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Abstract. We prove the existence of axially symmetric solutions to the Vlasov–Poisson system
in a rotating setting for sufficiently small angular velocity. The constructed steady states depend on
Jacobi’s integral and the proof relies on an implicit function theorem for operators.
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1. Introduction

In stellar dynamics, the evolution of a large ensemble of particles (e.g. stars) which
interact only by their self-consistent, self-generated gravitational field, is described by
the Vlasov-Poisson system

∂tf+v ·∇xf−∇xU ·∇vf =0, (1.1)

∆U =4πρ, (1.2)

ρ(t,x)=

∫

f(t,x,v)dv. (1.3)

Here f =f(t,x,v)≥0 is the phase-space density, where t∈R denotes time, and x,v∈R
3

denote position and velocity. U =U(t,x) is the gravitational potential of the ensemble,
and ρ=ρ(t,x) is its spatial density. We are looking for stationary solutions of (1.1)–
(1.3). The ansatz

f0(x,v)=Φ(E)=Φ

(

1

2
v2+U(x)

)

(1.4)

is well known, and automatically satisfies the Vlasov Equation (1.1) because the
particle energy

E(x,v):=
1

2
v2+U(x)

is a conserved quantity along characteristics. But we still have to construct the self-
consistent potential. This is done by inserting (1.4) into the Poisson equation, more
precisely, we have to solve

∆U =4πhΦ(U)=4π

∫

Φ

(

1

2
v2+U(x)

)

dv. (1.5)

The ansatz (1.4) leads to spherically symmetric stationary solutions of (1.1)–(1.3),
where f is called spherically symmetric, iff f(Ax,Av)=f(x,v) ∀A∈O(3), where O(3)
denotes the group of orthogonal 3×3 matrices. Indeed, this is a special case of a
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more general result of Gidas, Ni and Nirenberg [2]. If one is interested in stationary
solutions with less symmetry, more invariants can be added to (1.4), so that the
right-hand side of (1.5) explicitly depends on x.

One possibility is to consider a rotating system. If the ensemble is rotating about a
given axis, say the x3-axis, we can change to a rotating frame by changing coordinates
as follows:

ζ :=Rtx, η :=Rtv−Ω×(Rtx),

where

Rt :=





cos(ωt) sin(ωt) 0
−sin(ωt)cos(ωt)0

0 0 1



, Ω:=





0
0
ω





and the (rotational) velocity ω>0 is given. The Vlasov-Poisson system then takes the
form

∂tf+η ·∇ζf−(∇ζU+Ω×(Ω×ζ)+2(Ω×η))·∇ηf =0, (1.6)

∆ζU(t,ζ)=4πρ(t,ζ), (1.7)

ρ(t,ζ)=

∫

f(t,ζ,η)dη, (1.8)

and the characteristic system of the Vlasov Equation (1.6) is

{

ζ̇ =η
η̇=−∂ζU(t,ζ)−2Ω×η−Ω×(Ω×ζ).

This system has the following expression as a conserved quantity, if U is time-
independent,

EJ :=
1

2
η2+U(ζ)− 1

2
|Ω×ζ|2,

where EJ is also called Jacobi’s integral. A natural ansatz for the construction of
stationary solutions of (1.6)–(1.8) is now

f(ζ,η)=ϕ(EJ )=ϕ

(

1

2
|η|2+U(ζ)− 1

2
ω2r2

)

, (1.9)

for a suitable function ϕ:R→R
+, where r :=r(x)=

√

ζ2
1 +ζ2

2 . In the original coordi-
nates, (x,v) one can easily verify that this ansatz leads to

g(x,v):=f(ζ,η)=ϕ

(

1

2
v2+U(Rtx)−ωP

)

,

where we define P to be the third component of the angular momentum, that is
P :=x1v2−x2v1, which is a conserved quantity of the characteristic system of the
Vlasov Equation (1.1) if U is axially symmetric with respect to the x3-axis. Obviously,
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the function f =f(ζ,η) then automatically satisfies (1.6), and one has to solve the
Poisson equation, where we relabel ζ and η to x and v, respectively,

∆U =

∫

ϕ

(

1

2
v2+U(x)− 1

2
ω2r2

)

dv=:h̃(ω,r(x),U(x)). (1.10)

So if we construct an axially symmetric U that solves (1.10), the corresponding func-
tions (g,U), with g defined as above, will also be a stationary solution of (1.1)–(1.3).
Clearly, our ansatz for f satisfies (1.6) without any symmetry assumptions on U ,
and this gives hope for the construction of stationary solutions with less symmetry,
for example, triaxial solutions. Here, triaxial means that the three half axes of the
support of the spatial density have pairwise different length. In particular, a triaxial
solution is not axially symmetric.

Equation (1.10) has been studied, by Vandervoort [9], among others. He observed
numerically that if ϕ is of the form

ϕ(EJ )=(E0−EJ )
β−3/2
+ , (1.11)

then for 0.5<β≤0.808 there are triaxial solutions to (1.10) for sufficiently large ω.
For small ω, or β>0.808, all numerically constructed solutions are axially symmet-
ric. Consequently, (1.10) seems to be of particular interest for the construction of
ellipsoidal solutions, but to our knowledge no self-consistent ellipsoidal systems to
(1.1)–(1.3) or (1.6)–(1.8) have been constructed analytically yet.

We will prove that there exist axially symmetric solutions to (1.10) for small ω
under suitable assumptions on ϕ, where we treat the case β>5/2 in (1.11). For this
purpose, we require that for ω=0, we have a nontrivial, spherically symmetric solution
(f0,U0) of (1.10). Note that in this case the right hand side of (1.10) only depends on
U0. For ω 6=0, we want to apply an implicit function theorem to get solutions, which
arise by deforming U0, where certain symmetries are conserved. The central idea that
makes this approach work is to look for a solution Uω as a deformation of U0, i.e.,
Uω =U0(γ(x)) for some diffeomorphism γ on R

3, and to formulate the problem in
terms of finding zeros of a suitable operator T over the space of such deformations
instead of the space of the potentials. While the original problem (1.10) had to be
solved in R

3, we will only need to know the deformation on a compact neighborhood
of the support of the original solution (f0,ρ0,U0), which provides useful compactness
properties. Furthermore, finite radius and finite mass of the constructed solutions are
just consequences of the corresponding properties of (f0,ρ0,U0).

The machinery presented here shows great promise for the construction of triaxial
solutions, since the allowed perturbations for the potential U0 only have mirror sym-
metry, and thus would match a triaxial setup. But up to now we have no method to
exclude axial symmetry with respect to the x3-axis for the perturbations constructed
by the implicit function theorem.

The approach described above has been used by Lichtenstein for proving the
existence of slowly rotating Newtonian stars, as described by selfgravitating fluid balls
[4, 5]. A translation of Lichtenstein’s approach into modern mathematical language
is due to Heilig [3].

The investigations made there were applied to the Vlasov-Poisson system in [8],
where stationary solutions to (1.1)–(1.3) of the form f(x,v)=ϕ(E)ψ(ωP ) were con-
structed. There, the potential U was a priori axially symmetric, so that the expression
P =x1v2−x2v1 is a conserved quantity with respect to the characteristic system. The
procedure described there is the basis of our approach.
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This paper is organized as follows: In the next section we rewrite the problem in
terms of finding zeros of the operator T , then we state the main result and prove it
using an implicit function theorem. For this, we need certain properties of T which
can be proved as in [8], except some minor technical modifications and one lemma,
where the symmetry of the allowed perturbations enters in. In section 3, we generalize
this important lemma to mirror symmetry.

2. The main result

The mappings, which leave our solutions invariant, are in the set

S :={τ110 :(x1,x2,x3) 7→(x1,x2,−x3), τ101 :(x1,x2,x3) 7→(x1,−x2,x3),

τ011 :(x1,x2,x3) 7→(−x1,x2,x3)}.

Now let BR :={x∈R
3 | |x|≤R} and define

CS(BR):={f∈C(BR) | f(Ax)=f(x), A∈S, x∈BR}. (2.1)

Then we have

∇f(0)=0, if f∈C1(BR)∩CS(BR).

For ϕ:R→[0,∞[ we require

(ϕ1) ϕ∈C1(R), there is E0∈R with ϕ(EJ )=0 for EJ ≥E0, and ϕ(EJ )>0 for EJ <
E0.

(ϕ2) ϕ is strictly decreasing in ]−∞,E0[.

(ϕ3) The ansatz f0(x,v)=ϕ(EJ ) with ω=0 produces a nontrivial, spherically sym-
metric solution (f0,ρ0,U0) of (1.1)–(1.3) with ρ0∈C1

0 (R3), supp ρ0=B1 and
U0∈C2(R3) with lim|x|→∞U0(x)=0.

Examples for a functions satisfying (ϕ1)–(ϕ3) are the so-called polytropes,

ϕ(EJ ):=(E0−EJ )k
+,

for k>1 and suitable E0<0. Now we can state the main theorem.

Theorem 2.1. Let r :=
√

x2
1+x2

2. There exists ω0>0, such that for all ω∈]−ω0,ω0[
there exits a nontrivial solution (fω,ρω,Uω) of (1.6)–(1.8) with

(i) fω(x,v)=

{

ϕ( 1
2v2+Uω(x)− 1

2ω2r2) for |x|<4

0 otherwise

(ii) (f0,ρ0,U0)=(f0,ρ0,U0) and for |ω|<ω0, (fω,ρω,Uω) has the following sym-
metry properties: For all A∈S we have

fω(Ax,Av)=fω(x,v), ρω(Ax)=ρ(x), Uω(Ax)=Uω(x)

and (fω,ρω,Uω) is not spherically symmetric for ω 6=0.

(iii) ρω∈C1
c (R3) and Uω∈C2

b (R3), where ρω(x)=
∫

fω(x,v)dv.

(iv) The mappings ]−ω0,ω0[∋ω 7→ρω and ]−ω0,ω0[∋ω 7→Uω are continuous with
respect to the norms ‖·‖1,∞ or ‖·‖2,∞, respectively, where we defined ‖·‖1,∞ :=
‖·‖∞+‖∇·‖∞ and the norm ‖·‖2,∞ is defined analogously.



ACHIM SCHULZE 715

Remark 2.1. If we add rotations about the x3-axis to the set S, the proof of Theorem
2.1 still holds — we can essentially follow the proof given here, and this shows that
the constructed solutions in Theorem 2.1 have to be axially symmetric a posteriori.
This follows by the uniqueness of the mapping given by the implicit function theorem
(Theorem A.1).

For the proof of Theorem 2.1, we require the following lemmas.

Lemma 2.2. The spherically symmetric solution (f0,ρ0,U0) has the following proper-
ties.

(a) The potential U0 is given by

U0(x)=−
∫

ρ0(y)

|x−y|dy=−4π

|x|

∫ |x|

0

s2ρ0(s)ds−4π

∫ ∞

|x|

sρ0(s)ds, x∈R
3.

(b) ρ0 is decreasing with ρ0(0)>0, U ′′
0 (0)>0 and for every R>0 there exists C>0

such that U ′
0(|x|)≥C|x|, |x|∈[0,R], and U0(1)=E0.

(c) ρ′0 is Hölder continuous and U ′
0∈C2(Ṙ3), where Ṙ

3 :=R
3\{0}.

Proof. The formula

U ′
0(|x|)=

4π
∫ |x|

0
s2ρ0(s)ds

|x|2

easily follows from the Poisson equation with spherical symmetry, and since we require
lim|x|→∞U0(x)=0, the representation for U0 holds by uniqueness. As to (b), for ω=0

we have f0(x,v)=f0(E)=f0(
1
2v2+U0(x)), and this implies

ρ0(x)=

∫

R3

f0(x,v)dv=h0(U0(x)):=4π
√

2

∫ E0

U0(x)

ϕ(E)
√

E−U0(x)dE, (2.2)

where the function h is continuously differentiable, and with (ϕ1),(ϕ2), we have
h′(s)<0 for s<E0. Consequently, ρ0 is decreasing because U0 is increasing and since
the steady state (f0,U0) is assumed to be nontrivial, we must have ρ0(0)>0. Thus
U ′

0(|x|)>0, |x|>0, and since U ′′
0 (0)=(4π/3)ρ0(0)>0 this implies the estimate on U ′

0

from above. The assertion that U0(1)=E0 follows from (2.2) and the assumption
suppρ0=B1. The regularity of U ′

0 follows from the formula for U ′
0 above and the

fact that ρ0∈C1
c , which we deduce again from (2.2). Finally, the proof of the Hölder

continuity of ρ′0 will be part of the next Lemma.

Lemma 2.3. Let E1 :=U0(2)−E0 and define f by

f(x,v)=

{

ϕ( 1
2v2+U(x)− 1

2ω2r2) for U(x)<E0+E1,

0 otherwise,

where ϕ satisfies (ϕ1), (ϕ2) and U∈C2
b (R3), with U(x)>E0+E1 for |x|>4. Then the

following holds:

ρf (x):=

∫

R3

f(x,v)dv

=h̃(ω,r(x),U(x))

=

{

h(U(x)− 1
2ω2r2) for U(x)<E0+E1,

0 otherwise,
(2.3)
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with

h(s)=4π
√

2

∫ E0

s

√
E−sϕ(E)dE.

Furthermore, h̃∈C1(R×[0,∞[×R) and for every bounded set B⊂R×[0,∞[×R there
are constants C>0 and µ∈]0,1[ such that for (ω,r,u),(ω′,r,u′)∈B we have

|∂rh̃(ω,r,u)|≤Cr,

|h̃(ω,r,u)−h̃(ω′,r,u′)|≤C(|ω−ω′|r+|u−u′|),
|∂uh̃(ω,r,u)−∂uh̃(ω′,r,u′)|≤C(|ω−ω′|+|u−u′|µ).

In addition, for ω=0, the function h̃(0,·,·) does not depend on r(x) and we can write
h0 :=h̃(0,0,u).

Proof. Introducing polar coordinates, we have for U(x)<E0+E1,

ρ(x)=

∫

ϕ

(

1

2
v2+U(x)− 1

2
ω2r2

)

dv

=4π

∫ ∞

0

t2ϕ

(

1

2
t2+U(x)− 1

2
ω2r2

)

dt

=4π
√

2

∫ E0

U(x)− 1

2
ω2r2

(

E−U(x)+
1

2
ω2r2

)1/2

ϕ(E)dE,

and (2.3) follows.

We have h∈C1(R) with

h′(s)=−4π
√

2

∫ E0

s

1

2
√

E−s
ϕ(E)dE

for s<E0 and h′(s)=0 for s≥E0 and the first two estimates follow. Next,

h′′(s)=−4π
√

2
d

ds

∫ E0−s

0

1

2
√

E
ϕ(E+s)dE

=−4π
√

2

∫ E0−s

0

1

2
√

E
ϕ′(E+s)dE

=−4π
√

2

∫ E0

s

1

2
√

E−s
ϕ′(E)dE

yields local Lipschitz continuity of ∂uh̃ with respect to ω and u, and the proof is
complete.

We want to find solutions of the equation

∆U =4πh̃(ω,r(x),U). (2.4)

The main idea is to rewrite problem (2.4) in terms of finding the zeros of an operator
T , which does not act directly on the space of potentials, but on deformations of the
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given spherically symmetric potential U0. We define the following Banach spaces,
which will serve as the domain and range of T . We define X by

X :={f∈CS(B4) | f(0)=0, f∈C1(Ḃ4), ∃C>0: |∇f(x)|≤C, x∈Ḃ4,

∀x∈∂B1 : lim
t→0,t>0

∇f(tx)=:∇f(0x) exists, uniformly in x∈∂B1},

where ∂B1 :={x∈R
3 | |x|=1} and Ḃ4 :=B4\{0}. We equip X with the norm

‖f‖X := sup
x∈Ḃ4

|∇f(x)|, f∈X.

We define Y by

Y :={f∈CS(B4) | f(0)=0, f∈C1(B4), ∃C>0: |∇f(x)|≤C|x|, x∈B4,

∀x∈∂B1 : lim
t→0,t>0

∇f(tx)

t
=:

∇f(0x)

0
exists, uniformly in x∈∂B1}

with norm

‖f‖Y := sup
x∈Ḃ4

|∇f(x)|
|x| , f∈Y.

For example, we have |x|∈X and |x|2∈Y , but |x| /∈Y .
To explain more precisely, how we will use functions in X to deform the potential

U0, we need the following lemma.

Lemma 2.4. For ζ∈X, let

gζ :B4→R
3, gζ(x):=x+ζ(x)

x

|x| , x∈Ḃ4, gζ(0)=0.

Then there exists r>0 such that for all ζ∈Ω where

Ω:={ζ∈X | ‖ζ‖X <r}

we have:

(a) gζ :B4→B4,ζ :=gζ(B4) is a homeomorphism, gζ :Ḃ4→Ḃ4,ζ is a C1-
diffeomorphism with

|Dgζ(x)−id|< 1

2
, x∈Ḃ4

and for every x∈∂B1 the mapping

gζ :0,4x∋y 7→gζ(y)∈0,|gζ(4x)|x

is one-to-one, onto and preserves the natural ordering of points in 0,4x, where
x1,x2 :=

{

x1+λ(x2−x1) | λ∈[0,1]
}

for x1,x2∈R
3.

(b) 1
2 |x|≤|gζ(x)|≤ 3

2 |x|, x∈B4, and gζ(B2)⊂B̊3, B3⊂gζ(B4)⊂B5

(c) gζ(Ax)=Agζ(x), x∈B4 and g−1
ζ (Ax)=Ag−1

ζ (x), x∈B4,ζ , A∈S



718 AXIALLY SYMMETRIC SOLUTIONS DEPENDING ON JACOBI’S INTEGRAL

(d) |Dg−1
ζ (x)−id|< 1

2 , x∈Ḃ4,ζ , and there exists a constant C>0 such that for all
ζ,ζ ′∈Ω:

1

|x| |gζ(x)−gζ′(x)|+|Dgζ(x)−Dgζ′(x)|≤C‖ζ−ζ ′‖X , x∈Ḃ4,

and

|g−1
ζ (x)−g−1

ζ′ (x)|≤C‖ζ−ζ ′‖X |x|, x∈B3

Proof. In Ḃ4, we have for i,j=1,2,3 that

∂xi
gζ,j(x)=δij +∂xi

ζ(x)
xj

|x|+
ζ(x)

|x|

(

δij−
xixj

|x|2
)

, (2.5)

and therefore

|Dgζ(x)−id|<3‖ζ‖X .

Using the inverse function theorem, the first two assertions in (a) follow. For x∈∂B1,

gζ(tx)=tx+ζ(tx)x=x(t+ζ(tx))

and

d

dt
(t+ζ(tx))=1+∇ζ(tx)·x>0, for ‖ζ‖X small

and the proof of (a) is complete.
We have |ζ(x)|≤‖ζ‖X |x| for x∈B4, which implies (b) for r>0 sufficiently small.

Assertion (c) is easily verified as well. If we choose an even smaller r, we also have
the first claim of (d), because

Dg−1
ζ (x)=(Dgζ)

−1(g−1
ζ (x)).

The estimate for gζ−gζ′ follows from the definition of gζ , and the estimate for Dgζ−
Dgζ′ follows from (2.5).

For x∈Ḃ3, we have from (b) that x∈gζ(B4)∩gζ′(B4). Consequently, there exists

y∈Ḃ4 with x=gζ′(y). Now we have

|g−1
ζ (x)−g−1

ζ′ (x)|=|g−1
ζ (gζ′(y))−y|

=|g−1
ζ (gζ′(y))−g−1

ζ (gζ(y))|
≤2|gζ(y)−gζ′(y)|≤2‖ζ−ζ ′‖X |y|
≤4‖ζ−ζ ′‖X |x|,

where we used the mean value theorem, the estimate for Dg−1
ζ , and gζ(y),gζ′(y)⊂

gζ(Ḃ4).

We want to find solutions of (2.4) such that

U(x)=Uζ(x):=U0(g
−1
ζ (x)), x∈B4,ζ ,
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with a suitable ζ∈Ω. Obviously, we need U to be defined on the whole space R
3,

but this is only a technical problem. We use the fundamental solution of the Poisson
equation to integrate (2.4) and we then have to solve

U0(x)+

∫

B4,ζ

h̃(ω,r(y),U0(g
−1
ζ (y)))

|gζ(x)−y| dy=0, x∈B4. (2.6)

This equation essentially contains the operator we are looking for, but we have to
make some modifications. We also want to get rid of the dependence on ζ in the
integration domain.

Proof. [Proof of Theorem 2.1] For ζ∈Ω and ω∈R, we define

T (ω,ζ)(x):=U0(x)+

∫

B3

h̃(ω,r(y),U0(g
−1
ζ (y)))

|gζ(x)−y| dy

−U0(0)−
∫

B3

h̃(ω,r(y),U0(g
−1
ζ (y)))

|y| dy, x∈B4. (2.7)

Suppose we already know that this defines a continuous operator

T :]−ω̃,ω̃[×Ω→Y,

for some ω̃>0, and T is continuously Frechet-differentiable with respect to ζ, where

∂ζT (0,0):X→Y

is an isomorphism. The first two assertions follow from [8, Sec. 2], and the last asser-
tion will be verified in section 3. Also in section 3, the symmetry of the perturbations
will play a crucial role.

The definition of Y requires that T (ω,ζ)(0)=0 which explains why we substracted
the constant in (2.7). Due to assumption (ϕ3), we know that T (0,0)=0, because
g0= id and suppρ0=supph0◦U0=B1⊂B3. The implicit function theorem [1, Thm
15.1], also stated in the Appendix of this article as Theorem A.1, now guarantees the
existence of ω1∈]0,ω̃[ and the existence of a continuous mapping

]−ω1,ω1[∋ω 7→ζω∈Ω

such that

T (ω,ζω)=0, ω∈]−ω1,ω1[,

and ζ0=0. We also will require that ω2r2<E1 in B4, where E1 is defined in Lemma
2.3, and therefore we define

ω0 :=min

{

ω1,

√

|E1|
4

}

. (2.8)

Now let ζ=ζω, where we choose a fixed ω∈]−ω0,ω0[ and define

ρζ(x):=h̃(ω,r(x),U0(g
−1
ζ (x))), x∈B3. (2.9)

Then we have ρζ∈CS(B3)∩C1(Ḃ3). By Lemma 2.3, ρζ >0 at most, if U0(g
−1
ζ (x))<

E0+E1, which is equivalent to |g−1
ζ (x)|<2 by Lemma 2.2. Consequently,

suppρζ =gζ(B2)⊂B̊3.
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We extend ρζ by 0 to all of R
3, and we achieve

ρζ∈Cc(R
3), suppρζ⊂B̊3.

We want equation (2.9) to hold everywhere, but we have not defined gζ globally.
We can rewrite T (ω,ζ)=0 as

U0(x)=−
∫

B3

ρζ(y)

|gζ(x)−y|dy+C, x∈B4,

or

U0(g
−1
ζ (x))=−

∫

B3

ρζ(y)

|x−y|dy+C, x∈B4,ζ ,

where

C :=U0(0)+

∫

B3

ρζ(y)

|y| dy.

Now define

Uζ(x):=−
∫

R3

ρζ(y)

|x−y|dy+C.

Then we have Uζ∈C1(R3), with

Uζ(x)=U0(g
−1
ζ (x)), x∈B3⊂B4,ζ , (2.10)

and thus ρζ∈C1
c (R3) and Uζ∈C2

b (R3) with ∆Uζ =4πρζ in R
3.

Furthermore,

∆Uζ =4πh̃(ω,r(x),Uζ(x)), x∈B3⊂B4,ζ . (2.11)

The last equation holds even in R
3. We have to show that

ρζ(x)=h̃(ω,r(x),Uζ(x)), x∈R
3,

that is, Uζ(x)>E0+E1 for x∈R
3\gζ(B2). We know that

∆Uζ(x)=0, x∈R
3\gζ(B2),

lim|x|→∞Uζ(x)=C, and

Uζ(x)=E0+E1, x∈∂gζ(B2),

Uζ(x)>E0+E1, x∈B3\gζ(B2).

Here we used (2.10) and the monotonicity of U0(|x|) with U0(2)=E0+E1. If C≤
E0+E1, we have a contradiction of the maximum principle. Therefore, C>E0+E1

and again by the maximum principle, Uζ >E0+E1 on R
3\gζ(B2) and consequently

(2.11) holds in R
3.

Now define ρω :=ρζ , Uω :=Uζ and

fω(x,v):=

{

ϕ( 1
2v2+Uω(x)− 1

2ω2r2), forUω(x)<E0+E1,

0 otherwise,

=

{

ϕ( 1
2v2+Uω(x)− 1

2ω2r2), for|x|<4,

0 otherwise,.
(2.12)
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fω defined by (2.12) solves the Vlasov Equation (1.6) because it is constant along
characteristics. More precisely, we have Uζ(x)− 1

2ω2r2>E0 in a neighborhood of ∂B4,
if we choose ω0 sufficiently small as in (2.8). If we then fix (x,v) with EJ(x,v)<E0

and consider a characteristic (X,V ) going through (x,v), we conclude that if x∈B4,
we have X∈B4 for all time. On the other hand, if x /∈B4, we have X /∈B4 for all time.

Altogether, assertions (i)–(iii) of the theorem follow, except the non-spherical
symmetry in the case ω 6=0. Choose x∈R

3 with ρω(x)>0, x1 :=a 6=0, x2=x3=0.
Then there exists some η∈R

3, such that

1

2
η2+Uω(x)− 1

2
ω2a2<E0.

If (fω,Uω) were spherically symmetric, there would exist a rotation A around the
x2-axis such that (Ax)1=(Ax)2=0 and fω(Ax,Av)=fω(x,v). But the monotonicity
of ϕ implies

fω(x,v)=ϕ

(

1

2
v2+Uω(x)− 1

2
ω2a2

)

=ϕ(EJ (x,v))

6=ϕ(EJ (Ax,Av))=ϕ

(

1

2
v2+Uω(x)

)

=fω(Ax,Av),

which contradicts our assumption of spherical symmetry. With a similar argument,
one can also show that the constructed solutions cannot be axially symmetric with
respect to any axis in R

3 except for the x3-axis. Although our deformations only have
mirror symmetry with respect to every coordinate plane, which would match a triaxial
solution, one still has to show that the obtained ζω are not axially symmetric with
repect to the x3-axis, which is the major obstruction to the construction of triaxial
solutions.

The asserted continuity properties (iv) can be proved as follows: For x∈B3 we
have

|Uω(x)−Uω′

(x)|≤‖U ′
0‖∞|g−1

ζω
(x)−g−1

ζω′
(x)|≤C‖ζω−ζω′‖X .

By the implicit function theorem, ζω depends continuously on ω with respect to the
‖·‖X -norm and we have ρω(x)=h̃(ω,r(x),Uω(x)).

Lemma 2.3 implies that ρω is continuous in ω with respect to ‖·‖∞ and

Uω(x)=−
∫

B3

ρω(y)

|x−y|dy+U0(0)+

∫

B3

ρω(y)

|y| dy, x∈R
3

implies the continuity of Uω in ω with respect to ‖·‖1,∞. Differentiating the above
expression for ρω yields the continuity of ρω with respect to ‖·‖1,∞ and therefore also
the continuity of Uω in the norm ‖·‖2,∞.

3. ∂ζT (0,0) is an isomorphism

In this section, we want to establish some of the assumptions needed for the
implicit function theorem. We will prove the following result:

Proposition 3.1. The mapping ∂ζT (0,0):X→Y is a linear isomorphism.

Let ω2 :=
√

|E1|/4, where E1 is defined in Lemma 2.3 and let us recall from [8,



722 AXIALLY SYMMETRIC SOLUTIONS DEPENDING ON JACOBI’S INTEGRAL

Prop. 3.1] that the Fréchet-derivative of T :]−ω2,ω2[×Ω→Y is given by

[∂ζT (ω,ζ)Λ](x)=

=−
∫

B3

(

1

|gζ(x)−y| −
1

|y|

)

∂uh̃(ω,r(y),Uζ(y))∇Uζ(y)·
g−1

ζ (y)

|g−1
ζ (y)|

Λ(g−1
ζ (y))dy

−
∫

B3

gζ(x)−y

|gζ(x)−y|3 h̃(ω,r(y),Uζ(y))dy · x

|x|Λ(x), x∈B4, (3.1)

where ω∈]−ω2,ω2[,ζ∈Ω,Λ∈X, and Uζ(y):=U0(g
−1
ζ (y)), y∈B3

We abbreviate L0Λ:=∂ζT (0,0)Λ for Λ∈X. We observe that g0=id and therefore
the function Uζ in (3.1) coincides with the potential U0 of the spherically symmetric
steady state we started with, if ζ=0. We have

ρ′0(|x|)=∂uh̃(0,r(x),U0(|x|))U ′
0(|x|)

=∂uh̃(0,r(x),U0(|x|))∇U0(x)· x

|x| , x∈R
3.

This implies that

(L0Λ)(x)=−
∫

B3

(

1

|x−y| −
1

|y|

)

ρ′0(|y|)Λ(y)dy−
∫

B3

x−y

|x−y|3 ρ0(|y|)dy · x

|x|Λ(y)

=−U ′
0(|x|)Λ(x)−

∫

B3

(

1

|x−y| −
1

|y|

)

ρ′0(|y|)Λ(y)dy, x∈B4,Λ∈X.

Now let

(KΛ)(x):=− 1

U ′
0(|x|)

∫

B3

(

1

|x−y| −
1

|y|

)

ρ′0(|y|)Λ(y)dy, x∈Ḃ4,Λ∈CS(B4).

Then we can write

(L0Λ)(x)=−U ′
0(|x|)[(id−K)Λ](x), x∈B4,Λ∈X. (3.2)

In order to prove Proposition 3.1, we need

Lemma 3.2. The linear operator K :CS(B4)→CS(B4) is compact, where CS(B4) is
equipped with the supremum norm ‖·‖∞.

Proof. For Λ∈CS(B4) let

VΛ(x):=−
∫

B3

1

|x−y|ρ
′
0(|y|)Λ(y)dy, x∈R

3.

Then VΛ∈C1(R3), ∇VΛ(0)=0, and

(KΛ)(x)=
1

U ′
0(|x|)

(VΛ(x)−VΛ(0)), x∈Ḃ4.

Using Lemma 2.2(c), we obtain the estimate

|(KΛ)(x)|≤ 1

C|x| ‖∇VΛ‖∞|x|≤C‖Λ‖∞, x∈Ḃ4,
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where the constant C depends on ρ0 and U0, but not on Λ or x. Thus K maps bounded
sets into bounded sets. We next show that KΛ is Hölder continuous with exponent
1/2, uniformly on bounded sets in CS(B4). Let M >0 and assume ‖Λ‖∞≤M . In the
following, constants denoted by C depend on ρ0,U0 and M , but not on Λ. Obviously,
ρ′0Λ∈L∞(R3) and we deduce from Lemma A.2 the existence of C>0 with

|∇VΛ(x)−∇VΛ(x′)|≤C‖ρ′0Λ‖∞|x−x′|1/2, x,x′∈B4.

Since ∇VΛ(0)=0, the latter implies

|∇VΛ(x)|≤C|x|1/2, x∈B4.

Now let x,x′∈Ḃ4 and |x|≤|x′|. Then

|(KΛ)(x)−(KΛ)(x′)|≤
∣

∣

∣

∣

1

U ′
0(|x|)

− 1

U ′
0(|x′|)

∣

∣

∣

∣

|VΛ(x)−VΛ(0)|

+
1

U ′
0(|x′|) |VΛ(x)−VΛ(x′)|=:I1+I2

and we obtain for some z∈B4 with |z|≤|x′| the estimates

I1≤
|U ′

0(|x|)−U ′
0(|x′|)|

|x||x′| |∇VΛ(z)||x|≤C|x−x′|1/2 (|x|+|x′|)1/2

|x′| |z|1/2

≤C|x−x′|1/2,

and

I2≤
C

|x′| |∇VΛ(z)||x−x′|≤ C

|x′| |z|
1/2|x−x′|≤C|x−x′|1/2,

so that

|(KΛ)(x)KΛ)(x′)|≤C|x−x′|1/2, x,x′∈Ḃ4

and

|(KΛ)(x)|≤C|∇VΛ(z)|≤C|x|1/2, x∈Ḃ4.

We have shown that K maps bounded sets of CS(B4) into bounded and equicontinuous
subsets of CS(B4). Thus K is compact by the Arzela-Ascoli theorem and the proof
is complete.

Lemma 3.3. id−K :CS(B4)→CS(B4) is one-to-one and onto.

Proof. Since K is compact, it suffices to show that id−K is one-to-one. Let
Λ∈CS(B4) with Λ−KΛ=0. Now Λ=0 can be shown by expanding Λ into spherical
harmonics. For that purpose, let

{Sn,j , n∈N, j=1,...,2n+1}

be the orthonormal set of spherical harmonics introduced in the Appendix, where
for n∈N, the functions Sn,j :∂B1→R, j=1,...,2n+1 are homogeneous polynomials of
degree n. We define

Λnj(r):=

∫

∂B1

Sn,j(ξ)Λ(rξ)dωξ =
1

r2

∫

∂Br

Sn,j(x/r)Λ(x)dωx, (3.3)
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and we use the expansion of the integral kernel 1/|x−y| into spherical harmonics from
Lemma A.3 and Lemma A.4: For x,y∈R

3, x=rξ and y=sη with ξ,η∈∂B1, r,s∈R
+,

r 6=s, we have

1

|x−y|=max(r,s)−1
∞
∑

n=0

2n+1
∑

j=1

4π

2n+1

(

min(r,s)

max(r,s)

)n

Sn,j(ξ)Sn,j(η).

KΛ−Λ=0 then implies

Λnj(r)=− 1

U ′
0(r)

∫

B3

∫

∂B1

(

1

|rξ−y| −
1

|y|

)

Sn,j(ξ)dωξρ′0(|y|)Λ(y)dy

=− 4π

2n+1

1

U ′
0(r)

∫ 3

0

s2ρ′0(s)
min(r,s)n

max(r,s)n+1

∫

∂B1

Sn,j(η)Λ(sη)dωηds

+
4π

2n+1

1

U ′
0(r)

∫ 3

0

s2ρ′0(s)
0n

sn+1

∫

∂B1

Sn,j(η)Λ(sη)dωηds

=− 4π

2n+1

1

U ′
0(r)

∫ 3

0

s2ρ′0(s)

(

min(r,s)n

max(r,s)n+1
− 0n

sn+1

)

Λnj(s)ds,

where we used that the functions Sn,j are orthonormal with repsect to 〈·,·〉L2(∂B1).
We find that

Λ01(r)=− 4π

rU ′
0(r)

∫ r

0

ρ′0(s)s(s−r)Λ01(s)ds,

and we obviously have limr→0Λ01(r)=0. Let R≥0 be maximal such that Λ01(r)
vanishes on [0,R]. Then for r∈[R,3],

|Λ01(r)|≤
4π

rU ′
0(r)

‖ρ′0‖∞ sup
0≤s≤r

|Λ01(s)|
∫ r

R

s(r−s)ds≤C(r−R) sup
0≤s≤r

|Λ01(s)|.

Thus for small ǫ>0, we have Λ01(r)=0 on the interval [R,R+ǫ] and we conclude that
Λ01 vanishes on the whole interval [0,3]. Now up to linear combinations, the spherical
harmonics for n=1 are given by x1,x2,x3, and Λ∈CS implies

∫

∂B1

ξ1Λ(rξ)dωξ =−
∫

∂B1

ξ1Λ(rξ)dωξ =0,

where we made the transformation ξ 7→(−ξ1,ξ2,ξ3). Analoguously,

∫

∂B1

ξ2Λ(rξ)dωξ =

∫

∂B1

ξ3Λ(rξ)dωξ =0,

and we have Λ11=Λ12=Λ13≡0. Let n≥2. Then

Λnj(r)=− 4π

2n+1

1

U ′
0(r)

(∫ r

0

s2ρ′0(s)
sn

rn+1
Λnj(s)ds+

∫ 3

r

s2ρ′0(s)
rn

sn+1
Λnj(s)ds

)

,
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and

|Λnj(r)|≤
4π

2n+1

1

U ′
0(r)

‖Λnj‖∞
(

1

r2

∫ r

0

(−ρ′0)(s)
sn−1

rn−1
s3ds+r

∫ 3

r

(−ρ′0)(s)
rn−1

sn−1
ds

)

≤ 4π

2n+1

1

U ′
0(r)

‖Λnj‖∞
(

1

r2

∫ r

0

(−ρ′0)(s)s
3ds+r

∫ 3

r

(−ρ′0)(s)ds

)

=
4π

2n+1

1

U ′
0(r)

‖Λnj‖∞
(

1

r2
r3(−ρ0)(r)+

3

r2

∫ r

0

s2ρ0(s)ds+rρ0(r)

)

=
3

2n+1
‖Λnj‖∞,

where we integrated by parts in the third line and used the fact that U ′
0(r)=

4π
r2

∫ r

0
s2ρ0(s)ds in the last line, also recalling from (2.2) that −ρ′0(r)≥0.

Now 2n+1>3 for n≥2 implies that Λnj≡0 for n≥2 as well and the completeness
of {Sn,j} induces Λ≡0. We conclude that id−K is one-to-one as claimed.

It is now clear that L0 :X→Y is one-to-one as well — this follows from equation
(3.2) and the fact that U ′

0(r)>0 for r>0. Once we have proved the following lemma,
the proof of Proposition 3.1 will be complete.

Lemma 3.4. L0 :X→Y is onto.

Proof. Let g∈Y and define q :=g/U ′
0. We will show q∈X. We have that q∈

C1(Ḃ4)∩CS(B4) and

|∇q|≤ |∇g(x)|
U ′

0(|x|)
+|g(x)|

∣

∣

∣

∣

U ′′
0 (|x|)

U ′
0(|x|)2

x

|x|

∣

∣

∣

∣

≤C

( |∇g(x)

|x| +
|g(x)|
|x|2

)

≤2C‖g‖Y .

By definition of Y and since U0∈C2([0,∞[) with U ′′
0 (0)>0, we have that for every

x∈∂B1,

∇q(tx)=
∇g(tx)

t

t

U ′
0(t)

− g(tx)

t2
U ′′

0 (t)

(

t

U ′
0(t)

)2

x

→∇g(0x)

0

1

U ′′
0 (0)

− g(0x)

02
U ′′

0 (0)
1

U ′′
0 (0)2

x

as t→0+, uniformly in x∈∂B1.
Since X⊂CS(B4), there exists by Lemma 3.3 an element Λ∈CS(B4) such that

Λ−KΛ=−q=− g

U ′
0

.

This implies that L0Λ=g and thus that L0 is onto, provided Λ∈X. To see the
latter statement, we observe that Λ=KΛ−q is Hölder continuous since KΛ is Hölder
continuous. If we now define VΛ as above in the proof of Lemma 3.2 we also conclude
that VΛ∈C2(R3) and thus KΛ∈C1(Ḃ4). Denoting by HVΛ

the Hessian of VΛ, we
obtain for each x∈Ḃ4 a point z∈0,x such that

|∇(KΛ)(x)|≤
∣

∣

∣

∣

U ′′
0 (|x|)

U ′
0(|x|)2

∣

∣

∣

∣

|VΛ(x)−VΛ(0)|+ 1

|U ′
0(|x|)|

|∇VΛ(x)|

≤ C

|x|2 |〈HVΛ
(z)x,x〉|+ C

|x| |∇VΛ(x)|≤C‖D2VΛ‖∞,
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where we defined 〈x,y〉:=∑3
j=1xjyj for x,y∈R

3. Finally, for x∈∂B1, we have

∇(KΛ)(tx)=− U ′′
0 (t)

U ′
0(t)

2
x(VΛ(tx)−VΛ(0))+

1

U ′
0(t)

∇VΛ(tx)

=−U ′′
0 (t)

(

t

U ′
0(t)

)2

x
1

t2
1

2
〈HVΛ

(τx)tx,tx〉+ t

U ′
0(t)

∇VΛ(tx)

t

→− 1

2U ′′
0 (0)

〈HVΛ
(0)x,x〉x+

1

U ′′
0 (0)

D2VΛ(0)x,

as t→0+, uniformly in x∈∂B1. We have shown that KΛ∈X, which implies Λ=
KΛ+q∈X, and the proof is complete.

Appendix A. In this section, we first state the implicit function theorem, which
is used for the proof of Theorem 2.1. We then give a regularity result for the Poisson
equation and finally introduce spherical harmonics. We state two important lemmas:
an addition theorem and the expansion of the integral kernel 1/|x−y| in spherical
harmonics.

Theorem A.1. Let X,Y,Z be Banach spaces, U⊂X and V ⊂Y be neighborhoods
of x0∈X and y0∈Y , respectively, and F :U×V →Z be continuous and continously
Fréchet-differentiable with respect to the second variable. Suppose also that F (x0,y0)=
0 and F−1

y (x0,y0)∈L(Z,Y ).

Then there exist balls Br(x0)⊂U , Bδ(y0)⊂V and exactly one continuous map
G:Br(x0)→Bδ(y0) such that Gx0=y0 and F (x,Gx)=0 on Br(x0).

Proof. [1, Thm. 15.1].

Lemma A.2. Let n<p≤∞ and let ρ(x)∈Lp(Rn) with compact support. Define

Vρ(x):=−
∫

Rn

1

|x−y| ρ(y)dy.

Then for every 0<α<1−n/p we have Vρ∈C1,α(Rn) and

|∂iVρ(x)−∂iVρ(x
′)|≤C(n,α,p)|x′−x|α‖f‖pLn(supp{ρ})

1−α
n

− 1

p .

Proof. [6, Thm. 10.2].

Some facts about spherical harmonics. In the following, we use the notation of
[7] and we will always consider the case where the spatial dimension q is equal to 3.
For n∈N, consider a homogeneous polynomial Hn of degree n, which satisfies

∆Hn(x)=0.

Then for ξ∈∂B1 :={x∈R
3 ||x|=1},

Sn(ξ):=Hn(ξ)

is called a spherical harmonic of order n. For each n, there exist 2n+1 linearly in-
dependent spherical harmonics, which we call Sn,j , j=1,...2n+1 [7, Lem. 4]. We
denote by {Sn,j , n=0,...,∞, j=1,...,2n+1} the orthonormal set of all spherical har-
monics, where the orthonormalization is done with respect to 〈.,.〉L2(∂B1). Then we
have the following
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Lemma A.3. For a fixed n∈N and ξ,η∈∂B1, we have that

2n+1
∑

j=1

Sn,j(ξ)Sn,j(η)=
2n+1

4π
Pn(ξ ·η),

where Pn(t) is the Legendre Polynomial of degree n.

Lemma A.4. Let x,y∈R
3 with x=Rξ, y=rη, for suitable ξ,η∈∂B1 and r,R∈R.

Then we have for R>r

1

|x−y|=R−1
∞
∑

n=0

( r

R

)n

Pn(ξ ·η),

and for R<r

1

|x−y|=r−1
∞
∑

n=0

(

R

r

)n

Pn(ξ ·η),

where Pn(t) is the Legendre Polynomial of degree n.

Proofs can be found in [7, Thm. 2 and Lem. 19].
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