see Appendix).

Thus, we can define rx = lim inf
n→∞

‖P n(x, ·)−π(·)‖1/nvar and Kx = sup
n
‖P n(x, ·)−π(·)‖varr

−n/2
x as

π-a.e.-finite measurable functions with π(rx < 1) = 1. Then we can find r < 1 and K <∞ so
that the set B = {x ∈ X ; rx ≤ r, Kx ≤ K} has π(B) > 0. By Jain and Jamison (1967), there
is a hyper-small subset S ⊆ B. For x ∈ S, we have ‖P n(x, ·)− π(·)‖var ≤ Krn, so therefore

‖
∫
S

π(dy)
π(S)

P n(y, ·)− π(·)‖var ≤ Krn, as required.

(i′′) =⇒ (i) : This is the content of Theorem 1 of Nummelin and Tweedie (1978), which
generalizes the countable state space results of Vere-Jones (1962).
(i)⇐⇒ (ii) : Obviously (ii) implies (i). That (i) implies (ii) follows from Meyn and Tweedie
(1993). Indeed, the existence of such a V follows from their Theorem 15.0.1 (i) and Theorem
5.2.2, the finiteness of Eπ(V ) follows from their Theorem 15.0.1 (iii) and Theorem 14.3.7 (see
also Meyn and Tweedie, 1994, Proposition 4.3 (i)), and the possibility of having Eπ(V j) <∞
follows from their Lemma 15.2.9.
(ii)⇐⇒ (iii) : Clearly, (ii) is equivalent to the existence of specified V , ρ, and C, such that

sup
|f|≤V

sup
x∈X

|(P nf)(x) − π(f)|
V (x)

≤ C ρn , n ∈ IN ,

or
‖P n − Π‖L∞

V
≤ Cρn , n ∈ IN .

Hence if n > logC
log(1/ρ) , then ‖P n−Π‖L∞

V
< 1, proving (iii). For the converse, if ‖P n−Π‖L∞

V
=

s < 1, then by sub-multiplicity of operator norms, ‖P nk − Π‖L∞
V
≤ sk, and (ii) follows.

(iii) ⇐⇒ (iv) : Clearly (iii) implies (iv). For the converse, if ‖P n‖L∞
V,0

= ρ < 1, and |f |V ≤ 1,

then
|(P nk −Π)f |V = |P nk(f − π(f))|V ≤ ρk|f − π(f)|V ≤ ρk(1 + π(V )) .

Taking j = 1 so that π(V ) <∞, we see that this expression will be less than 1 for sufficiently
large k, proving (iii). 2

We now turn attention to results involving the spectral theory of bounded self-adjoint operators
on Hilbert spaces.
Given a Markov operator P with stationary distribution π, a number 1 ≤ p <∞, and a signed
measure µ on X , define ‖µ‖Lp(π) by

‖µ‖pLp(π) =


∫
X

∣∣∣dµdπ ∣∣∣p dπ µ << π

µ+(X ) + µ−(X ), p = 1
∞, otherwise
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(note that if µ << π and p = 1, the two definitions coincide), set Lp(π) = {µ ; ‖µ‖Lp(π) <∞},
and set ‖P‖Lp(π) = sup{‖µP‖Lp(π) ; ‖µ‖Lp(π) = 1} . It is well known (see e.g. Baxter and
Rosenthal, 1995, Lemma 1) that we always have ‖P‖Lp(π) ≤ 1.
Recall that P is reversible with respect to π if π(dx)P (x, dy) = π(dy)P (y, dx) as measures on
X × X ; this is equivalent to P being a self-adjoint operator on the Hilbert space L2(π), with
inner product given by 〈µ, ν〉 =

∫
X

dµ
dπ

dν
dπ
dπ.

If P is reversible w.r.t. π, and dµ
dπ = f , then d(µP)

dπ = Pf , as is easily checked by writing out the
definitions and using reversibility. In particular, the action of P on signed measures µ ∈ L2(π)
is precisely equivalent to the action of P on functions f with π(f2) <∞. We shall apply the
usual spectral theory (e.g. Rudin, 1991; Reed and Simon, 1972; Conway, 1985) to the operator
P acting on measures in L2(π).

Theorem 2.1 Let P be a Markov operator on a state space X , reversible with respect to the
probability measure π (so that P is self-adjoint on L2(π)). Then the following are equivalent,
and furthermore are all implied by any of the equivalent conditions of Proposition 2.1.

(i) P is L2(π)-geometrically ergodic, i.e. there is ρ < 1 such that for each probability measure
µ ∈ L2(π), there is Cµ <∞ with

‖µP n(·)− π(·)‖L2(π) ≤ Cµ ρ
n , n ∈ IN ;

(ii) P has an L2(π) spectral gap, i.e. there is ρ < 1 such that for each signed measure µ ∈ L2(π)
with µ(X ) = 0,

‖µP (·)‖L2(π) ≤ ρ ‖µ‖L2(π) ;

(iii) P
∣∣
L2(π)

is geometrically ergodic, i.e. there is ρ < 1 such that for each probability measure

µ ∈ L2(π), there is Cµ <∞ such that

‖µP n(·)− π(·)‖var ≤ Cµ ρ
n , n ∈ IN ;

(iv) P
∣∣
L2(π)

is geometrically ergodic, with Cµ = 1
2
‖µ − π‖L2(π), i.e. there is ρ < 1 such that

for each probability measure µ ∈ L2(π),

‖µP n(·)− π(·)‖var ≤
1

2
‖µ− π‖L2(π) ρ

n , n ∈ IN ;

Remark 2.2 We may use the same value of ρ in each of these four equivalent conditions. Also
note that, by self-adjointness, in condition (ii) above it is equivalent to say that ‖P

∣∣
π⊥
‖L2(π) ≤

ρ < 1 or that the spectral radius satisfies r(P ) ≤ ρ < 1 (cf. Conway, 1985, Proposition
VIII.1.11(e)); we make use of this below. Finally, note that for probability measures µ, we
have ‖µ− π‖2L2(π) = ‖µ‖2L2(π) − 1.

Proof:
(ii) =⇒ (i), and (iv) =⇒ (iii) : Immediate.
(i) =⇒ (iii), and (ii) =⇒ (iv) : These follow from the Cauchy-Schwarz inequality, since
‖µ‖var = 1

2‖µ‖L1(π) ≤ 1
2‖µ‖L2(π).

(iii) =⇒ (ii) : By the triangle inequality, condition (iii) implies that for any signed measure
µ ∈ L2(π), there is Cµ <∞ such that

‖µP n(·)− µ(X )π(·)‖var ≤ Cµρ
n , n ∈ IN . (∗)



18 Electronic Communications in Probability

Let E(·) be the spectral measure corresponding to P acting on L2(π) (see e.g. Rudin, 1991; Reed

and Simon, 1972; Conway, 1985), so that µP k =
1∫
−1

λkµE(dλ) for all k ∈ IN and µ ∈ L2(π).

Choose r ∈ (ρ, 1).
If (ii) does not hold, then either E((−1,−r)) or E((r, 1)) is not the zero operator. Assume (by
replacing P by P 2 if necessary) that E((r, 1)) 6= 0. Hence there is a non-zero signed measure ν in
the range of E((r, 1)). Since P is self-adjoint, ν(X ) = 〈π, ν〉 = 0 by orthogonality of the spectral
projections, hence there is Y ⊆ X with ν(Y) = νE ((r, 1)) (Y) > 0. Define the signed measure
m by m(S) = νE(S)(Y) for Borel S ⊆ (r, 1). Let (r, 1) = A+ ∪A− be the Hahn decomposition
for m (see e.g. Royden, 1968, pp. 235–236). Since m(r, 1) = m(A+) + m(A−) = ν(Y) > 0,
and m(A−) ≤ 0, therefore m(A+) > 0. Set ω = νE(A+) ∈ L2(π), so that ω << π and
ω(Y) = m(A+) > 0.
Again by orthogonality, ω(X ) = 0. On the other hand, using the functional calculus equation
given in Conway (1985, p. 265, equation 1.11), and using that for dλ ⊆ A+ we have ωE(dλ) =
νE(dλ), we see that for k ∈ IN,

2‖ωP k(·)‖var = ‖ωP k(·)‖L1(π)

=

∫
X

∣∣∣∣d(ωP k)dπ
(x)

∣∣∣∣ π(dx)

≥
∫
Y

∣∣∣∣d(ωP k)dπ
(x)

∣∣∣∣ π(dx)

≥
∫
Y

d(ωP k)

dπ
(x)π(dx)

= 〈 π
∣∣
Y , ωP

k 〉

= 〈 π
∣∣
Y , ω

∫
A+

λkE(dλ) 〉

=

∫
A+

λk 〈 π
∣∣
Y , ωE(dλ) 〉

=

∫
A+

λk
[ ∫
Y

d(ωE(dλ))
dπ

(x) π(dx)
]

=

∫
A+

λk (ωE(dλ)) (Y)

=

∫
A+

λk (νE(dλ)) (Y)

=

∫
A+

λkm(dλ)

≥ rkm(A+)

which contradicts (∗).
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Relation to Proposition 2.1: It remains to show that these conditions are implied by the
equivalent conditions of Proposition 2.1. We show that condition (iii) is implied by Proposition
2.1 part (ii) (with j = 2). Indeed, for µ ∈ L2(π), we have (using the triangle inequality and
the Cauchy-Schwartz inequality) that

‖µP n(·)− π(·)‖var ≤ ‖µP n(·)− π(·)‖V ≤
∫
X

‖P n(x, ·)− π(·)‖V µ(dx)

≤
∫
X

CV (x)ρnµ(dx) = Cρn
∫
X

V (x)
dµ

dπ
(x)π(dx) ≤ Cρn

√√√√Eπ(V 2)Eπ

((
dµ

dπ

)2
)
.

Since Eπ(V 2)Eπ

((
dµ
dπ

)2
)
<∞, condition (iii) follows. 2

Remark 2.3 1. For most reversible chains which arise, the conditions of Proposition 1 and
Theorem 2 are actually equivalent. For example, this is obviously true if the point masses δx are
all in L2(π) (which holds for an irreducible chain on a discrete measure space), or if P (x, ·) ∈
L2(π) for all x. More generally, if the chain is of the form P (x, ·) = (1−ax)δx+axνx(·) where
νx ∈ L2(π) and ax > 0, then the two sets of conditions are again seen to be equivalent, since
if condition (iii) of Theorem 2 holds, then condition (i′) of Proposition 1 also holds. This
includes most examples of Metropolis-Hastings algorithms (Metropolis et al., 1953; Hastings,
1970). However, we do not know if these conditions are equivalent in complete generality.
2. We note that a number of other mixing conditions for Markov chains are available, though
we do not pursue them here. See for example Rosenblatt (1962, Sections V b and VIII d), and
Carmona and Klein (1983).

Finally, we consider the existence of central limit theorems for empirical averages 1
n

n∑
i=1

g(Xi) of

a function g : X → IR evaluated at the realized values X1, X2, . . . of a Markov chain run. Such
limit theorems are often considered in Markov chain Monte Carlo applications (cf. Tierney,
1994, Theorem 4). Geyer (1992, Section 2) and Chan and Geyer (1994) point out the usefulness
of a certain Markov Functional Central Limit Theorem result (see e.g. Bhattacharya, 1982,
Theorem 2.1; Kipnis and Varadhan, 1986, Corollary 1.5), which states the following. For a
Markov chain P (·, ·) on X , reversible with respect to π(·), if π(g) = 0 and the quantity

σ2
g =

1∫
−1

1 + λ

1− λ eg(dλ)

is finite, where eg(S) =
∫
X
g(x) (E(S)g) (x)π(dx), then the continuous-time processes Yn(t) =

1√
n

bntc∑
j=1

g(Xj) converge weakly to Brownian motion with variance σ2
g .

On the other hand, if the Markov operator P has spectral radius ρ < 1, as in condition (ii) of
Theorem 2, then it is easily seen (cf. Geyer, 1992, Section 3.5) that for π(g2) <∞,

σ2
g ≤

1 + ρ

1− ρ π(g2) < ∞ ,

so that the above Markov Functional Central Limit Theorem applies. We thus obtain:
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Corollary 2.1 Let the reversible Markov operator P satisfy any one equivalent condition of
Proposition 1 or of Theorem 2 (e.g., let P be geometrically ergodic). Let g : X → IR with

π(g) = 0 and π(g2) < ∞. Then σ2
g < ∞, and as n→∞, the processes Yn(t) = 1√

n

bntc∑
j=1

g(Xj )

converge weakly (in the Skorohod topology, on any finite interval) to Brownian motion with

variance σ2
g. In particular, setting t = 1, the random variable 1√

n

n∑
i=1

g(Xi) converges in

distribution to the normal distribution N(0, σ2
g).

This corollary directly generalizes Chan and Geyer (1994, Theorem 2) for reversible chains;
in particular, it shows that their condition π

(
|g|2+ε

)
< ∞ is then unnecessary. See Chan

and Geyer (1994), and references therein, for some other approaches to central limit theorems
for Markov chains, including those involving drift conditions (cf. Meyn and Tweedie, 1993,
Theorem 17.5.4).

Remark 2.4 We note that the Markov Functional Central Limit Theorem used above applies
only to a reversible Markov process with a spectral gap. For more general reversible Markov
processes, the less restrictive results of Kipnis and Varadhan (1986) may be very useful. Fur-
thermore, we note that corresponding results for non-reversible processes are an active area of
study, for example in the contexts of interacting particle systems and in homogenization theory;
see for example Derriennic and Lin (1996), and the recent unpublished works of Papanicolaou,
Komorovskii, Carmona, Xu, Lamdin, Olla, Yau, and Sznitman.

3 Geometric ergodicity of hybrid samplers

Given a probability distribution π(·) on the state space X = X1 × X2 × . . .× Xk, the usual
deterministic-scan Gibbs sampler (DUGS) is the Markov kernel P = P1P2 . . .Pk, where Pi
is the Markov kernel which replaces the ith coordinate by a draw from π(dxi|x−i), leaving
x−i fixed (where x−i = (x1, . . . , xi−1, xi+1, . . . , xk)). This is a standard Markov chain Monte
Carlo technique (Gelfand and Smith, 1990; Smith and Roberts, 1993; Tierney, 1994). The
random-scan Gibbs sampler (RSGS), given by P = 1

k

∑
i Pi, is sometimes used instead.

Often the full conditionals π(dxi|x−i) may be easily sampled, so that DUGS may be efficiently
run on a computer. However, sometimes this is not feasible. Instead, one can define new
operators Qi which are easily sampled , such that Qni converges to Pi as n → ∞. This is
the method of “one-variable-at-a-time Metropolis-Hastings” or “Metropolis within Gibbs” (cf.
Tierney, 1994, Section 2.4; Chan and Geyer, 1994, Theorem 1; Green, 1994).
Such samplers prompt the following definition.

Definition 3.1 Let C = (Q1, Q2, . . . , Qk) be a collection of Markov kernels on a state space
X . The random-scan hybrid sampler for C is the sampler defined by

PC =
1

k
(Q1 + . . .+Qk) .

A common example is the variable-at-a-time Metropolis-Hastings algorithms mentioned above.
For another example, if the Qi are themselves Gibbs samplers, then the random-scan hybrid
sampler would correspond to building a large Gibbs sampler out of smaller ones. Similarly,
if the Qi are themselves Metropolis-Hastings algorithms (perhaps with singular proposals, cf.
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Tierney, 1995), then the random-scan hybrid sampler is also a Metropolis-Hastings algorithm
but with a different proposal distribution. It is important to note that this usage of the
word “hybrid” is distinct from the more specific notion of “hybrid Monte Carlo” algorithms
as studied in the physics literature (cf. Duane et al., 1987; Neal, 1993, Section 5.2).
We now discuss some observations about geometric convergence of these samplers. Our first
result is a cautionary example.

Proposition 3.1 Let X = X1 × X2, and let π be a probability measure on X . Let Q1 and
Q2 be two Markov operators on X which fix the second and first coordinates (respectively).
Assume that the usual RSGS for π is geometrically ergodic. Assume further that for each fixed
y ∈ X2 [resp. x ∈ X1], we have that Q1 [resp. Q2] restricted to X1 × {y} [resp. {x} × X2] is
geometrically ergodic, with stationary distribution equal to π(dx|y) [resp. π(dy|x)]. Then it is
still possible that the hybrid sampler PC = 1

2 (Q1 +Q2) fails to be geometrically ergodic on X .

Proof:
A result of Roberts and Tweedie (1996) states that a Metropolis algorithm is not geometri-
cally ergodic if the infimum of acceptance probabilities is 0. Therefore consider the following
example. Let π be the bivariate density of two independent standard normal components.
By independence, RSGS is geometrically ergodic (in fact uniformly ergodic with rate 1/2).
Now let Q1 be the following random walk Metropolis algorithm. Given (Xn, Yn) = (x, y), let
Yn+1 = y and propose a candidate Zn+1 for Xn+1 from a N(x, 1 + y2) distribution, accepting
with the probability: 1 ∧ π(Zn+1)/π(Xn). Similarly define Q2 on fixed x by proposing a can-
didate for Yn+1 according to N(y, 1 + x2). For fixed y, Q1 is geometrically ergodic; and for
fixed x, Q2 is geometrically ergodic (see for example Roberts and Tweedie, 1996). However it
is easy to verify that along any sequence of points (xi, yi) such that |xi| → ∞ and |yi| → ∞,
the acceptance probability for each of Q1 and Q2 (and hence also for PC) goes to 0. This
provides our required counterexample. 2

To continue, we need some notation. Let π be a probability measure on X = X1× . . .×Xk, and
let Pi be the operator which replaces the ith coordinate of x ∈ X by a draw from π(dxi | x−i),
leaving x−i unchanged. LetM(X ) be the space of all σ-finite signed measures on X , and let
M0 = {µ ∈M(X ) ; µ(X ) = 0}. Given a norm N onM(X ), and a Markov operator P on X ,
set ‖P‖N = sup

N(µ)=1

N (µP ). Say P is N -geometrically ergodic if πP = π and there is a positive

integer m with ‖Pm
∣∣
M0
‖N < 1. (Note that, if N is total variation distance, then N -geometric

ergodicity is equivalent to uniform ergodicity. On the other hand, if N (µ) = ‖µ‖L2(π), then
N -geometric ergodicity is equivalent to condition (ii) of Theorem 2 above.) Finally, call N
π-contracting if it has the property that ‖P‖N ≤ 1 for any Markov operator P satisfying
πP = π. Thus, the Lp(π) norms are all π-contracting (see e.g. Baxter and Rosenthal, 1995,
Lemma 1), though the norm L∞V is usually not.

Proposition 3.2 If DUGS is N -geometrically ergodic, where N is π-contracting, then RSGS
is also N -geometrically ergodic.

Proof:
Suppose that ‖(P1 . . .Pk)

n
∣∣
M0
‖N < 1. Then, since(

1

k
(P1 + . . .+ Pk)

)nk
=

1

knk

∑
i1,...,ink

Pi1 . . . Pink



22 Electronic Communications in Probability

includes a term (P1 . . .Pk)
n, it has N -norm < 1 by the triangle inequality. The result follows.

2

We note that, in general, the converse to this last result is false. For example, even if RSGS
is geometrically ergodic, DUGS may be periodic.
We can now prove

Theorem 3.1 Suppose DUGS or RSGS is N -geometrically ergodic, where N is π-contracting.
Suppose further that there are operators Qi such that

lim
n→∞

‖Qni − Pi‖N = 0 ,

i.e. Qni converges to Pi in N -norm as n → ∞. Then the random-scan hybrid sampler PC =
1
k (Q1 + . . .+Qk) is N -geometrically ergodic.

Remark 3.1 1. If furthermore N is such that ‖νT‖var ≤ Cν ‖T‖N , then we can conclude
geometric convergence in the total variation norm (cf. Baxter and Rosenthal, 1995, Theorem
1 (b)).
2. Note that the condition lim

n→∞
‖Qni − Pi‖N = 0 implies a certain uniformity of convergence,

uniform over choices of x−i.

Proof:
If DUGS is N -geometrically ergodic, there is a positive integer m with

‖(P1 . . . Pk)
m
∣∣
M0
‖N < 1 .

Also, by assumption,
‖Qni − Pi‖N → 0, n→∞ ,

so
‖(Qn1Qn2 . . .Qnk)m − (P1P2 . . .Pk)

m
∣∣
M0
‖N → 0 , n→∞ .

Hence, there is a positive integer N such that

‖(QN1 QN2 . . .QNk )m
∣∣
M0
‖N = ρ < 1 .

But then expanding out (PC)Nm, and recalling that ‖Q∗‖N ≤ 1 where Q∗ is any product of
Qi’s, we see that

‖(PC)Nm
∣∣
M0
‖N ≤

(1
k

)Nm (
kNm − 1 + ρ

)
< 1 .

The N -geometric ergodicity follows.
The result for RSGS follows similarly, from noting that(

1

k

∑
Qi

)Nm
=

1

kNm

 ∑
i1,...,im

QNi1 . . .Q
N
im

 + leftover

=
1

kN

(
1

n

∑
QNi

)m
+ leftover

where “leftover” has N -norm ≤ 1− k−N . Hence ‖(PC)m
∣∣
M0
‖N ≤ 1− (1− ρ)k−N < 1. 2

In particular, this result shows that if a hybrid sampler is constructed out of chains which are
L2(π)-geometrically ergodic, and if RSGS is L2(π)-geometrically ergodic, then the resulting
hybrid sampler will also be L2(π)-geometrically ergodic. It may be possible to use this result
iteratively, to build up larger and larger geometric chains by combining smaller ones.
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4 Appendix: Measurability of ‖P n(x, ·)− π(·)‖var

In this appendix we prove that, on a countably generated state space, the quantity ‖P n(x, ·)−
π(·)‖var is measurable as a function of x. This fact was needed in the proof of Proposition 1
above.

Lemma 4.1 Let ν(·) be a finite signed measure on (X ,F). Suppose that F0 is a set algebra
generating F . Then for all S ∈ F , and for all ε > 0, there is S0 ∈ F0 with

|ν(S)− ν(S0)| < ε .

Proof:
Take ν to be a measure (otherwise consider its positive and negative parts separately and use
the triangle inequality). It follows from Doob (1994, Chapter IV, Section 3) that we can find
S0 ∈ F0 with ν(S∆S0) arbitrarily small. The result follows. 2

Proposition 4.1 Let ν(x, ·) be a bounded signed measure on (X ,F), where F is countably
generated by the sequence of sets {A1, A2, . . .}. Assume that ν(·, A) is a measurable function
for all sets A. Then sup

A∈F
ν(x, A) is measurable.

Proof:
The proof proceeds by demonstrating that the supremum can be written as a supremum of a
countable collection of measurable functions.
Therefore let Fn = σ{A1, A2, . . . , An}. Now fix x ∈ X . Let A∗ be the set that achieves
sup
A
ν(x, A) (possible by the Hahn decomposition, e.g. Royden, 1968). Notice that

⋃
n
Fn is a

set algebra generating F . So for arbitrary ε > 0, we can apply the previous lemma to find a
set A ∈

⋃
n
Fn with ν(A∗) ≥ ν(A) ≥ ν(A∗) − ε. Hence,

sup
A∈F

ν(x, A) = sup
n

sup
A∈Fn

ν(x, A) .

But sup
A∈Fn

ν(x, A) is clearly a measurable function of x ∈ X . The result follows. 2

Setting ν(x, A) = P n(x, A)− π(A), we see that ‖P n(x, ·)− π(·)‖var is measurable, as claimed.
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