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Abstract. Many important equations in science and engineering contain rapidly varying op-
erators that cannot be practically sufficiently resolved for accurate solutions. In some cases it is
possible to obtain approximate solutions by replacing the rapidly varying operator with an appropri-
ately averaged operator. In this paper we use formal asymptotic techniques to recover a formula for
the averaged form of a second order, non-divergence structure, linear elliptic operator. For several
special cases the averaged operator is obtained analytically. For genuinely multi-dimensional cases,
the averaged operator is also obtained numerically using a finite difference method, which also has a
probabilistic interpretation.
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1. Introduction
Second order elliptic equations — in both divergence and non-divergence form

— frequently arise in science and engineering [6]. When the operators involved vary
rapidly on a small spatial scale these problems carry an additional challenge since it is
generally not practical to resolve the computational domain finely enough to capture
the behaviour of the operator. A resolution to this challenge is to replace (homogenize)
the original operator with a different, slowly varying operator with solutions that are
close to the solutions of the original problem.

In the divergence structure case, the homogenized operator is obtained by solving
a cell problem. In the non-divergence stucture case studied herein, the homogenized
operator is obtained by averaging the coefficients against the invariant measure, which
is the solution of an adjoint problem. As a result, in this case, the procedure is called
averaging. (There is some inconsistency in the literature concerning terminology; we
follow [8].)

1.1. Contents. The first section of this paper is introductory. Section two
gives the theoretical basis for the averaging formula. Section three provides explicit
analytical solutions. Section four gives a comparison with known analytical results in
the divergence structure case, when these are available. Section five is numerical; it
begins with a discussion of the discretization and follows with numerical computations.
The final section gives the conclusions.

1.2. Goals of this paper. Let Lε denote the following non-degenerate elliptic
differential operator

Lε=−
n∑

i,j=1

aij(x/ε)
∂2

∂xixj
+

n∑
i=1

bi(x/ε)
∂

∂xi
+c(x/ε) (1.1)
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Here we assume that the coefficients A= (a)ij , b= (b)i, and c are periodic of period
one in all their arguments and belong to C1(Rn). We study the problem{

Lεuε=f(x), for x∈U
uε=g(x), for x∈∂U

(PDE)ε

in a bounded domain U ⊂Rn with smooth boundary ∂U . Here for simplicity, f(x),
g(x) are continuous functions on U , ∂U , respectively.

Our goal is approximation of (PDE)ε for small ε using a homogeneous operator
on a coarsely resolved finite difference grid. This goal is accomplished by recovering,
using both analytical and numerical techniques, the averaged operator which is the
limit of the operators Lε as ε→0.

In the first part of this paper we use formal asymptotic calculations to recover
an analytic formula for the averaged operator (first obtained by Freidlin [3] using
probabilistic methods). The averaged operator is given in terms of the invariant
distribution for the dynamics, which is the solution of a PDE involving the adjoint
operator. In several special cases we obtain explicit representations of the invariant
distribution so that the averaged operator can be expressed in closed form. These
special cases require additional structure on the coefficients.

In the general, genuinely multidimensional case, there is no analytical formula for
the invariant distribution available. However, the PDE for the invariant distribution
can be solved numerically on a relatively coarse grid. Numerical examples are com-
puted, the method is validated by recovering the known solutions, and new examples
are computed.

1.3. Related work. Homogenization (and averaging to a lesser extent) have
received much attention in recent years; see the books [4, 8, 1] and the survey [2]. We
are grateful to the authors of [8], which influenced our approach.

Early work by Freidlin [3] used probabilistic methods to average the inhomoge-
neous, non divergence-structure equation (PDE)ε. The non-divergence equation has
a probabilistic interpretation. Freidlin averaged the operator by considering the lim-
iting distribution of the underlying stochastic differential equation. The operator is
the generator for the diffusion and arises as the backward Kolmogorov equation. The
evolution of densities satisfies the Fokker-Planck equation, which involves the adjoint
operator; see also [8, Chapter 6].

There is considerably more work on divergence structure equations, either in the
variational form

−∇·(A(x/ε)∇u) =f (1.2)

or expanded into the singular form (see notation in the next section)

−A(x/ε) :D2u+
1
ε
b(x/ε) ·∇u=f. (1.3)

While the problems (PDE)ε and (1.3) are equivalent for fixed ε, provided the coeffi-
cients are smooth enough, we note that the non-divergence structure equation (PDE)ε

and the expanded divergence structure equation (1.3) are different in the limit ε→0.
This difference is due to the coefficient ε−1 of the drift term b in the divergence struc-
ture problem. References to works in the divergence structure setting can be found
in the textbooks mentioned above. We draw the attention of the reader to the recent
work [7].
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In very simple cases, both the divergence structure and non-divergence structure
operators average (homogenize) to the harmonic mean. However, in general the results
are different. For example, in the simple case of separable operators, where analytical
results are available, the results are different; see section 3.3.

2. The averaging formula
In this section we use formal asymptotic calculations and PDE methods to average

the operator (1.1). This section uses an argument similar to Part II of [8] and [2],
which gave the homogenization formula for divergence structure elliptic equations.
The formal calculations can be made rigorous, following the method of Part III of [8].

We use the notation

(D2)ij =
∂2

∂xixj
, ∇= (∂x1,. ..,∂xn)

for the Hessian operator and the gradient operator, respectively. We use

M :N = tr(MTN) =
n∑

i,j=1

MijNij

for the inner product between matrices and b ·d=
∑n
i=1 bidi for the dot product of

vectors. We rewrite Lε defined in (1.1) as

Lε=−A(x/ε) :D2 +b(x/ε) ·∇+c(x/ε),

and we use angle brackets to denote the average over one periodic domain Ω = [0,1]n,

〈v〉=
∫

Ω
v

|Ω|
.

2.1. The Fredholm Alternative and the invariant distribution. For
completeness, we recall the Fredholm Alternative. Consider the operator

L0(x) =−A(x) :D2

where the coefficient matrix, A(x), is periodic, C1, and uniformly positive definite.
The adjoint operator, which is also periodic, acts on a function v(x)∈C2(Ω) by

L∗0(x)v(x) =−D2 : (A(x)v(x)).

Theorem 2.1 (The Fredholm Alternative [8]). Consider the operator L0(x) =
−A(x) :D2, where the coefficient matrix is periodic, C1, and uniformly positive defi-
nite. Exactly one of the following conditions holds.

1. The equation L0u=f has a unique periodic solution for every f ∈L2
per(Ω).

2. The homogeneous equation L0u= 0 has a non-trivial periodic solution, the
nullspaces of L0 and its adjoint L∗0 have the same dimension, and the inho-
mogeneous equation L0u=f is solvable if and only if

〈fv〉= 0 for all v in the kernel of L∗0.
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Since the kernel of the operator L0 is one-dimensional (consisting only of con-
stants), the kernel of the adjoint L∗0 is also one-dimensional by the Fredholm Alterna-
tive. Thus the invariant distribution, ρ∞, is uniquely prescribed as the unique element
of the kernel of the adjoint operator L∗0 [8, Theorem 6.16]

L∗0ρ
∞=−D2 : (Aρ∞) = 0, in Ω (2.1)

which satisfies the normalisation condition

〈ρ∞〉= 1, ρ∞ is periodic in y. (2.2)

This leads to the following solvability condition.

Theorem 2.2 (Solvability Condition). Consider the operator L0(x) =−A(x) :
D2, where the coefficient matrix is periodic, C1, and uniformly positive definite. The
equation

L0u=f, u is periodic

has a solution if and only if f is orthogonal to the nullspace of the adjoint operator,
which can be verified by

〈ρ∞f〉= 0,

where ρ∞ is the invariant distribution.

2.2. The averaged coefficients.
Theorem 2.3. Let the operator Lε be as in (1.1). Let ρ∞ be the invariant dis-
tribution, given by the unique solution of (2.1), (2.2). Formally, in the limit ε→0,
solutions of equation (PDE)ε converge to solutions of the averaged equation{

L̄u=f(x), for x∈U
u=g(x), for x∈∂U,

(PDE)

where

L̄=−Ā :D2 + b̄ ·∇+ c̄

has coefficients given by averaging the original coefficients against the invariant dis-
tribution

Ā= 〈ρ∞A〉, b̄= 〈ρ∞b〉, c̄= 〈ρ∞c〉. (2.3)

In addition, formally,

uε(x) =u0(x)+O(ε2). (2.4)

Proof. We begin the analysis by introducing a new variable

y=x/ε,

where ε is the size of the small cells on which the coefficients vary. We assume the
two scales x and y are independent and write the coefficients as

A(x/ε) =A(y), b(x/ε) = b(y), c(x/ε) = c(y).
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Since we are treating the two spatial scales as independent, rewrite the partial deriva-
tive ∂xi

as

∂xi +
1
ε
∂yi .

Equation (PDE)ε then becomes

− 1
ε2
A :D2

yu
ε

+
1
ε

(
−2A :∇x∇Ty uε+b ·∇yuε

)
+(−A :D2

xu
ε+b ·∇xuε+cuε) =f. (2.5)

Now we look for a solution of the form

uε(x) =u0(x,x/ε)+ε2u2(x,x/ε)+ .. .

=u0(x,y)+ε2u2(x,y)+ .. .
(2.6)

A term of O(ε) is not needed, as the asymptotics verify. Substituting this solution
form into the PDE (2.5) we obtain

1
ε2
L0u0 +

1
ε
L1u0 +(L0u2 +L2u0)+O(ε) =f. (2.7)

Here we have defined the operators

L0 =−A :D2
y

L1 =−2A :∇x∇Ty +b ·∇y
L2 =−A :D2

x+b ·∇x+c.

To ensure that uε satisfies the required boundary conditions we also enforce the
appropriate boundary conditions on the terms in the asymptotic expansion (2.6). For
the leading order term we require{

u0 =g(x) on ∂U

u0 periodic in y.

For k>0 we enforce {
uk = 0 on ∂U

uk periodic in y.

We first look at the leading order, O( 1
ε2 ), terms in (2.7) to obtain the equation{

−A :D2
yu0 = 0

u0 is periodic in the y variable.

Because of the periodic boundary conditions (in y), the solution of this equation will
be independent of the y variable:

u0 =u0(x)
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Next we consider the O( 1
ε ) terms in (2.7) to obtain

−2A :∇x∇Ty u0 +b ·∇yu0 = 0.

This is automatically satisfied since u0 is independent of y.
Finally, we consider the O(1) terms in (2.7) to obtain the equation

−A :D2
yu2 =A :D2

xu0−b ·∇xu0−cu0 +f. (2.8)

We can now use Theorem 2.2 to obtain a solvability condition for (2.8):∫
Ω

ρ∞
(
A :D2

xu0−b ·∇xu0−cu0 +f
)
dy= 0.

Because u0 and f are independent of the y variable and the solution of the adjoint
problem is normalized we can integrate the last equation to obtain

−Ā :D2
xu0 + b̄ ·∇xu0 + c̄u0 =f, (2.9)

where the averaged coefficients are given by (2.3)

Ā= 〈ρ∞A〉, b̄= 〈ρ∞b〉, c̄= 〈ρ∞c〉.

Returning now to the asymptotic expansion for uε (2.6), we see that (2.4) holds, where
u0 satisfies the averaged Equ. (2.9).

3. Explicit solutions
In this section we consider a number of special cases for which we can solve the

adjoint problem (2.1) exactly. In these cases we can generate explicit formulas for the
averaged operators.

We provide a visual representation of several of these operators by plotting the
ellipses given by the equation yTAy= 1. The shading of these pictures is such that
lighter colouring corresponds to larger entries in the coefficient matrix.

Remark 3.1. Since the lower order terms average in the same way as the coefficient
matrix, but do not affect the formula for the invariant distribution, we omit them to
shorten the exposition.

3.1. Multiples of a constant coefficient matrix. One of the simplest cases
involves a coefficient matrix that is a (variable) scalar multiple of a constant matrix

A(x/ε) =a(x/ε)B,

which yields the harmonic mean

Ā=
〈
a(y)−1

〉−1
B. (3.1)

A typical example is illustrated in figure 3.1, which is the piecewise constant periodic
checkerboard.

As a special case we recover the well-known one-dimensional result which follows.
The operator

−a(x/ε)uεxx=f
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homogenizes to the harmonic mean

ā=
〈
a(y)−1

〉−1
. (3.2)

Proof. [Calculation] The adjoint problem (2.1) becomes

−B :D2
y(a(y)ρ∞(y)) = 0

with solution ρ∞(y) =a(y)−1
〈
a(y)−1

〉−1 yielding (3.1). In particular (since B is con-
stant) we see that each element in the coefficient matrix homogenizes to its harmonic
mean:

āi,j =
〈
a(y)−1b−1

ij

〉−1
=
〈
aij(y)−1

〉−1
. (3.3)

(a) (b)

(c) (d)

Fig. 3.1. A visual representation of a piecewise constant multiple of the laplacian on a periodic
checkerboard. (a) The original grid. (b) The homogenized grid. (c) The original operator on one
small cell. (d) The homogenized operator on one small cell.

3.2. A special case: layered material. Next we consider the special case
of a layered material, where the coefficient matrix is a function of only one variable:

A(y) =A(y1).

See figure 3.2 for a visualization of the operator.
The adjoint equation is now

−D2
y(A(y1)ρ∞(y)) = 0,

which has the solution

ρ∞(y) =a11(y1)−1
〈
a11(y1)−1

〉−1
.

Thus the averaged coefficient matrix from (2.3) is

Ā=
〈
a−1

11

〉−1〈
a−1

11 A
〉
. (3.4)
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(a) (b)

(c) (d)

Fig. 3.2. A visual representation of a piecewise constant multiple of the laplacian on a layered
material. (a) The original grid. (b) The homogenized grid. (c) The original operator on one small
cell. (d) The homogenized operator on one small cell.

3.3. A special case: separable, diagonal coefficient matrix. We also
consider the case where the coefficient matrix is diagonal and has separable entries.
That is, the matrix can be expressed as a product of diagonal matrices of the form

A(y) =
n∏
j=1

Aj(yj)

and each entry on the diagonal of the resulting matrix can be written as

Aii(y) =
n∏
j=1

Ajii(yj).

See figure 3.3 for a visualisation of such an operator. The averaged coefficients are

Ā=

〈
1

n∏
j=1

Ajjj(yj)
A

〉〈
1

n∏
j=1

Ajjj(yj)

〉−1

(3.5)

as can be verified by the calculation which follows.

Proof. [Calculation] In this case, the adjoint equation (2.1) takes the form

−
n∑
i=1

 n∏
j=1

Ajii(yj)ρ
∞(y)


yiyi

= 0.

Since the coefficients are separable, the invariant distribution will also be separable:

ρ∞=
1

n∏
j=1

Ajjj(yj)

〈
1

n∏
j=1

Ajjj(yj)

〉−1
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(a) (b) (c)

(d) (e) (f)

Fig. 3.3. A visual representation of a separable operator. (a) The original grid. (b) The
homogenized grid. (c) The vertical structure of the operator on one small cell. (d) The horisontal
structure of the operator on one small cell. (e) The original operator on one small cell. (f) The
averaged operator on one small cell.

and the result follows by averaging using (2.3).

4. Comparison with divergence structure results
A given coefficient matrix, A, can be used to generate either the non-divergence

structure operator (1.1)

Lεu=−A(x/ε) :D2u,

or the divergence structure operator (1.2)

Lεdivu=−∇·(A(x/ε)∇u) .

Only in very simple cases will the coefficient matrix A homogenize to the same oper-
ator for both the divergence and non-divergence case. The main example where the
results are the same is the one-dimensional case, where the coefficient matrix homog-
enizes to the harmonic mean for both problems [8], (3.2). However, in general the two
operators will result in different homogenized coefficients.

For the convenience of the reader we compare the explicit solutions of 3 to known
results for the divergence structure problem.

4.1. A layered material. First we consider a two-dimensional layered ma-
terial. The divergence structure result is given in [8]. Although most elements of the
coefficient matrix average in the same way for both problems, one element is different.
In the non-divergence structure case we obtain from (3.4)

ā22 =
〈
a−1

11

〉−1
〈
a22

a11

〉
.

The divergence case, on the other hand, yields

ādiv22 =
〈
a21

a11

〉〈
a12

a11

〉〈
a−1

11

〉−1
+
〈
a22−

a12a21

a11

〉
.
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4.2. A separable material. We can also consider a two-dimensional separa-
ble operator that is a scalar multiple of the identity.

A(x/ε) =a1(x1/ε)a2(x2/ε)I

This is a special case of both the constant operator of 3.1 and the separable case of 3.3.
In either case, the coefficients for the non-divergence structure problem homogenizes
to the constant multiple of the identity, given by a generalized harmonic mean,

Ā= 〈a−1
1 a−1

2 〉−1I,

where I denotes the identity matrix. In the divergence problem, which is considered in
[4], the homogenized coefficients are not all equal and are obtained from a combination
of the harmonic and arithmetic means of the coefficients.

Ādiv11 = 〈a2〉
〈
a−1

1

〉−1

Ādiv22 = 〈a1〉
〈
a−1

2

〉−1
.

5. Numerical results
Although there are a number of situations in which we can write down an explicit

representation of the averaged coefficients, this is not always possible. However, the
homogenization result can be implemented numerically. To accomplish this we need
only solve one linear equation (2.1), along with the normalization constraint (2.2).
The computational effort is comparable (arguably less) to the effort for the divergence
structure problem, where n equations must be solved for the cell problem.

The finite difference schemes we use have a natural interpretation as a discrete
space Markov chain approximation of the underlying diffusion process. Consequently,
one approach to interpreting the numerical method would be to use Markov chain
approximations along the lines of [5, 10, 9]. Here we will focus on the PDE aspects
in order to discretize the problem. To present the ideas in the simplest setting, we
perform the discretization in two dimensions; the generalisation to higher dimensions
is accomplished by standard techniques.

In this section we numerically average several test problems and solve the averaged
equations. We demonstrate that the approach presented in this paper does correctly
average the non-divergence structure elliptic operator and compute the operators
in some cases where the exact formula is not known. We begin by validating the
approach: we demonstrate numerically that the solutions of the original equation

A(x/ε) :D2uε=f

converge pointwise to the solutions of the averaged equation

Ā :D2u=f

in the limit as ε→0.
A further goal of this section is to investigate the relationship between cell res-

olution and accuracy of both the computed averaged operators and the solutions of
the averaged equations.

Notation for this section. Below, the diagonal matrix whose jth diagonal
element is given by the jth element of the vector a is denoted by diag(a). We use
0,1 for vectors whose elements are identically zero or one respectively. The identity
matrix is represented by I.
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5.1. Discretization and numerical solution. We will be solving the non-
divergence form equation (PDE)ε. This is discretized using centred differences and
the linear system was solved directly (in this case using the default Matlab backslash
solver). In all cases, the computational domain is the unit square [0,1]× [0,1].

We also want to solve equation (2.1) for the invariant distribution. Let ρ= (ρij)
be a grid vector indexed by the grid coefficients. The fact that the grid vector ρ
approximates the solution ρ∞ at the corresponding grid points,

ρij =ρ∞(hi,hj)+O(h2)

will follow from the standard linear finite difference analysis. After discretizing the
two-dimensional adjoint equation (2.1) by standard centered finite differences, with
spatial resolution, h, we obtain a finite dimensional linear equation:

Mρ= 0, (5.1)

where M is a linear operator defined below, along with the discretization of the
constraint (2.2) ∑

i,j

ρijh
2 = 1. (5.2)

The matrix M is obtained by combining the finite difference operators, for each term
as follows. To shorten the formulas, write the grid matrix A=Aij as a collection of
scalar functions for each component

A=Aij =
(
a11 a12

a21 a22

)
ij

=
(
qij sij
sij rij

)
.

Then define the linear operators

Q= diag(qij), R= diag(rij), S= diag(sij),

which correspond to scalar multiplication. Next define Dy1y1 ,Dy1y2 ,Dy2y2 to be the
linear operators corresponding to the finite difference operators for the second deriva-
tives. Equation (5.1) then takes the form

(Dy1y1Q+Dy2y2R+2Dy1y2S)ρ= 0. (5.3)

Writing out the operator more explicitly, term by term, results in

(Dy1y1Qρ)ij =
1
h2

(qi+1,jρi+1,j+qi−1,jρi−1,j−2qi,jρi,j)

(Dy2y2Rρ)ij =
1
h2

(ri,j+1ρi,j+1 +ri,j−1ρi,j−1−2ri,jρi,j)

2(Dy1y2Sρ)ij =
2
h2

(si+1,j+1ρi+1,j+1 +si−1,j−1ρi−1,j−1

−si+1,j−1ρi+1,j−1−si−1,j+1ρi−1,j+1).

(5.4)

Equation (5.3) can be solved by a direct method, enforcing the single con-
straint (5.2). For simplicity, we solved the equation iteratively by a Gauss-Seidel
method. Since the operator preserves mass, even at the discrete level, the con-
straint (5.2) was satisfied by choosing initial data which satisfied the constraint.
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5.2. Multiples of a constant coefficient matrix. We begin with a simple
example, where the coefficient matrix is a (variable) scalar multiple of a constant
matrix. That is,

A=p(y)K,

where K is a constant matrix.
We have already showed that the solution (3.1) of the adjoint equation is simply

ρ∞(y) =p(y)−1
〈
p(y)−1

〉−1
.

It is easy to see that this will also be a steady state solution of the discretized equation
no matter what cell resolution we use. To demonstrate this, we make the following
replacements in the discretized Equ. (5.4):

Q=k11P, R=k22P, S=k12P.

Here P = diag(p) is a diagonal matrix and k11,k22,k12 are constant. The proposed
steady state solution in discrete form is

ρ∞=P−11〈P−11〉−1.

Substituting these expressions into the discrete Equ. (5.4) we find that

Dy1y1Qρ
∞=Dy1y1k11PP

−11〈P−11〉−1

=k11〈P−11〉−1Dy1y11

=0,

where the last step holds since the rows of Dy1y1 sum to one. The other terms vanish
similarily, showing that (3.1) is in fact the steady state solution of the discrete iterative
scheme (5.4) regardless of how well or poorly the cell is resolved.

We now choose a specific example where the coefficient matrix is piecewise con-
stant in a checkerboard pattern. The coefficient matrix will vary between

A1 =
(

2 1
1 4

)
A2 =

(
4 2
2 8

)
= 2A1.

See figure 5.1(a) for a surface plot of the resulting solution. Using the formula (3.3),
we expect that the coefficient matrix should average to

Ā=
(

8/3 4/3
4/3 16/3

)
.

We set a forcing f = 50, enforce zero Dirichlet boundary conditions, and run
through different values of ε to investigate the convergence of solutions of the original
equation to solutions of the averaged equation as ε→0.

Convergence results are presented in Table 5.1 and figure 5.1(b). These compu-
tations are consistent with the assertion that the solutions of the original equation
(PDE)ε do, in fact, converge to the solutions of the averaged equation (2.3) as ε→0.
Furthermore, the convergence appears to be second order in ε. That is, the exact
solution of (PDE)ε is given by

uε= ū+O(ε2),

consistent with (2.4).



FROESE AND OBERMAN 797

ε ‖u− ū‖2
1/3 5.474×10−3

1/5 2.003×10−3

1/7 1.029×10−3

1/9 6.250×10−4

1/11 4.194×10−4

1/13 3.008×10−4

1/15 2.262×10−4

1/17 1.763×10−4

1/19 1.412×10−4

1/21 1.157×10−4

1/23 9.648×10−5

1/25 8.169×10−5

Table 5.1. Results for a coefficient that is a multiple of a constant matrix. The error gives the
L2 difference between the solution of the averaged equation and the solution of the original equation
for a given value of ε.

(a) (b)

Fig. 5.1. Results for a coefficient that is a multiple of a constant matrix. (a) A surface plot
of the solution on the fully resolved grid (25×25 cells of 24×24 grid points). (b) Log-log plot of L2

difference between solutions of averaged equation and original equation.

5.3. A layered material. Next we consider a layered material, where the co-
efficient matrix varies in vertical stripes. That is, A(y1,y2) =A(y1). For this example
we allow the coefficients to vary between the following two matrices:

A1 =
(

2 1
1 4

)
A2 =

(
20 0
0 1

)
.

Again we set the forcing to f = 50 and enforce zero Dirichlet boundary conditions.
The resulting solution is plotted in figure 5.2.

According to (3.4) the homogenized coefficient matrix should be

Ā=
(

40/11 10/11
10/11 41/11

)
.

The difference between the solutions of the original Equ. (PDE)ε and the homogenized
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Equ. (2.3) (measured in L2) are presented in Table 5.2 and figure 5.2. As in the first
example, we observe quadratic convergence as ε→0.

ε ‖u− ū‖2
1/3 1.565×10−2

1/5 5.609×10−3

1/7 2.867×10−3

1/9 1.740×10−3

1/11 1.168×10−3

1/13 8.384×10−4

1/15 6.312×10−4

1/17 4.924×10−4

1/19 3.948×10−4

1/21 3.237×10−4

1/23 2.702×10−4

1/25 2.289×10−4

Table 5.2. Results for a layered material. The error gives the L2 difference between the solution
of the averaged equation and the solution of the original equation for a given value of ε.

(a) (b)

Fig. 5.2. Results for a layered material. (a) A surface plot of the solution on the fully resolved
grid (25×25 cells of 24×24 grid points). (b) Log-log plot of L2 difference between solutions of the
averaged equation and original equation.

5.4. A separable, diagonal coefficient matrix. Next we consider a sepa-
rable, diagonal coefficient. We again choose a piecewise constant coefficient matrix.
In this case, each cell is divided into quarters with the following coefficients:

A1 =
(

1 0
0 1

)(
1 0
0 1

)
A2 =

(
2 0
0 4

)(
1 0
0 1

)
A3 =

(
1 0
0 1

)(
20 0
0 1

)
A4 =

(
2 0
0 4

)(
20 0
0 1

)
.
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As before we set f = 50 with u= 0 on the boundary. See figure 5.3(a) for a surface
plot of the solution.

According to (3.5), the homogenized coefficients should be

Ā=
(

14 0
0 2

)
.

As in the previous examples, we observe O(ε2) convergence to the solution of the
averaged equation; see Table 5.3 and figure 5.3(b).

ε ‖u− ū‖2
1/3 6.105×10−2

1/5 2.337×10−2

1/7 1.214×10−2

1/9 7.405×10−3

1/11 4.984×10−3

1/13 3.582×10−3

1/15 2.698×10−3

1/17 2.106×10−3

1/19 1.689×10−3

1/21 1.385×10−3

1/23 1.156×10−3

1/25 9.794×10−4

Table 5.3. Results for a coefficient matrix with separable entries. The error gives the L2

difference between the solution of the averaged equation and the solution of the original equation for
a given value of ε.

(a) (b)

Fig. 5.3. Results for a coefficient matrix with separable entries. (a) A surface plot of the
solution on the fully resolved grid (25×25 cells of 24×24 grid points). (b) Log-log plot of L2

difference between solutions of the averaged equation and original equation.

5.5. A more general linear operator. In all the examples we have consid-
ered so far we have assumed that the coefficients of the drift and source terms (b,c in
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(1.1)) are equal to zero. Here we consider a more general operator where these terms
are present in the equation. We choose the same coefficient matrix used in section 5.2,
which is a scalar multiple of a constant matrix. The remaining coefficients do not need
to have this property (i.e., b need not be a multiple of a constant vector) in order for
the analysis in section 3.1 to apply. In particular we consider the coefficients:

A1 =
(

2 1
1 4

)
b1 =

(
1
1

)
c1 = 1

A2 =
(

4 2
2 8

)
b2 =

(
2
4

)
c1 = 2.

As before we let f = 50 and enforce zero Dirichlet boundary conditions. The solution
is plotted in figure 5.4(a).

The analysis in section 3.1 is easily extended to this situation, and predicts the
following averaged coefficients:

Ā1 =
(

8/3 4/3
4/3 16/3

)
b̄1 =

(
4/3
8/5

)
c̄1 = 4/3.

Convergence results are contained in Table 5.4 and figure 5.4. As before, we observe
quadratic convergence as ε→0.

ε ‖u− ū‖2
1/3 5.486×10−3

1/5 2.008×10−3

1/7 1.031×10−3

1/9 6.263×10−4

1/11 4.203×10−4

1/13 3.014×10−4

1/15 2.267×10−4

1/17 1.767×10−4

1/19 1.415×10−4

1/21 1.159×10−4

1/23 9.669×10−5

1/25 8.187×10−5

Table 5.4. Results for a general elliptic operator. The error gives the L2 difference between
the solution of the averaged equation and the solution of the original equation for a given value of ε.

5.6. Non-zero boundary conditions. In all the examples we have studied
so far we have enforced zero Dirichlet boundary conditions. Now we demonstrate
numerically that the approach presented in this paper also works for non-constant
Dirichlet boundary conditions.

In this example we use the y-periodic coefficient matrix with entries

aε11 =
1

cos
(

2πx1
ε −

π
ε

)[
cos
(
π
ε

)
−cos

(
2πx2
ε −

π
ε

)]
+4

aε22 =
1

cos
(

2πx2
ε −

π
ε

)[
cos
(
π
ε

)
−cos

(
2πx1
ε −

π
ε

)]
+4

a12 = 0.
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(a) (b)

Fig. 5.4. Results for a general elliptic operator. (a) A surface plot of the solution on the fully
resolved grid (25×25 cells of 24×24 grid points). (b) Log-log plot of L2 difference between solutions
of the averaged equation and original equation.

We set forcing

f =−2

and enforce the boundary conditions

u= 2x2
1 +2x2

2 x1 = 0, x1 = 1, x2 = 0, x2 = 1.

This problem has the exact solution

uε=
ε2

4π2

[
cos
(π
ε

)
−cos

(
2πx1

ε
− π
ε

)][
cos
(π
ε

)
−cos

(
2πx2

ε
− π
ε

)]
+2x2

1 +2x2
2.

We fix ε= 1/499 and look at the relationship between cell resolution and solution
accuracy. This solution is plotted in figure 5.5(a).

The convergence results are presented in Table 5.5 and figure 5.5(b). It is evident
from the log-log plot of error that for fixed (small) ε, the error is linearly dependent
on the spatial step size used to solve the cell problem (2.1).

5.7. Random coefficients. So far we have considered operators that vary
periodically. However, the averaging method discussed in this article can also be
applied to average random operators. While we avoid the analysis, we can compute
the invariant distribution in this case.

Next we consider the case where the coefficient matrix at each point is randomly
chosen (with equal probability) to be one of two constant operators. Since the operator
no longer varies periodically, it is now neccessary to solve for the invariant distribution
in the entire domain. As before, we enforce periodic boundary conditions. In order
to compute the averaged coefficients, we solve for the invariant distribution with K
different randomly chosen coefficients Ai and compute the averaged coefficients

Āi=
〈
ρ∞Ai

〉
.
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1/h ā11 ā22 ‖u− ū‖2
10 0.24514 0.24514 6.527×10−3

50 0.24891 0.24891 1.437×10−3

90 0.24939 0.24939 8.103×10−4

130 0.24958 0.24958 5.607×10−4

170 0.24967 0.24967 4.290×10−4

210 0.24973 0.24973 3.499×10−4

250 0.24978 0.24978 2.907×10−4

290 0.24981 0.24981 2.531×10−4

330 0.24983 0.24983 2.239×10−4

370 0.24985 0.24985 1.989×10−4

410 0.24986 0.24986 1.792×10−4

450 0.24988 0.24988 1.630×10−4

490 0.24989 0.24989 1.494×10−4

Table 5.5. Results for a problem with non-constant boundary conditions homogenized on a cell
with spatial resolution h. The averaged coefficients are ā11, ā22, ā12. The error gives the L2 difference
between the solution of the homogenized equation and the solution of the original equation.

(a) (b)

Fig. 5.5. Results for a problem with non-constant boundary data averaged on a cell with spatial
resolution h. (a) A surface plot of the exact solution (with ε= 1/499). (b) Log-log plot of L2

difference between solutions of the averaged equation and original equation.

The results of these trials are averaged to compute the averaged coefficient matrix for
the general random problem.

Ā=
1
K

K∑
i=1

Āi.

In the following computations, we average the coefficients over K= 10 trials. To
demonstrate that this approach correctly averages the random operator we will solve
for twenty different random coefficient matrices and compute the mean difference
between the solutions of the random and averaged problems.

In particular, we randomly vary between the following two coefficient matrices:

A1 =
(

2 1
1 4

)
A2 =

(
20 0
0 1

)
.
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We enforce zero Dirichlet boundary conditions and set forcing f = 30.
Results are shown in Table 5.6 and figure 5.6. We see that as the number of grid

points is increased, the solution of the random equation approaches (on average) the
solution of the averaged equation. Moreover, the average difference between the two
solutions is O(h).

N ā11 ā22 ā12 ‖u− ū‖2 〈‖u− ū‖2〉
8 6.834 3.194 0.731 2.747×10−2 3.635×10−2

16 6.745 3.209 0.736 2.622×10−2 2.146×10−2

24 6.657 3.224 0.741 9.839×10−3 1.699×10−2

32 6.628 3.229 0.743 9.934×10−3 9.940×10−3

40 6.672 3.221 0.740 1.923×10−2 8.358×10−3

48 6.683 3.220 0.740 5.064×10−3 6.583×10−3

56 6.538 3.244 0.748 4.283×10−3 6.029×10−3

64 6.496 3.251 0.750 5.144×10−3 6.624×10−3

72 6.624 3.229 0.743 5.976×10−3 5.100×10−3

80 6.636 3.227 0.742 3.008×10−3 4.009×10−3

88 6.594 3.234 0.745 3.239×10−3 3.454×10−3

96 6.592 3.235 0.745 3.821×10−3 3.902×10−3

104 6.564 3.239 0.746 2.369×10−3 3.145×10−3

112 6.574 3.238 0.746 2.870×10−3 2.979×10−3

120 6.572 3.238 0.746 3.141×10−3 2.986×10−3

Table 5.6. Results for a problem with random coefficients on an N×N grid. The averaged
coefficients are ā11, ā22, ā12. The errors include the L2 difference between the solution of the ho-
mogenized equation and the solution of a random equation as well as the average difference over 20
trials.

(a) (b)

Fig. 5.6. Results for a problem with random coefficients. (a) Log-log plot of the L2 differ-
ence between the homogenized solution and a random solution. (b) Log-log plot of the average L2

difference between the homogenized solution and a random solution over 20 trials.

6. Conclusions
We recovered a simple formula for the averaged operator of the non-divergence

structure elliptic operator with rapidly varying, periodic coefficients. This formula was
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available in the literature using probabilistic techniques; we gave a formal derivation
using partial differential equation techniques. The derivation can be made rigorous.
We also presented several special cases where the adjoint problem could be solved in
closed form, leading to a closed form result for the averaged operator. This could be
accomplished for a wider set of examples than in the divergence structure case. We
also showed that the homogenized operators are generally different between the two
cases.

The second part was numerical computations. The adjoint equation was dis-
cretized using finite differences, and solved using a Gauss-Seidel method. The effort
involved in solving this problem is comparable (or less) to the corresponding problem
in the divergence structure case. The numerics were validated for finite ε against
resolved numerical solutions. The formal asymptotic convergence rate O(ε2) was also
validated.
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