
COMM. MATH. SCI. c© 2004 International Press

Vol. 2, No. 1, pp. 95–120

DIFFUSION INDUCED BY GRAIN BOUNDARIES: A SHE MODEL∗

NAOUFEL BEN ABDALLAH † AND HÉDIA CHAKER ‡

Abstract. Classical motion of electrons in a two dimensional superlattice is considered. The
lattice unit cell is a square with a small side. When electrons hit a cell side, they are reflected
with a probability R and transmitted with probability T . A diffusion approximation of the model
is performed and leads to a diffusion equation in position-energy variables ( SHE model). The
diffusion constant can be expressed explicitly in terms of reflection-transmission coefficients. The
mathematical problem is a two dimensional version of a previous work in the one dimensional case [ N.
Ben Abdallah, P. Degond, A. Mellet, F. Poupaud, Electron transport in semiconductor superlattices,
Quarterly Appl. Math. 2003, 61 (1) 161-192], and appears in the modeling of gas sensors.

1. Introduction
Polycrystalline semiconductors, in thin layers, are used in many technological

applications such as gas detectors [20, 21, 24]. The polycrystal is a collection of mi-
croscopic crystal grains separated from each other by very thin regions called grain
boundaries. At the grain boundary, charges can be trapped thus creating and/or
modulating a localized potential barrier. This in turn modifies the probability that
an electron hitting the grain boundary is transmitted to a neighboring grain or re-
flected back. The reflection-transmission phenomenon is responsible for the surface
conductivity of the gas sensor, and is used to measure the concentration of the gas [20].
The principle of operation is as follows: as the gas molecules are deposited on the sen-
sor surface, they are ionized and adsorbed. They are more likely to be trapped at the
grain boundaries. The value of the trapped charge is directly related to the gas con-
centration; this relationship depends on the adsorption mechanism [5, 27]. Of course,
the higher the gas concentration is the bigger the trapped charge. Its value, together
with the doping concentration and the macroscopic electron density, determine the
electrostatic structure at the grain boundary. This in turn determines the reflection-
transmission coefficients across the grain boundary from which the conductivity of
the gas sensor can be deduced. To summarize, the value of the gas concentration
determines the conductivity of the sensor. By measuring the current flowing through
the sensor, its conductivity is measured which allows us to deduce the gas concentra-
tion. The aim of this paper is to show how the conductivity can be deduced from the
reflection-transmission coefficients of the grain boundaries. This is done by deriving
a diffusion model whose diffusion coefficients are directly expressed in terms of the
reflection-transmision coefficients. The grains are assumed to be arranged in a peri-
odic bidimensional lattice, and the scattering coefficients at the grain boundaries are
assumed to be known. We do not consider here the way to compute these coefficients
from the electrical structure of the grain boundary. The scaled length of a simple
grain is denoted by α and is assumed to be very small. Electrons are submitted to a
macroscopic electrostatic potential and flow according to Newton’s law in the grain.
When they hit the grain boundary, they have a probability R to be reflected back
following Descartes law and a probability T to be tranmitted to the neighboring grain
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without changing their velocity. Since the grains are very small, electrons undergo a
large number of collisions with grain boundaries which drive them towards a diffusive
motion, and because the interaction is elastic (the kinetic energy is conserved during
the collision with the grain boundary), diffusion occurs not only in position but also
in energy variables. The diffusion model that is obtained is the so-called Spherical
Harmonics Expansion (SHE) model which is now a standard transport model in semi-
conductors [17, 18, 19, 25]. It has been derived for relaxation collision operators in
bulk semiconductors [16] and then generalized to general collision operators in [2].
In [6, 7, 8, 9, 11, 12, 13], The SHE model is derived in many other areas of charge
particle transport such as plasmas or gas discharges. In these references, volume and
surface collisions are considered. In [4], a one dimensional SHE model is derived for
electron transport in semiconductor superlattices as a diffusion limit of the Vlasov
equation with transmission-reflection interface conditions. The SHE model has also
been obtained from a discrete transfer matrix model [14, 15].

The present work is a two dimensional generalization of [4]. The outline of the
paper is the following. In Section 2, the setting of the problem, the hypotheses as well
as the main results are given. The SHE model being the limit as the length size α of
the grain sides tends to zero, Section 3 is devoted to the study of the problem for a
positive α. In Section 4, uniform estimates in α are obtained and the limit α → 0 is
performed in Section 5. Finally, an extension of the result is developed in Section 6.
The mathematical arguments involved in the proofs of Sections 3, 4 and 5 are similar
to the one dimensional case [4]. We shall only develop in detail the specific issues
raised by the bidimensional setting.

2. Setting of the problem and main results
The geometry of the problem is bidimensional. The position coordinates are

denoted by x = (x1, x2) ∈ IR2. The grains are assumed to be squares of side α
arranged periodically. Each grain occupies a cell In,m = [nα, (n+1)α]×[mα, (m+1)α].
The grain boundaries are the interfaces between two adjacent grains. The vertical
interfaces Vn,m are located at (x1 = nα; x2 ∈ [mα, (m + 1)α]) while the horizontal
onces Hn,m are located at (x1 ∈ [nα, (n + 1)α]; x2 = mα) with n ∈ ZZ and m ∈ ZZ
(see Fig 2.1). We shall use the notation Vn = ∪m∈ZZVn,m = nα × IR and Hm =
∪n∈ZZHn,m = IR ×mα

Hn,m

Vn,m In,m

x2 = mα

x1 = nα

Fig. 2.1. unit cells, vertical and horizontal interfaces

The electron distribution function is denoted by f(t, x, v); the position variable
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x = (x1, x2) belongs to Ω = IR2/Lα where Lα = αZZe1 × IRe2 ∪ IRe1 × αZZe2, the
velocity v = (v1, v2) is in IR2, while the time variable t belongs to [0,∞). In the grains,
the distribution function f is a solution of the scaled collisionless Vlasov equation

α∂tf
α + v · ∇xf

α + ∇xV · ∇vf
α = 0, x ∈ Ωα, v ∈ IR2, t ≥ 0, (2.1)

where V = V (x) is the electrostatic potential assumed to be a known, stationary,
regular function varying over the macroscopic scale. For any given function ϕ(x, v),
the left, right, upper and lower traces of ϕ on the grain boundaries are defined by

ϕ∓
Vn

(x2, v) = γ∓Vn
(ϕ)(x2, v) = lim

x1→nα∓
ϕ(x, v),

ϕ∓
Hm

(x1, v) = γ∓Hm
(ϕ)(x1, v) = lim

x2→mα∓
ϕ(x, v),

while the outgoing and incoming traces are given by

γout
Vn

(ϕ)(x2, v) =
{
ϕ−

Vn
(x2, v), if v1 > 0,

ϕ+
Vn

(x2, v), if v1 < 0,

γinc
Vn

(ϕ)(x2, v) =
{
ϕ−

Vn
(x2, v), if v1 < 0,

ϕ+
Vn

(x2, v), if v1 > 0,

γout
Hm

(ϕ)(x1, v) =
{
ϕ−

Hm
(x1, v), if v2 > 0,

ϕ+
Hm

(x1, v), if v2 < 0,

γinc
Hm

(ϕ)(x1, v) =
{
ϕ−

Hm
(x1, v), if v2 < 0,

ϕ+
Hm

(x1, v), if v2 > 0.

The grain boundary is assumed to behave as an electrostatic barrier or well which has
a fast transversal dependence and a slow parallel one. Therefore, an electron hitting
the grain boundary has a probability T to be transmitted to the neighboring cell and
a probability R to be reflected back following Descartes law (see Figure 2.2). The
reflection and transmission coefficients R and T depend on the microstructure of the
grain boundary and are functions of the electron energy and position. They can be
computed by solving the Schrödinger equation [3]. The boundary condition for the
distribution function fα is then written in terms of these coefficients

γinc
Vn
fα = BV (nα, x2)γout

Vn
fα, (2.2)

γinc
Hm

fα = BH(x1,mα)γout
Hm

fα, (2.3)

where the operators BV and BH are defined by

(BV (x)ϕ)(v) = RV (x, v)ϕ(x,−v1, v2) + T V (x, v)ϕ(x, v), (2.4)

(BH(x)ϕ)(v) = RH(x, v)ϕ(x, v1,−v2) + T H(x, v)ϕ(x, v). (2.5)
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RV

(v1, v2)

(−v1, v2) (v1, v2)
T V

Vn,m

RH
(v1, v2)

(v1, −v2)

(v1, v2)
T H

Hn,m

Fig. 2.2. Reflection-transmission picture at a grain boundary

In the sequel, we shall sometimes use the short notation

B(x) = BV (x) for x ∈ ∪n∈ZZVn; B(x) = BH(x) for x ∈ ∪m∈ZZHm (2.6)

Remark 2.1. BV (x) only acts on the v1 variable, the variable v2 being only a pa-
rameter. Analogously, v1 is only a parameter for BH(x) which acts on the v2 variable
only.

The aim of the paper is the analysis of the limit α→ 0 of the kinetic model (2.1),
(2.2), (2.3), with the initial data

fα(t = 0, x, v) = fα
I (x, v), x ∈ Ωα, v ∈ IR2. (2.7)

To avoid the treatment of initial layers, we shall assume that the initial datum is well
prepared. Namely we assume

Hypothesis 2.1. There exists a smooth function FI(x, ε1, ε2) defined on IR2 × IR2
+,

satisfying:

FI(x,
v2
1

2
,
v2
2

2
) ∈ L2(IR2 × IR2

+), (v · ∇x + ∇xV · ∇v)FI(x,
v2
1

2
,
v2
2

2
) ∈ L2(IR2 × IR2

+),

(2.8)
such that

fα
I (x, v) = FI(x,

v2
1

2
,
v2
2

2
), x ∈ Ωα, v ∈ IR2. (2.9)

The electrostatic potential is assumed to satisfy the following hypothesis

Hypothesis 2.2. The electric field ∇xV belongs to the Sobolev space W 1,∞(IR2)2.

Hypothesis 2.3. The reflection and transmission coefficients are even functions of
v1 and v2 and C1 functions of (x, ε1, ε2), where εi = v2

i

2 . They satisfy the positivity
property : 0 < T H,V (x, ε1, ε2) < 1, ∀(x, ε1, ε2) ∈ IR2 × IR2

+ as well as the identity
T H,V +RH,V ≡ 1. We therefore write, RH,V = RH,V (x, ε1, ε2) ( respectively T H,V =
T H,V (x, ε1, ε2) instead of RH,V (x, v1, v2) ( respectively T H,V (x, v1, v2)).

The main result of this paper is the following
Theorem 2.1. i) Under Hypotheses 2.1, 2.2, 2.3, the problem (2.1),(2.2), (2.3) has
a solution fα (in a sense that will be specified further, see Proposition 4.2 ).
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ii) When α tends to zero, fα converges (up to the extraction of a subsequence)
in the weak star topology of L∞([0, T ], L2(IR2 × IR2)) for any T > 0. There exists a
function F (t, x, ε1, ε2) such that the limit f0(t, x, v) = F (t, x, v2

1
2 ,

v2
2
2 ). It is the solution

of the problem (SHE model) posed on the domain (x, ε1, ε2) ∈ IR2 × IR2
+:

2√
ε1ε2

∂tF + (∂x1 + ∂x1V ∂ε1)J1 + (∂x2 + ∂x2V ∂ε2)J2 = 0, (2.10)

J1 = −D11(∂x1 + ∂x1V ∂ε1)F, J2 = −D22(∂x2 + ∂x2V ∂ε2)F, (2.11)
∂x1V J1(t, x, 0, ε2) = 0, ∂x2V J2(t, x, ε1, 0) = 0, (2.12)
F (0, x, ε1, ε2) = FI(x, ε1, ε2). (2.13)

The diffusion coefficients D11, D22 are given by

D11 =
2√
2ε2

T V

(I − T V )
, D22 =

2√
2ε1

T H

(I − T H)
. (2.14)

3. Existence of the solution

3.1. Preliminaries. In this section, we introduce some notation and present
existence results for the perturbation problem. The methodology is identical to the
superlattice case developed in [4]. Therefore, many proofs are skipped. Following
the notation of [4], we denote by Lα = αZZe1 × IRe2 ∪ IRe1 × αZZe2, Ωα = IR2/Lα,
Oα = Ωα × IR2 and Γα = Lα × IR2. Oα is equipped with the usual L2 norm and
inner product. Note that L2(Oα) = L2(IR2 × IR2) since Lα × IR2 is a zero measure
set. Then

|u|2L2(Oα) =
∫

IR2×IR2
|u(x, v)|2dxdv.

We denote by L2
δ,i(IR

2)), i = 1, 2, the weighted L2 space, equipped with norm

|u|2L2
δ,i(IR

2) =
∫

IR2
|u(v)|2ωδ

i (v)dv,

with ωδ
1(v) = v1s

δ(v1)Iδ(v2) and ωδ
2(v) = v2s

δ(v2)Iδ(v1), where sδ(y) and Iδ(y) are
the continuous piecewise linear functions defined by

sδ(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

y

δ
, if 0 ≤ |y| ≤ δ,

sgn(y), if δ ≤ |y| ≤ 1
δ
− δ,

sgn(y)
δ

(
1
δ
− |y|), if

1
δ
− δ ≤ |y|,≤ 1

δ
,

0 if
1
δ
≤ |y|,

(3.1)

Iδ(y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if 0 ≤ |y| ≤ 1
δ
− δ,

1
δ
(
1
δ
− |y|), if

1
δ
− δ ≤ |y| ≤ 1

δ
,

0, if
1
δ
≤ |y|.

(3.2)
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where sgn is the sign function. The space L2
0,i(IR

2) (i = 1, 2) is nothing but the
weighted L2 space associated with the weight |vi|, which will be denoted by L2

i (IR
2).

We denote by L2(IRx1 , L
2
δ,2(IR

2)) the weighted L2 space, equipped with norm

|u|2L2(IRx1 ,L2
δ,2(IR2)) =

∫
IR

∫
IR2

|u(x1, v)|2ωδ
2(v)dvdx1

and L2(IRx2 , L
2
δ,1(IR

2)) the weighted L2 space, equipped with norm

|u|2L2(IRx2 ,L2
δ,1(IR

2)) =
∫

IR

∫
IR2

|u(x2, v)|2ωδ
1(v)dvdx2.

We denote by L2
δ(Γ

α) the set of functions u = (unα(x2, v), umα(x1, v))n∈ZZ,m∈ZZ such
that unα(x2, v)∈L2(IRx2 , L

2
δ,1(IR

2)) for all n ∈ ZZ and umα(x1, v) ∈ L2(IRx1 , L
2
δ,2(IR

2))
for all m ∈ ZZ. This set is naturally equipped with the norm

|u|L2
δ(Γα) =

(∑
n∈ZZ

α|unα|2L2(IRx2 ,L2
δ,1(IR

2)) +
∑

m∈ZZ

α|umα|2L2(IRx1 ,L2
δ,2(IR

2))

) 1
2

.

Proposition 3.1. i) For all x ∈ IR2 and all v2 ∈ IR, we consider BV as an operator
on L2

1(IR). It is self-adjoint and the null-space N(I −BV ) is the set of even functions
with respect to v1 while Im(I − BV ) is the set of odd functions with respect to v1.

ii)The same result holds for BH considered as an operator on L2
2(IR) by exchanging

the roles of v1 and v2.
Proof: The result is immediate since (I − BV )φ = RV (x, ε1, ε2)(φ(v1, v2) −

φ(−v1, v2)).

Let us now denote by QV ( respectively QH) the orthogonal projector of L2
1(IR

2)
(respectively L2

2(IR
2)) onto the the space of even functions with respect to v1 (respec-

tively v2) and introduce PV = I − QV (respectively PH = I − QH) where I is the
identity on L2

1(IR
2) (respectively L2

2(IR
2)). For x ∈ Lα, we define Q(x) and P (x) by

Q(x) =
{
QV , on ∪n∈ZZ Vn,
QH , on ∪m∈ZZ Hm,

P (x) =
{
PV , on ∪n∈ZZ Vn,
PH , on ∪m∈ZZ Hm.

; (P = I −Q).

It is readily seen that
Lemma 3.1. The operators Q, P , and B satisfy the following identities

PB = BP, QB = BQ = Q.

Moreover, there exists K1(x, v2) < 1 defined for x ∈ ∪n∈ZZVn and v2 ∈ IR ( respectively
K2(x, v1) < 1 defined for x ∈ ∪m∈ZZHm and v1 ∈ IR) such that

‖BV (x, v2)PV (x)‖L(L2
1(IR)) ≤ K1(x, v2)<1, ‖BH(x, v1)PH(x)‖L(L2

2(IR)) ≤ K2(x, v1)<1.

Finally, we have

‖B̃‖L(L2
1(IR)×L2

2(IR)) ≤ 1.
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Hypothesis 3.1. Let

K=max

⎛
⎜⎜⎜⎜⎝ sup

x ∈ ∪n∈ZZVn

v2 ∈ IR

K1(x, v2), sup
x ∈ ∪m∈ZZHm

v1 ∈ IR

K2(x, v1)

⎞
⎟⎟⎟⎟⎠ .

We assume that K < 1.
Following the notations of [4], the transport operator is defined by

Aαu = v · ∇xu+ ∇xV · ∇vu

on the domain Hα(A,B) = {u ∈ Hα(A), γout
α (u) ∈ L2(Γα), γinc

α (u) = Bγout
α (u)},

where the space Hα(A) is defined by Hα(A) = {u ∈ L2(Oα),Aαu ∈ L2(Oα)}. The
spaces Hα(A) and Hα(A,B) are equipped with the graph norm

|u|2Hα(A) = |u|2L2(Oα) + |Aαu|2L2(Oα).

We shall denote by A the bare differential operator, when no indication of the domain
is needed. Defining

Hα
0 (A) = {u ∈ L2(Oα),Aαu ∈ L2(Oα), γout

α (u) ∈ L2(Γα)}.

We have the following Green’s formula [1].
Lemma 3.2. (Green’s formula) For v, w in Hα

0 (A), we have

(Au, v)L2(Oα)+(u,Av)L2(Oα)=
1
α

[
(γout

α (u), γout
α (u))L2(Γα)−(γinc

α (u), γinc
α (u))L2(Γα)

]
,

(3.3)
where (·, ·)L2(Oα) and (·, ·)L2(Γα) stand for the inner products associated with the norms
of L2(Oα) and L2(Γα).

In order to prove the existence of a solution of the problem (2.1), (2.2), (2.3), we
proceed analogously to [4] and define the perturbed boundary operator

Bη = BP +
1

1 + η
Q, η > 0,

as well as the operator Aα
η = A on the domain Hα(A,Bη), defined by:

Hα(A,Bη) = {u ∈ Hα(A), γout
α (u) ∈ L2(Γα), γinc

α (u) = Bηγ
out
α (u)}.

For the perturbed problem, we have:
Lemma 3.3. For all η > 0, for all Fη ∈ Hα(A,Bη), there exits a unique function
fα

η ∈ C([0, T ];Hα(A,Bη)) ∩ C1([0, T ];L2(Oα)), solving
{
α∂tf

α
η + Afα

η = 0,
(fα

η )t=0 = Fη.
(3.4)

Moreover, we have the following estimates:

|fα
η |L2(Oα) ≤ |Fη|L2(Oα); |α∂tf

α
η |L2(Oα) = |Afα

η |L2(Oα) ≤ |AFη|L2(Oα). (3.5)
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Lemma 3.4. Let FI be as in Hypothesis 2.1. There exits a sequence (η) tending to
zero and (Fη)η>0 such that Fη ∈ Hα(A,Bη) and

Fη ⇀ FI , AFη ⇀ AFI weakly in L2(Oα).

The proofs of the above Lemmas are obtained in the same way as in the one
dimensional case [4] and are skipped. Estimates (3.5) allow us to take the limit η → 0
in the equation (3.4). In order to take the limit in the equality γinc

α (fα
η ) = Bηγ

out
α (fα

η ),
we need to prove uniform estimates on traces. This is the aim of the next section.

4. L2 trace estimates
In this section, we establish the control of γout

α (u), γinc
α (u) in term of |u|L2(Oα).

The proofs are given in detail since the bidimensional geometry induces notable
changes. Indeed, since the unit cell in the two dimensional case is a square and
has a corner, singular terms appear as one uses straightforward extensions of the one
dimensional proof. Therefore, we use cutoff functions which vanish at the square cor-
ners. Passing to the limit in the cutoff has then to be done carefully by linking the
cutoff length to the parameter α. Let us first define the cutoff function Φα,β for α > 0
and 0 < β < 1 by

Φα,β(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
αβ

(y − iα), y ∈ (iα, (i+ β)α),

1, y ∈ (i+ β)α, (i + 1 − β)α),
1
αβ

((i+ 1)α− y), y ∈ ((i+ 1 − β)α, (i+ 1)α).

(4.1)

Proposition 4.1. Under Hypotheses 2.2 and 3.1, we have for all u ∈ Hα(A,Bη)
i)

|Pγinc
α (u)|2L2(Γα) ≤ |Pγout

α (u)|2L2(Γα) ≤
2α

1 −K2
(Au, u)L2(Oα), (4.2)

(1 − 1
(1 + η)2

)|Qγout
α (u)|2L2(Γα) ≤ 2α(Au, u)L2(Oα). (4.3)

ii)

(1 + η)Qγinc
α (u) = Qγout

α (u), (4.4)

|Qγout
α (u)

√
Φα,β|2L2

δ(Γα) ≤ C1α|u|2Hα(A) + C2(1 +
α

δ
+

1
β

)|u|2L2(Oα), (4.5)

where C1, C2 are positive constants independent of α, β, δ and u.
Proof: i) Let u ∈ Hα(A,Bη). By Green’s formula (3.3), we have

2α (Au, u)L2(Oα) = |γout
α (u)|2L2(Γα) − |γinc

α (u)|2L2(Γα)

= |γout
α (u)|2L2(Γα) − |Bηγ

out
α (u)|2L2(Γα)

= |Pγout
α (u)|2L2(Γα) − |BPγout

α (u)|2L2(Γα) + (1 − 1
(1 + η)2

)|Qγout
α (u)|2L2(Γα)

≥ (1 −K2)|Pγout
α (u)|2L2(Γα) + (1 − 1

(1 + η)2
)|Qγout

α (u)|2L2(Γα).
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which leads to (4.2), (4.3).
ii) Identity (4.4) is immediate. To prove (4.5), we only detail the contribution

of QV (the treatement of QH being identical). Define ψ1(x1, x2) = φ1(x1)Φα,β(x2)

where φ1(x1) =
2
α

(x1 − (n+
1
2
)α), x1 ∈ (nα, (n + 1)α). Using the Green’s formula

as before, we get for all δ > 0

2
(
Au, usδ(v1)Iδ(v2)ψ1

)
L2(Oα)

+
∫
Oα

|u|2
[
ωδ

1(v)∂x1ψ1(x) + sδ(v1)Iδ(v2)v2 · ∂x2ψ1(x)
]
dxdv

+
∫
Oα

|u|2ψ1(x)[∂x1V ∂v1s
δ(v1)Iδ(v2) + ∂x2V s

δ(v1)∂v2I
δ(v2)]dxdv

=
∑
n∈ZZ

∫
IR

∫
IR2

[
1 +

1
(1 + η)2

]
|QV γ

out
Vn

(u)|2Φα,β(x2)ωδ
1(v)dvdx2

+
∑
n∈ZZ

∫
IR

∫
IR2

[
|PV γ

out
Vn

(u)|2 + |PV γ
inc
Vn

(u)|2
]
Φα,β(x2)ωδ

1(v)dvdx2

+2
∑
n∈ZZ

∫
IR

∫
IR2

[
PV γ

out
Vn

(u) +
1

1 + η
PV γ

inc
Vn

(u)
]
QV γ

out
Vn

(u)Φα,β(x2)ωδ
1(v)dvdx2

The last term of the above identity can be bounded from below by

−4
∑
n∈ZZ

∫
IR

∫
IR2

[
|PV γ

out
Vn

(u)|2 + |PV γ
inc
Vn

(u)|2
]
Φα,β(x2)ωδ

1(v)dvdx2

−1
4

∑
n∈ZZ

∫
IR

∫
IR2

[
(1 +

1
(1 + η)2

)|QV γ
out
Vn

(u)|2
]

Φα,β(x2)ωδ
1(v)dvdx2

Therefore, we get

∑
n∈ZZ

∫
IR

∫
IR2

3
4

[
1 +

1
(1 + η)2

]
)|QV γ

out
Vn

(u)|2Φα,β(x2)ωδ
1(v)dvdx2

≤ 2
(
Au, usδ(v1)Iδ(v2)ψ1

)
L2(Oα)

+
1
αβ

∫
Oα

|u|2
[
sδ(v1)Iδ(v2)v2.φ1(x1)

]
dxdv

+
2
α

∫
Oα

|u|2
[
ωδ

1(v)Φα,β(x2)
]
dxdv

+|∇xV |L∞
[
|∂v1s

δ(v1)|L∞ + |∂v2I
δ(v2)|L∞

] ∫
Oα

|u|2dxdv

+3
∑
n∈ZZ

∫
IR

∫
IR2

[
|PV γ

out
Vn

(u)|2 + |PV γ
inc
Vn

(u)|2
]
|v1|dvdx2.

(4.6)
After multiplying (4.6) by α and using the boundedness of φ1, Φα,β ,
ωδ

1(v), sδ(v1)Iδ(v2)v2 and the inequality δ|∂v1s
δ(v1)|L∞ + δ|∂v2I

δ(v2)|L∞ ≤ C, we
obtain

∑
n∈ZZ

α|QV γ
out
Vn

(u)
√

Φα,β|2L2(IRx2 ,L2
δ,1(IR2)) ≤ C1α|u|2Hα(A) + C2(1 +

α

δ
+

1
β

)|u|2L2(Oα),

(4.7)
Proceeding analogously we obtain the same inequality of QV γ

out
Hm

(u) which leads to
(4.5).
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4.1. Existence of a solution to the problem. We can prove the first part
of the Theorem 2.1. More precisely, we have
Proposition 4.2. Under hypotheses 2.1, 2.2, 2.3, 3.1 , there exists a solution fα to
problem (2.1), (2.2), (2.3) , such that fα∈L∞(0, T ;L2(Oα)), Afα∈L∞(0, T ;L2(Oα)),
Pγout

α (fα)∈L∞(0, T ;L2(Γα)), Qγout
α (fα)

√
Φα,β∈L∞(0, T ;L2

δ(Γ
α)), for all δ > 0 and

0 < β < 1, and the boundary condition is satisfied in the following sense:

Pγinc
α (fα) = BPγout

α (fα),

Qγinc
α (fα) = Qγout

α (fα).

Lemma 4.1. There exists a constant C independent of α such that
∫ T

0

|Pγinc
α (fα

η )(t)|2L2(Γα)dt ≤ Cα2|FI |L2(IR2×IR). (4.8)

The proof of Proposition 4.2 and Lemma 4.1 follow exactly the same lines as those
Proposition 3.11 and Lemma 3.13 of [4]. They are skipped.

5. Convergence towards the macroscopic model
In this section, we prove the convergence part of Theorem 2.1, according to the

scheme outlined in the introduction.

5.1. L2 estimates. Let us first summarize the L2 estimates deduced from the
previous section.
Lemma 5.1. The solution fα of problem constructed in the previous section satisfies

|fα|C0([0,T ],L2(Oα)) ≤ |FI |L2(IR2×IR2
+), (5.1)

∫ T

0

|Pγout
α (fα)(t)|2L2(Γα)dt ≤ Cα2|FI |2L2(IR2×IR2

+), (5.2)

∫ T

0

|Pγinc
α (fα)(t)|2L2(Γα)dt ≤ Cα2|FI |2L2(IR2×IR2

+), (5.3)

∫ T

0

|Qγout
α (fα)(t)

√
Φα,β |2L2

δ(Γα)dt ≤ (Cδ +
C

β
)|FI |Hα(A), (5.4)

where C denotes generic constants independent of α and of the data and Φα,β is
defined in (4.1).

We immediately deduce from the Lemma 5.1 the existence of a subsequence (still
denoted by fα) and a function f0 in L∞([0, T ], L2(IR2 × IR2)) such that

fα ⇀ f0 in L∞((0, T ), L2(IR2 × IR2)) weak star,

when α → 0. In view of Lemma 5.1, the trace γout
α (fα) and γinc

α (fα) converge to
functions of (ε1, ε2) when εi = v2

i

2 . In the next Lemma, we prove that this asymptotic
behavior holds for the whole function f0.
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Lemma 5.2. Let f0 be the limit of the sequence fα. Then, there exists a function
F (t, x, ε1, ε2) such that

f0(t, x, v) = F (t, x,
v2
1

2
,
v2
2

2
).

Proof: Setting β =
√
α, we notice the Φα,

√
α ∈ L2

loc(IR) and Φα,
√

α → 1 in the
strong topology of L2

loc(IR) as α → 0. Let us first prove that f0(t, x, v) is even with
respect to v1. To this aim, we consider a test function ϕ in D((0, T )× IR2 × IR2) such
that ϕ is even with respect to v1 and prove that

〈(fαv1, ϕ〉D′,D = 0

The starting point is the decomposition

〈(fαv1, ϕ〉D′,D = 〈(fαv1(1 − Φα,
√

α), ϕ〉D′,D + 〈(fαv1Φα,
√

α, ϕ〉D′,D

We shall now prove the convergence of both terms of the right hand side to zero as α
tends to zero. Let us start with the second term. We first introduce the function

ψα(x1) = (n+
1
2
)α− x1; on [nα, (n+ 1)α].

Applying the Green’s formula (3.3) with ϕψαΦα,
√

α as a test function leads to

−
∫ T

0

∫
Oα

v1f
αϕ∂x1ψ

α(x1)Φα,
√

α(x2)dxdvdt

=
∫ T

0

∫
Oα

fα(α∂tϕ+ Aαϕ)ψα(x1)Φα,
√

α(x2)dxdvdt

+
∫ T

0

∫
Oα

v2f
αϕψα(x1)∂x2Φα,

√
α(x2)dxdvdt

−
∫ T

0

∫
IR2

∑
n∈ZZ

∫
IR

v1

{
γ−Vn+1

(fαϕψα) − γ+
Vn

(fαϕψα)
}

Φα,
√

α(x2)dx2dvdt.

(5.5)

Since |ψα|L∞ ≤ α and |Φα,
√

α|L∞ ≤ 1, the first term of the right hand side of (5.5),
denoted by Mα, can be bounded by

|Mα| ≤ αN(ϕ)|fα|L2([0,T ]×IR2×IR2), (5.6)

where N(ϕ) depends on ϕ and its derivatives. Since ∂x1ψ
α=−1 and γ−Vn+1

(ψ)α = −α
2 ,

γ+
Vn

(ψ)α = α
2 , we deduce from (5.5) that

〈fαv1 Φα,
√

α, ϕ〉D′,D = Mα +
∫ T

0

∫
Oα

v2f
αϕψα(x1)∂x2Φα,

√
α(x2)dxdvdt

+
α

2

∫ T

0

∫
IR2

∑
n∈ZZ

∫
IR

v1

{
γ−Vn+1

(fαϕ) + γ+
Vn

(fαϕ)
}

Φα,
√

α(x2)dx2dvdt.

Using the orthogonality of QV γ
+
Vn

(fα) (respectively QV γ
−
Vn+1

(fα) ) and v1γ
+
Vn

(ϕ)
(respectively v1γ−Vn+1

(ϕ)), we obtain

〈fαv1 Φα,
√

α, ϕ〉D′,D = Mα +
∫ T

0

∫
Oα

v2f
αϕψα(x1)∂x2Φα,

√
α(x2)dxdvdt

+
α

2

∫ T

0

∫
IR2

∑
n∈ZZ

∫
IR

v1Φα,
√

α(x2)
{
PV γ

+
Vn

(fα)(t, x2, v)ϕ(t, nα, x2, v)

+PV γ
−
Vn+1

(fα)(t, x2, v)ϕ(t, (n + 1)α, x2, v)
}
dx2dvdt.

(5.7)
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Since |Φα,
√

α|L∞ ≤ 1 and ϕ is compactly supported, we have

|
∫ T

0

∫
IR2

∑
n∈ZZ

α

2

∫
IR

v1PV γ
−
Vn+1

(fα)(t, x2, v)Φα,
√

α(x2)ϕ(t, (n+ 1)α, x2, v)dx2dvdt|

≤ N(ϕ)
[
|Pγout

α (fα)(t)|2L2([0,T ],L2(Γα)) + |Pγinc
α (fα)(t)|2L2([0,T ],L2(Γα))

] 1
2

= O(α).
(5.8)

Besides,
∫ T

0

∫
Oα

v2f
αϕψα(x1)∂x2Φα,

√
α(x2)dxdvdt

=
1

α
√
α

∫ T

0

∫
IR2

∫
IR

∑
m∈ZZ

∫ (m+
√

α)α

mα

v1f
α(t, x, v)ψα(x1)ϕ(t, x, v)dx2dvdt

− 1
α
√
α

∫ T

0

∫
IR2

∫
IR

∑
m∈ZZ

∫ (m+1)α

(m+1−√
α)α

v1f
α(t, x, v)ψα(x1)ϕ(t, x,v)dx2dvdt

=
1

α
√
α

∫ T

0

∫
IR2

∫
IR

∑
m∈ZZ

∫ (m+
√

α)α

mα

v1f
α(t, x, v)ψα(x1)[ϕ(t, x, v)

−ϕ(t, x1, (m+
1
2
)α, v)]dx2dvdt

+
1

α
√
α

∫ T

0

∫
IR2

∫
IR

∑
m∈ZZ

∫ (m+1)α

(m+1−√
α)α

v1f
α(t, x, v)ψα(x1)[ϕ(t, x1, (m+

1
2
)α, v)

−ϕ(t, x, v)]dx2dvdt.

Using the inequalities
∫ T

0

∫
IR2

∫
IR

∑
m∈ZZ

∫ (m+1)α

(m+1−√
α)α

(
ϕ(t, x1, (m+

1
2
)α, ε) − ϕ(t, x1, x2, v)

)2

dx1dx2dvdt

≤ C(ϕ)α2,

∫ T

0

∫
IR2

∫
IR

∑
m∈ZZ

∫ (m+
√

α)α

mα

(
ϕ(t, x1, (m+

1
2
)α, v) − ϕ(t, x1, x2, v)

)2

dx1dx2dvdt.

≤ C(ϕ)α2

and |ψα|L∞ ≤ α, we obtain
∫ T

0

∫
Oα

v2f
αϕψα(x1)∂x2Φα,

√
α(x2)dxdvdt ≤

√
αN(ϕ)|fα|L2([0,T ]×IR2×IR2). (5.9)

Therefore, in view of (5.6),(5.8) and (5.9), (5.7) leads to the estimates

〈fαv1Φα,
√

α, ϕ〉D′,D = O(α)

Besides

〈fαv1(1 − Φα,
√

α), ϕ〉D′,D ≤ |fα|L2([0,T ]×IR2×IR2)|v1(1 − Φα
√

α)|L2([0,T ]×IR2×IR2).

Since ϕ is compactly supported, |Φα,
√

α|L∞ ≤ 1 and Φα,
√

α tends to 1 a.e., the
Lebesgue dominated convergence theorem insures the convergence to zero of |v1(1 −
Φα

√
α)|L2([0,T ]×IR2×IR2). We have finally proven that

lim
α→0+

〈v1fα, ϕ〉D′,D = 0
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which shows that

〈v1f0, ϕ〉D′,D = 0

Therefore, f0 is even with respect to v1. Similarly, it is even with respect to v2.

5.2. The kinetic problem in weak form and the continuity equation.
We first write problem (2.1), (2.2), (2.3) in a weak form. Green’s formula (3.3)

immediately gives the following lemmas:

Lemma 5.3. Let fα be the solution of (2.1), (2.2), (2.3). For any φ∈C1
c ([0, T ], Hα

0 (A))
such that φ(T, ·, ·, ·) = 0, we have∫ T

0

∫
Oα

fα(t, x, v) [α∂tφ+ v · ∇xφ+ ∇xV · ∇vφ] (t, x, v)dxdvdt

+α
∫
Oα

fα
I (x, v)φ(0, x, v)dxdv = − 1

α

∫ T

0

(γout
α (fα), γout

α (φ) − Bγinc
α (φ))L2(Γα).

(5.10)

Let us define the ′′macroscopic′′ quantities

Fα(t, x, ε1, ε2) =
1
4

∑
s1,s2=∓1

fα(t, x, s1
√

2ε1, s2
√

2ε2), (5.11)

Jα
1 (t, x, ε1, ε2) =

1
α
√

2ε2

∑
s2=∓1

[
fα(t, x,

√
2ε1, s2

√
2ε2) − fα(t, x,−

√
2ε1, s2

√
2ε2)

]
,

(5.12)

Jα
2 (t, x, ε1, ε2) =

1
α
√

2ε1

∑
s1=∓1

[
fα(t, x, s1

√
2ε1,

√
2ε2) − fα(t, x, s1

√
2ε1,−

√
2ε2)

]
.

(5.13)
We have

Lemma 5.4. Let fα be the solution of (2.1), (2.2), (2.3). For any test function
φ ∈ C1

c ([0, T ] × IR2 × IR2
+) such that φ(T, ·, ·, ·) = 0, we have∫ T

0

∫
Ωα×IR2

+

2
√
ε1ε2

Fα(t, x, ε1, ε2)∂tφ(t, x, ε1, ε2)dxdε1dε2dt

+
∫ T

0

∫
Ωα×IR2

+

Jα
1 (t, x, ε1, ε2)(∂x1 + ∂x1V ∂ε1)φ(t, x, ε1, ε2)dxdε1dε2dt

+
∫ T

0

∫
Ωα×IR2

+

Jα
2 (t, x, ε1, ε2)(∂x2 + ∂x2V ∂ε2)φ(t, x, ε1, ε2))dxdε1dε2dt

+
∫

IR2×IR2
+

2√
ε1ε2

FI(x, ε1, ε2)φ(0, x, ε1, ε2)dxdε1dε2 = 0.

(5.14)

Proof: Let fα
η be the solution of (3.4). From the Green’s formula (3.3), we

obtain∫ T

0

∫
Oα

fα
η (t, x, v) [α∂tφ+ v · ∇xφ+ ∇xV · ∇vφ] (t, x, v)dxdvdt

+α
∫
Oα

Fη(x, v)φ(0, x, v)dxdv

= 1
α

∫ T

0

(γout
α (fα

η ), γout
α (φ))L2(Γα) −

1
α

∫ T

0

(γinc
α (fα

η ), γinc
α (φ))L2(Γα),

(5.15)
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where γ(φ) = γout
α (φ) = γinc

α (φ). Thanks to the co-area formula, and to the orthogo-
nality between Pγout

α (fα
η ), Pγinc

α (fα
η ) and γ(φ), we have:

∫ T

0

∫
Ωα×IR2

+

2
√
ε1ε2

Fα
η (t, x, ε1, ε2)α∂tφ(t, x, ε1, ε2)dxdε1dε2dt

+α
∫ T

0

∫
Ωα×IR2

+

Jα
1 (t, x, ε1, ε2)(∂x1 + ∂x1V ∂ε1)φ(t, x, ε1, ε2)dxdε1dε2dt

+α
∫ T

0

∫
Ωα×IR2

+

Jα
2 (t, x, ε1, ε2)(∂x2 + ∂x2V ∂ε2)φ(t, x, ε1, ε2)dxdε1dε2dt

+α
∫

IR2×IR2
+

2
√
ε1ε2

FI(x, ε1, ε2)φ(0, x, ε1, ε2)dxdε1dε2

=
1
α

∫ T

0

(
1 − 1

1 + η
)Qγout

α (fα
η ), γ(φ)

)
L2(Γα)

.

(5.16)

(5.14) is then obtained by letting η tend to zero.

We are now aiming at taking the limit α → 0. We need to pass to the limit in
Fα and in (Jα = (Jα

1 , J
α
2 )T ). It is readily seen that

2
√
ε1ε2

Fα(t, x, ε1, ε2) ⇀
1
4

∑
s1,s2=∓1

f0(t, x, s1
√

2ε1, s2
√

2ε2)
2

√
ε1ε2

=
2

√
ε1ε2

F (t, x, ε1, ε2)

in L∞([0, T ], L2(IR2×IR2
+)) weak star. The analysis of the subsequence Jα = (Jα

1 , J
α
2 )T

is done in the next subsection.

5.3. Existence of a limit for the current. The function Jα = (Jα
1 , J

α
2 )T is

defined on (Ωα × IR2
+)2 and has traces γ∓Vn

(Jα
1 ), γ∓Hm

(Jα
2 ) at the interfaces, obviously

given by

γ∓Vn
(Jα

1 )(t, x2, ε1, ε2) =
1

α
√

2ε2

∑
s2=∓1

[
γ∓Vn

(fα)(t, x2,
√

2ε1, s2
√

2ε2)

−γ∓Vn
(fα)(t, x2,−

√
2ε1, s2

√
2ε2)

]
,

(5.17)

γ∓Hm
(Jα

2 )(t, x1, ε1, ε2) =
1

α
√

2ε1

∑
s1=∓1

[
γ∓Hm

(fα)(t, x1, s1
√

2ε1,
√

2ε2)

−γ∓Hm
(fα)(t, x1, s1

√
2ε1,−

√
2ε2)

]
.
(5.18)

Let us construct the piecewise constant functions

J̃α
V (t, x1, x2, ε1, ε2) =

1
2
(
γ−Vn

(Jα
1 ) + γ+

Vn
(Jα

1 )
)
(t, x2, ε1, ε2),

x1 ∈ ((n− 1
2 )α, (n+ 1

2 )α), x2 ∈ IR,

J̃α
H(t, x1, x2, ε1, ε2) =

1
2
(
γ−Hm

(Jα
2 ) + γ+

Hm
(Jα

2 )
)
(t, x1, ε1, ε2),

x1 ∈ IR, x2 ∈ ((m− 1
2 )α, (m+ 1

2 )α).

The existence of a limit of Jα is obtained through that of J̃α = (J̃α
V , J̃

α
H) as the

following lemma states:
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Lemma 5.5. The function J̃α = (J̃α
V , J̃

α
H) is bounded in L2([0, T ] × IR2, L2

loc(IR
2
+))2

and we have

Jα
1 − J̃α

V → 0, (5.19)

Jα
2 − J̃α

H → 0, (5.20)

as α → 0, in the distributional sense. There exists J = (J1, J2) in L2([0, T ] × IR2 ×
IR2

+)2 such that up to the extraction of a subsequence:

J̃α ⇀ J in L2([0, T ] × IR2 × IR2
+)2 weak (5.21)

and therefore Jα ⇀ J in the distributional sense. More precisely
∫ T

0

∫
Ωα

∫
IR2

+

Jα
1 φdε1dε2dxdt→

∫ T

0

∫
Ωα

∫
IR2

+

J1φdε1dε2dxdt, (5.22)

∫ T

0

∫
Ωα

∫
IR2

+

Jα
2 φdε1dε2dxdt→

∫ T

0

∫
Ωα

∫
IR2

+

J2φdε1dε2dxdt, (5.23)

as α→ 0 for all test functions φ ∈ C1
c ([0, T ] × IR2 × IR2

+).
We note that the convergence (5.22) and (5.23) allows us to pass to the limit in

(5.14) and we obtain
Corollary 5.1. For any test function φ ∈ C2

c ([0, T ]×IR2×IR2
+) such that φ(T, ·, ·, ·) =

0, we have
∫ T

0

∫
IR2×IR2

+

2√
ε1ε2

F (t, x, ε1, ε2)∂tφ(t, x, ε1, ε2)dxdε1dε2dt

+
∫ T

0

∫
IR2×IR2

+

J1(t, x, ε1, ε2)(∂x1 + ∂x1V ∂ε1)φ(t, x, ε1, ε2)dxdε1dε2dt

+
∫ T

0

∫
IR2×IR2

+

J2(t, x, ε1, ε2)(∂x2 + ∂x2V ∂ε2)φ(t, x, ε1, ε2))dxdε1dε2dt

+
∫

IR2×IR2
+

2√
ε1ε2

FI(x, ε1, ε2)φ(0, x, ε1, ε2)dxdε1dε2 = 0.

(5.24)

Proof of Lemma 5.5: We shall only give the detail of the proof of (5.19). We
first define the current carried by the outgoing and incoming traces:

Jα,out
Vn

(t, x2, ε1, ε2) =
1

α
√

2ε2

∑
s2=∓1

[
γout

Vn
(fα)(t, x2,

√
2ε1, s2

√
2ε2)

−γout
Vn

(fα)(t, x2,−
√

2ε1, s2
√

2ε2)
]
,

(5.25)

Jα,inc
Vn

(t, x2, ε1, ε2) =
1

α
√

2ε2

∑
s2=∓1

[
γinc

Vn
(fα)(t, x2,

√
2ε1, s2

√
2ε2)

−γinc
Vn

(fα)(t, x2,−
√

2ε1, s2
√

2ε2)
]
.

(5.26)

Then, we construct the piecewise constant functions Jα,out
V , Jα,inc

V as follows:

Jα,out
V (t, x1, x2, ε1, ε2) = Jα,out

Vn
(t, x2, ε1, ε2); x1 ∈ ((n− 1

2
)α, (n+

1
2
)α), x2 ∈ IR,
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Jα,inc
V (t, x1, x2, ε1, ε2) = Jα,inc

Vn
(t, x2, ε1, ε2); x1 ∈ ((n− 1

2
)α, (n+

1
2
)α), x2 ∈ IR.

Since

γout
Vn

(fα) + γinc
Vn

(fα) = γ+
Vn

(fα) + γ−Vn
(fα),

it is readily seen that

J̃α
V =

1
2
(Jα,inc

V + Jα,out
V ). (5.27)

By (5.27), in order to prove that J̃α
V bounded in L2([0, T ]× IR2, L2

loc(IR
2
+))2, it is

enough to show that Jα,out
V , Jα,inc

V are separately bounded in this space. The proof
follows the same lines as that of Lemma 4.5 of [4]. We shall skip it here for simplicity.
In order to prove that Jα

1 − J̃α
V in D′, we write

〈Jα
1 − J̃α

V , ϕ〉D′,D =
∫ T

0

∫
Ωα

∫
IR2

+

Jα
1 ϕdxdε1dε2dt−

∫ T

0

∫
Ωα

∫
IR+

J̃α
V ϕdxdε1, ε2dt = Mα

+
∫ T

0

∫
IR2

+

∑
n∈ZZ

∫
IR

∫ (n+1)α

(n+ 1
2 )α

γ−Vn+1
(Jα

1 )(t, x2, ε1, ε2) [ϕ(t, (n+ 1)α, x2, ε1, ε2)

−ϕ(t, x1, x2, ε1, ε2)] dx1dx2dε1dε2dt

+
∫ T

0

∫
IR2

+

∑
n∈ZZ

∫
IR

∫ (n+ 1
2 )α

nα

γ+
Vn

(Jα
1 )(t, x2, ε1, ε2) [ϕ(t, nα, x2, ε1, ε2) − ϕ(t, x1, x2, ε1, ε2)]

dx1dx2dε1dε2dt

−
∫ T

0

∫
IR2

+

∑
m∈ZZ

∫
IR

{
γ−Hm+1

(Jα
2 )(t, x1, ε1, ε2)ϕ(t, x1, (m+ 1)α, ε1, ε2)

− γ+
Hm

(Jα
2 )(t, x1, ε1, ε2)ϕ(t, x1,mα, ε1, ε2)

}
ψα(x1)dx1dε1dε2dt.

The last term of the right hand side of this identity can be estimated as follows
∫ T

0

∫
K

∑
m∈ZZ

∫
IR

|γ∓Hm+1
(Jα

2 )(t, x1, ε1, ε2)ϕ(t, x1, (m+ 1)α, ε1, ε2)ψα(x1)|dx1dε1dε2dt

≤ α1/2N(ϕ)
[
‖ Jα,out

H ‖2
L2([0,T ]×IR2,L2

Loc(IR
2
+))

+ ‖ Jα,inc
H ‖2

L2([0,T ]×IR2,L2
Loc(IR

2
+))

] 1
2
,

The other terms can be treated exactly as in the one-dimensional case (up to an
additional integration with respect to x2, v2) and are shown to converge to zero as α
tends to zero. This finally proves that limα→0(Jα

1 − J̃α
V ) = 0 in D′

The aim of the next subsection is to derive Equation (2.11) for the current.

5.4. Equation for the current. We first prove that there exists χV (x, v) and
χH(x, v) such that:

{
(I − BV )χV = 1

2 (I + BV )sgn(v1),
(I − BH)χV = 0, (5.28)

{
(I − BH)χH = 1

2 (I + BH)sgn(v2),
(I − BV )χH = 0. (5.29)
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Lemma 5.6. Problem (5.28) (respectively (5.29)) has a unique solution χV (respec-
tively χH) in the space of odd functions with respect to v1 (respectively v2) and even
with respect to v2 (respectively v1). Both χV , χH are in C1(IR2 × IR2).

Proof: Since BV has the simple form given in (2.4) and (2.5), we deduce from
Hypothesis 2.3 that the unique solution of (5.28) which is odd with respect to v1 is

χV (x, v) =
T V (x, ε1, ε2)

2(1 − T V (x, ε1, ε2))
sgn(v1).

It is readily seen that χV is even with respect to v2 which implies

(I − BH)χV = 0.

In the same way, we have

χH(x, v) =
T H(x, ε1, ε2)

2(I − T H(x, ε1, ε2))
sgn(v2).

From the regularity of T V (respectively T H) (Hypothesis 2.3), we obtain the regularity
of χV (respectively χH).

Let us now establish the equation for the current.

Lemma 5.7. The functions F and J satisfy the current equation (2.11) in the distri-
butional sense.

Proof: In order to derive the current equation (2.11), we use the weak formu-
lation (5.10) with (χV (x, v) + χH(x, v))ψ(t, x, ε1, ε2) as a test function and obtain

1
α

∫ T

0

∑
n∈ZZ

α

∫
IR

∫
IR2

γout
Vn

(fα)(t, x2, v)ψ(t, nα, x2, ε1, ε2))

(I − BV (nα, x2))(χV (nα, x2, v) + χH(nα, x2, v))|v1|dvdx2dt

+
1
α

∫ T

0

∑
m∈ZZ

α

∫
IR

∫
IR2

γout
Hm

(fα)(t, x1, v)ψ(t, x1,mα, ε1, ε2))

(I−BH(x1,mα))(χV (x1,mα, v)+χH(x1,mα, v))|v2|dvdx1dt

= α

∫ T

0

∫
Oα

fα(t, x, v) ∂t[(χV (x, v) + χH(x, v))ψ(t, x, ε1, ε2))]dxdvdt

+α
∫
Oα

fα
I (x, v)(χV (x, v) + χH(x, v))ψ(0, x, ε1, ε2)dxdv

+
∫ T

0

∫
Oα

fα(t, x, v).[v · ∇x + ∇xV · ∇v] [(χV (x, v) + χH(x, v))ψ(t, x, ε1, ε2)]dxdvdt.

(5.30)
Let us first consider the right-hand side of (5.30). The first two terms are multiplied
by α and obviously tend to zero. Since both F = lim fα and ψ only depend on ε1, ε2,
we claim that the third term has the following limit

lim
α→0

∫ T

0

∫
Oα

fα(t, x, v)(v · ∇x+∇xV · ∇v) [(χV (x, v)+χH(x, v))ψ(t, x, ε1, ε2)] dvdxdt

=
∫ T

0

∫
IR2

∫
IR2

+

F (t, x, ε1, ε2) {(∂x1 + ∂x1V ∂ε1) [ψ(t, x, ε1, ε2)D11(x, ε1, ε2)]

+(∂x2 + ∂x2V ∂ε2) [ψ(t, x, ε1, ε2)D22(x, ε1, ε2)]} dxdε1dε2dt,
(5.31)
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where

D11(x, ε1, ε2) =
4√
2ε2

χV (x,
√

2ε1,
√

2ε2),

D22(x, ε1, ε2) =
4√
2ε1

χH(x,
√

2ε1,
√

2ε2),

Indeed, using the oddness- evenness properties of χV , χH with respect to v1and v2,
we have

1
2
√
ε1ε2

∑
s1,s2=∓1

(s1
√

2ε1∂x1 + s2
√

2ε2∂x2) [ψ(t, x, ε1, ε2)
{
χV (x, s1

√
2ε1, s2

√
2ε2)

+ χH(x, s1
√

2ε1, s2
√

2ε2)
}]

= ∂x1 [ψ(t, x, ε1, ε2) D11(x, ε1, ε2)] + ∂x2 [ψ(t, x, ε1, ε2)D22 (x, ε1, ε2)]

and

1
2
√
ε1ε2

∑
s1,s2=∓1

∇xV.∇v[(χV (x, s1
√

2ε1, s2
√

2ε2)

+χH(x, s1
√

2ε1, s2
√

2ε2)ψ(t, x, ε1, ε2)]
= ∂x1V ∂ε1 [ψ(t, x, ε1, ε2)D11(x, ε1, ε2)] + ∂x2V ∂ε2 [ψ(t, x, ε1, ε2)D22(x, ε1, ε2)] .

Let us now deal with the left-hand side of (5.30). It is readily seen that

1
α

∫ T

0

∑
m∈ZZ

α

∫
IR

∫
IR2

γout
Hm

(fα)(t, x1, v)ψ(t, nα, x2, ε1, ε2))

(I − BV (nα, x2))(χV (nα, x2, v) + χH(nα, x2v))|v1|dvdx1dt

=
∫ T

0

∑
n∈ZZ

α

∫
IR

∫
IR2

1
α
PV γ

out
Vn

(fα)(t, x2, v)(I − BV (nα, x2))χV (nα, x2, v)

ψ(t, nα, x2, ε1, ε2))|v1|dvdx2dt
(5.32)

and

1
α

∫ T

0

∑
m∈ZZ

α

∫
IR

∫
IR2

γout
Hm

(fα)(t, x1, v)ψ(t, x1,mα, ε1, ε2))

(I − BH(x1,mα))(χV (x1,mα, v) + χH(x1,mα, v))|v2|dvdx1dt

=
∫ T

0

∑
n∈ZZ

α

∫
IR

∫
IR2

1
α
PHγ

out
Hm

(fα)(t, x1, v)(I − BH(x1,mα))χH(x1,mα, v)

ψ(t, x1,mα, ε1, ε2))|v2|dvdx2dt.
(5.33)

Defining the piecewise constant functions gα,out
V , gα,inc

V , gα,out
H and gα,inc

H by

gα,out
V (t, x1, x2, v) =

1
α
PV γ

out
Vn

(fα)(t, x2, v); x1 ∈ ((n− 1
2
)α, (n+

1
2
)α), x2 ∈ IR,

gα,inc
V (t, x1, x2, v) =

1
α
PV γ

inc
Vn

(fα)(t, x2, v); x1 ∈ ((n− 1
2
)α, (n+

1
2
)α), x2 ∈ IR,

gα,out
H (t, x1, x2, v) =

1
α
PHγ

out
Hm

(fα)(t, x1, v); x1 ∈ IR, x2 ∈ ((m− 1
2
)α, (m+

1
2
)α),
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gα,inc
H (t, x1, x2, v) =

1
α
PHγ

inc
Hm

(fα)(t, x1, v); x1 ∈ IR, x2 ∈ ((m− 1
2
)α, (m+

1
2
)α),

we deduce from estimates (5.2) and (5.3), that
√
|v1|gα,out

V ,
√
|v1|gα,inc

V ,
√
|v2|gα,out

H

and
√
|v2|gα,out

H are bounded in L2([0, T ] × IR2 × IR2). Let
√
|v1|g0,out

V ,
√
|v1|g0,inc

V ,√
|v2|g0,out

H and
√

|v2|g0,out
H be their weak limits (up to the extraction of a subse-

quence). We deduce from the identities

PV γ
inc
Vn

(fα) = BV (nα, x2)PV γ
out
Vn

(fα),

PHγ
inc
Hm

(fα) = BH(x1,mα)PHγ
out
Hm

(fα),

that

g0,inc
V = BV (x)g0,out

V , g0,inc
H = BH(x)g0,out

V .

In (5.32) and (5.33), the factors (I−BV (nα, x2, v))(χV (nα, x2, v)+χH(nα, x2, v))ψ(t,
nα, x2, ε1, ε2)) (respectively (I −BH(x1,mα, v))(χV (x1,mα, v) + χH(x1,mα, v))ψ(t,
x1,mα, ε1, ε2)))are the piecewise constant approximation of the functions (I −BV (x,
v))(χV (x, v)+χH(x, v))ψ(t, x, ε1, ε2)) (respectively (I −BH(x, v))(χV (x, v)+χH(x,
v))ψ(t, x, ε1, ε2))). Since these functions are uniformly continuous with respect to x,
with values in L2(IR2), the piecewise constant approximation is an approximation in
the strong topology of L2([0, T ]× IR2, L2(IR2)). Therefore, the expressions (5.32) (re-
spectively (5.33)) are the L2 product of a weakly converging sequence with a strongly
converging one. Therefore, they converge as α→ 0 respectively to:

∫ T

0

∫
IR2

∫
IR2

g0,out
V (t, x, v)(I − BV (x, v))χV (x, v)ψ(t, x, ε1, ε2))|v1|dvdxdt (5.34)

and
∫ T

0

∫
IR2

∫
IR2

g0,out
H (t, x, v)(I − BH(x, v))χH (x, v)ψ(t, x, ε1, ε2))|v2|dvdxdt. (5.35)

Introducing

JV (t, x, ε1, ε2) =
1√
2ε2

∑
s1,s2=∓1

[
(g0,out

V (I − BV )χV )(x, s1
√

2ε1, s2
√

2ε2)
]
, (5.36)

JH(t, x, ε1, ε2) =
1√
2ε1

∑
s1,s2=∓1

[
(g0,out

H (I − BH)χH)(tx, s1
√

2ε1, s2
√

2ε2)
]
, (5.37)

(5.34), (5.35) and (5.31) yield

∫ T

0

∫
IR2

∫
IR2

+

(JV + JH)ψ(t, x, ε1, ε2)dxdε1dε2dt

=
∫ T

0

∫
IR2

∫
IR2

+

F (t, x, ε1, ε2)) {(∂x1 + ∂x1V ∂ε1) [ψ(t, x, ε1, ε2)D11]

+(∂x2 + ∂x2V ∂ε2) [ψ(t, x, ε1, ε2)D22]} dxdεdt,

(5.38)
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which implies that

JV = D11(∂x1 + ∂x1V ∂ε1)F, (5.39)

JH = D22(∂x2 + ∂x2V ∂ε2)F (5.40)

in D′((0, T ) × IR2 × IR2
+). Using the definition of χV , we find

JV (t, x, ε1, ε2) =
1√
2ε2

∑
s1,s2=∓1

[
(g0,out

V (I − BV )χV )(t, x, s1
√

2ε1, s2
√

2ε2)
]

=
1√
2ε2

∑
s2=∓1

[
1
2
(I + BV )g0,out

V (t, x,
√

2ε1, s2
√

2ε2)

−1
2
(I + BV )g0,out

V (t, x,−
√

2ε1, s2
√

2ε2)
]

=
1

2
√

2ε2

∑
s2=∓1

[
(g0,out

V + g0,inc
V )(t, x,

√
2ε1, s2

√
2ε2)

−(g0,out
V + g0,inc

V )(t, x,−
√

2ε1, s2
√

2ε2)
]
.

Besides, the weak convergence of gα,out
V , gα,inc

V towards g0,out
V , g0,inc

V implies that

1√
2ε2

∑
s2=∓1

[
(g0,out

V + g0,inc
V )(t, x,

√
2ε1, s2

√
2ε2)

−(g0,out
V + g0,inc

V )(t, x,−
√

2ε1, s2
√

2ε2)
]

=

weak lim
α→0

1√
2ε2

∑
s2=∓1

[
(gα,out

V + gα,inc
V )(t, x,

√
2ε1, s2

√
2ε2)

−(gα,out
V + gα,inc

V )(t, x,−
√

2ε1, s2
√

2ε2)
]
.

Moreover, we deduce from (5.27) that

1
2
√

2ε2

∑
s2=∓1

[
(gα,out

V + gα,inc
V )(t, x,

√
2ε1, s2

√
2ε2)

−(gα,out
V + gα,inc

V )(t, x,−
√

2ε1, s2
√

2ε2)
]

= J̃α
V (t, x, ε1, ε2).

which proves that

JV (t, x, ε1, ε2) = weak lim
α→0

J̃α
V (t, x, ε1, ε2).

A similar argument leads to

JH(t, x, ε1, ε2) = weak lim
α→0

J̃α
H(t, x, ε1, ε2).

We finally deduce from (5.21) that
JV = J1; JH = J2.



NAOUFEL BEN ABDALLAH AND HÉDIA CHAKER 115

6. Extension to rough interfaces
The interfaces between two grains have been assumed to be perfectly linear and

perfectly clean, in such a way that the reflection obeys Descartes law. In practice,
this is not the case and therefore the reflection may be diffusive. A particle hitting
the grain boundary can be scattered randomly. In this section, we treat the diffusive
part as a perturbation of the full scattering mechanism. More precisely the collision
operator at the interface writes

Bα = (1 − α)B + αB̃,

where

B̃ϕ(x, v) =
∫

IR2
σ(v, v′)ϕ(x, v′)δ(|v|2 − |v′|2)dv′.

Vn,m

Fig. 6.1. Diffusive reflection-transmission at the grain boundary

The diffusive reflection is assumed to be elastic ( the electrons do not lose energy
when they hit the grain boundary). The perturbed problem is

{
α∂tf

α + v · ∇xf
α + ∇xV · ∇vf

α = 0 x ∈ Ωα, v ∈ IR2, t ≥ 0,
γincfα = Bαγoutfα.

(6.1)

We shall prove, that in the limit the distribution function relaxes towards a function
of the total energy ε = ε1 + ε2 whereas the diffusion coefficient is deduced from the
diffusion coefficients Dii(x, ε1, ε2) derived in the previous sections. The idea is that
αB̃ is strong enough to induce a change in the equilibrium state but not to influence
the diffusion equation. This fact has first been noticed for the diffusion approximation
of the Boltzmann equation in [10].
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Hypothesis 6.1.
There exists a smooth function FI(x, ε) defined on IR2 × IR+, satisfying:

FI(x, ε) ∈ L2(IR2 × IR+), (v · ∇x + ∇xV · ∇v)FI(x, ε) ∈ L2(IR2 × IR+),

where ε = 1
2 (v2

1 + v2
2) and such that

fα
I (x, v) = FI(x, ε), x ∈ Ωα, v ∈ IR2. (6.2)

Let us denote by Sε the constant energy Sε =
{
v ∈ IR2, ε(v) = ε

}
and by dσ(v)

the corresponding surface measure induced by the Lebesgue one. For any continuous
function ψ defined on IR2, we have the co-area formula
∫

IR2
ψ(v)dv =

∫
IR+

∫
v∈Sε

ψ(v)
dσ(v)
|∇ε(v)|dε =

∫
IR+

(∫ 2π

0

ψ(
√

2ε cos θ,
√

2ε sin θ)dθ
)
dε.

For ε ∈ IR+, we define L2
δ,i(Sε) as the weighted L2 space, equipped with norm

|u|2L2
δ,i(Sε) =

∫ 2π

0

|u(
√

2ε cos θ,
√

2ε sin θ)|2|ωδ
i (
√

2ε cos θ,
√

2ε sin θ)|dθ

so that L2
δ,i(IR

2) = L2(IR+, L
2
δ,i(Sε)). Similarly, we define L2

i (Sε), by changing
ωδ

i (v1, v2) by |vi|.
Hypothesis 6.2.

i) Positivity: The cross section σ is assumed to be positive almost everywhere.
ii) Particle conservation

∫
IR2

σ(v, v′)|vj |δ(|v|2 − |v′|2)dv′ = 1,

for j = 1, 2.
iii)Reciprocity: σ(v, v′) = σ(−v,−v′).
iv) B̃ is a compact operator on L2

1(Sε) × L2
2(Sε).

We denote by Q̃V ( respectively Q̃H) the orthogonal projector of L2
1(Sε) (re-

spectively L2
2(Sε)) onto the space of constant functions and introduce P̃V = I − Q̃V

(respectively P̃H = I − Q̃H) where I is the identity on L2
1(Sε) (respectively L2

2(Sε)).
We denote by

Q̃ =
{
Q̃V , on Vn,

Q̃H , on Hm,
P̃ =

{
P̃V , on Vn,

P̃H , on Hm.

Lemma 6.1. The operators Q̃, P̃ , B̃ and B satisfy the following identities

P̃ B̃ = B̃P̃ , Q̃B̃ = B̃Q̃ = Q̃,

P̃B = BP̃ , Q̃B = BQ̃ = Q̃.

Moreover, there exists K(x, ε) < 1 such that

‖B̃V P̃V ‖L(L2
1(Sε)) ≤ K(x, ε) < 1, ‖BHP̃H‖L(L2

2(Sε)) ≤ K(x, ε) < 1.
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We have

‖B̃‖L(L2
1(Sε)×L2

2(Sε)) ≤ 1.

Hypothesis 6.3. There exists K < 1 such that

‖B̃V P̃V ‖L(L2
1(Sε)) ≤ K < 1, ‖BHP̃H‖L(L2

2(Sε)) ≤ K < 1, ∀(x, ε) ∈ IR2 × IR+.

Theorem 6.1. i) Under the hypotheses listed in the current and previous sections
(namely hypotheses 2.2, 2.3, 6.2, 6.1, 6.3), the problem (6.1) has a solution fα.

ii) When α tends to zero, fα converges to f0 in the weak star topology of L∞([0, T ],
L2(IR2 × IR+)) for any T > 0. The limit f0 takes the form f0(t, x, v) = F (t, x, ε)
when F (t, x, ε) is a weak solution of the problem (SHE model) posed on the domain
IR2 × IR+:

⎧⎪⎪⎨
⎪⎪⎩

2π∂tF̃ (t, x, ε) + (∇x + ∂ε∇xV ).J̃(t, x, ε) = 0,
J̃(t, x, ε) = −D̃(x, ε)(∇x + ∂ε∇xV )F̃ ,
F̃ (0, x, ε) = FI(x, ε),
∇xV ).J̃(t, x, 0) = 0.

(6.3)

The diffusion matrix D̃(x, ε) is given by diag(D̃11,D̃22)

D̃ii = 2
∫

ε1+ε2=ε

Dii(x, ε1, ε2)dε1 = 2
∫ ε

0

Dii(x, ε1, ε− ε1)dε1 (6.4)

and the coefficients Dii are determined in Theorem 2.1. The diffusion matrix D̃(x, ε)
is strictly positive for (x, ε) ∈ IR2 × IR∗

+.
In order to prove Theorem 6.1, we proceed as for Theorem 2.1 and etablish uniform

trace estimates. To this aim, the following operator is introduced

Bα
η = (1 − α)B + α

[
B̃P̃ +

1
1 + η

Q̃

]
, η > 0.

We establish the control of γout
α (u), γinc

α (u) in term of |u|L2(Oα). We have the
following proposition which can be proved by adapting the proof of Proposition 4.1

Proposition 6.1. For all u ∈ Hα(A,Bα
η ) and for all α < 2, we have

i)

|P̃ γinc
α (u)|2L2(Γα) ≤ |P̃ γout

α (u)|2L2(Γα) ≤
2

(1 −K)(2 − α(1 −K))
(Au, u)L2(Oα), (6.5)

(1 − 1
1 + η

)
(

2 − α(1 − 1
1 + η

)
)
|Q̃γout

α (u)|2L2(Γα) ≤ 2(Au, u)L2(Oα). (6.6)

ii)

Q̃γinc
α (u) =

1 + η(1 − α)
1 + η

Q̃γout
α (u), (6.7)
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|Q̃γout
α (u)

√
Φα,β |2L2

δ
(Γα) ≤ C1α|u|2Hα(A) + C2(1 +

α

δ
+

1√
α

)|u|2L2(Oα). (6.8)

iii)

|Pγinc
α (u)|2L2(Γα) ≤ |Pγout

α (u)|2L2(Γα) ≤
2α

1 − [(1 − α)K + α]2
(Au, u)L2(Oα). (6.9)

iv)

Qγinc
α (u) = (1 − α)Qγout

α (u) + αQB̃P̃ γout
α (u) +

α

1 + η
Q̃γout

α (u), (6.10)

|Qγout
α (u)

√
Φα,β |2L2

δ(Γα) ≤ C1α|u|2Hα(A) + C2(1 +
α

δ
+
C

β
)|u|2L2(Oα), (6.11)

where Φα,β is defined in (4.1).

Lemma 6.2. Let fα be the solution of (6.1) constructed as the limit of fα
η as η → 0.

Then fα satisfies the estimates of Lemma 5.1. Moreover, we have:

|P̃ γout
α (fα)(t)|2L2(Γα) ≤ C|FI |2Hα(A), (6.12)

|P̃ γinc
α (fα)(t)|2L2(Γα) ≤ C|FI |2Hα(A), (6.13)

∫ T

0

|P̃ γout
α (fα)(t)|2L2(Γα)dt ≤ Cα|FI |2L2(IR2×IR+), (6.14)

∫ T

0

|P̃ γinc
α (fα)(t)|2L2(Γα)dt ≤ Cα|FI |2L2(IR2×IR+), (6.15)

∫ T

0

|Q̃γout
α (fα)(t)

√
Φα,β |2L2

δ(Γα)dt ≤ (Cδ +
1
β

)|FI |Hα(A), (6.16)

where C denotes generic constants independent of α, β and of the data. The function
Φα,β is defined in (4.1).

Proceeding as in Section 5, fα can be shown to converge weakly towards a limit
F = F (t, x, ε1, ε2). The new estimates (6.14) and (6.15) show that F is actually a
function of ε = ε1 + ε2 ( apply the proof of Lemma 5.2).

Now, we define

F̃α(t, x, ε) =
1
2π

∫ 2π

0

fα(t, x,
√

2ε cos θ,
√

2ε sin θ)dθ

=
1
π

∫
ε1+ε2=ε

Fα(t, x, ε1, ε2)
dε1√
ε1ε2

,
(6.17)
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J̃α
1 (t, x, ε) =

1
α

∫ 2π

0

fα(t, x,
√

2ε cos θ,
√

2ε sin θ)
√

2ε cos θdθ

=
∫

ε1+ε2=ε

Jα
1 (t, x, ε1, ε2)dε1,

(6.18)

J̃α
2 (t, x, ε) =

1
α

∫ 2π

0

fα(t, x,
√

2ε cos θ,
√

2ε sin θ)
√

2ε sin θdθ

=
∫

ε1+ε2=ε

Jα
2 (t, x, ε1, ε2)dε1,

(6.19)

where Fα, Jα
1 and Jα

2 are defined by (5.11), (5.12) and (5.13). We have

Lemma 6.3. Let fα be the solution of (6.1). For any test function φ ∈ C1
c ([0, T ] ×

IR2 × IR+) such that φ(T, ·, ·) = 0, we have

∫ T

0

∫
Ωα×IR+

[
2πF̃α(t, x, ε)α∂tφ(t, x, ε)+αJ̃α

1 (t, x, ε)(∂x1+∂x1V ∂ε)φ(t, x, ε)
]
dxdεdt

+
∫ T

0

∫
Ωα×IR+

αJ̃α
2 (t, x, ε)(∂x2 + ∂x2V ∂ε)φ(t, x, ε))dxdεdt

+α
∫

IR2×IR+

2πFI(x, ε)φ(0, x, ε)dxdε = 0. (6.20)

Since lim F̃α = lim fα, and lim J̃α
i = D̃ii(x, ε)(∇xi + ∂ε∇xiV )F̃ , we can pass to

the limit in (6.20) and find the weak formulation of (6.3). Namely,

Corollary 6.1. For any test function φ ∈ C2
c ([0, T ]×IR2×IR+) such that φ(T, ·, ·) =

0, we have
∫ T

0

∫
IR2×IR+

[
2πF̃ (t, x, ε)∂tφ(t, x, ε) + J̃1(t, x, ε)(∂x1 + ∂x1V ∂ε)φ(t, x, ε)

]
dxdεdt

+
∫ T

0

∫
IR2×IR+

J̃2(t, x, ε)(∂x2 + ∂x2V ∂ε)φ(t, x, ε))dxdεdt

+
∫

IR2×IR+

2πFI(x, ε)φ(0, x, ε)dxdε = 0.
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