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LINEAR RESPONSE THEORY FOR STATISTICAL ENSEMBLES IN

COMPLEX SYSTEMS WITH TIME-PERIODIC FORCING∗

ANDREW J. MAJDA† AND XIAOMING WANG‡

Abstract. New linear response formulas for unperturbed chaotic (stochastic) complex dynam-
ical systems with time periodic coefficients are developed here. Such time periodic systems arise
naturally in climate change studies due to the seasonal cycle. These response formulas are developed
through the mathematical interplay between statistical solutions for the time-periodic dynamical
systems and the related skew-product system. This interplay is utilized to develop new systematic
quasi-Gaussian and adjoint algorithms for calculating the climate response in such time-periodic sys-
tems. These new formulas are found in section 4. New linear response formulas are also developed
here for general time-dependent statistical ensembles arising in ensemble prediction including the ef-
fects of deterministic model errors, initial ensembles, and model noise perturbations simultaneously.
An information theoretic perspective is developed in calculating those model perturbations which
yield the largest information deficit for the unperturbed system both for climate response and finite
ensemble predictions.
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1. Introduction

One of the cornerstones of modern statistical physics is the fluctuation-dissipation
theorem (FDT) which roughly states that for systems of identical particles in statis-
tical equilibrium, the average mean response to small external perturbations can be
calculated through the knowledge of suitable correlation functions of the unperturbed
statistical systems with many practical applications [20, 26, 5]. The low frequency
response to changes in external forcing for various components of the climate system
is a central problem of contemporary climate change science. Leith [18] suggested
that if the climate system satisfied a suitable FDT, then climate response to small
external forcing could be calculated by estimating suitable statistics in the present
climate. The climate system is a forced dissipative chaotic dynamical system with
time periodic forcing due to the seasonal cycle, which is physically quite far from
the classical physicists’ setting for FDT. Leith’s sugestion has created a lot of recent
activity in generating new theoretical formulations and approximate algorithms for
FDT with applications to climate response [17, 15, 14, 16, 2, 1, 21, 3]. Thus, these
approximate FDT algorithms have been applied to autonomous climate models of
varying complexity and have ignored the important time periodic effect of the sea-
sonal cycle [6, 12, 4]. One goal of the present paper is to develop a version of FDT for
time-periodic systems which leads to new approximate algorithms for climate response
with the seasonal cycle. The new algorithms are presented in section 4 below.

Finite time ensemble predictions of turbulent chaotic dynamical systems with
many degrees of freedom is an important practical topic (see [27, 25] and Chapter 15
of [23]). The effect of model error, both deterministic and stochastic, in competition
with initial ensemble error effecting the skill for ensemble prediction is a central topic
[27, 25, 22]. Here linear response theory is extended to unperturbed prediction en-
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sembles far from equilibrium to develop a theoretical framework for discussion of the
competition between various types of model error and initial ensemble perturbations.

Here a theoretical framework and new approximate algorithms to address both
important scientific issues mentioned in the previous two paragraphs are developed
in a unified fashion. In section 2, we develop an important mathematical interplay
between time-periodic dynamical systems and the related skew-product system and
their statistical solutions. In section 3, we develop systematic FDT theorems for the
time-periodic equilibrium setting as well as finite time ensemble predictions together
with various important approximations. In section 4, we utilize the theory developed
earlier in sections 2 and 3 to develop a suite of new systematic quasi-Gaussian [18,
21, 15, 17, 14, 16] and adjoint algorithms [2, 1, 3] as well as blended variants [1, 3] for
climate response with a seasonal cycle (periodic forcing). A reader interested mainly in
the proposed new algorithms for climate response can go to section 4 directly without
difficulty. In section 5 an information theoretic perspective [21, 23] is developed in
calculating those model perturbations which yield the largest information deficit for
the unperturbed system both for climate response and finite ensemble predictions.

Consider a generic (Ito) SDE system which is assumed to be well-posed and
describes the motion of some physical system

dX

dt
=F(X,t)+σ(X)Ẇ , X∈R

N , F=(F1,··· ,FN ),f =(f1,··· ,fN ), (1.1)

where Ẇ denotes a standard M dimensional white (in time) noise, σ is an N ×M
matrix, and F(X,t) has time periodic coefficients. For example,

F(X,t)=F(X)+ f(t) (1.2)

where f(t) is a time-periodic forcing with period T0. In the case of zero noise, i.e.,
σ =0, the SDE reduces to an ODE system and we shall require the system to be large
(N ≫1) and have the strong mixing property.

For a system with explicit time-dependent forcing which is not stationary in time,
it is impossible for the system to reach any time-independent statistical equilibrium.
Hence, we have to consider time dependent statistical solution of the system.

For an ensemble prediction, the unperturbed statistical solution p̄(X,t) is the
solution to the associated unperturbed time-dependent Fokker-Planck equation

∂p̄

∂t
=−∇·(p̄F(X,t))+

1

2
∇·∇·(Qp̄)(

def
= LFP p̄), (1.3)

p̄(X,t)

∣

∣

∣

∣

t=0

= p̄0(X), (1.4)

where

Q=σσT ≥0 (1.5)

is an N ×N matrix and

∇·∇·(Qp̄)=

N
∑

i=1

N
∑

j=1

∂2(Qij p̄)

∂xi∂xj

(1.6)

is the associated diffusion operator and the time dependent Fokker-Planck operator
LFP is defined as

LFP (t)p=−∇·(pF(X,t))+
1

2
∇·∇·(Qp). (1.7)
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The Fokker-Planck equation reduces to the Liouville equation in the case of zero
noise (Q≡0). Our goal here is to develop a calculus useful for both climate response
and system perturbation/model error in time dependent ensemble prediction.

1.1. Skew product system. With the introduction of the time-periodic
F(X,t), it is unlikely that the system will reach any time-independent statistical
equilibrium. Moreover, classical linear response theory [26, 21] cannot be directly
applied to this case since a straightforward calculation leads to an equation for linear
response with time-dependent coefficients, which makes it impractical unless (infinite
dimensional version) Floquet theory is invoked. In order to overcome this difficulty,
we introduce a skew-product flow/system just as in the classical approach for non-
autonomous systems. In the case of periodic F(X,t) (with period T0), the skew-
product system is the following SDE on R

N ×S where S=R
1/modT0 is the (one-

dimensional) circle with circumference T0

dX

dt
=F(X,s)+σ(X)Ẇ ,

ds

dt
=1,

which can be written in the form of (1.1) for the extended (skew-product) variables

X̂=

(

X

s

)

(1.8)

as

dX̂

dt
= F̂(X̂)+ σ̂(X̂)Ẇ , X̂∈R

N ×S, (1.9)

where

F̂(X̂)=

(

F(X,s)
1

)

, σ̂(X̂)=

(

σ(X)
0

)

. (1.10)

Introducing the gradient operator in the skew-product variable as ∇̂=

(

∇X

∂
∂s

)

=
(

∇
∂
∂s

)

, we may formally write down the Fokker-Planck equation for the skew-product

system just as in (1.3) with the hat. Indeed, with the special form that we have
assumed here, it can be written as

∂p̂

∂t
=−∇·(p̂F(X,s))− ∂p̂

∂s
+

1

2
∇·∇·(Qp̂)(

def
= L̂FP p̂), (1.11)

p̂(X̂,t)

∣

∣

∣

∣

t=0

= p̄0(X)×δ0(s) (1.12)

where δ0 is the Dirac delta function centered at zero and the skew-product Fokker-
Planck operator L̂FT is defined as

L̂FP p=−∇·(pF(X,s))− ∂p

∂s
+

1

2
∇·∇·(Qp). (1.13)

We naturally investigate the relationship between the statistical solutions for the
two formulations. In the case of a time-dependent statistical solution generated with
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initial data given by (1.4, 1.12), the relationship is simple. In fact we can easily verify
the following result.

Lemma 1.1. Let p̄(X,t) be a solution of the time-dependent Fokker-Planck Equation

(1.3) with initial data (1.4). Then p̂(X̂,t) is a solution to the skew-product Fokker-
Planck Equation (1.11) with initial data (1.12) if and only if

p̂(X̂,t)= p̄(X,t)×δ0(s− t). (1.14)

Moreover, if p̂(x̂,t) is a smooth solution of the skew-product Fokker-Planck Equation
(1.11), then

p(x,t)
def
= T0p̂

((

x

t

)

,t

)

(1.15)

is a solution to the time-dependent Fokker-Planck Equation (1.3) and is in fact a

statistical solution to (1.1) with initial data p̂

((

x

0

)

,0

)

.

Proof. We sketch the proof. The verification of (1.15) is a direct and simple
calculation. The relationship (1.14) has to be understood in the sense of distributions.

For this purpose we consider a smooth test functional φ̂

((

x

t

)

,t

)

with compact

support, and we have

∫ ∞

0

∫
(

∂p̂

∂t
− L̂FT p̂

)

φ̂dx̂dt

=

∫ ∞

0

∫

p̄(x,t)×δ0(s− t)

(

− ∂

∂t
− L̂T

FT

)

φ̂dx̂dt

=−
∫ ∞

0

∫

p̄(x,t)

(

∂

∂t
φ̂
(

(

x

t

)

,t

)

+F(x,t)∇φ̂

((

x

t

)

,t

)

+
∂

∂s
φ̂

((

x

t

)

,t

)

+
1

2
Q :∇∇φ̂

((

x

t

)

,t

)

)

dx̂dt

=−
∫ ∞

0

∫

p̄(x,t)

(

d

dt
+LT

FP

)

φ̂

((

x

t

)

,t

)

dx̂dt

=

∫ ∞

0

∫
(

∂

∂t
−LFP

)

p̄(x,t)φ̂

((

x

t

)

,t

)

dx̂dt

=0.

Next we ask about the existence of statistical equilibrium of the skew-product
system and the possible long time asymptotics of the statistical behavior of the time
dependent system, as well as their relationship. Of course statistical equilibrium may
not exist even for the skew-product system. However, if the skew-product system
(or the original time-dependent system) is dissipative in certain appropriate sense,
the existence of statistical equilibrium can be established via the classical Bogliubov-
Krylov approach [11, 28]. These dissipative systems include the following type of
special systems [21, 23] that are of great importance in geophysical fluid dynamics

dX

dt
=B(X,X)+LX−γX+ f(t)+σẆ (1.16)
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where B is a bilinear anti-symmetric operator with X ·B(X,X)=0 (resulting from
the quadratic advection term for instance), L is a linear anti-symmetric operator
(derived from the Coriolis forcing for example), γ represents dissipation and f denotes
external periodic (seasonal, annual) forcing. Both L(t) and γ(t) can also have time
periodic components in applications centered about time periodic equilibrium states
in a reformulation [12, 6, 4]. The global existence of solutions to such kind of systems
can be found in [9] among others under appropriate assumptions. Nevertheless, we do
not know a priori if there is a unique statistical equilibrium since we have degenerate
diffusion for the skew-product system (1.9) even if the noise for the time-dependent
system is non-degenerate (rank(Q)=N). However, we will see below that utilizing the
relative entropy for the time-dependent problem and a simple relationship between
asymptotic behavior of statistical solutions of the time-dependent problem (1.1) and
the skew-product problem (1.9) yields a somewhat surprising uniqueness of invariant
measure (statistical equilibrium) for the skew-product system. This uniqueness of the
invariant measure (statistical equilibrium) can be viewed as a manifestation of noise
induced statistical stability in this time-dependent setting.

Now if the time-dependent system is dissipative in certain sense, then the skew-
product system is also dissipative and hence a generalized long time average defined
through Banach limit would generate invariant measure (stationary statistical so-
lution) of the system which we denote p̂eq(x̂). This statistical equilibrium of the
skew-product system is related to the long time asymptotic statistical behavior of the
original time-dependent dynamical system (1.1). Indeed, it is easy to verify from (1.3,
1.11) (see also (1.15)) that

pper(x,t)=T0 p̂eq

(

x

t

)

(1.17)

is a solution to the original time-dependent Fokker-Planck Equation (1.3). Since p̂eq is
a time independent solution to the extended (skew-product) Fokker-Planck Equation
(1.11), we see after integrating in x that

d

dt

∫

pper(x,t)dx=T0
d

dt

∫

p̂eq

(

x

t

)

dx=T0

∫

∂

∂s
p̂eq

(

x

t

)

dx

=T0

∫

LFP p̂eq

(

x

t

)

dx=0

and hence, since p̂eq is a probability density function on R
N ×S,

∫

pper(x,t)dx=1,∀t.

Therefore, pper(x,t) is a time periodic (period T0) statistical solution to (1.1). Con-
versely, if pper(x,t) is a statistical solution to (1.1) which is periodic in t with period
T0, we may define p̂eq through (1.17) and it is easy to verify that p̂eq is a stationary
solution of the skew-product Fokker-Planck equation.

Now under generic noise (rank(Q)=N) it is natural to expect that all statistical
solutions to (1.1), are in fact smooth and positive for all x∈R

N and t>0 due to
the non-degenerate diffusion in the time-dependent Fokker-Planck Equation (1.11).
Hence any two statistical solutions pj ,j =1,2 of (1.1) must be approaching each other
under generic noise (rank(Q)=N) due to the following calculation on the relative
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entropy (information content). This is related to the classical H-theorem, see [13, 26],
or section 5 below.

d

dt
H(p1,p2)=

d

dt

∫

p1(x,t)ln
p1(x,t)

p2(x,t)
dx=−

∫

p1(x,t)

2R2(x,t)
∇R(x,t) ·Q∇R(x,t)dx≤0

(1.18)
where R= p1

p2
and H(p1,p2) denotes the relative entropy (an alternative notation is

P(p1,p2), see section 5) which is defined as

H(p1,p2)=

∫

p1(x)ln
p1(x)

p2(x)
dx. (1.19)

The time derivative of the relative entropy is zero only if ∇R is independent of x which
is possible only if p1≡p2. Therefore we may conclude that all statistical solutions of
the time-dependent system (1.1) approach the time-periodic asymptotic statistical
solution pper. This also implies that there is a unique statistical equilibrium for the
skew-product system under the generic noise assumption in lieu of (1.17).

Of course the relative entropy calculation also applies to the skew-product system.
For any two regular/smooth statistical solutions p̂j(x̂,t), j =1,2 of the skew-product
system, then the proof of the H-theorem dictates that

d

dt

∫

p̂1(x̂,t)ln
p̂1(x̂,t)

p̂2(x̂,t)
dx̂=−

∫

p̂1(x̂,t)

2R̂2(x̂,t)
∇R̂(x̂,t) ·Q∇R̂(x̂,t)dx̂≤0 (1.20)

where R̂= p̂1

p̂2
. The time derivative is zero only if ∇R̂ is independent of x, which

is possible only if p̂1≡ p̂2 under the generic noise condition. This shows that the
statistical equilibrium of the skew-product system (1.9) is unique under the generic
noise assumption.

We summarize the results on long time statistical properties as the following.

Theorem 1.2. If the time-dependent system (1.1) is dissipative in appropriate sense,
then it possesses at least one time-periodic (with period T0) statistical solution pper

which is associated with a statistical equilibrium p̂eq of the skew-product system (1.9)
through (1.17). Moreover, under generic noise assumptions, i.e., rank(Q)=N , and
an appropriate decay property at infinity, the time-periodic statistical solution pper

captures all asymptotic statistical properties of the system (1.1) in the sense that for
any statistical solution p

lim
t→∞

H(p(t),pper(t))= lim
t→∞

H(pper(t),p(t))=0. (1.21)

In this case, the skew-product system (1.9) possesses a unique ergodic statistical equi-
librium p̂eq which is related to the asymptotic statistical solution pper of (1.1) through
(1.17). Moreover, in this case of generic noise, pper(t) is the pdf of the unique er-
godic invariant measure of the Poincaré map of the system (1.1) with time period T0

starting from t. Therefore we have for any bounded continuous functional ϕ(x) and
t0

∫

ϕ(x)pper(x,t0)dx= lim
K→∞

1

K

K
∑

k=0

ϕ(X(t0 +kT0)), (1.22)

with the right hand side naturally interpreted as the climatological mean.
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Proof. The uniqueness of the statistical equilibrium of the skew-product system
follows from the uniqueness of asymptotic statistical behavior of the original system
(1.1) and the relationship (1.17). We point out that this uniqueness does not guarantee
the convergence of all statistical solutions of the skew-product system (1.9) to this
unique statistical equilibrium, only the time-average converges.

We only need to remark on the ergodicity (in the sense of equivalence between
spatial and temporal averages) of the statistical equilibrium p̂eq when it is unique.
This follows from the connection between generalized time averaging and invariant
measure [11, 28, 29] but it seems that it is less known. Indeed, for any smooth test

functional φ̂ with compact support, there exists an invariant measure µ̂sup induced
by a special generalized Banach limit that agrees with the limsup on this functional
in the sense that

limsup
T→∞

1

T

∫ T

0

φ̂(x̂(t))dt=

∫

H

φ̂(x̂)dµ̂sup(x̂).

Similarly, there exists another invariant measure µ̂inf which agrees with the liminf
on this functional, i.e.,

liminf
T→∞

1

T

∫ T

0

φ̂(x̂(t))dt=

∫

H

φ̂(x̂)dµ̂inf (x̂).

Since there is a unique invariant measure µ̂eq we see that

limsup
T→∞

1

T

∫ T

0

φ̂(x̂(t))dt=liminf
T→∞

1

T

∫ T

0

φ̂(x̂(t))dt=

∫

H

φ̂(x̂)dµ̂eq(x̂)=

∫

H

φ̂(x̂)p̂eq(x̂)dx̂.

It is easy to see that the time T0 Poincaré map of each of the phase shifted
dynamical systems

dX

dt
=F(X,t+ t0)+σ(X)Ẇ , X(0)=x (1.23)

has a unique invariant measure which is exactly pper(x,t0) under the assumption.
Since pper(x,t0)>0,∀x, it is ergodic and therefore the discrete long time average
(1.22) in the statement of the theorem follows. This formula can be used to estimate
the asymptotic pdf pper from long time series of the system.

It is also easy to see that a phase shift, i.e., replacing f(t) by f(t+φ), does not
alter the asymptotic statistical behavior. With this skew-product formulation, we may
generalize the classical linear response calculation to this case with periodic in time
forcing by systematically repeating the time independent formalism [26, 21]. This is
done next.

2. The linear response formula

It is well known that we frequently encounter various uncertainties both in the
deterministic forcing term F, and in the noise term σ. Therefore it is natural to
consider system perturbation induced by perturbation in the deterministic forcing
term and the noise term.

For the deterministic forcing term, we consider a space-time separable perturba-
tion commonly used in climate studies [21], and the perturbation in noise is assumed
to be of the same order. Therefore we have the following perturbed system

dX

dt
=F(X,t)+a(X)•δF̃(t)+(σ(X)+δσ̃(X))Ẇ , (2.1)
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where a•w denotes the Hadamard (or Schur, or entrywise) product of a and w, i.e.,
the jth component of it is the product of the jth component of a and w, i.e.,

(a•w)j =ajwj . (2.2)

More general perturbation in the noise term of the form of δσ̃ ˙̃W may be also considered
in a similar fashion.

Since ∇·(a(X)•δF̃(t)p̂δ)=∇•(a(X)p̂δ) ·δF̃(t), the perturbed Fokker-Planck

equation in the skew-product formulation then takes the form

∂p̂δ

∂t
=−∇·(p̂δF(X,s))− ∂p̂δ

∂s
+

1

2
∇·∇·(Qp̂δ)

−δ∇•(a(X)p̂δ) · F̃(t)+
δ2

2
∇·∇·(Q̃p̂δ)+

δ

2
∇·∇·((σσ̃T + σ̃σT )p̂δ),

(2.3)

p̂δ(X̂,t)

∣

∣

∣

∣

t=0

= p̂δ
0 = p̄0(X)×δ0(s)+δp′0(X)×δ0(s), (2.4)

where Q̃= σ̃T σ̃. Note that δp′0 can incorporate initial errors in mean, variance, etc,
in an ensemble prediction.

Remark 2.1. The perturbation in the initial pdf does not need to be of the order
of δ of course. On a finite time interval, the leading order perturbation (at least
formally) in the pdf will be that of the system perturbation if the perturbation in
p0 is of higher order, or that of the initial pdf if the perturbation in p0 is of lower
order. The perturbation in initial pdf may not play any role for long time behavior
in the case the system (perturbed and unperturbed) is mixing and reaches a unique
statistical equilibrium.

We now recall the linear response calculation [26, 21] applied to the skew-product
system. For this purpose we assume

p̂δ = ¯̂p+δp̂′+O(δ2). (2.5)

Inserting this into the perturbed Fokker-Plank Equation (2.3) and dropping terms of
the order of δ2 in the perturbed Fokker-Planck equation, we arrive at the following
Approximate Linear Response Dynamics

∂p̂′

∂t
= −∇·(p̂′F(X,s))− ∂p̂′

∂s
+

1

2
∇·∇·(Qp̂′)

−∇•(a(X)¯̂p) · F̃(t)+
1

2
∇·∇·((σσ̃T + σ̃σT )¯̂p)

def
= L̂FP p̂′+La

¯̂p · F̃+Lσ
¯̂p, (2.6)

p̂′(X̂,t)

∣

∣

∣

∣

t=0

= p′0(X)×δ0(s). (2.7)

Here the external operators corresponding to the deterministic uncertainty (La) and
the uncertainty in noise (Lσ) are defined in an obvious way

Lap=−∇•(ap), (2.8)

Lσp=
1

2
∇·∇·((σσ̃T + σ̃σT )p). (2.9)
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This equation can be (formally) solved exactly to give the perturbative pdf

p̂′(t)=etL̂F P p̂′0 +

∫ t

0

[e(t−τ)L̂F P La
¯̂p(τ)] · F̃(τ)dτ +

∫ t

0

e(t−τ)L̂F P Lσ
¯̂p(τ)dτ. (2.10)

Remark 2.2. Notice that Lσ =0 when σ =0, i.e. zero noise in the unperturbed
case. Hence in the case of noise perturbation of an originally noiseless system, the
perturbative noise level should be of the order of

√
δ in order to have non-trivial

order δ perturbation to the pdf due to noise. This is in accordance with conventional
wisdom [13].

We are interested in statistical quantities as usual. For a given functional (ob-

servable) A(X̂), the statistics under the perturbed dynamics is given by

Eδ(A)(t)=

∫ ∫

A(X̂)p̂δ(X̂,t)dX̂

=E0 +δE′+O(δ2), (2.11)

where

δE′(t)= δ

∫ ∫

A(X̂)p̂′(X̂,t)dX̂ (2.12)

is the leading order perturbation in the statistics which can be written as

E′(A)(t) =

∫

etL̂F P p̂′0(x̂)A(x̂)dx̂+

∫ ∫ t

0

A(x̂)[e(t−τ)L̂F P La
¯̂p(x̂,τ)] · F̃(τ)dτ dx̂

+

∫ ∫ t

0

A(x̂)[e(t−τ)L̂F P Lσ
¯̂p(x̂,τ)]dτ dx̂

=

∫

p̂′0(x̂)etL̂T
F P A(x̂)dx̂+

∫ t

0

∫

[e(t−τ)L̂T
F P A(x̂)][La

¯̂p(x̂,τ)] · F̃(τ)dx̂dτ

+

∫ ∫ t

0

[e(t−τ)L̂T
F P A(x̂)][Lσ

¯̂p(x̂,τ)]dτ dx̂ (2.13)

=

∫

p̂′0(x̂)etL̂T
F P A(x̂)dx̂+

∫ t

0

∫

{LT
a
[e(t−τ)L̂T

F P A(x̂)]}· F̃(τ)¯̂p(x̂,τ)dx̂dτ

+

∫ ∫ t

0

[LT
σ e(t−τ)L̂T

F P A(x̂)]¯̂p(x̂,τ)dτ dx̂ (2.14)

def
=

∫

p̂′0(x̂)etL̂T
F P A(x̂)dx̂+

∫ t

0

~Ra,A(t,τ)F̃(τ)dτ +

∫ t

0

Rσ,A(t,τ)dτ (2.15)

where L̂T
FP ,LT

a
,LT

σ are the adjoint operators of L̂FP ,La,Lσ respectively. Here the

linear response operators ~Ra and Rσ which account for the system perturbations
only are defined as

~RT
a,A(t,τ)=

∫

[e(t−τ)L̂T
F P A(x̂)][La

¯̂p(x̂,τ)]dx̂=

∫

LT
a
[e(t−τ)L̂T

F P A(x̂)]¯̂p(x̂,τ)dx̂,

(2.16)

Rσ,A(t,τ)=

∫

[e(t−τ)L̂T
F P A(x̂)][Lσ

¯̂p(x̂,τ)]dx̂=

∫

[LT
σ e(t−τ)L̂T

F P A(x̂)]¯̂p(x̂,τ)dx̂.

(2.17)
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The first form may be suitable for quasi-Gaussian (and Gaussian) approximation
[18, 21, 14, 16, 15, 17, 3] while the second one is more useful for direct adjoint ap-
proximation [2, 1, 3] as we shall see below.

Remark 2.3. This general linear response approximation is probably valid for finite
time only due to the initial ensemble perturbation. For instance, if we have a time-
independent forcing perturbation, i.e., F̃(t)≡ F̃, no time dependent external forcing,
i.e., F(X,t)≡F(X), and the system is mixing and hence all statistical solutions con-
verge to the unique equilibrium state, the perturbation in the statistics should be
independent of the perturbation in the initial pdf over a long time, i.e., E(A)(t)
should be essentially independent p̂′0 for large t. But this is not consistent with the
approximation formula in (2.15) as the last two terms (the two linear response oper-
ators) are independent of p̂′0 while the first depends on the initial perturbation in a
linear fashion (unless there is magic cancellation). Therefore it might make sense to
ignore perturbation in the initial pdf, i.e., set p̂′0 =0, if we are interested in long time
approximation.

In the case when the unperturbed pdf ¯̂p is smooth and non-vanishing, we may
formally rewrite the linear response operator in the form of a statistical average which
can be replaced by long time average if the unperturbed pdf is assumed to be ergodic
[26, 21]. This is in the spirit of the fluctuation-dissipation theory in statistical physics
[26, 21, 5].

Theorem 2.4 (FDT). Suppose that ¯̂p(X̂,τ)>0,∀X̂,∀τ >0 and it is smooth. Then
the computation of the linear response operators (2.16, 2.17) can be reduced to the
computation of the following statistical correlations

~RT
a,A(t,τ)=<A(X̂(t))B̂a(X̂(τ))>=

∫

[e(t−τ)L̂T
F P A(X̂)]B̂a(X̂,τ)¯̂p(X̂,τ)dX̂,

(2.18)

Rσ,A(t,τ)=<A(X̂(t))B̂σ(X̂(τ))>, (2.19)

with the special (vector) nonlinear functionals

B̂a(X̂,τ)=
La

¯̂p(X̂,τ)

¯̂p(X̂,τ)
, B̂σ(X̂,τ)=

Lσ
¯̂p(X̂,τ)

¯̂p(X̂,τ)
, (2.20)

where the correlations are evaluated at the unperturbed pdf ¯̂p(X̂,τ). In the case when
the unperturbed statistical solution to the skew-product system is related to the statis-
tical solution p̄(X,τ) of the original time-dependent system through (1.14) and under
the assumption that p̄(X,τ) is smooth and positive, then the computation of the linear
response operators (2.16, 2.17) can be reduced to the computation of the following
statistical correlations

~RT
a,A(t,τ)=<A(X̂(t))Ba(X̂(τ))>=

∫

[e(t−τ)L̂F P A(X̂)]
∣

∣

s=τ
Ba(X̂,τ)

∣

∣

s=τ
p̄(X,τ)dX,

(2.21)

Rσ,A(t,τ)=<A(X̂(t))Bσ(X̂(τ))>, (2.22)

with the special nonlinear functionals (which are independent of s) computed through
p̄(X,τ) directly

Ba(X̂,τ)=
Lap̄(X,τ)

p̄(X,τ)
, Bσ(X̂,τ)=

Lσ p̄(X,τ)

p̄(X,τ)
. (2.23)
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Proof. It is obvious that the correlation function of two functionals A and B with
respect to ¯̂p can be written as

<A(X̂(t))B(X̂(τ))>=

∫

A(X̂)

∫

B(Ŷ)p(X̂,t;Ŷ,τ)dŶdX̂

=

∫

A(X̂)

∫

B(Ŷ)p(X̂,t

∣

∣

∣

∣

Ŷ,τ)¯̂p(Ŷ,τ)dŶdX̂

=

∫

A(X̂)

∫

B(Ŷ)e(t−τ)L̂F P (X̂)δ(X̂−Ŷ)¯̂p(Ŷ,τ)dŶdX̂

=

∫

A(X̂)e(t−τ)L̂F P (X̂)[B(X̂)¯̂p(X̂,τ)]dX̂

=

∫

[e(t−τ)L̂T
F P A(X̂)][B(X̂)¯̂p(X̂,τ)]dX̂. (2.24)

This ends the proof of the theorem.

Remark 2.5. The first formulation for the B̂a,B̂σ may be suitable when the unper-
turbed pdf is the (presumed unique) stationary statistical solution of the skew-product
system which is (assumed) to be smooth and positive while the second formulation
is more suitable for ensemble prediction based on the original system and hence the
unperturbed pdf given by (1.14) is neither smooth nor positive everywhere in the
skew-product variable. On the other hand, it is quite natural to expect p̄(X,τ) to
be smooth and positive everywhere under the assumption of non-degenerate noise
(rank(Q)=N) and some appropriate dissipative assumption.

Although the contribution from uncertainty in initial perturbation looks straight-
forward and there has been abundant literature on this topic, the effect is not com-
pletely clarified, especially in the presence of a system perturbation. Moreover, per-
turbation in initial data must be included in order to study ensemble perturbation,
which is of great importance in practice. Therefore, we have included both perturba-
tion in initial data and system perturbation to account for model error [27, 24] in our
study here for potential future applications.

In the special case when the unperturbed pdf is an equilibrium pdf of the unper-
turbed system, i.e., L̂FP

¯̂p≡0, and hence B(X̂,τ) is independent of τ , the correlation
can be written in a simpler form

RA,B(t,τ)=<A(X̂(t))B(X̂(τ))>

=RA,B(t−τ,0)

= lim
T→∞

1

T

∫ T+T∗

T∗

A(X̂(t′+ t−τ))B(X̂(t′))dt′ (2.25)

= lim
T→∞

1

T

∫ T+T∗

T∗

A(X(t′+ t−τ))B(X(t′))dt′ (2.26)

where we have invoked the ergodicity assumption in the second to the last step, and we
have assumed that A,B are independent of s in the last step. These last two formulas
may be particularly useful in the case of an ergodic statistical equilibrium since they do
not involve the potentially unstable computation of a tangent map although long time
integration of the skew-product system is required. The issue of long time integration
which captures the equilibrium statistics is itself an interesting and challenging issue.



156 FDT WITH PERIODIC FORCING

See [10] for the case of finite dimensional Hamiltonian system using the Andersen
thermostat approach, and [7, 8, 30] for infinite dimensional dissipative systems.

2.1. Zero noise tangent map approach. Notice, as in [1, 2, 3], that in the
case of zero noise the adjoint skew Fokker-Planck equation can be solved explicitly
via the characteristic method,

e(t−τ)L̂T
F P A(x̂)=A(X̂(x̂,t−τ)) (2.27)

where X̂(x̂,t−τ) is the solution at time t−τ of the zero noise skew equation (1.9)
which starts at x̂ at time zero.

The contribution to the leading order statistics from the perturbation of the initial
pdf can be handled easily

∫

p̂′0(x̂)etL̂T
F P A(x̂)dx̂=

∫

p̂′0(x̂)A(X̂(x̂,t))dx̂=

∫

p′0(x)A(X̂(

(

x

0

)

,t))dx. (2.28)

As for the contribution to the perturbation of the leading order statistics due to
perturbation in external forcing, we can rewrite the linear response operator in
this zero noise case as

~RT
a,A(t,τ)= ~RT (t,τ)=

∫

LT
a
[e(t−τ)L̂T

F P A(x̂)]¯̂p(x̂,τ)dx̂

=

∫

A(X̂(x̂,t−τ))[La
¯̂p(x̂,τ)]dx̂

=

∫

A(X̂(x̂,t−τ))

(

−∂(aj(x)¯̂p(x̂,τ))

∂xj

)

dx̂

=

∫

(

∂A(X̂(x̂,t−τ))

∂xj

aj(x)¯̂p(x̂,τ)

)

dx̂

=

∫

∇xA(X̂(x̂,t−τ))•a(x) ¯̂p(x̂,τ)dx̂

=

∫

RN

∫

T

∇xA

(

X̂

((

x

s

)

,t−τ

))

•a(x) ¯̂p

((

x

s

)

,τ

)

dsdx.(2.29)

This is a simple generalization of the classical linear response formula [26, 21] to the
current environment of perturbation away from time-dependent statistical state. In
the case of perturbation near an equilibrium, the average with respect to the equi-
librium pdf ¯̂p can be replaced by long time average after invoking the ergodicity
assumption. As developed in [1, 2, 3], the current form allows us to compute the
short time linear response without explicit knowledge of the unperturbed state (only
the statistics are needed which could be obtained via Monte-Carlo simulation or ob-
servation).

The derivative ∇xA(X̂(x̂,t)) may be calculated via solving the linearized equation
(tangent map) and is related to the finite time Lyapunov exponents of the skew-
product dynamical system (1.9) since

∂A(X̂(x̂,t))

∂xj

=∇XA(X̂(x̂,t)) · ∂X(x̂,t)

∂xj

, (2.30)
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and

d∇xX(x̂,t)

dt
=∇XF(X)

∣

∣

∣

∣

X=X(x̂,t)

∇xX(x̂,t), (2.31)

∇xX(x̂,t)

∣

∣

∣

∣

t=0

= I. (2.32)

Therefore

∇xX(x̂,t′+ t)=exp

(

∫ t′+t

t′
∇XF(X)

∣

∣

∣

∣

X=X(x̂,τ)

dτ

)

∇xX(x̂,t′)(
def
= T t

(x̂,t′)∇xX(x̂,t′)).

(2.33)

At first glance, it seems unlikely for the linear response theory to be valid for long
time for systems with at least one positive Lyapunov exponent as the linear response
operator will grow exponentially in time. On the other hand, we are considering
statistical averages here which makes those worst scenario arguments inapplicable
unless we consider a degenerate ensemble of a single trajectory. Ample evidence of
the practical skill of the adjoint tangent map approach in the case of time-independent
deterministic forcing and perturbation away from statistical equilibiurm may be found
in [1, 2, 3].

There are two special cases that merit elaboration. The first is the case when
the unperturbed statistical solution ¯̂p of the skew-product system (1.9) is related to
the statistical solution p̄ of the time dependent system (1.1) through (1.14). We
further assume that the observable A depends on the spatial location X only, i.e.,
A(X̂)=A(X) (see section 4 below for general observables). We have

~RT
a,A(t,τ)=

∫

A

(

X̂

((

x

τ

)

,t−τ

))

[Lap̄(x,τ)]dx

=

∫

∇xA(Xτ (x,t−τ))•a(x)p̄(x,τ)]dx, (2.34)

where Xτ (x,t−τ) denotes the X component of X̂

((

x

τ

)

,t−τ

)

.

Now in the special subcase of the unperturbed pdf p̄ is generated via finite en-
semble prediction

p̄(x,t)=

R
∑

j=1

pjδ0(x−xj(t)),

R
∑

j=1

pj =1, (2.35)

the linear response operator can be calculated with the help of the characteristic
method, and the tangent map as

~RT
a,A(t,τ)=

R
∑

j=1

pj∇xA(Xτ (x,t−τ))•a(x)

∣

∣

∣

∣

x=xj(τ)

. (2.36)

The term involving p′0 can be handled similarly.

The other case is when the unperturbed pdf ¯̂p is the statistical equilibrium
p̂eq(x̂)=pper(x,s) of the skew-product system. In this case the correlation is a func-
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tion of t−τ only and

~RT
a,A(t)=

∫

RN

(
∫

S

∇xA(X(

(

x

s

)

,t))•a(x) p̂eq

(

x

s

)

ds

)

dx (2.37)

=

∫

RN

(
∫

S

∇xA(X(

(

x

s

)

,t))•a(x)pas(x,s)ds

)

dx (2.38)

= lim
T→∞

1

T

∫ T+T∗

T∗

∇xA(X(x̂,t+τ))•a(X(x̂,τ))dτ (2.39)

where in the last step we invoked the ergodicity assumption and the inner integral
can be viewed as an average over the phases. Note that for applications of linear
response theory to climate change with seasonal forcing, it is very interesting to have
more general functionals, A(X,s), in applications. See section 4 below.

It seems that whether F̃ is periodic in t with period T0 or not does not affect the
calculation above. The additional periodic assumption does not provide further sim-
plification unless the unperturbed system is assumed to be at statistical equilibrium.

2.2. Quasi-Gaussian Approximation, Gaussian Approximation and En-

semble Prediction. As an alternative approximation to the direct approach dis-
cussed in the previous subsection, we may utilize the assumption that the unperturbed
pdf p̄ or the statistical equilibrium p̂eq is close to a Gaussian in many applications
and hence we may replace it by a Gaussian with the same mean and variance in some
appropriate fashion. Depending on the manner on how the equivalent Gaussians are
utilized, we may end-up with the so-called quasi-Gaussian approximation [21] or the
simple direct Gaussian approximation. A crucial advantage of quasi-Gaussian approx-
imation is that we do not need the linear tangent model to assess response behavior
approximately.

Due to the presence of time-dependent deterministic forcing, there are two ways
to introduce the quasi-Gaussian or Gaussian approximation. The first is closer to a
finite ensemble approach and utilizes the relationship (1.14) between the statistical
solutions of the time-dependent system and the skew product system. The second
approach utilizes appropriate Gaussian approximation of the statistical equilibrium
p̂eq of the skew-product system.

2.2.1. The Quasi-Gaussian Approximation. We first consider the case
of statistical ensembles generated by the time-dependent system, since this is the one
most useful in practice. More specifically, for each fixed time t we define a Gaussian
pdf pG(X,t) with the same mean and second moments as the unperturbed pdf p̄(X,t),
i.e.,

∫

XpG(X,t)dX=

∫

Xp̄(X,t)dX
def
= X̄(t), (2.40)

∫

(X−X̄(t))⊗(X−X̄(t))pG(X,t)dX=

∫

(X−X̄(t))⊗(X−X̄(t))p̄(X,t)dX
def
= C,

(2.41)

where C(t,t) is the covariance matrix of X(t), and hence

pG(X,t)=
1

(2π)
N
2 detC 1

2

exp

(

− (X−X̄(t)) ·C−1(X−X̄(t))

2

)

. (2.42)
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Now we replace p̄(X,t) by pG(X,t) in the calculation of the Ba and Bσ in the
correlation formulation (2.23) in the previous theorem, i.e., we propose

(~RG
a,A)T (t,τ)=<A(X̂(t))BG

a
(X(τ))>, RG

σ,A(t,τ)=<A(X̂(t))BG
σ (X(τ))>,

(2.43)

with the approximate special (vector) nonlinear functionals

BG
a

(X,τ)=
Lap

G(X,τ)

pG(X,τ)
, BG

σ (X,τ)=
LσpG(X,τ)

pG(X,τ)
. (2.44)

Therefore if the unperturbed pdf is generated via finite ensemble prediction given
in (2.35), we have in the zero noise case

(~RG
a,A)T (t,τ)=

R
∑

j=1

pj A(xj(t))B
G
a

(xj(τ)). (2.45)

Notice that no tangent map is needed here which is a huge advantage for this
approximation for finite ensemble prediction. This should be contrasted to the tangent
map adjoint approach presented in the previous subsection.

In the special case of perturbation in the external forcing only, i.e., a(X)≡a is a
constant vector, we may assume without loss of generality

La =−∇X. (2.46)

Hence we have

BG
a

(X,τ)=C−1(t,t)(X−X̄(τ)). (2.47)

Thus if A is a linear function in X, the linear response operator ~RG
a,A(t,τ) is essentially

the auto-correlation of X.
In the case when the unperturbed statistical solution ¯̂p of the skew-product system

is the statistical equilibrium p̂eq of the system, the quasi-Gaussian approximation must
be developed in a slightly different way. First we notice that p̂eq cannot be Gaussian
since the variable s lives on a circle. What we can expect is that each slice is close
to a Gaussian for fixed s. Of course this concept needs to be tested on some simple
models. Thanks to (1.17), we see that for each fixed s, T0p̂

eq(x,s) is a pdf and we
may approximate it by a Gaussian denoted pG,s(x). We then propose the following
quasi-Gaussian approximation

BG,eq
a

(X,s)=
Lap

G,s(X)

pG,s(X)
, (2.48)

BG,eq
σ (X,s)=

LσpG,s(X)

pG,s(X)
, (2.49)

(~RG,eq
a,A )T (t)=<A(X̂(t))BG,eq

a
(X,s)>, (2.50)

RG,eq
σ,A (t)=<A(X̂(t))BG,eq

σ (X,s)>. (2.51)

There is a similar version of the Gaussian approximation at equilibrium with this
approximation.
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Quasi-Gaussian approximations are quite successful in many geophysical applica-
tions, especially for estimating linear climate response in the mean (A(X)=X) and
variance (A(X)=X⊗X) [14, 16, 21]. The success can be partially explained through
the following short time asymptotic expansion.

Theorem 2.6. (Short time validity of quasi-Gaussian approximation) Assume that
the unperturbed pdf p̄(X,t) of system (1.1) is smooth and non-vanishing. Furthermore,
we assume that the deterministic perturbation is defined by external forcing only,
i.e., a(X)≡a. Then for the special linear functionals A(X)=Xj, the quasi-Gaussian
approximation defined in (2.43) satisfies

~RG
a,A(t,τ)= ~Ra,A(t,τ)+O(t−τ). (2.52)

Proof. Under the assumption, we may assume La =−∇X so that

~RT
a,A(t,τ)=−

∫

[e(t−τ)L̂T
F P A(x̂)]

∣

∣

∣

∣

s=τ

[∇xp̄(x,τ)]dx

=

∫

∇x[e(t−τ)L̂T
F P A(x̂)]

∣

∣

∣

∣

s=τ

p̄(x,τ)dx, (2.53)

(~RG
a,A)T (t,τ)=−

∫

[e(t−τ)L̂T
F P A(x̂)]

∣

∣

∣

∣

s=τ

[∇xpG(x,τ)

pG(x,τ)

]

p̄(x,τ)dx

=

∫

[e(t−τ)LT
F P A(x)]

∣

∣

∣

∣

s=τ

BG
a

(x,τ)p̄(x,τ)dx. (2.54)

It is easy to see that for a linear test functional A we have

~RT
a,A(t,t)=

∫

∇A(x)p̄(x,t)dx

=

∫

∇A(x)pG(x,t)dx

=−
∫

A(x)∇pG(x,t)dx

=

∫

A(x)BG
a

(x,t)pG(x,t)dx

=

∫

A(x)BG
a

(x,t)p̄(x,t)dx

=(~RG
a,A)T (t,t),

where in the second to the last step we have utilized the fact that BG
a

(x,t) is a
polynomial of first degree (and hence A(x)BG

a
(x,t) is a polynomial of second degree)

and the first two moments of pG(x,t) and p̄(x,t) are the same. This leads to the
conclusion for general unperturbed pdf p̄. A similar argument applies for the quasi-
Gaussian approximation in statistical equilibrium for the skew system.

2.2.2. Gaussian approximation. For higher order accuracy estimates, we
may formally differentiate ~Ra,A(t,τ) and ~RG

a,A(t,τ) in τ and evaluate at τ = t and hope
that the derivatives match. Unfortunately this is not the case. Nevertheless, if we con-
sider Gaussian approximation instead of quasi-Gaussian approximation, i.e. replacing
p̄ by pG directly in the formula for the linear response operators in (2.16, 2.17), this is
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possible at least under appropriate noise. Hence we introduce the following Gaussian
approximation linear response operators

Rg
σ,A(t,τ)=−

∫

[e(t−τ)L̂T
F P A(x̂)][LσpG(x,τ)]δ0(s−τ)dx̂

=−
∫

[LT
σ e(t−τ)L̂T

F P A(x̂)]pG(x,τ)δ0(s−τ)dx̂, (2.55)

(~Rg
a,A)T (t,τ)=−

∫

[e(t−τ)L̂T
F P A(x̂)][∇xpG(x,τ)]δ0(s−τ)dx̂

=

∫

[∇xe(t−τ)LT
F P A(x)]pG(x,τ)δ0(s−τ)dx̂. (2.56)

Further more, we assume Q is either a constant matrix (corresponding to additive
noise only) or a matrix with each entry a polynomial of degree no more than 2 in X

(corresponding to simple multiplicative noise, i.e. with σ(X) being a linear function
in X. This is consistent with stochastic mode reduction procedures [21], and hence
we have the following properties when LT

σ is applied onto a polynomial q(x).

simple multiplicative noise and perturbation deg(LT

σ q)≤deg(q)

additive noise and perturbation deg(LT

σ q)≤max(deg(q)−2,0)

simple multiplicative noise and additive perturbation deg(LT

σ q)≤max(deg(q)−1,0)

additive noise and simple multiplicative perturbation deg(LT

σ q)≤max(deg(q)−1,0)

We now restrict ourselves to the special case of a quadratic nonlinearity F, which
is physically relevant, for example the quadratic advection term in fluid problems
(1.16) [21]. In this case we can easily see the effect of LT

FP applied to a polynomial q
under simple multiplicative noise and perturbation assumption.

deg(L̂T
FP q)≤deg(q)+1. (2.57)

It is then easy to see that
~Ra,A(t,t)= ~Rg

a,A(t,t) where A is cubic,

Rσ,A(t,t)=Rg
σ,A(t,t) where A is quadratic under simple multiplicative noise

and perturbation,
Rσ,A(t,t)=Rg

σ,A(t,t) where A is cubic under mixed additive/multiplicative
noise and perturbation,
Rσ,A(t,t)=Rg

σ,A(t,t) where A is quadratic under additive noise and pertur-
bation.

Simple calculation leads to

dk

dτk
~RT

a,A(t,t)
∣

∣

τ=t
=

∫ k
∑

j=0

j
∑

i=0

Cj
kCi

j [∇x(−L̂T
FP )k−jA(x̂)]

∂j−i

∂tj−i
p̄(x,t)δ

(i)
0 (s− t)dx̂,

dk

dτk
(~Rg

a,A)T (t,t)
∣

∣

τ=t
=

∫ k
∑

j=0

j
∑

i=0

Cj
kCi

j [∇x(−L̂T
FP )k−jA(x̂)]

∂j−i

∂tj−i
pG(x,t)δ

(i)
0 (s− t)dx̂,

dk

dτk
Rσ,A(t,t)

∣

∣

τ=t
=−

∫ k
∑

j=0

j
∑

i=0

Cj
kCi

j [L
T
σ (−L̂T

FP )k−jA(x)]
∂j−i

∂tj−i
p̄(x,t)δ

(i)
0 (s− t)dx̂,

dk

dτk
Rg

σ,A(t,t)
∣

∣

τ=t
=−

∫ k
∑

j=0

j
∑

i=0

Cj
kCi

j [L
T
σ (−L̂T

FP )k−jA(x)]
∂j−i

∂tj−i
pG(x,t)δ

(i)
0 (s− t)dx̂.
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Combining the above and the fact that the first and second moments of ∂j

∂tj p(x,t) and
∂j

∂tj pG(x,t) match, we have the following result on the validity of Gaussian approxi-
mation on short time interval.
Theorem 2.7. Short time validity of Gaussian approximation Suppose that the de-
terministic forcing term F in (1.1) is quadratic in X, and we have at most simple
multiplicative noise and noise perturbation, i.e. σ,σ̃ are linear in X. Furthermore,
we assume that the deterministic perturbation is defined by external forcing only, i.e.,
a(X)≡a. Then

• for a linear functional A(X), the Gaussian approximations defined in (2.55,
2.56) satisfy

~Rg
a,A(t,τ)= ~Ra,A(t,τ)+O((t−τ)3). (2.58)

Rg
σ,A(t,τ)=Rσ,A(t,τ)+O((t−τ)2),

for simple multiplicative noise and perturbation, (2.59)

Rg
σ,A(t,τ)=Rσ,A(t,τ)+O((t−τ)3),

for mixed additive/multiplicative noise and perturbation,(2.60)

Rg
σ,A(t,τ)=Rσ,A(t,τ)+O((t−τ)4),for additive noise and perturbation.

(2.61)

• For a quadratic functional A(X), the Gaussian approximations defined in
(2.55, 2.56) satisfy

~Rg
a,A(t,τ)= ~Ra,A(t,τ)+O((t−τ)2), (2.62)

Rg
σ,A(t,τ)=Rσ,A(t,τ)+O(t−τ),

for simple multiplicative noise and perturbation, (2.63)

Rg
σ,A(t,τ)=Rσ,A(t,τ)+O((t−τ)2),

for mixed additive/multiplicative noise and perturbation,(2.64)

Rg
σ,A(t,τ)=Rσ,A(t,τ)+O((t−τ)3),

for additive noise and perturbation (2.65)

A disadvantage of the Gaussian approximations presented above with higher or-
der accuracy is the need to build suitable efficient approximations to the backward

operator, etL̂T
F P A(X̂), directly. We leave this topic for future research.

3. Computational algorithms for climate response with periodic forc-

ing The mathematical framework developed in section 2 together with the zero
noise adjoint form and the quasi-Gaussian approximations developed in sections 3.1
and 3.2.1 lead to new algorithms for computing the equilibrium response in a periodic
system via the FDT theorem. The most important new practical application is com-
putation of the changes in the equilibrium response to models for the climate system
with time periodic forcing coefficients reflecting the seasonal cycle [12, 6, 4] with the
prototype structure presented in (1.16). The goal here is to present the form of such
algorithms for future applications to climate response; there are natural generaliza-
tions of the quasi-Gaussian FDT algorithms [18, 21, 15, 17, 14, 16, 1, 2, 3] following
3.2.1, the short time FDT algorithms [1, 2, 3] and the blended response algorithms
[1, 3] to the situation with a seasonal cycle. The full structure of the skew-system
formulation in section 2 together with the theory in section 2 will be utilized below.
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The typical functionals Â

(

x

s

)

for climate response have the separable form

Â

(

x

s

)

= Ã(x)χ(|s−s0|<P ) (3.1)

where χ(S) is the characteristic function of the set S. For example, for the seasonal
cycle so that the period T0 is one year, we might be interested in the change in the low
frequency teleconnection patterns [12, 6, 3] during each month or season so that Ã(x)
is x (corresponding to the mean) and/or x⊗x (corresponding to the second moments
or variance), s0 is the fifteenth day of each month, and P is fifteen days. Similarly,
we might be interested in the mean temperature change of its variance in each month
at a specific location rather than just the annual changes [14, 16].

To develop approximations utilizing Theorem 2 for FDT or the quasi-Gaussian
approximations sketched in 3.2.1, we need to first gather accurate statistics for the

pdf p̂eq

(

x

s

)

. First from (1.17), we have the formula

p̂eq

(

x

s

)

=T−1
0 pper(x,s) (3.2)

where according to Theorem 1, pper(x,s) is periodic in s with period T0 and arises from
a long time integration of the periodic dynamical systems in (1.1) with or without
noise assuming ergodicity and strong mixing. It can be estimated from long time
series of the system (see Theorem 1). Take the period interval T0 and divide it into
L equal intervals centered at sj ,1≤ j≤L with width ∆s= T0

L
. Then, using the long

time series, one can calculate the appropriate statistics of approximate pdf’s denoted
here by pper(x,sj) by doing conditional statistics of the time series of the trajectory
to the sets, {t,|t−ksj |< ∆s

2 ,k >K0}. There are two important points:
(A) Direct FDT Algorithm: If x∈R

N where N is low dimensional (roughly, N ≤
4), and (1.1) is a low order stochastic model [22, 4], then the entire pdf
pper(x,sj) can be found with reasonably high accuracy [22]. In this situation,
Theorem 2 on FDT can be applied directly with the functional

A(x̂)= Â(x)B̂eq(x,sj), B̂eq
a

(x,sj)=
Lapper(x,sj)

pper(x,sj)
. (3.3)

(B) Quasi-Gaussian FDT Algorithm: On the other hand, if x∈R
N with N ≫1

as occurs in contemporary climate models [14, 16], one can calculate the
low order statistics of pper(x,sj) involving the mean and covariance with
reasonable precision and build the quasi-Gaussian approximation as suggested
in section 3.2.1

B̂G,eq
a

(x,sj)=
Lap

G
per(x,sj)

pG
per(x,sj)

. (3.4)

Both the direct algorithm and the approximated algorithm require evaluation of the
response operator, ~Ra,A(t), through the correlation with a suitable B̂ in either (3.3)

or (3.4), i.e., the (approximate) response operator, ~Ra,A(t), is given by

~RT
a,A(t)≈<A(X̂(t)B̂a(X̂(0))>

=
1

T0

∫ T0

0

∫

RN

A(X(x,t,s),t+s)B̂a(x,s)pper(x,s)dxds. (3.5)
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In (3.5), X(x,t,s) is the trajectory of (1.1) satisfying the phase shifted dynamical
systems,

dX

dt
=F(X,t+s)+σ(X)Ẇ , X(0)=x. (3.6)

Using ergodicity with respect to X, the discrete approximation described in the para-
graph below (4.2), and the special form for the functionals in (3.1), we have

~RT
a,A(t)≈ 1

L

L
∑

j=1

1

T

∫ T∗+T

T∗

Ã(X(t+τ,sj))χ(|sj + t+τ −s0|≤P )B̂(X(τ,sj))dτ,T ≫1.

(3.7)

With the two approximate formulas for B̂ in (3.3, 3.4), this leads to the direct FDT

and Quasi-Gaussian FDT algorithms for systems with periodic forcing. Note
that there is non-trivial phase averaging for general functionals like those in (3.1); if
χ=[0,T0] so that we are interested in only mean averaged statistics, then we can use
L≡1 in (3.7) coupled with (3.3, 3.4).

For the case of (1.1) with zero noise, the exact adjoint formula described in sec-
tion 3.1 and similar considerations as above in (3.5, 3.7) leads to a general response
algorithm for functionals of the form in (3.1)

~RT
a,A(t)

≈ 1

L

L
∑

j=1

1

T

∫ T∗+T

T∗

∇X(τ,sj)Ã(X(t+τ,sj))

•a(X(τ,sj))χ(|sj + t+τ −s0|≤P )B̂(X(τ,sj))dτ, (3.8)

for T ≫1. We call this algorithm, the short-time FDT algorithm after [1, 2, 3]; no
explicit knowledge of the time-periodic equilibrium measure, pper, is needed. Clearly,
the algorithms presented here can be combined in time to create blended response
algorithms following [1, 3]. The accuracy of these proposed algorithms depends on
the sampling width P in (3.1) and the number, L, of trajectories (the width ∆s), as
well as the functional Ã(X), and the length of the time series available.

4. The information content in linear response

The linear response operator that we derived above can be used to calculate per-
turbation effect on information content which can be further utilized to determine
the most sensitive direction under spatial-temporal separable perturbation using in-
formation content as the criterion. This is potentially quite useful in climate response
studies [21] and for ensemble predictions (see Chapter 15 of [23] and the references
therein).

The information content of a pdf p̂δ over another pdf ¯̂p is defined through the
relative entropy [21] or the Lyapunov function [26]

P(p̂δ, ¯̂p)=

∫

p̂δ ln

(

p̂δ

¯̂p

)

(

=H(p̂δ, ¯̂p)
)

. (4.1)

It measures the lack of information in ¯̂p compared with p̂δ. Clearly in both climate
response and ensemble prediction, the perturbations with the largest information
deficit for ¯̂p are the most significant ones.
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It is easy to see that the relative entropy is semi positive definite utilizing Jensen’s
inequality or the elementary inequality lnx≤x−1 for instance [23, 26]. Notice that
it is not symmetric nor does it satisfy the triangle inequality.

For our problem of a complex system under periodic in time external forcing,
there are two related concepts of statistical solutions: one associated with the skew-
product system and the other linked to the original time-dependent system. The
approach that we provide below is general enough to handle both situations. We will
focus on the case of statistical solution to the skew-product system since statistical
solution to the time-dependent system can be lifted to a (singular) statistical solution
to the skew-product system via (1.14). We will remark on the case of information
content in terms of the time-dependent system at the end of this section.

Recall that the perturbed Fokker-Planck equation with space-time separable de-
terministic perturbation a• F̃ and same order noise perturbation takes the form of
(2.3). We also recall that the Fisher information I associated with p̂δ is defined as

I(p̂δ(t))=
1

2

∫ (dp̂δ

dδ
)2
∣

∣

∣

∣

δ=0
¯̂p

dX̂=
1

2

∫

p̂′(X̂,t)2

p̄(X̂,t)
dX̂. (4.2)

Hence the relative entropy P is related to the Fisher information in the following
fashion [21] after a simple manipulation based on the formal expansion for p̂δ = p̂0 +
δp̂′+O(δ2).

P(p̂δ, ¯̂p)= δ2P̃ (p̂δ, ¯̂p)+O(δ3) (4.3)

where

P̃ (p̂δ, ¯̂p)=
δ2

2

∫

(p̂′(X̂,t))2

¯̂p(X̂,t)
dX̂= δ2I(p̂δ(t)). (4.4)

In order to see the effect of system perturbation on relative entropy, we take
the time derivative of the relative entropy and follow a classical argument for the

H-theorem [26]. Denoting R̂δ = p̂δ

¯̂p
and noticing that R̂δ =1+δ p̂′

¯̂p
+O(δ2), we have

dP
dt

=

∫

{(1+ln(
p̂δ

¯̂p
))

∂p̂δ

∂t
− p̂δ

¯̂p

∂ ¯̂p

∂t
}

=

∫

{lnR̂δ ∂p̂δ

∂t
−R̂δ ∂ ¯̂p

∂t
}

=

∫

{lnR̂δ(L̂FP p̂δ +δLap̂
δ · F̃+δLσp̂δ)−R̂δL̂FP

¯̂p}+O(δ3)

=

∫

{(L̂T
FP lnR̂δ)p̂δ +δ2 p̂′

¯̂p
(La

¯̂p · F̃+Lσ
¯̂p)−R̂δL̂FP

¯̂p}+O(δ3)

=

∫

{((F(x,s)) · ∇R̂δ

R̂δ
+

1

R̂δ

∂R̂δ

∂s

+
1

2
Q :∇(

∇R̂δ

R̂δ
))p̂δ +δ2 p̂′

¯̂p
(La

¯̂p · F̃+Lσ
¯̂p)−R̂δL̂FP

¯̂p}+O(δ3)

=

∫

{ ¯̂p(F(x,s)) ·∇R̂δ + ¯̂p
∂R̂δ

∂s
+

1

2
¯̂pQ :∇(∇R̂δ)−R̂δL̂FP

¯̂p− p̂δ

2(R̂δ)2
∇R̂δ ·Q∇R̂δ

+δ2 p̂′

¯̂p
(La

¯̂p · F̃+Lσ
¯̂p)}+O(δ3)
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=

∫

{ ¯̂pL̂T
FP R̂δ −R̂δL̂FP

¯̂p− p̂δ

2(R̂δ)2
∇R̂δ ·Q∇R̂δ +δ2 p̂′

¯̂p
(La

¯̂p · F̃+Lσ
¯̂p)}+O(δ3)

=−
∫ ¯̂p2

2p̂δ
∇R̂δ ·Q∇R̂δ +δ2

∫

p̂′

¯̂p
(La

¯̂p · F̃+Lσ
¯̂p)+O(δ3)

=−δ2

2

∫

¯̂p∇ p̂′

¯̂p
·Q∇ p̂′

¯̂p
+δ2

∫

p̂′

¯̂p
La

¯̂p · F̃+δ2

∫

p̂′

¯̂p
Lσ

¯̂p+O(δ3). (4.5)

Therefore we have the following result

Proposition 4.1. The information content represented by the relative entropy P can
be estimated via the following general formula,

P(p̂δ(T ), ¯̂p(T ))=−δ2

2

∫ T

0

∫

¯̂p∇ p̂′

¯̂p
·Q∇ p̂′

¯̂p
+δ2

∫ T

0

∫

p̂′

¯̂p
La

¯̂p · F̃

+ δ2

∫ T

0

∫

p̂′

¯̂p
Lσ

¯̂p+
δ2

2

∫

p̂′0(x̂)2

¯̂p0(x̂)
+O(δ3).

(4.6)

The first term corresponds to the contribution of noise, the second term is the direct
contribution of the perturbation in deterministic forcing, the third term is the result
of perturbation in noise while the fourth (last) term is the leading order contribution
from the perturbation in the initial pdf. For the quadratic in p̂′ terms, we could

use the explicit formula for p̂′, (2.10), to reduce them to linear terms in p̂′ and hence
again linear response terms (see below). However such manipulation may lead to the
usage of (high) derivatives of ¯̂p which may be hard to compute accurately in practice
(unless with quasi-Gaussian approximation or its generalization, see below). Now if
we are interested in statistical solutions generated by ensemble of the time-dependent
system (1.9), i.e., ¯̂p= p̄(x,t)×δ0(s− t), p̂δ =pδ(x,t)×δ0(s− t), we see that the formula
remain the same with the hat .̂ on the pdf’s removed and integration with respect to
x̂ replaced by x.

4.1. Zero noise case. In the special case of zero noise, i.e., Q≡0, the formula
degenerates into one that is very similar to the perturbation away from equilibrium
case [21]. Indeed, we have

P(p̂δ(T ), ¯̂p(T ))

= δ2

∫ T

0

∫

p̂′(t)
La

¯̂p(t)
¯̂p(t)

· F̃(t)dtdx̂+
δ2

2

∫

p̂′0(x̂)2

¯̂p0(x̂)
dx̂+O(δ3)

= δ2

∫ ∫ T

0

(

etL̂F P p̂′0(x̂)+

∫ t

0

[e(t−τ)L̂F P La
¯̂p(τ)] · F̃(τ)dτ

)

La
¯̂p(t)

¯̂p(t)
· F̃(t)dtdx̂

+
δ2

2

∫

p̂′0(x)2

¯̂p0(x̂)
dx̂+O(δ3)

= δ2

∫ ∫ T

0

[etL̂F P p̂′0(x̂)]

[

La
¯̂p(t)

¯̂p(t)
· F̃(t)

]

dtdx̂+δ2

∫ t

0

(Ra(t,τ) · F̃(τ)) · F̃(t)dτ dt

+
δ2

2

∫

p̂′0(x̂)2

¯̂p0(x̂)
dx̂+O(δ3) (4.7)
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where

Ra(t,τ)=

∫

LT
a

[

e(t−τ)L̂T
F P

La
¯̂p(t)

¯̂p(t)

]

¯̂p(τ)dx̂

=

∫
[

e(t−τ)L̂T
F P

La
¯̂p(t)

¯̂p(t)

]

⊗
[

La
¯̂p(τ)

¯̂p(τ)

]

¯̂p(τ)dx̂

=

∫

B̂a(X̂(x̂,t−τ),t)⊗B̂a(x̂,τ)¯̂p(τ)dx̂ (4.8)

=

∫

RN

∫

T

B̂a(X̂

((

x

s
),t−τ

)

,t

)

⊗B̂a

((

x

s

)

,τ

)

¯̂p

((

x

s

)

,τ

)

dsdx (4.9)

=< B̂a(X̂(t),t)⊗B̂a(X̂(τ),τ)> (4.10)

is an auto-correlation matrix of B̂a(x̂,τ)= La
¯̂p(x̂,τ)

¯̂p(x̂,τ)
(see Theorem 2.2 in [21]). The

inner integral may be considered as average over the phases.

Proposition 4.2. In the case when the external perturbation F̃(t)= F̃ is time-
independent, only the symmetric part of Ra, namely Ra,sym(t,τ)= 1

2 (Ra +RT
a
) is

relevant in the information content formula above, i.e., we have

P(p̂δ(T ), ¯̂p(T ))

= δ2F̃ ·
∫ T

0

∫ t

0

Ra,sym(t,τ)dτdtF̃

+δ2

∫ ∫ T

0

[etL̂T
F P B̂a(x̂,t)]dt · F̃p̂′0(x̂)dx̂+

δ2

2

∫

p̂′0(x̂)2

¯̂p0(x̂)
dx̂+O(δ3)

def
= δ2T F̃ ·Ma,T F̃+δ2

∫ ∫ T

0

[etL̂T
F P B̂a(x̂,t)]dt · F̃p̂′0(x̂)dx̂+

δ2

2

∫

p̂′0(x̂)2

¯̂p0(x̂)
dx̂+O(δ3)

(4.11)

where

Ma,T
def
=

1

T

∫ T

0

∫ t

0

Ra,sym(t,τ)dτdt. (4.12)

The first term represents contribution from pure (independent of perturbation
in initial pdf, i.e., p̂′0) system perturbations in the space-time separable fashion con-
sidered in this manuscript, the second term is the cross contribution to information
content of perturbations in forcing and perturbations in the initial pdf, the third term
is the contribution to the information content due to the perturbations in the initial
pdf.

Furthermore, it is easy to see the following:

• The contribution to the information content due purely to the perturbations

in the initial pdf is positive, i.e.,
∫ p̂′

0
(x)2

¯̂p0(x)
dx̂≥0. In the absence of perturba-

tions in forcing (B̂a≡0), the relative entropy (information content) is con-
stant in time in the absence of noise [13, 26] which is consistent with the
relation above to leading order.
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• The contribution to the information content due to perturbations in forcing
alone must be positive, i.e.,

Ma,T ≥0. (4.13)

Indeed, for the special case of no perturbations in initial pdf, i.e., p̂′0≡0, F̃ ·
Ma,T F̃ is the leading order term of the non-negative function P(p̂δ(T ), ¯̂p(T ))
and hence must be non-negative definite. It then implies that Ma,T ≥0 since

the matrix is symmetric and F̃ is arbitrary. Notice that the definition of Ma,T

is completely independent of the perturbation p̂′0 to the initial pdf. Hence the
conclusion remains valid for general non-zero p̂′0 case. A very useful corollary
to this observation is that the direction of the eigenvector associated with
the largest eigenvalue of Ma,T is the direction with the largest information
content in response at time T in the absence of perturbations in initial pdf.
This is a generalization of a similar result valid for equilibrium unperturbed
pdf [21]. In practical computation, one may approximate Ra via the quasi-
Gaussian approach described in section 3.2.1 above. Namely we approximate
Ra by

Ra(t,τ)∼RG
a

(t,τ)

=

∫

[e(t−τ)L̂T
F P B̂G

a
(x̂,t)]⊗B̂G

a
(x̂,τ)¯̂p(x̂,τ)dx̂

=

∫

B̂G
a

(X̂(x̂,t−τ),t)]⊗B̂G
a

(x̂,τ)¯̂p(x̂,τ)dx̂ (4.14)

where B̂G
a

(x̂,τ)= Lap̂G(x,s,τ)
p̂G(x,s,τ)

and p̂G(·,s,τ) is the Gaussian that has the same

first and second moments (in x) as ¯̂p

((

·
s

)

,τ

)

. In the case of zero noise

and the unperturbed pdf ¯̂p is given by a finite ensemble like (2.35). This
approximation can be represented as

RG
a

(t,τ)=
R
∑

j=1

pj

∫

B̂G
a

(x̂j(t),t)⊗B̂G
a

(x̂j(τ),τ). (4.15)

• The contribution from the cross term has no definite sign. However, the
overall contribution of the three terms must be non-negative since it is the
leading order expansion of the relative entropy which is non-negative. The
computation of this cross term can be handled using the quasi-Gaussian ap-
proximation idea as well.

∫ ∫ T

0

[etL̂T
F P B̂a(x̂,t)]dt · F̃p̂′0(x̂)dx̂∼

∫ ∫ T

0

[etL̂T
F P B̂G

a
(x̂,t)]dt · F̃p̂′0(x̂)dx̂

=

∫ ∫ T

0

B̂G
a

(X̂(x̂,t),t)]dt · F̃p̂′0(x̂)dx̂.

(4.16)

This approximate formula together with the approximate formula for the
auto-correlation (4.14) can be utilized to investigate the relationships on
F̃,a, p̂′0 (the perturbations) that maximize (or minimize) the information con-
tent.
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In the special case of ¯̂p= p̂eq being an equilibrium pdf of the system, i.e., L̂FP
¯̂p=0,

we recover a formula which is almost the same as the one from [21, 17]. Indeed, we
have

Ra(t,τ)=Ra(t−τ,0)
def
= Ra(t−τ) (4.17)

and hence assuming the auto-correlation matrix decays fast enough,

Ma,T =
1

T

∫ T

0

(T − t)Ra,sym(t)dt
T→∞−→ Ma(∞)=

∫ ∞

0

Ra,sym(t)dt (4.18)

where

Ra,sym(t,τ)=
1

2
(Ra +RT

a
) (4.19)

Ra(t)=

∫

RN

∫

T

B̂eq
a

(X̂

((

x

s
),t

))

⊗B̂eq
a

((

x

s

))

p̂eq

((

x

s

))

dsdx (4.20)

B̂eq
a

(x̂)=
Lap̂

eq(x̂)

p̂eq(x̂)
. (4.21)

Thus, the natural low frequency basis for long times under constant external forcing
perturbation, with zero perturbation in the initial data, is the one which diagonalizes
the non-negative symmetric matrix Ma(∞).

In the special case of a being a constant vector, i.e., perturbation in external
forcing only, and the equilibrium state is Gaussian in x, the phase averaged auto-
correlation matrix (4.20) is essentially the auto-correlation of x (it is, if the mean is
zero).

The inclusion of the effect of the initial condition is important conceptually. For
instance, this is potentially useful for us to address the question of which kind of
perturbation generate largest additional information content in an ensemble prediction
for a given external perturbation class.

4.2. The effect of noise. In the presence of noise, we first observe that the
effect of the noise term is to decrease relative entropy as is clear from the semi-positive

definiteness of ¯̂p∇ p̂′

¯̂p
·Q∇ p̂′

¯̂p
. This is in accordance with the general result that noise

reduces relative entropy (H-theorem, [13, 26]) although the two statistical solutions
under investigation here are not for the same system (different parameter) since we
are studying system perturbations.

The contribution from perturbation in noise,
∫ T

0

∫

p̂′

¯̂p
Lσ

¯̂p, does not seem to have

a definite sign in general. In the case without perturbation in deterministic forcing
(La =0) and no perturbation in initial pdf (p̂′0 =0), this term can be represented as

∫ T

0

∫

p̂′(t)
¯̂p(t)

Lσ
¯̂p(t)dx̂dt=

∫ T

0

∫ ∫ t

0

[e(t−τ)L̂F P Lσ
¯̂p(τ)]

Lσ
¯̂p(t)

¯̂p(t)
dτdx̂dt

=

∫ T

0

∫ ∫ t

0

[Lσ
¯̂p(τ)]

[

e(t−τ)L̂T
F P

Lσ
¯̂p(t)

¯̂p(t)

]

dτdx̂dt

=

∫ T

0

∫ ∫ t

0

[

e(t−τ)L̂T
F P

Lσ
¯̂p(t)

¯̂p(t)

][

Lσ
¯̂p(τ)

¯̂p(τ)

]

¯̂p(τ)dτdx̂dt

=

∫ T

0

∫ t

0

∫

[e(t−τ)L̂T
F P B̂σ(t)][B̂σ(τ)]¯̂p(τ)dx̂dτdt, (4.22)
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which is the time integral of the auto-correlation of B̂σ(x̂,τ)= Lσ
¯̂p(x̂,τ)

¯̂p(x̂,τ)
. This can be

approximated via quasi-Gaussian approximation among others in practice.

Our second observation is that contribution to the information content of the
noise term through F̃ can be described via a semi-negative definite matrix so long as
there is no perturbation to the initial pdf, i.e., p̂′0 =0, and there is no perturbation in
noise, i.e., Lσ =0. Indeed, let

V (t)=

∫ t

0

∇ [e(t−τ)L̂F P La
¯̂p(τ)]

¯̂p(t)
dτ

we have, after utilizing the formula for perturbative pdf (2.10), and assuming no per-
turbation in initial pdf (p̂′0 =0), no noise perturbation (Lσ =0) and constant external
perturbation (F̃(t)≡ F̃)

1

2

∫ T

0

∫

¯̂p(t)∇ p̂′(t)
¯̂p(t)

·Q∇ p̂′(t)
¯̂p(t)

dx̂dt=
1

2

∫ T

0

∫

¯̂p(t)(V (t)F̃) ·Q(V (t)F̃)dx̂dt (4.23)

= F̃ ·
∫ T

0

∫ ¯̂p(t)

2
V T (t)QV (t)dx̂dtF̃ (4.24)

=T F̃ ·VT F̃ (4.25)

where

VT =
1

2T

∫ T

0

∫

¯̂p(t)V T (t)QV (t)dx̂dt (4.26)

is a symmetric semi-positive definite matrix.

Proposition 4.3. In the special case of no perturbation in initial pdf (p̂′0 =0), no
perturbation in noise (Lσ =0), and constant perturbation in external forcing (F̃(t)=
F̃), we have

P(p̂δ(T ), ¯̂p(T ))=−δ2

2

∫ T

0

∫

¯̂p∇ p̂′

¯̂p
·Q∇ p̂′

¯̂p
+δ2

∫ T

0

∫

p̂′

¯̂p
La

¯̂p · F̃+O(δ3)

=Tδ2F̃ ·(−VT,Q +Ma,T )F̃+O(δ3) (4.27)

where VT,Q is semi-positive definite while Ma,T is semi-positive definite. Hence the
information content is a tug of war between noise and system perturbation in constant
forcing. The first tends to diminish information content while the latter tends to
increase the information content.

The positivity of Ma,T follows from the positivity of P and the semi-positivity of
VT,Q. However, the difference of the two matrices must be semi-positive definite since
P(T )≥0. Therefore we can still conclude that the direction which is most sensitive
to information flow at time T is the direction of the eigenvector associated with the
largest eigenvalue of the semi-positive definite symmetric matrix −VT,Q +Ma,T . This
may be viewed as a generalization of the case without noise discussed in the previous
subsection. Quasi-Gaussian type approximation may be used to approximate the
matrices for practical purposes in studies of model error.
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5. Concluding discussion

Several generalizations of linear response theory have been developed here along
with proposed numerical algorithms with potentially significant applications to both
finite time ensemble predictions and climate response with time periodic forcing. For
ensemble predictions, new formulas to evaluate model error combined with initial
ensemble perturbation [27] have been developed including variation in model noise
[25]; an information theoretic perspective has been used in section 5 to assess these
perturbations where the current model has the largest information deficit. When
applied to the equilibrium distribution, this allows for assessing the most important
perturbations with the largest response for a given functional (see Theorem 2.2 of
[21]).

A general framework has been developed in sections 2 and 3 for the general fluc-
tuation response of a (stochastic) chaotic dynamical system with periodic coefficients
as arises with the seasonal cycle for climate response experiments or the diurnal cycle
for moist convection. This framework leads to new algorithms presented in section 4
for calculating the low frequency climate response in periodic systems like those with
a seasonal cycle.

All of the algorithms and concepts developed here in a theoretical framework for
both climate response and ensemble prediction require further extensive testing and
development to assess their performance. The suite of test models should range from
low order stochastic models [22], to versions of the L-96 and geophysical equilibrium
statistical mechanics models [23] to intermediate [3] and comprehensive climate mod-
els [14, 16, 6, 12] with realistic dissipation and forcing. The authors intend to do this
in the near future with various collaborators.
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