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GAUSSIAN BEAMS SUMMATION FOR THE WAVE EQUATION IN
A CONVEX DOMAIN∗

SALMA BOUGACHA† , JEAN-LUC AKIAN‡ , AND RADJESVARANE ALEXANDRE§

Abstract. We consider the scalar wave equation in a bounded convex domain of Rn. The
boundary condition is of Dirichlet or Neumann type and the initial conditions have a compact
support in the considered domain. We construct a family of approximate high frequency solutions
by a Gaussian beams summation. We give a rigorous justification of the asymptotics in the sense of
an energy estimate and show that the error can be reduced to any arbitrary power of ε, which is the
high frequency parameter.
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1. Introduction
In this paper, our aim is to provide asymptotic solutions, in a sense to be made

more precise later, to the following initial-boundary value problem (IBVP) for the
wave equation 

Puε=∂2
t uε−∂x ·(c2(x)∂xuε) = 0 in [0,T ]×Ω,

uε|t=0 =uIε, ∂tuε|t=0 =vIε in Ω,

Buε= 0 in [0,T ]×∂Ω,

(1.1)

where B is a Dirichlet or Neumann type boundary operator.
Above, T >0 is fixed, and Ω is a bounded domain of Rn, with n= 2 or n= 3 for

important applications to acoustics or elastodynamics problems.
We assume the boundary ∂Ω is C∞ and the domain is convex for the bichar-

acteristic curves of P , see more precisely Assumption B1 below. Furthermore, the
coefficient c is assumed to be in C∞(Ω̄), though this assumption may be substantially
relaxed.

Our initial data will depend on a small parameter ε>0, playing the role of a small
wavelength, and our main objective is to study the high frequency limit, corresponding
to ε→0, i.e., the construction of high frequency solutions. Moreover, we shall assume
that uIε, v

I
ε are

A1. uniformly bounded respectively in H1(Ω) and L2(Ω),
A2. uniformly supported in a fixed compact set K⊂Ω.

The search for such approximate solutions and related notions of parametrices
for the wave equation and similar equations has been an intensive area of research. A
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widely used technique to produce such high frequency solutions is given by geometric
optics, also called the WKB method [32]. This technique is well known in the Physics
literature [21]. Then, and in the full space case, approximate solutions are constructed
under the form

N∑
j=0

εjaje
iψ/ε, (1.2)

with a real phase function ψ and complex amplitudes functions aj . The presence of
a boundary may lead to further terms with reflected phases and amplitudes.

Typically, initial data should have the same form as in (1.2), but solutions for
more general initial conditions can be obtained by summing an infinite number of
WKB solutions. Mathematically, this technique relies on the well known theory of
Fourier Integral Operators (FIOs), see for instance [15], see also the earlier works of
Maslov and Fedoruk [32] and the recent lecture notes by Rauch and Markus [38]. In
general, the global construction of a FIO breaks down at some time, due to generic
existence of caustics, see [9].

The caustics problem is also linked to the local solvability of the eikonal equa-
tion for the phase, which is derived by substituting the WKB ansatz in the partial
differential equation. Indeed, the eikonal equation is solved using the method of char-
acteristics and the phase therefore cannot be defined near every point of the domain,
at the exception of some very particular cases.

To overcome this difficulty, one either uses a collection of local FIOs or, more
generally, constructs a global FIO. This is the way chosen by Chazarain to produce a
parametrix for the mixed problem of the wave equation in [6]. Though this method is
quite satisfying for the mathematical analysis of propagation of singularities, it does
not give approximate solutions directly. A computationally oriented alternative to
this elaborate mathematical method is the use of Gaussian beams summation.

Gaussian beams are high frequency asymptotic solutions to linear partial differ-
ential equations that are concentrated on a single ray. In the mathematical literature,
their first use dates back to the 1960s, see [2]. Since then, they have been useful
in a variety of problems in mathematical physics such as modelling seismic [14] or
electromagnetic [10] wave fields. They also have been used in pure mathematics, such
as propagation of singularities [16, 36] and semiclassical measures [35], see [17] and
[12] for other methods concerning these problems.

One advantage of this method over the WKB precedure is that an individual
Gaussian beam has no singularities at caustics. Note that Gaussian beams summation
is naturally linked to FIOs with complex phases [15] (see [4, 23, 24, 43] for recent
contributions).

In a bounded domain of general geometry, both of the WKB and the Gaussian
beams ansatzs are inadequate to produce asymptotic solutions. Other models are
needed to describe the diffraction phenomena or the gliding of rays along the boundary,
such as Fourier-Airy Integral Operators [33] or gliding beams [37]. However, in our
precise setting of a convex domain with compactly supported initial data, only the
reflection effects at the boundary must be considered.

Dirichlet or Neumann boundary conditions can be taken into account by combin-
ing a finite sum of successively reflected Gaussian beams [19, 30]. Using an infinite
sum of Gaussian beams, one can then match quite general initial conditions. This
summation can be achieved in different ways, see [5, 20, 22] and the more recent
[14, 18, 26, 28, 29, 34, 44]. In [28] and [44], superpositions of Gaussian beams are
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used to solve wave equations with initial data of WKB form. In fact, in Theorem
1.1 below, more general initial conditions are allowed through the use of their FBI
transforms, which is also naturally linked with the concept of a Gaussian beam.

The FBI or Fourier-Bros-Iagolnitzer transform (see [8, 31, 42]) is, for a given scale
ε, the operator Tε :L2(Rn)→L2(R2n) defined by

Tε(a)(y,η) = cnε
− 3n

4

∫
Rn
a(w)eiη.(y−w)/ε−(y−w)2/(2ε)dw, cn= 2−

n
2 π−

3n
4 , a∈L2(Rn).

(1.3)
Its adjoint is the operator

T ∗ε (f)(x) = cnε
− 3n

4

∫
R2n

f(y,η)eiη.(x−y)/ε−(x−y)2/(2ε)dydη, f ∈L2(R2n). (1.4)

Like the Fourier Transform, the FBI transform is an isometry, satisfying T ∗ε Tε= Id.
Its main property is to decompose an L2

x function over the family of functions
(eiη.(x−y)/ε−(x−y)2/(2ε))(y,η)∈R2n . For instance, FBI transformation was the method
used in [39] to construct an approximate solution for the Schrödinger equation with
WKB initial conditions. The FBI transform is of course again connected with FIOs
with complex phases and an interesting result on their global L2 boundedness was
recently proved in [43], regarding the Hermann Kluck propagator.

In this paper, our approach to find asymptotic solutions to the problem (1.1) is
to achieve a superposition of incident and reflected Gaussian beams weighted by the
FBI transforms of the initial data, satisfying both the condition at the boundary and
the initial conditions. Our main result is given by

Theorem 1.1. Under Assumptions A1 and A2, suppose the FBI transforms of the
initial data are infinitely small on the complement of some ring

Rη ={η∈Rn,r0≤|η|≤ r∞}, 0<r0<r∞,

in the sense that
A3. ‖TεuIε‖L2(Rn×Rcη) =O(εs) and ‖TεvIε‖L2(Rn×Rcη) =O(εs), ∀s≥0.

Then for any integer R≥2, there is an asymptotic solution to (1.1) of the form

uRε (t,x) =
∑
k

∫
R2n a

k
ε(t,x,y,η,R)eiψk(t,x,y,η,R)/εdydη,

where akεe
iψk/ε are Gaussian beams and the summation over k is finite.

uRε is asymptotic to the exact solution of the IBVP (1.1) in the following sense:

Sup
t∈[0,T ]

‖uRε (t,.)−uε(t,.)‖H1(Ω) =O(ε
R−1

2 ),

and Sup
t∈[0,T ]

‖∂tuRε (t,.)−∂tuε(t,.)‖L2(Ω) =O(ε
R−1

2 ).

Let us note that construction of asymptotic solutions such as a summation of Gaussian
beams is certainly not new, but rigorous justification is the main point of our work,
together with precise estimates.

This paper is organized as follows. In section 2 we recall the construction of
Gaussian beams for a strictly hyperbolic differential operator as achieved in [36].
Then we study the case of the wave equation and construct the incident and reflected
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beams, and in a final step we construct approximate solutions for (1.1) by a Gaussian
beams summation. Justification of the asymptotics is given in section 3. Therein, we
introduce approximation operators acting from L2(R2n) to L2(Rn) with a complex
phase and compute their norms. We apply these operators on FBI transforms of
initial data, and estimate the error of the constructed asymptotic solutions near the
boundary, thus taking into account the precise boundary condition, and in the interior
set. These estimates are combined with the errors in the initial conditions and yield
the justification of the asymptotics by means of energy type estimates.

We close this introduction by a short discussion on the notations. Throughout
this paper, we will use standard multiindex notations. The inner product of two
vectors a,b∈Rd will be denoted by a ·b. The transpose of a matrix A will be noted
AT . If E is a subset of Rd, we denote 1E its characteristic function. For a smooth
function f ∈C∞(Rdx,C), we will use the notation ∂xf to denote its gradient vector
(∂xbf)1≤b≤d, ∂2

xf to denote its Hessian matrix (∂xb∂xcf)1≤b,c≤d and ∂rxf , r>2 to
denote the family (∂xb1 .. .∂xbr f)1≤b1,...,br≤d. For a vector function F ∈C∞(Rd,Cp),
we denote its Jacobian matrix by DF with (DF )j,k =∂kFj and its second derivatives
by D2F with (D2F )j,k,l=∂j∂kFl. For yε,zε∈R+, we use the notation yε.zε if there
exists a constant c>0 independent of ε such that yε≤ czε. We write yε.ε∞ or
yε=O(ε∞) if ∀s≥0 there exists cs>0 s.t. yε≤ csεs for ε small enough . Finally, the
word const denotes a positive constant (different each time it appears).

2. Construction of the asymptotic solutions
In this section we first introduce the notion of Gaussian beams for strictly hyper-

bolic differential operators, following the presentation of [36]. Then the construction
of incident and reflected Gaussian beams in the particular case of the wave equation
is explained. Finally, the approximate solution for the IBVP (1.1) is given in the last
section as an infinite sum of Gaussian beams.

2.1. Gaussian beams for stricly hyperbolic operators. This section
follows basically the presentation of [36].

Let P (t,x,∂t,∂x) be a strictly hyperbolic differential operator of order mP and of
principal symbol p. That is, we suppose that the roots τ of p(t,x,τ,ξ) = 0 are simple
and real for all (t,x) and ξ 6= 0. The symbol p is assumed to be real. A Gaussian beam
for P is a function of the form

wε(t,x) =
N∑
j=0

εjaj(t,x)eiψ(t,x)/ε, N ∈N, (2.1)

satisfying

∃m>0 s.t. ‖Pwε‖L2
t,x

=O(εm).

Note that the above expansion is similar to the usual WKB expansion, but it is
required here that:

(i) the beam wε is concentrated on some fixed ray (t(s),x(s)) associated to p.
Here s is the “time” parameter of this curve.

(ii) the phase ψ is a complex-valued function, but real-valued on the ray
(t(s),x(s)).

The exact definition of a ray (t(s),x(s)) is as follows. First of all, we introduce
the so-called null bicharacteristics, which are the curves, solutions of the Hamiltonian
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equations

ṫ(s) =∂τp(t(s),x(s),τ(s),ξ(s)), τ̇(s) =−∂tp(t(s),x(s),τ(s),ξ(s)),
ẋ(s) =∂ξp(t(s),x(s),τ(s),ξ(s)), ξ̇(s) =−∂xp(t(s),x(s),τ(s),ξ(s)),

(2.2)

with initial conditions satisfying p(t(0),x(0),τ(0),ξ(0)) = 0. Note that it follows that
p(t(s),x(s),τ(s),ξ(s)) = 0, for all s. Then by definition, the projection on Rn+1

t,x of
such a curve (t(s),x(s),τ(s),ξ(s)), that is (t(s),x(s)), is called a ray. We suppose
the conditions for local existence, uniqueness, and smoothness with respect to initial
conditions of solutions to the Hamiltonian system (2.2) to be fulfilled; see [13].

The construction of a Gaussian beam wε is achieved by making Pwε vanish to a
certain order on a fixed and given ray (t(s),x(s)). For this purpose, applying P to
the form (2.1) of a Gaussian beam, we obtain a similar form

Pwε=
N+mP∑
j=0

εj−mP cje
iψ/ε, (2.3)

where

c0 =p(t,x,∂tψ,∂xψ)a0,

cj =Laj−1 +p(t,x,∂tψ,∂xψ)aj+gj , j≥1. (2.4)

Above, aj = 0 for j >N , g1 = 0, and gj is a function of ψ,a0,. ..,aj−2 for j≥2. Fur-
thermore, L is a linear differential operator with coefficients depending on ψ. Using
p′, the symbol of the terms of order mP −1 of P , L can be written in an explicit way
as

L=
1
i
∂τ,ξp(t,x,∂tψ,∂xψ) ·∂t,x+

1
2i
T r(∂2

τ,ξp(t,x,∂tψ,∂xψ)∂2
t,xψ)+p′(t,x,∂tψ,∂xψ).

(2.5)
For the construction of a Gaussian beam adapted to P , the first step, and by far

the most important one, is to build a phase ψ satisfying the eikonal equation

p(t,x,∂tψ(t,x),∂xψ(t,x)) = 0 on (t,x) = (t(s),x(s)) up to order R only, (2.6)

with R≥2, which means

∂αt,x[p(t,x,∂tψ(t,x),∂xψ(t,x))]|(t(s),x(s)) = 0 for |α|≤R.

Compare this with the usual eikonal equation p(t,x,∂tψ(t,x),∂xψ(t,x)) = 0 required
by the WKB method in full space.
Order 0 of the eikonal equation (2.6)

p(t(s),x(s),∂tψ(t(s),x(s)),∂xψ(t(s),x(s))) = 0,

is fulfilled by setting (
∂tψ,∂xψ

)
|(t(s),x(s)) =

(
τ(s),ξ(s)

)
. (P.a)

This constraint ensures that d
dsψ(t(s),x(s)) is real, which leads by choosing

ψ(t(0),x(0)) a real quantity,
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to the required property

ψ(t(s),x(s)) is real. (P.b)

Replacing ∂τ,ξp|(t(s),x(s),τ(s),ξ(s)) by (ṫ(s),ẋ(s)) yields in the differentiation of (2.6) to
the compatibility condition

∂2
t,xψ|(t(s),x(s))

(
ṫ(s)
ẋ(s)

)
=−

(
∂tp
∂xp

)∣∣∣∣∣
(t(s),x(s),τ(s),ξ(s))

=
(
τ̇(s)
ξ̇(s)

)
. (2.7)

It also gives for every function f ∈C∞(Rt×Rnx ,C),

∂τ,ξp|(t(s),x(s),τ(s),ξ(s)) ·∂t,xf |(t(s),x(s)) =
d

ds
f |(t(s),x(s)). (2.8)

Using this relation on ∂αt,xψ, |α|= 2, we may write order 2 of the eikonal equation
(2.6) as

d

ds
∂2
t,xψ|(t(s),x(s)) +H12(s)T∂2

t,xψ|(t(s),x(s)) +∂2
t,xψ|(t(s),x(s))H12(s)

+∂2
t,xψ|(t(s),x(s))H22(s)∂2

t,xψ|(t(s),x(s)) +H11(s) = 0,

where H11(s) =∂2
t,xp|(t(s),x(s),τ(s),ξ(s)), (H12)bc(s) = (∂τ,ξ)b(∂t,x)cp|(t(s),x(s),τ(s),ξ(s)),

and H22(s) =∂2
τ,ξp|(t(s),x(s),τ(s),ξ(s)). One can substitute for ∂t∂xψ|(t(s),x(s)) and

∂2
t ψ|(t(s),x(s)) from the compatibility condition (2.7), since ṫ(s) 6= 0 by the strict hy-

perbolicity of P . The previous Riccati equation then yields a similar Riccati equation
on ∂2

xψ|(t(s),x(s)). Although non-linear, this equation has a unique global symmetric
solution which satisfies the fundamental property

Im∂2
xψ|(t(s),x(s)) is positive definite, (P.c)

given an initial symmetric matrix ∂2
xψ|(t(0),x(0)) with a positive definite imaginary part

(see the proof of Lemma 2.56 p.101 in [19]).
Higher order derivatives of the phase on the ray are determined recursively. For

3≤ r≤R, order r of the eikonal equation (2.6) combined with the relation (2.8) leads to
linear inhomogeneous ordinary differential equations (ODEs) on ∂rxψ|(t(s),x(s)). They
have a unique solution for a fixed initial condition ∂rxψ|(t(0),x(0)).

The second step of the construction is to make cj , for 1≤ j≤N+1, vanish on the
ray up to the order R−2j. The choice of the order R−2j is related to the quadratic
imaginary part in the phase and the study of estimates in Sobolev spaces. This will
appear clearly in the justification of the approximation in Lemma 2.2. In any case,
the equations on the amplitudes cj = 0 can be solved on the ray at most up to the
order R−2, due to the term ∂2

t,xψ in the operator L (2.5).
Taking into account the eikonal equation (2.6), one gets the following evolution

equations on aj , 0≤ j≤N

1
i
∂τ,ξp(t,x,∂tψ,∂xψ) ·∂t,xaj+

[
1
2i
T r(∂2

τ,ξp(t,x,∂tψ,∂xψ)∂2
t,xψ)

+p′(t,x,∂tψ,∂xψ)

]
aj+gj+1 = 0

on (t,x) = (t(s),x(s)) up to order R−2j−2. (2.9)
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This equation uniquely determines the Taylor series of aj on (t(s),x(s)) up to the
order R−2j−2, given the values of their spatial derivatives at (t(0),x(0)) up to the
same order.

Remark 2.1. The number N of amplitudes in the ansatz (2.1) and the order R
up to which the eikonal equation (2.6) is solved are not independent. Indeed, the
computations of the amplitudes’ derivatives require

R−2N−2≥0.

Another condition ([36, p.219]) is assumed to ensure that the remainder terms cj ,
N+2≤ j≤N+mP , contribute with the right power of ε (see [45] for an alternative
justification)

R−2N−3≤0. (2.10)

An essential point for the use of Gaussian beams is the smoothness of the phase and
the amplitudes with respect to (w.r.t.) (t(0),x(0)). To this aim, the needed initial
values of the derivatives of the phase ∂rxψ|(t(0),x(0)), 2≤ r≤R, and of the amplitudes
∂rxaj |(t(0),x(0)), 0≤ r≤R−2j−2, are chosen to be smooth w.r.t. (t(0),x(0)). The
phase and the amplitudes are then prescribed to be equal to their Taylor developments
(truncated up to fixed orders) on the ray.

The final step of the construction is to multiply the amplitudes by a cutoff equal
to 1 near the ray.

2.2. Incident and reflected beams for the wave equation. The preceding
results will now be applied and detailed for the particular case of the wave equation
and the construction of reflected beams. The computations rely on the results of [30]
and [36].

We extend c in a smooth way outside Ω̄. Let p(x,τ,ξ) = c2(x)|ξ|2−τ2 be the
principal symbol of the wave operator P =∂2

t −∂x ·(c2∂x). Then τ(s) = τ(0) from the
Hamiltonian equations (2.2). Writing

p=−p+p−, with p+(x,τ,ξ) = c(x)|ξ|+τ and p−(x,τ,ξ) =−c(x)|ξ|+τ,

shows that null bicharacteristics s 7→ (t(s),x(s),τ(0),ξ(s)) for p s.t. τ(0) 6= 0 are either
null bicharacteristics for p+ if τ(0)<0 or for p− if τ(0)>0, by using the parametriza-
tion s′=−2τs.

Denote h+(x,ξ) = c(x)|ξ| and let (xt0(y,η),ξt0(y,η)) (or simply (xt0,ξ
t
0)) be the

Hamiltonian flow for h+ starting from the point (y,η), that is

dxt0
dt

=∂ξh+(xt0,ξ
t
0) = c(xt0)

ξt0
|ξt0|

,
dξt0
dt

=−∂xh+(xt0,ξ
t
0) =−∂xc(xt0)|ξt0|,

xt0|t=0 =y, ξt0|t=0 =η,η 6= 0.

(2.11)

Then the null bicharacteristic curve (t(s),x(s),τ(s),ξ(s)) for p starting at s= 0 from
(0,y,∓c(y)|η|,η) is exactly (t,x±t0 (y,η),∓c(y)|η|,ξ±t0 (y,η)), the null bicharacteristic
curve for p±.

As in [41], one can prove that the Hamiltonian system (2.11) associated to h+

has a unique solution global in time (by Cauchy-Lipschitz theorem), which depends
smoothly on (t,y,η)∈R×Rn×Rn\{0}.
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The remainder of this section is organized as follows. In section 2.2.1, we explain
the construction of incident and reflected beams associated to p+, then section 2.2.2
is a simple repetition for p−, and finally in section 2.2.3 we give error estimates for
the individual beams gathered in (2.18).

2.2.1. Construction of beams associated to p+. For the ray (t,xt0(y,η))
associated with p+, denote w0

ε(t,x,y,η) to be a Gaussian beam concentrated on that
ray, and ψ0(t,x,y,η) and a0

j (t,x,y,η) to be its associated phase and amplitudes. If
no confusion is possible, symbols y,η and even t,x,y,η in the notations above will be
dropped.

The phase ψ0 is determined by solving the eikonal equation (2.6) on the ray (t,xt0)
together with the conditions

∂tψ0(t,xt0) =−h+(xt0,ξ
t
0), ∂xψ0(t,xt0) = ξt0, (P0.a)

and the choice of

ψ0(0,y) a real function,

∂2
xψ0(0,y) a symmetric matrix with a positive definite imaginary part,
∂rxψ0(0,y), 3≤ r≤R, permutable families.

In particular ψ0 satisfies the important properties

ψ0(t,xt0) is real, (P0.b)

and

Im∂2
xψ0(t,xt0) is positive definite. (P0.c)

The phase ψ0 is assumed to be equal to its Taylor series up to the order R on x=xt0

ψ0(t,x) =
∑
|α|≤R

1
α!

(x−xt0)α∂αxψ0(t,xt0). (2.12)

The amplitudes of w0
ε(t,x) are also determined by the requirement that the cj ,

1≤ j≤N+1 in (2.4) are null up to orders R−2j on the ray (t,xt0), given their initial
spatial derivatives on the ray ∂rxa

0
j (0,y), r= 0,. ..,R−2j−2. We choose them as

a0
j (t,x) =χd(x−xt0)

∑
|α|≤R−2j−2

1
α!

(x−xt0)α∂αx a
0
j (t,x

t
0), j= 0,. ..,N, (2.13)

where d>0 and χd is a cut-off of C∞0 (Rn, [0,1]) satisfying

χd(x) = 1 if |x|≤d/2 and χd(x) = 0 if |x|≥d.

Throughout the paper, the parameter d will be adjusted to obtain requested estimates.
This construction leads to a beam w0

ε(t,x,y,η) called an incident beam for p+,
satisfying

sup
t∈[0,T ]

‖Pw0
ε(t,.)‖L2(Ω) =O(εm) for some m>0.

Let
o

T ∗Ω =T ∗Ω\{η= 0}. To study the reflection on the boundary, we make the
following assumptions.
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B1. The domain Ω is convex for the bicharacteristic curves of P , that is for every

(y,η)∈
o

T ∗Ω, xt0(y,η) cuts the boundary at only two times of opposite signs
and transversally.

B2. For every (y,η)∈
o

T ∗Ω, xt0(y,η) does not remain in a compact of Rn when t
varies in R.

B3. The boundary has no dead-end trajectories, that is infinite number of succes-
sive reflections cannot occur in a finite time.

For (y,η)∈
o

T ∗Ω, let T1(y,η) be the instant (that is the exit time) s.t.

x
T1(y,η)
0 (y,η)∈∂Ω and T1(y,η)>0.

Note that
o

T ∗Ω is an open set, and thanks to B1, the function (y,η)∈
o

T ∗Ω 7→T1(y,η)
is well-defined and C∞, as follows from the implicit function theorem. The reflection
involution associated to the considered symbol p is the map

R :
o

T ∗Rn|∂Ω→
o

T ∗Rn|∂Ω

(X,Ξ) 7→ (X,(Id−2ν(X)ν(X)T )Ξ).

Above ν denotes the exterior normal field to ∂Ω. Let ϕt0 = (xt0,ξ
t
0) denote the incident

Hamiltonian flow solution of (2.11). We define the first reflected flow ϕt1 by the
condition

ϕT1
1 =RoϕT1

0 ,

that is the Hamiltonian flow for h+ having at t=T1, position xT1
0 , the direction being

given by the reflected vector of ξT1
0 .

Then the broken flow is defined recursively after a finite number of successive
reflections as follows (see figure 2.1): for k>1, Tk and ϕtk = (xtk,ξ

t
k) are determined

by:

Tk(y,η) is the instant s.t. xTk(y,η)
k−1 (y,η)∈∂Ω and Tk(y,η)>Tk−1(y,η),

ϕTkk =RoϕTkk−1.

The convexity of the boundary B1 implies the non-grazing hypothesis

∀(y,η)∈
o

T ∗Ω and k≥1, ẋTk(y,η)
k−1 (y,η) ·ν(xTk(y,η)

k−1 (y,η))>0,

where ẋtk−1 denotes d
dtx

t
k−1. Assumption B3 leads to

∀(y,η)∈
o

T ∗Ω, Tk(y,η) →
k→+∞

+∞. (2.14)

It ensures that for a fixed point (y,η) in
o

T ∗Ω, there is a finite number q+(y,η) of
reflections in [0,T ].

Following the method of Ralston in [36, p.220], we shall construct reflected beams
w1
ε ,. ..,w

q+
ε which satisfy the boundary estimate

∃m′>0 and s≥0 s.t. ‖B(w0
ε + ·· ·+wq+ε )‖Hs([0,T ]×∂Ω) =O(εm

′
),



982 GAUSSIAN BEAMS SUMMATION IN A CONVEX DOMAIN

Fig. 2.1. successive reflections.

together with the interior estimates

sup
t∈[0,T ]

‖Pwkε (t,.)‖L2(Ω) =O(εm), 1≤k≤ q+.

For each 1≤k≤ q+, the reflected beam wkε will be written as

wkε =eiψk/ε(ak0 + ·· ·+εNakN ).

To ensure the interior estimates, each phase ψk and the amplitudes akj (0≤ j≤N)
must satisfy equations (2.6) and (2.9) on the reflected ray (t,xtk).

As the beams vanish away from their associated rays, the contribution to the
boundary norm of w0

ε + ·· ·+w
q+
ε occurs when t is close to some Tk and then from the

beams wk−1
ε and wkε . The construction of the reflected beams is completed recursively.

Assume that the beam wk−1
ε has been constructed and that its associated phase

satisfies

∂tψk−1(t,xtk−1) =−h+(xtk−1,ξ
t
k−1), ∂xψk−1(t,xtk−1) = ξtk−1, (Pk−1.a)

ψk−1(t,xtk−1) is real, (Pk−1.b)

Im∂2
xψk−1(t,xtk−1) is positive definite. (Pk−1.c)

One may write on the boundary ∂Ω

B
(
wk−1
ε +wkε

)
=
(
ε−mBdk−1

−mB + ·· ·+εNdk−1
N

)
eiψk−1/ε

+
(
ε−mBdk−mB + ·· ·+εNdkN

)
eiψk/ε,

mB being the order of B (mB = 0 for Dirichlet and mB = 1 for Neumann).
In order to satisfy the boundary estimate, the first step is to impose on ψk to

have the same time and tangential derivatives as ψk−1 at (Tk,xTkk−1), up to the order
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R. More precisely, let us introduce boundary coordinates near xTkk−1 =xTkk as follows.
We partition ∂Ω with a finite number of small open subsets U1,. ..,UL s.t. there exist
C∞ parametrizations

σl :Nl→Rn, l= 1,. ..,L,

where Nl are open subsets of Rn−1, σl(Nl) =Ul, and σl is a diffeomorphism from Nl
to Ul. Suppose that xTkk−1 belongs to Ul0 and denote xTkk−1 =σl0(ẑk). For x∈Rn close
to xTkk−1, we may write

x=σl0(v̂)+vnν(σl0(v̂)),

with v̂∈Nl0 and vn∈R. If we use the notation

σf(t,v̂,vn) =f(t,x),

then we impose

∂αt,v̂
σψk(Tk, ẑk,0) =∂αt,v̂

σψk−1(Tk, ẑk,0), |α|≤R. (2.15)

Order 0 of (2.15) gives a real value for ψk(Tk,xTkk−1). Order 1 of this same constraint
and order 0 of the eikonal equation (2.6) on ψk are both satisfied by setting

∂tψk(t,xtk) =−h+(xtk,ξ
t
k), ∂xψk(t,xtk) = ξtk. (Pk.a)

It follows that

ψk(t,xtk) is real. (Pk.b)

Due to the non-grazing hypothesis, (2.15) and the compatibility condition result-
ing from order 1 of the eikonal equation (2.6) provide ∂2

xψk(Tk,xTkk−1). To solve the
Riccati equation on ∂2

xψk(t,xtk) with its given value at t=Tk, we need to study the
imaginary part of ∂2

xψk(Tk,xTkk−1). For k′=k−1,k, one has

∂t∂v̂
σψk′(t,v̂,0) =Dσl0(v̂)T∂t∂xψk′(t,xtk′),

and

∂2
v̂
σψk′(t,v̂,0) =D2σl0(v̂)

(
∂xψk′(t,xtk′)

)
+Dσl0(v̂)T∂2

xψk′(t,x
t
k′)Dσl0(v̂).

Differentiating (Pk−1.a) and (Pk.a) yields

Im∂t∂xψk′(t,xtk′) =−Im∂2
xψk′(t,x

t
k′)ẋ

t
k′

and

Im∂2
t ψk′(t,x

t
k′) = ẋtk′ · Im∂2

xψk′(t,x
t
k′)ẋ

t
k′ .

Denote

Mk =∂2
t,v̂

σψk−1(Tk, ẑk,0) =∂2
t,v̂

σψk(Tk, ẑk,0). (2.16)
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One therefore has

ImMk =
(
−ẋTkk′ , Dσl0(ẑk)

)T
Im∂2

xψk′(Tk,x
Tk
k−1)

(
−ẋTkk′ , Dσl0(ẑk)

)
.

The non-grazing hypothesis ensures that the matrices
(
−ẋTkk′ , Dσl0(ẑk)

)
are non sin-

gular. Since Im∂2
xψk−1(Tk,xTkk−1) is positive definite by (Pk−1.c), it follows that the

same property holds true for ImMk and consequently for Im∂2
xψk(Tk,xTkk−1). Hence,

the matrix ∂2
xψk(t,xtk) solution of a Riccati equation with its given value at t=Tk

satisfies

Im∂2
xψk(t,xtk) is positive definite. (Pk.c)

Higher order derivatives of the reflected phase on the associated ray are deter-
mined recursively. For 3≤ r≤R, ∂rxψk(t,xtk) satisfies linear ODEs with a given value
at t=Tk.

The second step is to prescribe that dk−1
−mB+j+dk−mB+j vanish up to the order

R−2j−2 at (Tk,xTkk−1). These requirements provide the derivatives of akj up to the
order R−2j−2 at (Tk,xTkk−1). Hence, for 0≤ r≤R−2j−2, ∂rxa

k
j (t,xtk) satisfy linear

systems of ODEs with initial conditions given at t=Tk.
It follows from this construction that the choice of the (truncated up to fixed

orders) Taylor series of the phase and the amplitudes of the incident beam on the
starting point of the ray recursively determines the (truncated up to fixed orders)
Taylor series of successively reflected beams’ phases and amplitudes.

Finally, the amplitudes akj are multiplied by a cutoff equal to 1 near xtk. The
reflected phases and amplitudes have the same forms as the incident ones

ψk(t,x) =
∑
|α|≤R

1
α!

(x−xtk)α∂αxψk(t,xtk),

and

akj (t,x) =χd(x−xtk)
∑

|α|≤R−2j−2

1
α!

(x−xtk)α∂αx a
k
j (t,xtk), j= 1,. ..,N.

2.2.2. Construction of beams associated to p−. For the symbol p−, the
same construction applies for the associated incident and reflected beams.

An incident beam for p− is a beam concentrated on the ray (t,x−t0 ), so it is

simply w0
ε(−t,x). In fact, denoting Pw0

ε =
N+2∑
j=0

εj−2c0je
iψ0/ε, one can notice that

P [w0
ε(−t,x)] = [Pw0

ε ](−t,x) and the amplitudes c0j (−t,x) vanish on x=x−t0 up to the
required orders.

Reflected beams for p− are obtained by reflecting ϕt0 backwards. For (y,η)∈
o

T ∗Ω,
let T−1(y,η)<0 be the instant s.t. x

T−1(y,η)
0 (y,η) strikes the boundary ∂Ω. Denote

ϕt−1 to be the Hamiltonian flow for h+ determined by the condition (see figure 2.1)

ϕ
T−1
−1 =RoϕT−1

0 .

For k>1, one can recursively define the instants of reflections T−k and the Hamil-
tonians flows ϕt−k for h+ as follows:

T−k(y,η) is the instant s.t. xT−k(y,η)
−k+1 (y,η)∈∂Ω and T−k(y,η)<T−k+1(y,η),

ϕ
T−k
−k =RoϕT−k−k+1.
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Assumption B3 implies that Tk(y,η)→−∞ when k goes to −∞, and thus ensures
a finite number q−(y,η) of reflections in [−T,0].

Then we build Gaussian beams w−kε for p− after 1≤k≤ q− backwards reflections,
by imposing ‖B(w0

ε + ·· ·+w
−q−
ε )‖Hs([−T,0]×∂Ω) =O(εm

′
) for some m′>0 and s≥0.

We write these beams as

w−kε =eiψ−k/ε(a−k0 + ·· ·+εNa−kN ).

In particular, for 1≤k≤ q−, the phase ψ−k satisfies the following properties:

∂tψ−k(t,xt−k) =−h+(xt−k,ξ
t
−k), ∂xψ−k(t,xt−k) = ξt−k, (P−k.a)

ψ−k(t,xt−k) is real, (P−k.b)

Im∂2
xψ−k(t,xt−k) is positive definite. (P−k.c)

Noting that (t,xt−k), k= 1,. ..,q−, are successively reflected rays for p−, the reflected
beam of p− after k reflections is simply w−kε (−t,x).

2.2.3. Error estimates for individual Gaussian beams. We fix (y,η)∈
o

T ∗Ω and choose d sufficiently small s.t. for k= 0,. ..,q±, t∈ [0,T ] and |x−x±t±k|≤d,

Imψ±k(±t,x)≥ const(x−x±t±k)2. (2.17)

One can see that this choice is always possible by the properties (Pk.a)–(Pk.b)–(Pk.c)
of each phase ψk, −q−≤k≤ q+.

For t∈ [0,T ] and x∈Rn, let

w+
ε (t,x) =

q+∑
k=0

wkε (t,x) and w−ε (t,x) =
q−∑
k=0

w−kε (−t,x). (2.18)

Then we have the following estimates on these constructed beams

Lemma 2.2.
1. ‖ε−n4 +1w±ε (t,.)‖H1(Ω) .1 and ‖ε−n4 +1∂tw

±
ε (t,.)‖L2(Ω) .1 uniformly w.r.t. t∈

[0,T ],

2. ‖P
(
ε−

n
4 +1w±ε

)
(t,.)‖L2(Ω) .ε

R−1
2 uniformly w.r.t. t∈ [0,T ],

3. ‖B
(
ε−

n
4 +1w±ε

)
‖Hs([0,T ]×∂Ω) .ε−mB−s+

R+1
2 , s≥0.

The proof of this Lemma and other results rely on this standard estimate for p∈N

|x|pe−x
2/εdx.ε

p
2 e−x

2/(2ε),∀x∈Rn. (2.19)

For more details, we refer the interested reader to [36] or [30].

2.3. Gaussian beams summation. The constructed functions ε−
n
4 +1w±ε

are approximate solutions for the IBVP of the wave equation with initial data

ε−
n
4 +1w±ε |t=0 =ε−

n
4 +1

N∑
j=0

εja0
j |t=0e

iψ0|t=0/ε+ε−
n
4 +1

q±∑
k=1

w±kε |t=0,

and

∂t
(
ε−

n
4 +1w±ε

)
|t=0 =±ε−n4

N+1∑
j=0

εjf0
j e
iψ0|t=0/ε±ε−n4 +1

q±∑
k=1

∂tw
±k
ε |t=0,
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where the f0
j are related to the phase and amplitudes of w0

ε . One can show that
the Assumptions B1–B2 imply that x0

k /∈ Ω̄ for k 6= 0. The exponential decrease of the
phases away from their associated rays leads to

‖wkε |t=0‖H1(Ω) .ε∞ and ‖∂twkε |t=0‖L2(Ω) .ε∞, k 6= 0.

Modulo infinitely small remainders, the initial conditions of ε−
n
4 +1w±ε are thenε−n4 +1

N∑
j=0

εja0
j |t=0e

iψ0|t=0/ε,±ε−n4
N+1∑
j=0

εjf0
j e
iψ0|t=0/ε

 .
We wish to consider the IBVP (1.1) with general initial conditions (uIε,v

I
ε ) in

H1(Ω)×L2(Ω). Note that ψ0|t=0 has properties similar to φ0, where
cnε
− 3n

4 eiφ0(x,y,η)/ε denotes the kernel of T ∗ε ; see formula (1.4) in the introduction. The

first step is to build, for a fixed point (y,η)∈
o

T ∗Ω, asymptotic solutions with initial
conditions close to (ε−

n
4 +1eiφ0(.,y,η)/ε,0) and (0,ε−

n
4 eiφ0(.,y,η)/ε) in H1(Ω)×L2(Ω).

Then one expects to fulfill more general initial data (uIε,v
I
ε ) by decomposing uIε on

the family (ε−
n
4 +1eiφ0/ε)

(y,η)∈
o

T∗Ω
and vIε on the family (ε−

n
4 eiφ0/ε)

(y,η)∈
o

T∗Ω
, indexed

by (y,η).
Let us recover the notation of the beams referring to the starting points of the

incident flow. We fix (y,η)∈
o

T ∗Ω and consider the incident beam w0
ε(t,x,y,η) associ-

ated to the ray (t,xt0(y,η)) and the reflected beams w±kε (t,x,y,η), k= 1,. ..,q±. Taylor
formulae (2.12) yields at t= 0

ψ0(0,x,y,η) =
∑
|α|≤R

1
α!

(x−y)α∂αxψ0(0,y,y,η).

If one chooses the following initial spatial derivatives on the ray for the incident beam’s
phase

ψ0(0,y,y,η) = 0,∂2
xψ0(0,y,y,η) = iId and ∂αxψ0(0,y,y,η) = 0, 3≤|α|≤R,

then (P0.a) implies

ψ0(0,x,y,η) =η ·(x−y)+ i(x−y)2/2 =φ0(x,y,η). (2.20)

We assume henceforth that the incident beam’s phase satisfies (2.20). Consider an
approximate solution

1
2
ε−

n
4 +1(w+

ε +w−ε ).

Its initial data is ε−n4 +1
N∑
j=0

εja0
j |t=0e

iφ0/ε,0

 ,
with a remainder of order ε∞ in H1(Ω)×L2(Ω). To get the form (ε−

n
4 +1eiφ0/ε,0),

one has to make a suitable choice for the amplitudes. The expansion (2.13) at t= 0
yields

a0
j (0,x,y,η) =χd(x−y)

∑
|α|≤R−2j−2

1
α!

(x−y)α∂αx a
0
j (0,y,y,η), j= 0,. ..,N,
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and one has full choice for the initial spatial derivatives of a0
j on the ray up to the

order R−2j−2. Under the assumptions

a0
0(0,y,y,η) = 1, ∂αx a

0
0(0,y,y,η) = 0 for 1≤|α|≤R−2,

∂αx a
0
j (0,y,y,η) = 0 for |α|≤R−2j−2, 1≤ j≤N,

one obtains
N∑
j=0

εja0
j (0,x,y,η) =χd(x−y). (2.21)

Taking advantage of the exponential decrease of eiφ0(x,y,η)/ε for |x−y|≥d/2, one
deduces that

‖ε−n4 +1
N∑
j=0

εja0
j (0,.,y,η)eiφ0(.,y,η)/ε−ε−n4 +1eiφ0(.,y,η)/ε‖H1(Ω) .ε∞.

We keep the notations a0
j and w0

ε to denote the amplitudes satisfying (2.21) and the
associated incident beam. For 1≤k≤ q±, we denote w±kε to be the corresponding
reflected beams and w±ε to be the sum of the incident and reflected beams for p±.

Next, we shift to the initial condition on the time derivative, for which we con-
struct a new incident beam w0

ε
′ with amplitudes a0

j
′. Indeed, an approximate solution

1
2
ε−

n
4 +1(w+

ε
′−w−ε

′),

has initial data 0,ε−
n
4

N+1∑
j=0

εj
(
i∂tψ0a

0
j
′
+∂ta

0
j−1
′
)
|t=0e

iφ0/ε

,
modulo a remainder of order ε∞ in H1(Ω)×L2(Ω), with a0

−1
′=a0

N+1
′= 0. In order to

approach the form (0,ε−
n
4 eiφ0/ε), we derive new initial Taylor series for the incident

beam’s amplitudes. As ∂tψ0(0,y,y,η) =−c(y)|η|, we impose

a0
0
′(0,y,y,η) = i(c(y)|η|)−1

,∂αx

(
∂tψ0a

0
0
′
)

(0,y,y,η) = 0 for 1≤|α|≤R−2,

∂αx

(
i∂tψ0a

0
j
′+∂ta

0
j−1
′
)

(0,y,y,η) = 0 for |α|≤R−2j−2, 1≤ j≤N.

One obtains
N+1∑
j=0

εj
(
i∂tψ0a

0
j
′
+∂ta

0
j−1
′
)

(0,x,y,η) = 1+
N∑
j=0

εj
∑

|α|=R−2j−1

(x−y)αzα(x,y,η)

+εN+1∂ta
0
N
′
(0,x,y,η), (2.22)

where zα are smooth remainders that vanish for |x−y|≥d. Making use of (2.10) and
(2.19), one can show that

‖ε−n4
N+1∑
j=0

εj
(
i∂tψ0a

0
j
′
+∂ta

0
j−1
′
)

(0,.,y,η)eiφ0(.,y,η)/ε−ε−n4 eiφ0(.,y,η)/ε‖L2(Ω) .ε
R−1

2 .
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Let w±kε
′, 1≤k≤ q±, be the reflected beams associated to w0

ε
′ and denote w±ε

′ to be the
sum of the so obtained incident and reflected beams for p±. Hence, the approximate
solutions

1
2
ε−

n
4 +1(w+

ε +w−ε )(t,x,y,η) and
1
2
ε−

n
4 +1(w+

ε
′−w−ε

′)(t,x,y,η),

have the required initial data(
ε−

n
4 +1eiφ0(x,y,η)/ε,0

)
and

(
0,ε−

n
4 eiφ0(x,y,η)/ε

)
,

modulo remainders of respective orders ε∞ and ε
R−1

2 in H1(Ω)×L2(Ω).
To fulfill general initial conditions (uIε,v

I
ε ), the previous computations together

with the identity T ∗ε Tε= Id, suggest that we look for an approximate solution such as

cn
2
ε−

3n
4

∫
o

T∗Ω

Tεu
I
ε(y,η)

(
w+
ε (t,x,y,η)+w−ε (t,x,y,η)

)
dydη

+
cn
2
ε−

3n
4

∫
o

T∗Ω

εTεv
I
ε

(
w+
ε
′(t,x,y,η)−w−ε

′(t,x,y,η)
)
dydη.

Let us notice that it is not clear that the previous integral is well defined.
Firstly, the construction of w±ε

(′)(t,x,y,η) breaks down when y approaches the
boundary ∂Ω because the numbers of reflections in [0,±T ] become infinitely large.
Next we need to tackle the problem of integration for large η.

One way to overcome these two problems is to require that the initial FBI trans-
forms are compactly supported modulo small remainders. This requirement is in the
spirit of considering only compactly supported symbols in the study of the FIOs of
[24]. Nevertheless, this restriction was recently removed by Rousse and Swart in [40].
In particular, a general boundedness result of FIOs with complex phases for sub-
quadratic Hamiltonians was established therein. The proof is rather subtle and relies
in particular on Cotlar-Stein estimate. The same arguments can be used for the con-
stant coefficient wave equation but do not seem to work for the general wave equation.
In fact, in this case, the second derivatives of the Hamiltonian are not bounded and
thus the proof of [40] needs to be adapted.

A last problem related to the wave equation is the integration for small η.

In view of all these difficulties, this explains why we made the Assumptions A2
and A3 on the initial data in the introduction, which we recall

uIε and vIε are supported in a fixed compact K⊂Ω,
‖TεuIε‖L2(Rn×Rcη) =O(ε∞) and ‖TεvIε‖L2(Rn×Rcη) =O(ε∞),

where Rη ={η∈Rn,r0≤|η|≤ r∞}, 0<r0<r∞. These assumptions are satisfied for in-
stance by a large class of WKB functions aeiΦ/ε, a∈C∞0 (Ω). Indeed the non-stationary
phase lemma implies that the FBI transform of such a function is of order O(ε∞) out-
side the compact set

A×B={y∈Rn,dist(y,suppa)≤ c}×{η∈Rn,dist(η,∂xΦ(A))≤ c}, c>0;

see Lemmas 4.2 and 4.3 of [39]. Thus aeiΦ/ε satisfies Assumption A3, provided that
∂xΦ does not vanish on suppa.
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Remark 2.3. Another strategy can be used to match initial conditions of WKB form
in a Gaussian beams summation [28, 44]. It consists of integrating the beams associ-
ated to rays that start from y∈ suppa with the direction η=∂xΦ(y). The accuracy
of such obtained solutions faces a damage caused by caustics, namely an extra factor
ε

1−n
4 appears in the error estimate. This loss originates from the restriction to rays

x±t±k(y,∂xΦ(y)) (k= 0,. ..,N±), which technically leads to considering the deformation
matrices ∂y[x±t±k(y,∂xΦ(y))] singular at caustics (see [28, Lemma 5.1]). The summa-
tion over rays starting with general directions η independent of y uses the symplectic
maps ϕ±t±k and thus provides a phase space description of the solution that unfolds
the caustics.

Let ρ be a cut-off of C∞0 (Rn, [0,1]) supported in a compact Ky⊂Ω and satisfying

ρ(y) = 1 if dist(y,K)<∆ for a small ∆>0, (2.23)

and φ a cut-off of C∞0 (Rn,[0,1]) supported in a compact Kη⊂Rn\{0} s.t. φ= 1 on
Rη.

One can establish that the Assumptions A2 and A3 imply

‖(1−ρ(y)φ(η))TεuIε‖L2
y,η

.ε∞ and ‖(1−ρ(y)φ(η))TεvIε‖L2
y,η

.ε∞.

In fact, viewing the FBI transform as the Fourier Transform of some auxiliary function
yields by the Parseval equality the following result

Lemma 2.4. Let a be a positive real and G a measurable subset of Rn s.t. dist(G,K)≥
a. If u∈L2(Rnw) is supported in K then

‖1G(y)Tεu‖L2
y,η

= cnε
−n4 ‖1G(y)u(w)e−(w−y)2/(2ε)‖L2

w,y
.e−a

2/(4ε)‖u‖L2
w
.

On the other hand, if (y,η) varies in Ky×Kη, then q+(y,η) is uniformly bounded.
In fact, for j≥1, the Tj are positive, depend continuously on (y,η), and property
(2.14) ensures that Tj↗+∞ when j→+∞. Thus they uniformly go to +∞ on the
compact Ky×Kη, by Dini’s theorem on the sequence (1/Tj)j≥1. As Tq+ ≤T , it follows
that sup

Ky×Kη
q+<+∞. The same result holds true for q−. Denote N±= sup

Ky×Kη
q±.

The construction of the reflected beams in section 2.2 may be continued up to N±
reflections.

The final result of the discussion above is an approximate solution proposed as

uRε (t,x) =
1
2
ε−

3n
4 cn

∫
R2n

ρ(y)φ(η)
[
εTεv

I
ε (y,η)

(N+∑
k=0

wkε
′
(t,x,y,η)−

N−∑
k=0

w−kε
′
(−t,x,y,η)

)

+Tεu
I
ε(y,η)

(N+∑
k=0

wkε (t,x,y,η)+
N−∑
k=0

w−kε (−t,x,y,η)
)]
dydη.

(2.24)

This approximate solution is indexed by R, the order of vanishing of the eikonal
equation (2.6) on the ray. The incident beams’ phase fulfills the initial conditions
(2.20) and their amplitudes satisfy respectively (2.21) for w0

ε and (2.22) for w0
ε
′ for

every (y,η)∈ suppρ⊗φ. The size d∈]0,1] of the support of the cut-offs multiplying
the amplitudes no longer depends on (y,η) and would be chosen sufficiently small to
satisfy various constraints we set out in the following section.
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In the sequel, we prove that this family of functions (uRε ) indeed allows to approach
the exact solution of the IBVP problem (1.1) to any arbitrary power of ε by choosing
the order R. The difference between the asymptotic solutions and the exact one
is investigated in C([0,T ],H1(Ω))×C1([0,T ],L2(Ω)) by means of error estimates in
the interior equation, the boundary condition, and the initial conditions. The only
assumptions needed on the initial data are A1, A2 and A3.

3. Justification of the asymptotics
We aim to estimate ‖uRε (t,.)−uε(t,.)‖H1(Ω) and ‖∂tuRε (t,.)−∂tuε(t,.)‖L2(Ω) for

t∈ [0,T ].
It follows from standard results [7] that the IBVP for the wave equation is well-

posed, and furthermore one has the energy estimate (as a consequence of [25, p.185]
for the Dirichlet problem and of [3, p.224] for the Neumann problem)

Sup
t∈[0,T ]

‖uRε (t,.)−uε(t,.)‖H1(Ω) + Sup
t∈[0,T ]

‖∂tuRε (t,.)−∂tuε(t,.)‖L2(Ω)

. Sup
t∈[0,T ]

‖PuRε ‖L2(Ω) +‖BuRε ‖Hs([0,T ]×∂Ω)

+‖uRε (0,.)−uIε‖H1(Ω) +‖∂tuRε (0,.)−vIε‖L2(Ω), (3.1)

where s= 1 for Dirichlet and s= 1
2 for Neumann.

The asymptotics will be proven by estimating each term of the right hand side of
this energy estimate.

Since the error estimates in the interior and near the boundary use similar com-
putations, a unified framework will be used by considering the more general problem
of estimates linked with a suitable family of approximation operators Oα in section
3.1. Then in section 3.2 we use these estimates for the interior term ‖PuRε ‖L2(Ω) in
3.2.1, the boundary term ‖BuRε ‖Hs([0,T ]×∂Ω) in 3.2.2, and the initial conditions errors
in 3.2.3. All these estimates are gathered in section 3.3 to prove Theorem 1.1.

3.1. Approximation operators. Let Kz,θ be a compact of R2n and

Er ={(x,z,θ)∈Rn×Kz,θ, |x−z|≤ r}, r>0.

Consider a complex phase function Φ smooth on an open set containing Er0 for some
r0∈]0,1]. We assume, for (z,θ)∈Kz,θ, that

∂xΦ(z,z,θ) =θ,

Φ(z,z,θ) is real,

∂2
xΦ(z,z,θ) has a positive definite imaginary part.

(Q1)

The Taylor expansion of Φ together with Assumptions (Q1) imply the existence of
some constant r[Φ]∈]0,r0] s.t. for (x,z,θ)∈Er[φ]

ImΦ(x,z,θ)≥ const(x−z)2.

Consider a sequence lε∈C∞(Rnx×R2n
z,θ,C). We assume that

lε(x,z,θ) = 0 if (x,z,θ) /∈Er[Φ],

lε is uniformly bounded in L∞(R3n).
(Q2)
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For a given multi-index α, let the operators O0 (lε,Φ/ε) and Oα (lε,Φ/ε) be given by

[
O0 (lε,Φ/ε)h

]
(x) =

∫
R2n

h(z,θ)lε(x,z,θ)eiΦ(x,z,θ)/εdzdθ, h∈L2(R2n),

and

[Oα (lε,Φ/ε)h](x) =
∫

R2n
h(z,θ)lε(x,z,θ)(x−z)αeiΦ(x,z,θ)/εdzdθ, h∈L2(R2n),

with x∈Rn.
Let us show that these are operators from L2(R2n) to L2(Rn). For x∈Rn we

have ∫
|lεeiΦ/ε|dzdθ.

∫
(z,θ)∈Kz,θ

e−const(x−z)2/εdzdθ,

and thus ∫
|lεeiΦ/ε|dzdθ.ε

n
2 .

Similarly, for (z,θ)∈Kz,θ ∫
|lεeiΦ/ε|dx.ε

n
2 .

It is then immediate by Schur’s lemma that

‖O0 (lε,Φ/ε)‖L2(R2n)→L2(Rn) .ε
n
2 .

Similar arguments lead to the estimate

‖Oα (lε,Φ/ε)‖L2(R2n)→L2(Rn) .ε
n
2 +
|α|
2 .

However, the use of the module inside the previous integrals makes one lose the highly
oscillatory character of eiΦ/ε, that is the contribution of eiθ·(x−z)/ε. In fact, a better
estimate on the norms of these operators is available if a precise control on lε is
assumed. This is stated in the following lemma

Lemma 3.1. Assume that ε
k
2 ∂kxb lε (b= 1,. ..,n) is uniformly bounded in L∞(R3n), at

any order k∈N. Then, one has

1. ‖O0 (lε,Φ/ε)‖L2(R2n)→L2(Rn) .ε
3n
4 ,

2. ‖Oα (lε,Φ/ε)‖L2(R2n)→L2(Rn) .ε
3n
4 +

|α|
2 .

Proof. 1. Let h∈L2(R2n). We shall use the notations f(x) for f(x,z,θ) and f ′(x)
for f(x,z′,θ′). First of all, we make explicit the L2 norm of O0 (lε,Φ/ε)h as

‖O0 (lε,Φ/ε)h‖2L2 =
∫

R4n
hh
′
eiΦ(z)/ε−iΦ′(z′)/εei(θ

′.z′−θ.z)/ε

[∫
Rn
lε(x)l

′
ε(x)ei(θ−θ

′).x/εeiΘ(x,z,θ,z′,θ′)/εdx
]
dzdz′dθdθ′, (3.2)
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where

Θ(x,z,θ,z′,θ′) =
∑
|α|=2

(x−z)α
∫ 1

0
2
α! (1−s)∂

α
xΦ(z+s(x−z),z,θ)ds

−
∑
|α|=2

(x−z′)α
∫ 1

0
2
α! (1−s)∂

α
xΦ(z′+s(x−z′),z′,θ′)ds.

Let Iε denote the integral inside the brackets, which we begin to estimate. For 1≤ b≤n
and K ∈N, successive integrations by parts give

Iε(z,z′,θ,θ′)iKε−K(θb−θ′b)K

=(−1)K
∑

N+N ′=K

(
K
N

)∫
Rn
ei(θ−θ

′).x/ε∂Nxb [e
iΘ/ε]∂N

′

xb
[lεl
′
ε]dx,

where
(
K
N

)
denotes the standard binomial coefficient. To estimate ∂Nxb [e

iΘ/ε], N ∈N,

we use the following result, of which proof is postponed to the end of this section

Lemma 3.2. Let p∈N∗ and consider a complex phase function Fp of the form

Fp(x,z) =
∑
|α|=p

(x−z)αfα(x,z),

with fα smooth on some open set of R2n containing a subset S and ∂kxfα bounded on
S for any k≥0.
Then for (x,z)∈S, |x−z|≤1, small ε, N ∈N, and b= 1,. ..,n, one has

|∂Nxb [e
iFp/ε]|≤ max

|α|=p
0≤s≤N
1≤k≤N

(
sup
S
|∂sxbfα|

)k( ∑
N
p ≤k≤N

ε−k|x−z|kp−N +
∑

1≤k<N
p

ε−N/p
)
|eiFp/ε|.

We write Θ =F2− F̄ ′2 with

F2(x,z,θ) =
∑
|α|=2

(x−z)α
∫ 1

0

2
α!

(1−s)∂αxΦ(z+s(x−z),z,θ)ds,

for (x,z,θ)∈Er[Φ]. By Leibnitz formula, ∂Nxb [e
iΘ/ε] is a sum of terms of the form

∂N1
xb

[eiF2/ε]∂N2
xb

[e−iF̄
′
2/ε], 0≤N1,N2≤N,N1 +N2 =N.

Note that ImF2 = ImΦ. Lemma 3.2 yields for N1∈N and (x,z,θ)∈Er[Φ]

|∂N1
xb

[eiF2/ε]|.

 ∑
N1
2 ≤k≤N1

ε−k|x−z|2k−N1 +ε−N1/2

e−const(x−z)2/ε.

Hence

|∂N1
xb

[eiF2/ε]|.ε−
N1
2 e−const(x−z)2/ε.

A similar estimate may be obtained for |∂N2
xb

[eiF̄
′
2/ε]| when (x,z′,θ′)∈Er[Φ]. It follows,

for (x,z,θ),(x,z′,θ′)∈Er[Φ], that

|∂N1
xb

[eiF2/ε]∂N2
xb

[e−iF̄
′
2/ε]|.ε−

N1+N2
2 e−const(x−z)2/εe−const(x−z′)2/ε,
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and thus

|∂Nxb [e
iΘ/ε]|.ε−

N
2 e−const(2x−z−z′)2/εe−const(z−z′)2/ε, N ∈N.

Since ε
N′
2 ∂N

′

xb
[lε l̄′ε], N

′∈N, is uniformly bounded,

|∂Nxb [e
iΘ/ε]∂N

′

xb
[lεl
′
ε]|.ε−

N+N′
2 e−const(2x−z−z′)2/εe−const(z−z′)2/ε,

and we deduce that

|Iε(z,z′,θ,θ′)
(
θb−θ′b√

ε

)K
|.ε

n
2 e−const(z−z′)2/ε,

for b= 1,. ..,n and K ∈N.
Choosing K>n and coming back to (3.2) gives

‖O0 (lε,Φ/ε)h‖2L2 .ε
n
2

∫
R4n
|h||h′|e−const(z−z′)2/εdzdz′(1+(θ−θ′)2/ε)−

K
2 dθdθ′.

Upon using the change of variables:

(z,z′) = (u+
√
εv,u−

√
εv) and (θ,θ′) = (σ+

√
εδ,σ−

√
εδ),

we have

‖O0 (lε,Φ/ε)h‖2L2 .ε
3n
2

∫
R2n

∫
R2n
|h(u+

√
εv,σ+

√
εδ)||h(u−

√
εv,σ−

√
εδ)|dudσ

e−constv2(1+4δ2)−
K
2 dvdδ,

from which, using the Cauchy-Schwartz inequality for the first integral, we obtain

‖O0 (lε,Φ/ε)h‖2L2 .ε
3n
2 ‖h‖2L2 .

2. The arguments are similar to the previous case. For a multi-index α, we have

‖Oα (lε,Φ/ε)h‖2L2 =
∫

R4n
hh
′
eiΦ(z)/ε−iΦ′(z′)/εei(θ

′.z′−θ.z)/ε

Iαε (z,z′,θ,θ′)dzdz′dθdθ′,

where, for b= 1,. ..,n and K ∈N

Iαε (z,z′,θ,θ′)iKε−K(θb−θ′b)K = (−1)K
∑

N+N ′=K

(
K
N

)∫
Rn
ei(θ−θ

′).x/ε

∂Nxb [(x−z)
α(x−z′)αeiΘ/ε]∂N

′

xb
[lεl
′
ε]dx.

We note that ∂Nxb [(x−z)
α(x−z′)αeiΘ/ε] is a finite sum of terms of the form

(x−z)α−ke
b

(x−z′)α−le
b

∂mxb [e
iΘ/ε],

where k,l≤αb, k+ l+m=N and eb denotes the vector of Rn s.t. eba= δab.
For (x,z,θ),(x,z′,θ′)∈Er[Φ], it follows that

|∂Nxb [(x−z)
α(x−z′)αeiΘ/ε]|.ε|α|−

N
2 e−const(2x−z−z′)2/εe−const(z−z′)2/ε.
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Since ε
N′
2 ∂N

′

xb
[lεl′ε] is uniformly bounded,

|∂Nxb [(x−z)
α(x−z′)αeiΘ/ε]∂N

′

xb
[lεl
′
ε]|.

ε|α|−
N+N′

2 e−const(2x−z−z′)2/εe−const(z−z′)2/ε,

and thus

|Iαε (z,z′,θ,θ′)
(
θb−θ′b√

ε

)K
|.ε

n
2 +|α|e−const(z−z′)2/ε,

and finally

‖Oα (lε,Φ/ε)h‖2L2 .ε
3n
2 +|α|‖h‖2L2 .

Similar computations can be carried out for a phase Φ and a sequence of ampli-
tudes lε that depend on a parameter m∈ [0,M ]. In this case, we consider for m∈ [0,M ]
a compact Kz,θ(m)⊂R2n and denote for r>0

Er ={(m,x,z,θ)∈ [0,M ]×R3n, (z,θ)∈Kz,θ(m), |x−z|≤ r}.

We are interested in a phase function Φ smooth on an open set containing Er0 for
some r0∈]0,1]. We make the further assumption

Er0 is compact,

which is obviously fulfilled when no parameter m interferes. Assuming, for m∈ [0,M ]
and (z,θ)∈Kz,θ(m), that

∂xΦ(m,z,z,θ) =θ,

Φ(m,z,z,θ) is real,

∂2
xΦ(m,z,z,θ) has a positive definite imaginary part,

(Q1’)

one can find r[Φ]∈]0,r0] s.t. for (m,x,z,θ)∈Er[φ]

ImΦ(m,x,z,θ)≥ const(x−z)2.

Similarly, the sequence lε will be assumed to belong to C∞([0,M ]×Rnx×R2n
z,θ,C) and

to satisfy

for m∈ [0,M ], lε(m,x,z,θ) = 0 if (m,x,z,θ) /∈Er[Φ],
lε is uniformly bounded in L∞([0,M ]×R3n). (Q2’)

One can then define, for every given m∈ [0,M ] and α multiindex (|α|≥0), the op-
erators Oα (lε(m,.),Φ(m,.)/ε), for which the following estimate may be established

Lemma 3.3. Assume that ε
k
2 ∂kxb lε (b= 1,. ..,n) is uniformly bounded in

L∞([0,M ]×R3n), at any order k∈N. Then, one has

‖Oα (lε(m,.),Φ(m,.)/ε)‖L2(R2n)→L2(Rn) .ε
3n
4 +

|α|
2 , uniformly w.r.t. m∈ [0,M ].



SALMA BOUGACHA, JEAN-LUC AKIAN AND RADJESVARANE ALEXANDRE 995

In fact, all the estimates used in the proof of Lemma 3.1 hold true with a param-
eter m∈ [0,M ], since Er[φ] is still compact, owing to the compactness of Er0 .

We now give the proof of Lemma 3.2. Using the formula of composite functions’
high derivatives (see, e.g., [11] p.161), the N th partial derivative of eiFp/ε is

∂Nxb [e
iFp/ε] =

N∑
k=1

(
i

ε

)k ∏
j1+···+jk=N

j1,...,jk≥1

N !
k!j1! .. .jk!

∂j
1

xb
Fp .. .∂

jk

xb
Fpe

iFp/ε, N ∈N∗.

Each derivative ∂jxbFp is a linear combination of

(x−z)α+(s−j)eb∂sxbfα, |α|=p,0≤s≤ j and αb≥ j−s.

The product ∂j
1

xb
Fp .. .∂

jk

xb
Fp is then a linear combination of

(x−z)α
1+(s1−j1)eb+···+αk+(sk−jk)eb∂s

1

xb
fα1 .. .∂s

k

xb
fαk ,

where for i= 1,. ..,k, |αi|=p, 0≤si≤ ji, and αib≥ ji−si. As j1 + ·· ·+jk =N , then
for N/p≤k≤N and |x−z|≤1 one has

|(x−z)α
1+(s1−j1)eb+···+αk+(sk−jk)eb |≤ |x−z|kp−N .

Thus for N ∈N∗, (x,z)∈S, |x−z|≤1, and small ε,

|∂Nxb [e
iFp/ε]|≤ max

|α|=p
0≤s≤N
1≤k≤N

(
sup
S
|∂sxbfα|

)k( ∑
N
p ≤k≤N

ε−k|x−z|kp−N +
∑

1≤k<N
p

ε−N/p
)
|eiFp/ε|,

which of course is also valid for N = 0.

3.2. Error estimates. The different terms of the energy estimate (3.1) will
be estimated separately. Our main interest is to prove that the interior and boundary
errors given for individual beams in Lemma 2.2 hold true for an infinite sum of beams,
when the starting points of the incident flow vary in the compactKy×Kη. The control
we have is that we can make the Gaussian beams vanish outside the very neighborhood
of their associated rays by making the parameter d as small as needed.

3.2.1. The interior estimate of PuRε . In this section, we will prove that

Sup
t∈[0,T ]

‖PuRε (t,.)‖L2(Ω) .ε
R−1

2 .

For 0≤k≤N+, one has by construction

Pwkε =
N+2∑
j=0

εj−2ckj e
iψk/ε,

where ckj is null on (t,xtk), up to the order R−2j, for j= 0,. ..,N+1. One may write

Pwkε (t,x) =
N+1∑
j=0

εj−2
( ∑
|α|=R−2j+1

(x−xtk)αrkα(t,x)eiψk(t,x)/ε
)

+εNckN+2(t,x)eiψk(t,x)/ε,
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where rkα denotes the remainder in the Taylor formulae of ckj near xtk. Applying P to
(2.24) then gives terms of the form

pj,kε (t,x) =ε−
3n
4 −1+j

∑
|α|=R−2j+1

∫
R2n

ρ(y)φ(η)hε(y,η)

(x−xtk)αrkα(t,x,y,η)eiψk(t,x,y,η)/εdydη,

with j= 0,. ..,N+1, and

pN+2,k
ε (t,x) =ε−

3n
4 +N+1

∫
R2n

ρ(y)φ(η)hε(y,η)ckN+2(t,x,y,η)eiψk(t,x,y,η)/εdydη,

where hε is either ε−1Tεu
I
ε or TεvIε and 0≤k≤N+. Other terms of the same form

come from Pwkε
′, 0≤k≤N+, and P [w−k(′)

ε (−t,.)], 0≤k≤N−.
Let f̃(t,x,z,θ) =f(t,x,{ϕtk}−1(z,θ)). Using the volume preserving change of vari-

ables (z,θ) =ϕtk(y,η) in the definition of pj,kε (t,x), 0≤ j≤N+1, writes it as a sum of
terms of the form

ε−
3n
4 −1+j

∫
R2n

ρ̃⊗φ(t,z,θ)h̃ε(t,z,θ)(x−z)αr̃kα(t,x,z,θ)eiψ̃k(t,x,z,θ)/εdzdθ,

with |α|=R−2j+1. Similarly, pN+2,k
ε (t,x) is a sum of terms of the form

ε−
3n
4 +N+1

∫
R2n

ρ̃⊗φ(t,z,θ)h̃ε(t,z,θ)c̃kN+2(t,x,z,θ)eiψ̃k(t,x,z,θ)/εdzdθ.

We want to estimate these integrals with the help of the operators Oα applied to
1

supp ρ̃⊗φ(t,.)
h̃ε. Clearly 1

supp ρ̃⊗φ(t,.)
T̃εvIε (t,.) is uniformly bounded (w.r.t. ε and t)

in L2(R2n). But more work is needed for estimating ε−11
supp ρ̃⊗φ(t,.)

T̃εuIε(t,.), which
is given in the following result.

Lemma 3.4. ‖ε−1Tεu
I
ε‖L2(R2n) .1.

Proof. Differentiating (1.3) w.r.t. yb, 1≤ b≤n, yields

ε
1
2 ∂yb(Tεu

I
ε) = iηbε

− 1
2Tεu

I
ε−cnε−

3n
4

∫
Rn
uIε(w)ε−

1
2 (yb−wb)eiη.(y−w)/ε−(y−w)2/(2ε)dw.

The left hand side is bounded in L2
y,η because ∂yb(Tεu

I
ε) =Tε(∂wbu

I
ε). The second

term of the right hand side is the Fourier transform of a bounded function in L2
w, thus

it can be estimated using the Parseval equality. One obtains

‖ε− 3n
4

∫
Rn
uIε(w)ε−

1
2 (yb−wb)eiη.(y−w)/ε−(y−w)2/(2ε)dw‖L2

y,η
.‖uIε‖L2

w
.

Thus ‖ε− 1
2 ηbTεu

I
ε‖L2

y,η
.1 and consequently ‖ε− 1

2φ(η)TεuIε‖L2
y,η

.1. Assumption A3
yields

‖ε− 1
2Tεu

I
ε‖L2

y,η
.1.

Hence ‖uIε‖L2 .
√
ε. Reproducing the same arguments on the following equality

∂yb(Tεu
I
ε) = iηbε

−1Tεu
I
ε−cnε−

3n
4

∫
Rn

(
ε−

1
2uIε

)
(w)ε−

1
2 (yb−wb)e

i
εη.(y−w)− 1

2ε (y−w)2dw,
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leads to ‖uIε‖L2 .ε.

Let us now check if a family of operators Oα may be used. First, each phase ψ̃k
is smooth on an open set containing

E1 ={(t,x,z,θ)∈ [0,T ]×R3n,(z,θ)∈ϕtk(Ky×Kη), |x−z|≤1}.

E1 is compact, since the map (t,y,η) 7→ (t,ϕtk(y,η)) is continuous. For t∈ [0,T ] and
(z,θ)∈ϕtk(Ky×Kη), one has by (Pk.a), (Pk.b), and (Pk.c),

∂xψ̃k(t,z,z,θ) = ξ̃tk(z,θ) =θ,

ψ̃k(t,z,z,θ) is real,
∂2
xψ̃k(t,z,z,θ) has a positive definite imaginary part.

Hence ψ̃k satisfies properties (Q1’). We fix some r[ψ̃k]∈]0,1] so that

Imψ̃k(t,x,z,θ)≥ const(x−z)2 for every (t,x,z,θ)∈Er[ψ̃k]. (3.3)

Next, for R−2N−1≤|α|≤R+1, let

lα,k(t,x,z,θ) = ρ̃⊗φ(t,z,θ)r̃kα(t,x,z,θ), t∈ [0,T ],

and

l0,k(t,x,z,θ) = ρ̃⊗φ(t,z,θ)c̃kN+2(t,x,z,θ), t∈ [0,T ].

Then the lα,k, |α|=R−2N−1,. ..,R+1, and l0,k are smooth w.r.t. all their variables.
Assume that

d≤ r[ψ̃k], k= 0,. ..,N+. (3.4)

Because of the cut-offs χd in the beams’ amplitudes, it follows that
c̃kN+2(t,x,z,θ) = r̃kα(t,x,z,θ) = 0 if |x−z|≥ r[ψ̃k]. Furthermore, ρ̃⊗φ(t,z,θ) = 0 for
(z,θ) /∈ϕtk(Ky×Kη). The lα,k therefore satisfy Assumptions (Q2’).

It follows that the operators Oα can be used to obtain for t∈ [0,T ] and x∈Rn

pj,kε (t,x) =ε−
3n
4 −1+j

∑
|α|=R−2j+1

[
Oα
(
lα,k(t,.),ψ̃k(t,.)/ε

)
1

supp ρ̃⊗φ(t,.)
h̃ε(t,.)

]
(x),

with j= 0,. ..N+1, and

pN+2,k
ε (t,x) =ε−

3n
4 +N+1

[
O0
(
l0,k(t,.),ψ̃k(t,.)/ε

)
1

supp ρ̃⊗φ(t,.)
h̃ε(t,.)

]
(x).

Applying Lemma 3.3 and making use of (2.10) yields

‖pj,kε (t,.)‖L2(Ω) .ε
R−1

2 , uniformly w.r.t. t∈ [0,T ], for j= 0,. ..,N+2.

3.2.2. The boundary estimate of BuRε . We will now estimate BuRε |∂Ω,
B=D or N standing for Dirichlet and Neumann operators respectively. We shall
prove that

‖DuRε ‖H1([0,T ]×∂Ω) .ε
R−1

2 and ‖NuRε ‖H1/2([0,T ]×∂Ω) .ε
R−2

2 . (3.5)
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To this end, we note that the boundary operator B applied to (2.24) is a sum of terms
arising from Bwkε , 0≤k≤N+ such as

bjε(t,x) =ε−
3n
4 +1−mB+j

∫
R2n

ρ(y)φ(η)hε(y,η)
N+∑
k=0

dk−mB+j(t,x
′,y,η)eiψk(t,x′,y,η)/εdydη,

(3.6)

with j= 0,. ..,N+mB , and others with the same form arising from Bwkε
′, 0≤k≤N+,

and B[w−k(′)
ε (−t,.)], 0≤k≤N−.

Above and as in the previous section, hε is either ε−1Tεu
I
ε or TεvIε and thus is

uniformly bounded in L2.
We first study the support of the amplitudes. Next we use local boundary coor-

dinates to expand the boundary phases and introduce a change of variables on (y,η)
that makes the obtained phases satisfy properties (Q1). The previous results on the
approximation operators Oα are then used to estimate the boundary norms.

Support of the amplitudes
Due to Assumptions B1–B2–B3, the rays stay away from the boundary except

for times near the instants of reflections. For (y,η)∈Ky×Kη and t∈ [0,T ] near some
Tk(y,η), 0≤k≤N+ , only xtk(y,η) and, if k 6= 0, xtk−1(y,η) approach the boundary.
This suggests that the meaningful contributions to the boundary norm of bjε are
the quantities dk−1

−mB+j(.,y,η)eiψk−1(.,y,η)/ε+dk−mB+j(.,y,η)eiψk(.,y,η)/ε near Tk(y,η),
k= 1,. ..,N+. Furthermore, for t in the neighborhood of Tk(y,η) and x′∈∂Ω, one
expects dk−1

−mB+j(t,x
′,y,η) and dk−mB+j(t,x

′,y,η) to vanish away from x
Tk(y,η)
k−1 (y,η),

because of the cut-offs in the amplitudes. In the remainder, we show that these two
intuitive points are true. The key argument is that (t,y,η) vary in a compact set.

The first point is rather easy to see. For (y,η)∈Ky×Kη, let us consider
a period smaller than any lapse of time between two successive reflections, say
β(y,η) = min

0≤k≤N+
(Tk(y,η)−Tk−1(y,η))/3, (T0 = 0), and define the intervals

I0(y,η) =∅, Ik(y,η) = [Tk(y,η)−β(y,η),Tk(y,η)+β(y,η)] for k= 1,. ..,N+,

and IN++1(y,η) =∅.

For each k= 0,. ..,N+, let

Ak ={(t,y,η)∈ [0,T ]×Ky×Kη, t /∈
o

Ik(y,η)∪
o

Ik+1(y,η)}.

For (t,y,η)∈Ak, dist(xtk(y,η),∂Ω)>0 and then has a positive lower bound by conti-
nuity on the compact Ak. One has by (3.3) and (3.4)

ψk(t,x,y,η)≥ const(x−xtk(y,η))2,

for (t,x,y,η)∈ [0,T ]×Rn×Ky×Kη s.t. |x−xtk(y,η)|≤d. Thus

|dk−mB+j(t,x
′,y,η)eiψk(t,x′,y,η)/ε|≤e−const/ε for (t,y,η)∈Ak and x′∈∂Ω.

All we have to care about then is the contribution to the norm at the boundary of
dk−1
−mB+je

iψk−1/ε and dk−mB+je
iψk/ε at times in the interval Ik, k= 1,. ..,N+. Let

qj,kε =ε−
3n
4 +1−mB+j

∫
R2n

ρ⊗φhε1Ik(t)(dk−1
−mB+je

iψk−1/ε

+dk−mB+je
iψk/ε)dydη.
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Summing over k= 1,. ..,N+ yields

‖bjε‖L2([0,T ]×∂Ω) .
N+∑
k=1

‖qj,kε ‖L2([0,T ]×∂Ω) +ε∞. (3.7)

For the second point, we partition the set of starting points (y,η) according to
the part of the boundary the rays xtk−1(y,η) reach at t=Tk(y,η). Let (ul) be a C∞
partition of unity associated to the covering (Ul) introduced in subsection 2.2.1 and
πl(y,η) =ρ(y)φ(η)ul(xTkk−1(y,η)). Then

‖qj,kε ‖L2([0,T ]×∂Ω) .
L∑
l=1

‖mj,k,l
ε ‖L2([0,T ]×∂Ω),

where

mj,k,l
ε =ε−

3n
4 +1−mB+j

∫
R2n

hεπl1Ik(t)(dk−1
−mb+je

iψk−1/ε

+dk−mb+je
iψk/ε)dydη. (3.8)

We fix 1≤ l≤L and 1≤k≤N+. For 0<δ< min
Ky×Kη

β, let

Bδ ={(t,y,η)∈ [0,T ]×suppπl, t∈ Ik(y,η)\]Tk(y,η)−δ,Tk(y,η)+δ[}.

If (t,y,η) is in the compact set Bδ, then dist(xtk(y,η),∂Ω)>0. Let d(δ)∈]0,δ] s.t.
d(δ)< min

(t,y,η)∈Bδ
dist(xtk(y,η),∂Ω) and consider the set

Sδ ={(t,x′,y,η)∈ [0,T ]×∂Ω×suppπl,t∈ Ik(y,η) and |x′−xtk(y,η)|≤d(δ)}.

If (t,x′,y,η)∈Sδ then t∈]Tk(y,η)−δ,Tk(y,η)+δ[ and consequently

|x′−xTk(y,η)
k−1 (y,η)|≤ |x′−xtk−1(y,η)|+ |t−Tk(y,η)| sup

s∈[t,Tk(y,η)]

|ẋsk−1(y,η)|

≤ (1+‖c‖∞)δ,

which implies that x′∈Ul for sufficiently small δ, since xTk(y,η)
k−1 (y,η) varies in a compact

set of Ul. Assume that d≤d(δ). Thus, supp
(
πl(y,η)1Ik(y,η)(t)dk−mB+j(t,x

′,y,η)
)

is
included in Sδ. On the other hand, as σl is a diffeomorphism between Nl and Ul, one
has

|σl(v̂)−σl(v̂′)|≥ const |v̂− v̂′| for every v̂, v̂′∈Nl.

Therefore, there exists κ>0 s.t.

πl(y,η)1Ik(y,η)(t)dk−mB+j(t,σl(v̂),y,η) = 0 if |t−Tk(y,η)|≥ δ or |v̂− ẑk(y,η)|≥κδ,

where σl(ẑk(y,η)) =x
Tk(y,η)
k−1 (y,η).

The same result holds true for πl(y,η)1Ik(y,η)(t)dk−1
−mB+j(t,σl(v̂),y,η), assuming

that d≤d′(δ) with d′(δ)∈]0,δ] and d′(δ)< min
(t,y,η)∈Bδ

dist(xtk−1(y,η),∂Ω). Furthermore

mj,k,l
ε (t,x′) = 0 if x′ /∈Ul.
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Expansion of the boundary phases For simplicity of notation, we shall drop the
exponents and indexes l. We expand the phase σψk−1 on [0,T ]×N ×{0} near (Tk, ẑk)

σψk−1(t,v̂,0) =ψk−1(t,σ(v̂)+vnν(σ(v̂)))|vn=0

=σψk−1(Tk, ẑk,0)+(t−Tk, v̂− ẑk) ·(τ,θ̂k)

+
1
2

(t−Tk, v̂− ẑk) ·Mk(t−Tk, v̂− ẑk)

+
∑
|α|=3

(t−Tk, v̂− ẑk)α

∫ 1

0

3
α!

(1−s)2∂αt,v̂
σψk−1(Tk+s(t−Tk), ẑk+s(v̂− ẑk),0)ds,

where θ̂k =Dσ(ẑk)T ξTkk−1 and the matrix Mk defined in (2.16) has a positive definite
imaginary part. Remember that all the quantities of the previous formulae depend
on (y,η)∈ (xTkk−1)<−1> (U). For the purpose of obtaining a phase satistfying (Q1), the
form of σψk−1|vn=0 suggests the change of variables (C) : (z,θ) =ϑ(y,η), with

ϑ : (y,η)∈ (xTkk−1)<−1> (U) 7→ (Tk, ẑk,τ, θ̂k).

Because tangential rays are avoided, the function Tk ∈C∞((xTkk−1)<−1> (U)) so ϑ is

C∞. Note that ξTkk−1 = Σ(ẑk)θ̂k+(ν(σ(ẑk)) ·ξTkk−1)ν(σ(ẑk)) with Σ=Dσ
(
DσTDσ

)−1.
Hence ϑ is bijective and its inverse is given by

ϑ−1 : (Tk, ẑk,τ,θ̂k)∈ϑ((xTkk−1)<−1> (U))

7→ {ϕTkk−1}
−1(σ(ẑk),Σ(ẑk)θ̂k+(τ2/c2(σ(ẑk))−|Σ(ẑk)θ̂k|2)

1
2 ν(σ(ẑk))).

ϑ−1 is C∞ on ϑ
(

(xTkk−1)<−1> (U)
)

because the square root in the previous expression
never vanishes. Consequently, ϑ is a C∞ diffeomorphism.

Let v= (t,v̂), z= (Tk, ẑk), and θ= (τ,θ̂k) and denote f̃(v,z,θ) =f(v,ϑ−1(z,θ)). We
may write σψ̃k−1|vn=0 as

σψ̃k−1(v,0,z,θ) = σψ̃k−1(z,0,z,θ)+θ ·(v−z)+ 1
2 (v−z)M̃k(z,θ)(v−z)

+
∑

3≤|α|≤R

1
α! (v−z)

α∂αt,v̂
σψ̃k−1(z,0,z,θ)+ r̃k−1(v,z,θ)

:= λ̃(v,z,θ)+ r̃k−1(v,z,θ).

Since σψk and σψk−1 have by construction the same derivatives w.r.t. v up to the
order R at (z,0), the expansion of σψ̃k|vn=0 involves the same derivatives up to the
order R and a remainder r̃k

σψ̃k(v,0,z,θ) = λ̃(v,z,θ)+ r̃k(v,z,θ).

With the change of variables (C), σmj,k
ε may be written on [0,T ]×N ×{0} as

σmj,k
ε =ε−

3n
4 +1−mB+j

∫
R2n

h̃επ̃1Ĩk(t)(σd̃k−1
−mB+je

i(λ̃+r̃k−1)/ε

+σd̃k−mB+je
i(λ̃+r̃k)/ε)|detϑ|dzdθ,
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where Ĩk denotes [T̃k− β̃,T̃k+ β̃]. We split the previous integral into two integrals
which can be estimated using the operators Oα

ε−
3n
4 +1−mB+j

∫
R2n

h̃επ̃1Ĩk(t)(σd̃k−1
−mB+j+σd̃k−mB+j)e

i(λ̃+r̃k−1)/ε|detϑ|dzdθ :=¬,

ε−
3n
4 +1−mB+j

∫
R2n

h̃επ̃1Ĩk(t)σd̃k−mB+je
iλ̃/ε(eir̃k/ε−eir̃k−1/ε)|detϑ|dzdθ :=­.

Estimate of ¬: The phase λ̃+ r̃k−1 is smooth on an open set containing
Er0 ={(v,z,θ)∈Rn×suppπ̃, |v−z|≤ r0} for some r0∈]0,1]. Furthermore, λ̃+ r̃k−1

satisfies the required properties (Q1). We fix r[λ̃+ r̃k−1]∈]0,r0].
Since σdk−1

−mB+j+ σdk−mB+j is zero at v=z up to the order R−2j−2 by construc-
tion, one has(

σd̃k−1
−mB+j+σd̃k−mB+j

)
(v,z,θ) =

∑
|α|=R−2j−1

(v−z)αs̃kα(v,z,θ),

where s̃kα are smooth remainders. Let

aα,k(v,z,θ) = π̃(z,θ)1Ĩk(t)s̃kα(v,z,θ)|detϑ(z,θ)|.

The aα,k are smooth and aα,k(t,v̂,Tk, ẑk,θ) = 0 if |t−Tk|≥ δ or |v̂− ẑk|≥κδ or
(z,θ) /∈ supp(π̃). Then the aα,k satisfy the properties (Q2), assuming δ is small enough
to ensure |(δ,κδ)|≤ r[λ̃+ r̃k−1].

Therefore

¬=ε−
3n
4 +1−mB+j

∑
|α|=R−2j−1

Oα
(
aα,k,(λ̃+ r̃k−1)/ε

)
1suppπ̃h̃ε.

One deduces

‖¬‖L2([0,T ]×N ) .ε
R+1

2 −mB‖hε‖L2 . (3.9)

Estimate of ­: This is the term for which Lemma 3.1 is fully used. We write
λ̃ as λ̃=β+2γ where

γ=
1
4

(v−z)M̃k(z,θ)(v−z) and β= λ̃− 1
2

(v−z)M̃k(z,θ)(v−z).

The part β+γ will play the role of the phase for the operators Oα, while eiγ/ε will
be enclosed in the amplitude to give it a good behavior. The phase β+γ is smooth
on an open set containing Er0 and satisfies the properties (Q1). We associate to this
phase some constant r[β+γ] and impose on δ to satisfy |(δ,κδ)|≤ r[β+γ].

Let

cj,kε =ε−
R−1

2 π̃1Ĩk(t)σd̃k−mB+je
iγ/ε(eir̃k/ε−eir̃k−1/ε)|detϑ|.

One has

|cj,kε |.ε−
R−1

2 e−const(v−z)2/ε|eir̃k/ε−eir̃k−1/ε|.

If δ is small enough,

e−const(v−z)2/ε|eir̃k/ε−eir̃k−1/ε|.ε−1|v−z|R+1e−const(v−z)2/(2ε),
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so that

|cj,kε |.1.

Hence cj,kε is smooth and satisfies the properties (Q2):

cj,kε (v,z,θ) = 0 if |v−z|≥ r[β+γ] or (z,θ) /∈ supp(π̃),

cj,kε is uniformly bounded in L∞(R3n).

To make use of the estimates of Lemma 3.1, we aim to show that for N ∈N, ε
N
2 ∂Nvbc

j,k
ε

(b= 1,. ..,n) is uniformly bounded in L∞(R3n). For this purpose, we write
∂Nvb [e

iγ/ε(eir̃k/ε−eir̃k−1/ε)] as a sum of terms of the form

∂N1
vb

[eiγ/ε]∂N2
vb

[eir̃k/ε−eir̃k−1/ε], 0≤N1,N2≤N,N1 +N2 =N.

As the remainders r̃k and r̃k−1 are of order R+1, Lemma 3.2 yields for N1,N2∈N,
(z,θ)∈ suppπ̃, |v−z|≤ |(δ,κδ)| and δ sufficiently small

|∂N1
vb

[eiγ/ε]|.ε−
N1
2 e−const(v−z)2/ε,

|∂N2
vb

[eir̃k/ε−eir̃k−1/ε]|.
( ∑

N2
R+1≤k≤N2

ε−k|v−z|k(R+1)−N2 +
∑

1≤k< N2
R+1

ε−
N2
R+1

)
(
|eir̃k/ε|+ |eir̃k−1/ε|

)
.

The second sum in the last inequality is zero when N2/(R+1)≤1. Remember
that R≥2. If N2/(R+1)>1 then N2(R−1)/(2(R+1))> (R−1)/2 and consequently
−N2/(R+1)>−N2/2+(R−1)/2. Thus

|∂N2
vb

[eir̃k/ε−eir̃k−1/ε]|.
( ∑

N2
R+1≤k≤N2

ε−k|v−z|k(R+1)−N2 +ε−
N2
2 +R−1

2

)
(
|eir̃k/ε|+ |eir̃k−1/ε|

)
.

Hence, for (z,θ)∈ suppπ̃ and |v−z|≤ |(δ,κδ)|

|∂N1
vb

[eiγ/ε]∂N2
vb

[eir̃k/ε−eir̃k−1/ε]|.ε−
N1
2 −

N2
2 +R−1

2 .

It follows that

|∂Nvbc
j,k
ε |.ε−

N
2 .

One can use the operator O0 to write

­=ε−
3n
4 +1−mB+jε

R−1
2 O0

(
cj,kε ,(β+γ)/ε

)
1suppπ̃h̃ε,

and thus

‖­‖L2([0,T ]×N ) .ε
R+1

2 −mB+j‖hε‖L2 . (3.10)

Using (3.9) and (3.10) yields

‖mj,k,l
ε ‖L2([0,T ]×∂Ω) .ε

R+1
2 −mB‖hε‖L2 .
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One has a similar bound for qj,kε by summing over l= 1,. ..,L,

‖qj,kε ‖L2([0,T ]×∂Ω) .ε
R+1

2 −mB‖hε‖L2 .

Plugging this into (3.7) gives

‖bjε‖L2([0,T ]×∂Ω) .ε
R+1

2 −mB .

All in all, we have shown that

‖BuRε ‖L2([0,T ]×∂Ω) .ε
R+1

2 −mB .

This result can be adapted to the integer Sobolev spaces as follows:

‖BuRε ‖Hs([0,T ]×∂Ω) .ε
R+1

2 −mB−s, s∈N.

An interpolation argument ([27, p.49]) enables the same estimate for non integer
Sobolev spaces Hs([0,T ]×∂Ω), s>0. This proves (3.5).

3.2.3. The initial conditions. In this section we estimate the difference
between (uRε |t=0,∂tu

R
ε |t=0) and (uIε,v

I
ε ) in H1(Ω)×L2(Ω).

By construction,

uRε (0,x) =
1
2
ε−

3n
4 cn

∫
R2n

ρ(y)φ(η)εTεvIε (y,η)
[ N+∑
k=0

wkε
′
(0,x,y,η)−

N−∑
k=0

w−kε
′
(0,x,y,η)

]

+ρ(y)φ(η)TεuIε(y,η)
[ N+∑
k=0

wkε (0,x,y,η)+
N−∑
k=0

w−kε (0,x,y,η)
]
dydη.

As dist(x0
±k(y,η),Ω̄)>0 for (y,η)∈Ky×Kη, k= 1,. ..,N±, w±kε

(′)(0,x,y,η) are uni-
formly exponentially decreasing for x∈Ω and (y,η)∈Ky×Kη. Thus, only the incident
beams contribute to uRε (0,x) in Ω and

uRε (0,x) =ε−
3n
4 cn

∫
R2n

ρ(y)φ(η)TεuIε(y,η)w0
ε(0,x,y,η)dydη+O(ε∞)

uniformly w.r.t. x∈Ω. The initial values for the phase and the amplitudes of w0
ε have

been fixed in (2.20) and (2.21). Hence

uRε (0,x) =ε−
3n
4 cn

∫
R2n

ρ(y)φ(η)TεuIε(y,η)χd(x−y)eiφ0(x,y,η)/εdydη+O(ε∞),

uniformly w.r.t. x∈Ω. It follows, uniformly for x∈Ω, that

uRε (0,x) =T ∗ε ρ⊗φTεuIε(x)

+ε−
3n
4 cn

∫
R2n

ρ(y)φ(η)TεuIε(y,η)(χd(x−y)−1)eiφ0(x,y,η)/εdydη+O(ε∞).

One wants to get rid of the second integral by making use of the exponential decrease
of eiφ0(x,y,η)/ε for |x−y|≥d/2. The following estimate is immediate by the Cauchy-
Schwartz inequality:



1004 GAUSSIAN BEAMS SUMMATION IN A CONVEX DOMAIN

Lemma 3.5. Let a be a positive real number and h∈L2(R2n
y,η). Then∥∥∥∫

|x−y|≥a
h1Ky×Kη (y,η)e−(x−y)2/(2ε)dydη

∥∥∥
L2
x

.‖h‖L2
y,η
e−a

2/(4ε).

The previous Lemma leads to

‖uRε |t=0−T ∗ε ρ⊗φTεuIε‖L2(Ω) .ε∞,

by using the boundedness of T ∗ε from L2(R2n) to L2(Rn) (this result follows, e.g., from
[31, p.97] ). On the other hand, ρ⊗φTεuIε approaches TεuIε up to a small remainder.
In fact, as ρ(y) = 1 if dist(y,K)<∆, one has by Lemma 2.4 and Assumption A3

‖TεuIε−ρ⊗φTεuIε‖L2
y,η

.ε∞,

and consequently

‖uRε |t=0−uIε‖L2(Ω) .ε∞.

Moving to the spatial derivatives of uRε , one has

∂xbu
R
ε (0,x) =ε−

3n
4 cn

∫
R2n

ρ(y)φ(η)TεuIε(y,η)
N∑
j=0

εj∂xb

[
a0
j (0,x,y,η)eiφ0(x,y,η)/ε

]
dydη

+O(ε∞), uniformly w.r.t. x∈Ω.

Plugging the initial condition (2.21) for the incident amplitudes into the previous
equation yields a simpler expression

∂xbu
R
ε (0,x) =ε−

3n
4 cn

∫
R2n

ρ(y)φ(η)TεuIε(y,η)∂xb
(
χd(x−y)eiφ0(x,y,η)/ε

)
dydη+O(ε∞),

uniformly w.r.t. x∈Ω.

Since ∂xb
(
χ(x−y)eiφ0/ε

)
=−∂yb

(
χ(x−y)eiφ0/ε

)
, integration by parts leads to

∂xbu
R
ε (0,x) =ε−

3n
4 cn

∫
R2n

∂yb
(
ρTεu

I
ε

)
φχd(x−y)eiφ0(x,y,η)/εdydη+O(ε∞),

uniformly w.r.t. x∈Ω.

Application of Lemma 3.5 and then Lemma 2.4 shows that the term involving ∂ybρ
has an exponentially decreasing contribution in L2(Ω). On the other hand, the y
derivative of the FBI transform is the FBI transform of the derivative. Thus

‖∂xbuRε |t=0−ε−
3n
4 cn

∫
R2n

ρ⊗φTε
(
∂xbu

I
ε

)
χd(x−y)eiφ0(x,y,η)/εdydη‖L2(Ω) .ε∞.

Again, Lemmas 3.5–2.4 and Assumption A3 imply

‖∂xbuRε |t=0−∂xbuIε‖L2(Ω) .ε∞.

Time differentiation of uRε is somewhat different. The contribution of reflected
beams is still uniformly exponentially decreasing for x∈Ω

∂tu
R
ε |t=0(x) =ε−

3n
4 cn

∫
R2n

ρ(y)φ(η)TεvIε (y,η)ε∂tw0
ε
′
(0,x,y,η)dydη+O(ε∞),
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with

ε∂tw
0
ε
′
=
N+1∑
j=0

εj
(
i∂tψ0a

0
j
′
+∂ta

0
j−1
′
)
eiψ0/ε.

The initial values (2.20) and (2.22) for the phase and amplitudes of w0
ε
′ yield

ε∂tw
0
ε
′
(0,x,y,η) =eiφ0(x,y,η)/ε+

N∑
j=0

εj
∑

|α|=R−2j−1

(x−y)αzα(x,y,η)eiφ0(x,y,η)/ε

+εN+1∂ta
0
N
′
(0,x,y,η)eiφ0(x,y,η)/ε,

where zα are smooth remainders that vanish for |x−y|≥d. We can use the operators
Oα to estimate the contribution of the terms (x−y)αzα to the norm of uRε |t=0

‖ε− 3n
4

∫
R2n

ρ⊗φTεvIεεj(x−y)αzαeiφ0/εdydη‖L2
x

=ε−
3n
4 +j‖Oα (ρ⊗φzα,φ0/ε)TεvIε‖L2

x

.ε
R−1

2 , for j= 0,. ..,N.

We also have

‖ε− 3n
4

∫
R2n

ρ⊗φTεvIεεN+1∂ta
0
N
′|t=0e

iφ0/εdydη‖L2
x

=ε−
3n
4 +N+1‖O0

(
ρ⊗φ∂ta0

N
′|t=0,φ0/ε

)
Tεv

I
ε‖L2

x

.εN+1.

It follows, with the help of (2.10), that

‖∂tuRε |t=0−T ∗ε ρ⊗φTεvIε‖L2(Ω) .ε
R−1

2 ,

and finally, from Lemma 2.4 and Assumption A3,

‖∂tuRε |t=0−vIε‖L2(Ω) .ε
R−1

2 .

Hence

‖∂tuRε |t=0−vIε‖L2(Ω) +‖uRε |t=0−uIε‖H1(Ω) .ε
R−1

2 .

3.3. Proof of the main theorem. Now we may collect the previous estimates
in order to bound the difference between uε the exact solution for (1.1) and uRε the
approximate solution of order R.

For the Dirichlet case, the errors in the interior, at the boundary, and in the initial
conditions exhibit the same scale of ε, and the energy estimate leads to

Sup
t∈[0,T ]

‖uε(t,.)−uRε (t,.)‖H1(Ω) .ε
R−1

2 , Sup
t∈[0,T ]

‖∂tuε(t,.)−∂tuRε (t,.)‖L2(Ω) .ε
R−1

2 .

(3.11)
For the Neumann case, one loses an order

√
ε in the boundary estimate, and thus

the energy estimate yields

Sup
t∈[0,T ]

‖uε(t,.)−uRε (t,.)‖H1(Ω) .ε
R−2

2 , Sup
t∈[0,T ]

‖∂tuε(t,.)−∂tuRε (t,.)‖L2(Ω) .ε
R−2

2 .
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However, when comparing the ansatz at order R and R+1 in the difference between
uR+1
ε and uRε , we can make use of further powers of ((x−xtk)α)|α|=R+1 between the

phases and ((x−xtk)α)|α|=R−2j−1 in the amplitudes. Using the approximation oper-
ators yields uniformly in time

‖uR+1
ε (t,.)−uRε (t,.)‖H1(Ω) .ε

R−1
2 , ‖∂tuR+1

ε (t,.)−∂tuRε (t,.)‖L2(Ω) .ε
R−1

2 .

Hence one may improve the estimate for the Neumann case by using the approximate
solution at the next order R+1

‖uε(t,.)−uRε (t,.)‖H1(Ω) .‖uε(t,.)−uR+1
ε (t,.)‖H1(Ω) +‖uR+1

ε (t,.)−uRε (t,.)‖H1(Ω)

.ε
R−1

2 .

This leads to the same estimate (3.11) for the Neumann case.

Remark 3.6. The FBI transforms of uIε and vIε are uniformly locally infinitely
small outside the frequency sets Fs(uIε) and Fs(vIε ) respectively, as ε tends to 0 (see
[31, p.98]). These sets may be phase space submanifolds of lower dimensions. For
instance, for WKB initial data, Fs(aeiΦ/ε) ={(y,∂xΦ(y)),y∈ suppa}. For numerical
computations, one therefore has to discretize neighborhoods of (Ky×Kη)∩Fs(uIε)
and (Ky×Kη)∩Fs(vIε ). Numerically studying the behaviour of FBI transforms in
the associated computational domains could lead to interesting results on the optimal
mesh size. Details on numerical FBI transforms are given in [26].

4. Conclusion
We have shown that Gaussian beams summation can be used to construct asymp-

totic solutions for the wave equation in a convex domain. Rigorous estimate of the
difference between the obtained approximate solutions and the exact solution has been
given. We have proven that the precision of a Gaussian beams superposition depends
only on the accuracy to which the used individual beams satisfy the wave equation;
no extra order of error is induced by the summation process. A large class of initial
data, including the WKB form, is allowed. The boundary condition can be either of
Dirichlet or Neumann type. The obtained solutions are global and thus well suited to
numerical computations, which will be performed in a coming work [1].
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[43] T. Swart and V. Rousse, A mathematical justification for the Herman-Kluk propagator, Com-

mun. Math. Phys., 286, 725–750, 2009.
[44] N.M. Tanushev, Superpositions and higher order Gaussian beams, Commun. Math. Sci., 6,

449–475, 2008.
[45] N.M. Tanushev, J. Qian and J.V. Ralston, Mountain waves and Gaussian beams, Multiscale

Model. Simul., 6, 688–709, 2007.


