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Abstract

We prove that the Moderate Deviation Principle (MDP) holds for the trajectory of a locally
square integrable martingale with bounded jumps as soon as its quadratic covariation, properly
scaled, converges in probability at an exponential rate. A consequence of this MDP is the
tightness of the method of bounded martingale differences in the regime of moderate deviations.

1 Introduction

Suppose { X, Fn}2_, is a discrete-parameter real valued martingale with bounded jumps
| Xm — Xim—1] < a, m € N, filtration F,,, and such that Xy = 0. The basic inequality for the
method of bounded martingale differences is Azuma-Hoeflding inequality (c.f. [1]):

P{X; >z} < e=T 2k yp 5 0, (1)

In the special case of i.i.d. differences P{X,, — X;,—1 =a} =1 -P{X,, — X,,_1 = —ea/(1 —
€)} =€ € (0,1), it is easy to see that P{X}, > z} < exp[—kH (e + (1 — €)z/(ak)|e)], where
H(g|p) = qlog(q/p)+(1—q)log((1—¢q)/(1—p)). For € — 0, the latter upper bound approaches
0, thus demonstrating that (1) may in general be a non-tight upper bound. Let B(u) =
2u2((1 4+ u)log(1 + u) — u) and

E[(Xg — Xp—1)?|Fr—1]

NgE

<X>m =

ol
Il

1

denote the quadratic variation of {X,,, Fn}59_,. Then,

P{Xy >z} <P{(X)x >y} +e " P20 vy 50 (2)
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(c.f. [4, Theorem (1.6)]). In particular, B(0) = 1, recovering (1) for the choice y = ka? and
x/y — 0. The inequality (2) holds also for the more general setting of locally square integrable
(continuous-parameter) martingales with bounded jumps (c.f. [7, Theorem II.4.5]).

In this note we adopt the latter setting and demonstrate the tightness of (2) in the range of
moderate deviations, corresponding to z/y — 0 while 22/y — oo (c.f. Remark 5 below). We
note in passing that for continuous martingales [6] studies the tightness of the inequality:

PIX0 > Lol (X} <o/,

using Girsanov transformations, whereas we apply large deviation theory and concentrate on
martingales with (bounded) jumps, encompassing the case of discrete-parameter martingales.
Recall that a family of random variables {Zy; k > 0} with values in a topological vector space
X equipped with o-field B satisfies the Large Deviation Principle (LDP) with speed ay, | 0
and good rate function I(-) if the level sets {x; I(x) < a} are compact for all @ < co and for
alll € B

— inf I(z) <liminfayloglP{Z; € T'} <limsupaylogP{Z; € T'} < — inf I(z)
zere k—oco k—oo €l

(where T and T denote the interior and closure of T, respectively). The family of random
variables {Zy; k > 0} satisfies the Moderate Deviation Principle with good rate function I(-)
and critical speed 1/hy, if for every speed ay, | 0 such that hiar — oo, the random variables
VarZy, satisfy the LDP with the good rate function I().

Let D(R%)(= D(R,,IR%)) denote the space of all R%-valued cadldg (i.e. right-continuous with
left-hand limits) functions on IR equipped with the locally uniform topology. Also, C'(IR?) is
the subspace of D(IR?) consisting of continuous functions.

The process X € D(IR?) is defined on a complete stochastic basis (Q, F,F = F;,P) (c.f. [5,
Chapters I and II] or [7, Chapters 1-4] for this and the related definitions that follow). We
equip D(IR?) hereafter with a o-field B such that X : Q — D(IRY) is measurable (B may well
be strictly smaller than the Borel o-field of D(IRY)).

Suppose that X € M2 c,0 1s a locally square integrable martingale with bounded jumps |AX| <
a (and Xo = 0). We denote by (A, C,v) the triplet predictable characteristics of X, where
here A = 0, C = (Cy)>0 is the F-predictable quadratic variation process of the continuous
part of X and v = v(ds, dx) is the F-compensator of the measure of jumps of X. Without
loss of generality we may assume that

V(e R = [

|z|<a

v({t}, dz) <1, / zv({t},dx)=0, ¢t>0 (3)

|z|<a

and for all s < t, (Cy — Cy) is a symmetric positive-semi-definite d x d matrix. The predictable
quadratic characteristic (covariation) of X is the process

(X)) = C; —l—/ot /|x|§a zz'dv, (4)

where ' denotes the transpose of z € R?, and || A|| = sup|y=1 |\ AA| for any d x d symmetric
matrix A.
Our main result is as follows.
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Proposition 1 Suppose the symmetric positive-semi-definite d X d matriz Q@ and the regularly
varying function hy of index a > 0 are such that for all 6 > 0:

limsup h; ' log IP{||h; *(X): — Q| > 6} < 0. (5)
t—o0

Then {h,:lﬂXk.} satisfies the MDP in (D[IR%), B) (equipped with the locally uniform topology)
with critical speed 1/hy, and the good rate function

o * /] O[_l (1—a)
o) /0 A @E)aH0-Ddt ¢ e AC, ©

0 otherwise,

where A*(v) = Sup, _ pe (Nv—2NQX), and ACo = {¢ : Ry — IR® with ¢(0) = 0 and absolutely
continuous coordinates }.

Remark 1 Note that both (5) and the MDP are invariant to replacing h; by g such that
ht/g: — ¢ € (0,00) and taking c¢@ instead of ). Thus, if @ # 0 we may take h; = median
I (X)¢ ||, and in general we may assume with no loss of generality that h; € D(IRy) is strictly
increasing of bounded jumps.

Remark 2 If X is a locally square integrable martingale with independent increments, then
(X) is a deterministic process, hence suffices that h; *(X); — Q for (5) to hold.

As stated in the next corollary, less is needed if only X} (or sup<, X;) is of interest.

Corollary 1
(a) Suppose that (5) holds for some unbounded h: (possibly not regularly varying). Then,

{h,:lﬂXk} satisfies the MDP in IR® with critical speed 1/hy, and good rate function A*(-).

(b) If also d = 1, then {h,:l/2 SUPg< Xs} satisfies the MDP with the good rate function
I(z) = 22/(2Q) for 2 > 0 and I(z) = oo otherwise.

Remark 3 For d = 1, discrete-time martingales, and assuming that hy = (X)y, is non-random,
strong Normal approximation for the law of h,:l/ 2Xk is proved in [9] for the range of values
corresponding to ajhy — 00.

Remark 4 The difference between Proposition 1 and Corollary 1 is best demonstrated when
considering X; = By, , with By the standard Brownian motion. The MDP for ht_lﬂBht in R
then trivially holds, whereas the MDP for h,:l/ QBhtk is equivalent to Schilder’s theorem (c.f.
[3, Theorem 5.2.3]), and thus holds only when h; is regularly varying of index « > 0.
Remark 5 When d = 1 and @ # 0, the rate function for the MDP of part (a) of Corollary 1 is
22/(2Q). For y = hQ(1 +6), § > 0 and x = x1, = o(y) such that 2%/y — oo, this MDP then
implies that P{ X} > x} = exp(—(1 + § + o(1))z?/2y) while P({X); > y) = o(exp(—x?/2y))
by (5). Consequently, for such values of z,y the inequality (2) is tight for ¥ — oo (see also
Remark 9 below for non-asymptotic results).

Remark 6 In contrast with Corollary 1 we note that the LDP with speed m~! may fail for
m~'X,, even when X is a real valued discrete-parameter martingale with bounded independent
increments such that (X),, = m. Specifically, let b : IN — {1,2} be a deterministic sequence
such that p,, = m™! Z?ﬂ Lip(r)=1) fails to converge for m — oo and let u;, © = 1,2 be two
probability measures on [—a, a] such that fmd,ui =0, med,ui = 1,4 =1,2 while ¢; # ¢ for
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¢; = log [ e"dp;. Then, AX} independent random variables of law Ho(k), k € IN, result with
X, as above. Indeed, m~! log E{exp(X,,)} = pmc1 + (1 —pm )co fails to converge for m — oo,
hence by Varadhan’s lemma (c.f. [3, Theorem 4.3.1]), necessarily the LDP with speed m™!
fails for m=1X,,.

Remark 7 Corollary 1 may fail when X is a real valued discrete-parameter martin%ale with
unbounded independent increments such that (X),, = m. Specifically, for m; = 2%°, j € IN
let M(m;) = 2(m;logm;)'/? and M(k) = 1 for all other k¥ € IN. Let Z; be independent
Bernoulli(1/(M(k)? + 1)) random variables. Then, AXy, = M (k)Z, — M(k)~1(1 — Z;) result
with X, as above, with the LDP of speed 1/logm not holding for (mlogm)~'/2X,,. Indeed,
let Y;, be the martingale with AY,,, i.i.d. and independent of X such that P{AY,, =1} =
P{AY,,;, = —1} = 0.5 and AY} = AX} for all other k¥ € IN. Then, (mlogm)~ 2| X, —Yon| —
0 for m = (mj —1), j — oo, while (mlogm)~/2(X,, —Y;,) > 2Z,, +o0(1) for m = m;, j — oo.
The LDP with speed 1/logm and good rate function z%/2 holds for (mlogm)~'/2Y,, (c.f.
Corollary 1), while logIP{Z,,, = 1}/logm; — —1 as j — oo. Consequently, the LDP bounds
fail for {(mlogm)~/2X,, > 2}.

Proposition 1 is proved in the next section with the proof of Corollary 1 provided in Section
3. Both results build upon Lemma 1. Indeed, Proposition 1 is a direct consequence of Lemma
1 and [8]. Also, with Lemma 1 holding, it is not hard to prove part (a) of Corollary 1 as a
consequence of the Gértner—Ellis theorem (c.f. [3, Theorem 2.3.6]), without relying on [8].

2 Proof of Proposition 1

The cumulant G(\) = (G¢(\))>0 associated with X is
1 t ’
Gi(A) = 5 N CiA +/ / (" —1— Nx)v(ds, dz),t > 0,A € R, (7)
0 Jz|<a

The stochastic (or the Doléans-Dade) exponential of G(\), denoted £(G(A)) is given by
0i(A\) =10g E(GN))e = Gi(N) + ) [log(1 + AG,(N) — AG (V)] (8)
s<t

where

AG,()\) = /| § (" —1)w({s},dz) = / (eN* —1— Na)w({s},dz). (9)

|z|<a

The next lemma which is of independent interest, is key to the proof of Proposition 1.

Lemma 1 Fore >0, let v(e) = 2(ef — 1 —¢€)/e? > 1 > v(—€) — €2v(€)? /4 = w(e). Then, for
any 0<u<t<oo, AelR?

v([Ala) N((X)e = (X)u)A. (10)

DN | =

S w( )N ((X)e — (XA < ) — ) <

Remark 8 Since exp[NX: — ¢+(A)] is a local martingale (c.f. [7, Section 4.13]), Lemma 1
implies that exp[N' Xy — 2v(|Ala) N (X)¢A] is a non-negative super-martingale while exp[\' X; —
2w (|AJa)X'(X):A] is a non-negative local sub-martingale. Noting that w(|A|a), v(|Ala) — 1 for
|A] = 0, these are to be compared with the local martingale property of exp[\ X; — %X (X)eA]
when X € M, is a continuous local martingale (c.f. [7, Section 4.13]).
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Remark 9 For d = 1 it follows that for every A € R,

F{exp[AX,, — %v(|)\|a))\2<X)m]} <1 (11)

(c.f. Remark 8). The inequality (2) then follows by Chebycheff’s inequality and optimization
over A > 0. For the special case of a real-valued discrete-parameter martingale X,,, also

1
E{exp[AX,, — §w(|)\|a))\2<X)m]} >1, (12)
and we can even replace w(|Ala) in (12) by v(—|\|a) (c.f. [4, (1.4)] where the sub-martingale
property of exp(AX,, — 2v(—|Aa)A*(X),,) is proved).

Proof: To prove the upper bound on ¢:(\) — ¢, () note that log(1 4+ z) — z < 0 implying
by (8) that ¢:(A) — pu(A) < Ge(A) — Gy (A). The required bound then follows from (7) since
(eN* —1— Nz) < Lo(|Na)N (zz") for |z| < a, and N (Cy — Cyu)A > 0 for u < ¢.

To establish the corresponding lower bound, note that since AGs(\) > 0 (see (9)) and log(1 +
x) —x > —x2/2 for all z > 0, we have that

)~ euN) 2 G~ Gu) — 5 3 AGL(O)

u<s<t

Moreover, again by (9) we see that

1 / lv a 2 a 2
0 < AG(A) < 5 v(|Ala)X [/lxléam v({s},dm)]ké 5 V(1Ala) ([Ala)”.
Hence,
% > AG(N)? < év(|)\| (Ma)2X | > /|< zx'v({s},dz) | A

1
< gu(IMe)* ()X [(X): — (X)u] A,
and the required lower bound follows by noting that
1
Ge(A) = Gu(A) 2 5 o(=[AN[{X)e = (X)u]A u

To prove Proposition 1 we need the following immediate consequence of Lemma 1.

Lemma 2 Suppose there exists ¢ € C[0,00), a positive-semi-definite matriz Q and an un-
bounded function h : IRy — IRy such that for all § > 0,T < oo

<X>uk
hy

1
limsup — logIP{ sup
koo Tk wel0,T]

—q(u)QH >6} <0. (13)

Then, for every X\ € R and aj, — 0 such that hyar — 0,

1
limsup ax logIP{ sup |ak@uk(A/V hiag) — 3 q(u)XQ)\‘ > 5} = —00. (14)

k—oo u€(0,T]
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Proof: Use (10), noting that ay = %(akhk) with aihr — 00, and that klim v(|Aa/v/ axhi) =
—o0
klim w(|Aa/v/axhi) = 1, while sup,cpo 71 ¢(u)| < oco. ®
—00

The next lemma is a simple application of the results of [8], relating (14) with the LDP (with
speed ay) of{ Z—iXk.}.

Lemma 3 When (14) holds, the processes {4 [ X, k> 0} satisfy the LDP in (D(IR), B)

with speed ay and the good rate function

< (do _
I(¢) _ /0 A (d_q(t)> (J(dt) < q, ¢(0) =0 (15)

00 otherwise

(where g € M (IRy) is the continuous locally finite measure on (IR, BIR+) such that q([0,t]) =
q(t))-

Proof: For each sequence k, — oo we shall apply [8, Theorem 2.2] for the local martingales
V@, /hi, Xk, replacing + throughout by ax,,. Cramér’s condition [8, (2.6)] is trivially holding
in the current setting, while for G¢(A) = 1 q(t)\’ QA the condition (sup £) of [8, Theorem 2.2] is
merely (14). Moreover, for this G¢(X) the condition [8, (G)] is easily shown to hold (as H, +(+)
is then a positive-definite quadratic form on the linear subspace domH ; for all s < t). Thus,
the LDP in Skorohod topology follows from [8, Theorem 2.2] and the explicit form (15) of the
rate function follows from [8, (2.4)] taking there g:(\) = + NQA. Suppose I(¢) < co. Then,
¢ < q and since ¢ € C[0,00) it follows that ¢ € C(IR?). Hence, by [8, Theorem C] we may
replace the Skorohod topology by the stronger locally uniform topology on D(IRd). ]

Proposition 1 follows by combining Lemmas 2 and 3 with the next lemma.

Lemma 4 If hy is regularly varying of index a > 0 then (5) implies that (18) holds for
q(u) = u®.

Proof: Fix T' < oo and ¢ > 0. Since h; is regularly varying of index o > 0, clearly hyx/hr —

u® for allu € (0,00) (c.f. [2, page 18]). Take e > 0 small enough for sup |g(ie+e€)—q(ie)| <
0<i<[T/€]

5/(3]|Qll), and kg < oo such that  sup  |hier/hr —q(i€)] < 6/(3||Q||) whenever k > ko (note
0<i<[T/€]

that ¢(0) = 0).
The monotonicity of (X): in ¢ (and (X)o = 0) implies that for all k& > kg

sup
u€[0,T]

Hence, suffices to show that for every ¢ € IN, € > 0

hi, 1<i<[T/e]

(X)uk _ Q(U)QH > 6} - { sup (X )ik — hier Q| > %(Shk} .

1 1
lim sup h—logIP {| (X)iek — hiekQ ||> §5hk} <0.

k—o0 k

Since hier,/hr — q(i€) € (0,00) this inequality follows from (5). M
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3 Proof of Corollary 1

(a) Assume first that h; is regularly varying of index 1. Given Proposition 1, this case is easily
settled by applying the contraction principle for the continuous mapping ¢ +— ¢(1) : D[IRd] —
R?. In the general case, we take without loss of generality h; € D(IR;) strictly increasing
of bounded jumps (see Remark 1). Let o, = inf{t > 0 : hy > s} and g5 = h,,. Note that
gs — s is bounded, while (5) holds for the locally square integrable martingale Y; = X,_ of
bounded jumps and the regularly varying function g, of index 1. Consequently, {gs_l/ 2Y;}
satisfies the MDP with the critical speed 1/gs and the good rate function A*(-). Since h; is
strictly increasing and unbounded it follows that o(IR+) = IR. Hence, this MDP is equivalent
to the MDP for {h; "/>X}.

(b) As in part (a) above suffices to prove the stated MDP for h; regularly varying of index
1. Applying the contraction principle for the continuous mapping ¢ — sup,.; ¢(s) we deduce
the stated MDP from Proposition 1. Since A*(v) = v?/(2Q), the good rate function for this
MDP is (c.f. (6))

1 R 52
I(z) = 55 inf 02ds> 2o
( ) 2Q {p€ACo:sup <1 Pp(s)=2} /0 (b( ) =20

Clearly, ¢(0) = 0 implies that I(z) = oo for z < 0, while taking ¢(s) = (s A 1)z we conclude
that I(z) = 22/(2Q) for z > 0.
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