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A SIMPLE EULERIAN FINITE-VOLUME METHOD FOR

COMPRESSIBLE FLUIDS IN DOMAINS WITH MOVING

BOUNDARIES∗

ALINA CHERTOCK† AND ALEXANDER KURGANOV‡

Abstract. We introduce a simple new Eulerian method for treatment of moving boundaries in
compressible fluid computations. Our approach is based on the extension of the interface tracking
method recently introduced in the context of multifluids. The fluid domain is placed in a rectangular
computational domain of a fixed size, which is divided into Cartesian cells. At every discrete time
level, there are three types of cells: internal, boundary, and external ones. The numerical solution
is evolved in internal cells only. The numerical fluxes at the cells near the boundary are computed
using the technique from [A. Chertock, S. Karni and A. Kurganov, M2AN Math. Model. Numer.
Anal., to appear] combined with a solid wall ghost-cell extrapolation and an interpolation in the
phase space. The proposed computational framework is general and may be used in conjunction
with one’s favorite finite-volume method. The robustness of the new approach is illustrated on a
number of one- and two-dimensional numerical examples.
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1. Introduction

We are interested in developing a simple, accurate, and robust numerical method
for computing compressible fluids in domains with moving boundaries. In the two-
dimensional (2-D) case, the governing equations are the compressible Euler equations:




ρ
ρu
ρv
E




t

+




ρu
ρu2 +p

ρuv
u(E +p)




x

+




ρv
ρuv

ρv2 +p
v(E +p)




y

=0, (1.1)

where ρ is the fluid density, u and v are the velocities, E is the total energy, and p
is the pressure. The system (1.1) is closed using the equation of state (EOS), which,
for ideal gases, reads:

E =
p

γ−1
+

ρ

2
(u2 +v2), γ =const.

We also introduce the notation c :=
√

γp/ρ for the speed of sound, which will be used
throughout the paper.

Our goal is to apply Eulerian finite-volume (FV) methods to problems with chang-
ing geometries. To this end, we place the fluid domain into a computational domain
of fixed size, which is divided into Cartesian cells. At every time moment, each cell is
marked as either an internal, external, or boundary one. The internal cells are fully
occupied by the gas, the external cells are located outside of the fluid domain and
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play the role of the so-called ghost cells, while the boundary cells form a thin layer
between the internal and external ones. The boundary cells have to be introduced
since, in the case of moving boundaries, the fluid domain boundary cannot in general
be forced to coincide with the cell edges. As a result, the boundary cells are only
partially filled with the gas, which is very inconvenient since within the FV compu-
tational framework, numerical solutions are represented in terms of the cell averages.
One of the possible ways to treat the boundary cells is to split each of them into two
smaller cells: the internal and the external ones. However, this would significantly
increase the complexity of the entire solution algorithm and may lead to very small
time steps (see, e.g., [1, 4, 11]). We prefer an alternative, simpler approach, in which
the averages are computed over the internal cells only and the data contained in the
boundary cells are not used for the computation of numerical fluxes. We treat the
boundary cells similar to the way that the so-called “mixed” cells have been treated in
[5]. Namely, we only approximate the point values at the edges of these cells, required
in the numerical flux computations. These point values are obtained using the solid
wall extrapolation followed by the interpolation in the phase space (by solving the
Riemann problem between the internal cell averages and the extrapolated ones). The
numerical solution is then evolved in internal cells only using a FV method.

The proposed computational framework is general and may be used in conjunction
with one’s favorite FV method. We refer the reader to [9, 12, 17, 22], where the
description of a variety of modern high-order FV methods can be found. In this
paper, we have used the semi-discrete second-order central-upwind scheme developed
in [13, 14, 15]. This Godunov-type scheme enjoys all major advantages of Riemann-
problem-solver-free, non-oscillatory central schemes and, at the same time, have a
certain “built-in” upwind nature.

The paper is organized as follows. The description of the new one-dimensional
(1-D) and 2-D methods are presented in Section 2 and Section 3, respectively. The
key part of this paper — a special Eulerian way of treating moving boundaries in one
and two space dimensions — can be found in Section 2.1 and Section 3.1. Finally, in
Section 5, we demonstrate the high resolution and robustness of the new schemes in
a series of 1-D and 2-D numerical experiments.

2. One-dimensional method

We begin with a description of a general 1-D semi-discrete FV framework. The
boundary cell treatment is presented in Section 2.1.

We consider the 1-D version of the system (1.1):

Ut + f(U)x =0, (2.1)

where U := (ρ, ρu,E)T and f(U) :=(ρu, ρu2 +p, u(E +p))T . For simplicity, we divide
the computational domain into FV cells Cj := [xj− 1

2

,xj+ 1

2

] of a uniform size ∆x. A

semi-discrete FV scheme for (2.1) is the following system of ODEs:

d

dt
Uj(t)=−

Hj+ 1

2

(t)−Hj− 1

2

(t)

∆x
, (2.2)

where Uj(t) are approximations of the cell averages of the solution:

Uj(t)≈
1

∆x

∫

Cj

U(x,t)dx,
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and Hj+ 1

2

(t)=H(U−

j+ 1

2

(t),U+
j+ 1

2

(t)) is a numerical flux function. Here,

U+
j+ 1

2

(t) :=Pj+1(xj+ 1

2

,t) and U−

j+ 1

2

(t) :=Pj(xj+ 1

2

,t) (2.3)

are the right and the left values at x=xj± 1

2

of a conservative, (essentially) non-
oscillatory, piecewise polynomial interpolant

Ũ(x,t)=Pj(x,t), xj− 1

2

<x<xj+ 1

2

, (2.4)

which is reconstructed at each time step from the previously computed cell averages,
{Uj(t)}. Notice that the formal spatial order of accuracy of the resulting scheme
depends on the order of the piecewise polynomial reconstruction (2.4).

To complete the description of a concrete FV method, the following three items
are to be specified (selected):

(i) Numerical flux. A variety of reliable functions H is available in the literature
(see, e.g., [9, 12, 17, 22], and references therein). In all our numerical experiments,
we have used the central-upwind flux [13, 14]:

Hj+ 1

2

(t)=
a+

j+ 1

2

f(U−

j+ 1

2

)−a−

j+ 1

2

f(U+
j+ 1

2

,)

a+
j+ 1

2

−a−

j+ 1

2

+
a+

j+ 1

2

a−

j+ 1

2

a+
j+ 1

2

−a−

j+ 1

2

[
U+

j+ 1

2

−U−

j+ 1

2

]
,

where a±

j+ 1

2

are the right- and left-sided local speeds obtained from the largest and

the smallest eigenvalues of the Jacobian ∂F

∂U
:

a+
j+ 1

2

=max
{

u+
j+ 1

2

+c+
j+ 1

2

, u−

j+ 1

2

+c−
j+ 1

2

, 0
}

,

a−

j+ 1

2

=min
{

u+
j+ 1

2

−c+
j+ 1

2

, u−

j+ 1

2

−c−
j+ 1

2

, 0
}

.

Note that the quantities Uj , U±

j+ 1

2

, (Ux)j , p±
j+ 1

2

, c±
j+ 1

2

, and a±

j+ 1

2

depend on t, but

from now on we, for simplicity, will suppress this dependence in our notation;

(ii) Reconstruction. In this paper, we will restrict our consideration to second-
order schemes that are typically based on piecewise linear reconstructions, which can
be written as:

Ũ(x) :=Uj +(Ux)j(x−xj), xj− 1

2

<x<xj+ 1

2

. (2.5)

The numerical derivatives (Ux)j are (at least) first-order, componentwise approxi-
mations of Ux(xj ,t), computed using a nonlinear limiter needed to ensure a non-
oscillatory nature of the reconstruction (2.5). A library of such limiters is available
(see, e.g., [9, 12, 16, 17, 18, 19, 20]), and one can compute the numerical derivatives us-
ing one’s favorite limiter. In our numerical experiments, we have used the generalized
minmod limiter [16, 18, 19, 20]:

(Ux)j =minmod

(
θ
Uj −Uj−1

∆x
,
Uj+1−Uj−1

2∆x
, θ

Uj+1−Uj

∆x

)
, θ∈ [1,2], (2.6)

where the minmod function is defined as:

minmod(z1,z2,...) :=





minj{zj}, if zj >0 ∀j,
maxj{zj}, if zj <0 ∀j,
0, otherwise,

(2.7)
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and the parameter θ can be used to control the amount of numerical viscosity present
in the resulting scheme. Let us recall that larger values of θ correspond to less dissi-
pative but, in general, more oscillatory reconstructions.

(iii) ODE solver. The resulting semi-discretization (2.2) is a system of time-
dependent ODEs, which should be solved by a stable ODE solver of an appropriate
order.

2.1. Boundary cell treatment in 1-D. Let us assume that our computational
domain, which is sufficiently large enough to contain the entire fluid domain at all
times, is divided into N uniform cells {Cj ; j =1,... ,N}, and that the right boundary
of the fluid domain is a moving solid wall with a given equation of motion. We also
assume that at some time t≥0, the right boundary x=xB(t)≤xN is contained in
cell J , that is, xJ− 1

2

≤xB(t)≤xJ+ 1

2

, and the computed solution, realized by the cell

averages of the conserved quantities, {Uj(t); j =1,... ,J}, is available.
We now have to evolve the computed solution from time level t to the new time

level t+∆t using a semi-discrete FV scheme, described in the beginning of Section 2.
One step of the proposed time evolution algorithm consists of the following stages.

We first evolve the “internal” part of the solution, {Uj(t); j =1,... ,J−1}. Ac-
cording to (2.2), this means that we need to compute the following set of numerical
fluxes: {Hj+ 1

2

(t); j =0,... ,J−1}, which are obtained using the corresponding point

values: {U±

j+ 1

2

(t); j =0,... ,J−1}, calculated by a piecewise polynomial (say, for sim-

plicity, piecewise linear) reconstruction (2.3)–(2.4). Such a reconstruction employs a
nonlinear limiter (the minmod (2.6)–(2.7) or an alternative one) and therefore, in order
to obtain a polynomial piece in any given cell, we need (at least) two neighboring cell
averages available. This way, we will have the reconstructed pieces {Pj} for all j except
for j =J−1 and j =J since we refrain from using the cell averages at the boundary
cell J and since no data is available at the external cells {Cj ; j =J +1,... ,N}. We
thus need a special procedure for the computation of the following three point values:
U+

J− 3

2

, U−

J− 1

2

, and U+
J− 1

2

.

To obtain U+
J− 1

2

, we use our assumption that the moving boundary, present in cell

J , is a solid wall. Therefore, we consider the solid wall extrapolation of the solution
values in cell (J−1),

ρJ−1, uJ−1 =
(ρu)J−1

ρJ−1

, pJ−1 =(γ−1)

[
EJ−1−

ρJ−1u
2
J−1

2

]
,

to obtain the following ghost-cell values:

ρgh :=ρJ−1, ugh :=2ẋB(t)−uJ−1, pgh :=pJ−1,

where ẋB(t) is the velocity of the wall at time t. The required point values U+
J− 1

2

are

then computed using the interpolation between (ρJ−1,uJ−1,pJ−1) and (ρgh,ugh,pgh),
which is, following the idea of the multi-fluid algorithms in [6] and [5], performed in
the phase space. Namely, we exactly solve the Riemann problem between the above
two states. Since the density and the pressure values on the left and on the right are
the same, the solution of the Riemann problem has a very simple structure: it consists
of either two shocks or two rarefaction waves. In particular, if ugh <uJ−1, the solution
consists of three constant states, connected by two shock waves (see Figure 2.1). The
intermediate state (ρ∗,u∗,p∗), which is easy to compute in this case (consult, e.g.,
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[22]), is equal to:

p∗ =pJ−1 +
(γ+1)ρJ−1 (ẋB(t)−uJ−1)

2

4


1+

√

1+

(
4cJ−1

(γ+1)(ẋB(t)−uJ−1)

)2

 ,

(2.8)

u∗ = ẋB(t), ρ∗ =ρJ−1

(γ−1)pJ−1 +(γ+1)p∗
(γ+1)pJ−1 +(γ−1)p∗

.

If ugh >uJ−1, the solution consists of three constant states, connected by two rarefac-
tion waves, and the intermediate state (ρ∗,u∗,p∗) is given by (once again, consult,
e.g., [22]):

p∗ =pJ−1

(
1− (γ−1)(ẋB(t)−uJ−1)

2cJ−1

)2γ/(γ−1)

, u∗ = ẋB(t), ρ∗ =ρJ−1

(
p∗

pJ−1

)1/γ

.

(2.9)

gh

ρ
u
p

J−1
J−1

J−1
p

gh

ρ
u
p

*
*

* ρ
 u  gh

Fig. 2.1. A shock-shock self-similar solution of the Riemann problem between
(ρJ−1,uJ−1,pJ−1) and (ρgh,ugh,pgh), presented in the (x,t)-plane.

Once the intermediate state of the Riemann problem solution is available, we
compute the required values at the left endpoint of cell J according to the following
algorithm:

if u∗ >0 then

U+
J− 1

2

=





U∗, if u∗−c∗ <0,

UJ−1, otherwise,

else

U+
J− 1

2

=





U∗, if u∗+c∗ >0,

Ugh, otherwise,

where

U∗ :=

(
ρ∗, ρ∗u∗,

p∗
γ−1

+
ρ∗
2

(u∗)
2

)T

, Ugh :=

(
ρgh, ρghugh,

pgh

γ−1
+

ρgh

2
(ugh)2

)T

.

The point values U+
J− 1

2

are then used to reconstruct a conservative linear piece (2.5) at

the neighboring cell CJ−1. The reconstruction is made non-oscillatory by computing
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the derivatives (Ux)J−1 with the help of the minmod limiter, applied to the cell
averages at cell (J−1) and to the corresponding point values, already computed at
the endpoints of the cells CJ−2 and CJ by

(Ux)J−1 =minmod




UJ−1−U−

J− 3

2

∆x/2
,
U+

J− 1

2

−UJ−1

∆x/2


 , (2.10)

where the minmod function, given by (2.7), is applied componentwise (see Figure 2.2.)

BJ−5/2 xJ−3/2 xJ−1/2 xJ+1/2 xJ+3/2

Moving Boundary

−U
U

U
J−1/2

J−3/2
J−1

+

xx

Fig. 2.2. Special minmod reconstruction in cell (J −1).

With the values {U±

j+ 1

2

; j =0,... ,J−1} at hand, the cell averages {Uj} are

evolved from time t to time t+∆t according to the FV scheme (2.2). After this,
the location of the moving wall is updated, and three scenarios are possible: the right
boundary either remains in cell J or crosses over to one of its neighboring cells (J±1)
(due to the CFL condition, the boundary may not move by more than ∆x per one
time step).

• If xB(t+∆t) remains in cell J , the evolution step is completed and we proceed to
the next time step.

• If xB(t+∆t) is in cell (J−1), then this cell becomes the new boundary cell, while
cell J turns into an exterior one. The computed values UJ(t+∆t) will not be used
by our method.

• If the boundary moves to cell (J +1), it becomes a new boundary cell, and cell J
becomes an interior one. We follow the approach from [5, 6] and once again use the
solution of the Riemann problem between (ρJ−1,uJ−1,pJ−1) and (ρgh,ugh,pgh) to ob-

tain UJ(t+∆t). The correction procedure is summarized in the following algorithm:

if xB(t+∆t)∈CJ+1 then set UJ(t+∆t) :=U∗

This completes one evolution step of the proposed 1-D Eulerian method for the case
of a moving right boundary. The case of a moving left boundary is treated similarly.

3. Two-dimensional method

As in Section 2, we begin with a description of a general 2-D semi-discrete FV
scheme, while the presentation of the boundary cells treatment is postponed to Section
3.1.
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We denote by Cj,k the computational cells Cj,k := [xj− 1

2

,xj+ 1

2

]× [yk− 1

2

,yk+ 1

2

] of
a uniform size ∆x∆y. As in the 1-D case, the cell averages,

Uj,k(t)≈ 1

∆x∆y

∫ ∫

Cj,k

U(x,y,t) dxdy, U := (ρ,ρu,ρv,E)T ,

are evolved in time according to the semi-discrete FV scheme:

d

dt
Uj,k(t)=−

Hx
j+ 1

2
,k

(t)−Hx
j− 1

2
,k

(t)

∆x
−

H
y

j,k+ 1

2

(t)−H
y

j,k− 1

2

(t)

∆y
, (3.1)

where Hx
j+ 1

2
,k

(t) and H
y

j,k+ 1

2

(t) are numerical fluxes, which are to be computed with

the help of a conservative, (essentially) non-oscillatory piecewise polynomial recon-
struction.

As in the 1-D case, the description of the scheme will be completed by selecting
specific numerical flux functions, a piecewise polynomial reconstruction, and an ODE
solver. Once again, we would like to emphasize that our method is not tied to a
particular choice of any of these three ingredients. The numerical results presented
in Section 5.2 have been obtained using the following:

(i) Numerical fluxes. We have used the second-order central-upwind fluxes
([13, 14]):

Hx
j+ 1

2
,k =

a+
j+ 1

2
,k
f(UE

j,k)−a−

j+ 1

2
,k
f(UW

j+1,k)

a+
j+ 1

2
,k
−a−

j+ 1

2
,k

+
a+

j+ 1

2
,k

a−

j+ 1

2
,k

a+
j+ 1

2
,k
−a−

j+ 1

2
,k

[
UW

j+1,k−UE
j,k

]
,

H
y

j,k+ 1

2

=
b+
j,k+ 1

2

g(UN
j,k)−b−

j,k+ 1

2

g(US
j,k+1)

b+
j,k+ 1

2

−b−
j,k+ 1

2

+
b+
j,k+ 1

2

b−
j,k+ 1

2

b+
j,k+ 1

2

−b−
j,k+ 1

2

[
US

j,k+1−UN
j,k

]
,

where f(U) :=(ρu, ρu2 +p, ρuv, u(E +p))T , g(U) :=(ρu, ρuv, ρv2 +p, v(E +p))T , and

U
E,W,N,S
j,k are the point values of a piecewise linear reconstruction Ũ, and the local

one-sided speeds of propagation are computed by:

a+
j+ 1

2
,k

=max
{
uE

j,k +cE
j,k , uW

j+1,k +cW
j+1,k ,0

}
,

a−

j+ 1

2
,k

=min
{

uE
j,k−cE

j,k , uW
j+1,k−cW

j+1,k ,0
}

,

b+
j,k+ 1

2

=max
{

vN
j,k +cN

j,k , vS
j,k+1 +cS

j,k+1 ,0
}

,

b−
j,k+ 1

2

=min
{

vN
j,k−cN

j,k , vS
j,k+1−cS

j,k+1 ,0
}

.

As before, we suppress the dependence of Uj,k, U
E,W,N,S
j,k , pE,W,N,S

j,k , cE,W,N,S
j,k , a±

j+ 1

2
,k

,

and b±
j,k+ 1

2

on t to simplify the notation.

(ii) Reconstruction. We have utilized the generalized minmod piecewise linear
reconstruction:

Ũ(x,y) :=Uj,k +(Ux)j,k(x−xj)+(Uy)j,k(y−yk), (x,y)∈Cj,k (3.2)
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with the corresponding point values at the midpoints of the cell edges:

U
E(W)
j,k :=Uj,k±

∆x

2
(Ux)j,k, U

N(S)
j,k :=Uj,k±

∆y

2
(Uy)j,k. (3.3)

The numerical derivatives (Ux)j,k and (Uy)j,k are computed by

(Ux)j,k =minmod

(
θ
Uj,k−Uj−1,k

∆x
,
Uj+1,k−Uj−1,k

2∆x
, θ

Uj+1,k−Uj,k

∆x

)
,

(Uy)j,k =minmod

(
θ
Uj,k−Uj,k−1

∆y
,
Uj,k+1−Uj,k−1

2∆y
, θ

Uj,k+1−Uj,k

∆y

)
,

(3.4)

where the parameter θ∈ [1,2], as in the 1-D case.

(iii) ODE solver. The system (3.1) is to be solved by a stable ODE solver of an
appropriate order.

3.1. Boundary cell treatment in 2-D. The extension of the 1-D interface
treatment algorithm to 2-D is carried out in an essentially dimension-by-dimension
manner.

We assume that at a certain time level t≥0, the computed solution is available
and that cell (J,K) is a boundary cell, while its left neighbor (J−1,K) is an internal
cell (see Figure 3.1 (a)). Other possible “near boundary” configurations, shown in
Figures 3.1 (b)–(d), are treated similarly.

BK

J−1 J

(a)

BI B KI
J J+1

(b)

J

B K

K−1

(c)

I J

K+1

K

(d)

I

Fig. 3.1. Typical cell configurations near the boundary cell (J,K). The internal cells are denoted
by I.

Let us first describe how to compute the point values UW
J,K , needed to evaluate

the numerical fluxes Hx
J− 1

2
,K

in the situation corresponding to Figure 3.1 (a). To this

end, we extend the 1-D algorithm described in Section 2.1 to two space dimensions.
The extension is carried out straightforwardly, namely, we solve the Riemann problem
in the x-direction between the state in cell (J−1,K),

ρJ−1,K , uJ−1,K =
(ρu)J−1,K

ρJ−1,K

, vJ−1,K =
(ρv)J−1,K

ρJ−1,K

,

pJ−1,K =(γ−1)

[
EJ−1,K −

ρJ−1,K

2

(
u2

J−1,K +v2
J−1,K

)]
,

and the extrapolated ghost-cell state,

ρgh =ρJ−1,K , ugh =2uB(t)−uJ−1,K , vgh =vB(t), pgh =pJ−1,K ,
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where uB(t) and vB(t) are the x- and y-velocities of the piece of the boundary, which
is located in cell (J,K) at time t. We would like to stress that since we are dealing
with a solid boundary with a given equation of motion, the location of the entire
boundary as well as its velocities are assumed to be known at every time moment.

The solution of this 1-D Riemann problem can still be easily obtained analytically.
If ugh <uJ−1,K , the solution consists of four constant states, connected by two shocks
and a contact wave (see Figure 3.2). The intermediate state values are:

pW
∗ =pJ−1,K +

(γ+1)ρJ−1,K (uB(t)−uJ−1,K)
2

4


1+

√

1+

(
4cJ−1,K

(γ+1)(uB(t)−uJ−1,K)

)2

,

u∗ =uB(t), ρW
∗ =ρJ−1,K

(γ−1)pJ−1,K +(γ+1)pW
∗

(γ+1)pJ−1,K +(γ−1)pW
∗

.

If ugh >uJ−1,K , the solution consists of four constant states, connected by two rar-
efactions and a contact wave, with the following intermediate state values:

pW
∗ =pJ−1,K

(
1− (γ−1)(uB(t)−uJ−1,K)

2cJ−1,K

)2γ/(γ−1)

,

u∗ =uB(t), ρW
∗ =ρJ−1,K

(
pW
∗

pJ−1,K

)1/γ

.
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Fig. 3.2. A shock-contact-shock self-similar solution of the Riemann problem in the x-direction
between (ρJ−1,K ,uJ−1,K ,vJ−1,K ,pJ−1,K) and (ρgh,ugh,vgh,pgh), presented in the (x,t)-plane.

Once the intermediate states are available, we obtain the required values at the
midpoint of the left edge of cell (J,K):

if u∗ >0 then

UW
∗ :=

(
ρW
∗ , ρW

∗ u∗, ρW
∗ vJ−1,K ,

pW
∗

γ−1
+

ρW
∗

2

[
(u∗)

2 +(vJ−1,K)2
])T

,

UW
J,K =

{
UW

∗ , if u∗−cW
∗ <0,

UJ−1,K , otherwise,
else
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UW
∗ :=

(
ρW
∗ , ρW

∗ u∗, ρW
∗ vgh,

pW
∗

γ−1
+

ρW
∗

2

[
(u∗)

2 +(vgh)2
])T

,

Ugh =

(
ρgh, ρghugh, ρghvgh,

pgh

γ−1
+

ρgh

2

[
(ugh)2 +(vgh)2

])T

,

UW
J,K =

{
UW

∗ , if u∗+cW
∗ >0,

Ugh, otherwise.

As in the 1-D case, the point values UW
J,K are then used to reconstruct a conservative

linear piece (3.2) at the neighboring cell CJ−1,K . This is done similarly to (2.10), and
the details are left to the reader.

In the situation corresponding to Figure 3.1 (b), we proceed similarly. Namely,
we solve the Riemann problem in the x-direction between the state in cell (J +1,K),

ρJ+1,K , uJ+1,K =
(ρu)J+1,K

ρJ+1,K

, vJ+1,K =
(ρv)J+1,K

ρJ+1,K

,

pJ+1,K =(γ−1)

[
EJ+1,K −

ρJ+1,K

2

(
u2

J+1,K +v2
J+1,K

)]
,

and the extrapolated ghost-cell state,

ρgh =ρJ+1,K , ugh =2uB(t)−uJ+1,K , vgh =vB(t), pgh =pJ+1,K .

The resulting algorithm for computing UE
J,K is summarized below:

if u∗ <0 then

UE
∗ :=

(
ρE
∗ , ρE

∗ u∗, ρE
∗ vJ+1,K ,

pE
∗

γ−1
+

ρE
∗

2

[
(u∗)

2 +(vJ+1,K)2
])T

,

UE
J,K =





UE
∗ , if u∗+cE

∗ >0,

UJ+1,K , otherwise,

else

UE
∗ :=

(
ρE
∗ , ρE

∗ u∗, ρE
∗ vgh,

pE
∗

γ−1
+

ρE
∗

2

[
(u∗)

2 +(vgh)2
])T

,

Ugh =

(
ρgh, ρghugh, ρghvgh,

pgh

γ−1
+

ρgh

2

[
(ugh)2 +(vgh)2

])T

,

UE
J,K =





UE
∗ , if u∗−cE

∗ <0,

Ugh, otherwise.

The y-direction (situations corresponding to Figures 3.1 (c) and (d)) is treated in



A. CHERTOCK AND A. KURGANOV 541

a similar fashion, so that US
J,K are obtained by:

if v∗ >0 then

US
∗ :=

(
ρS
∗, ρS

∗uJ,K−1, ρS
∗v∗,

pS
∗

γ−1
+

ρS
∗

2

[
(uJ,K−1)

2 +(v∗)
2
])T

,

US
J,K =





US
∗, if v∗−cS

∗ <0,

UJ,K−1, otherwise,

else

US
∗ :=

(
ρS
∗, ρS

∗ugh, ρS
∗v∗,

pS
∗

γ−1
+

ρS
∗

2

[
(ugh)2 +(v∗)

2
])T

,

Ugh =

(
ρgh, ρghugh, ρghvgh,

pgh

γ−1
+

ρgh

2

[
(ugh)2 +(vgh)2

])T

,

US
J,K =





US
∗, if v∗+cS

∗ >0,

Ugh, otherwise,

where ρgh =ρJ,K−1, ugh =uB(t), vgh =2vB(t)−vJ,K−1, pgh =pJ,K−1. Finally, UN
J,K

are computed as follows:

if v∗ <0 then

UN
∗ :=

(
ρN
∗ , ρN

∗ uJ,K+1, ρN
∗ v∗,

pN
∗

γ−1
+

ρN
∗

2

[
(uJ,K+1)

2 +(v∗)
2
])T

,

UN
J,K =





UN
∗ , if v∗+cN

∗ >0,

UJ,K+1, otherwise,

else

UN
∗ :=

(
ρN
∗ , ρN

∗ ugh, ρN
∗ v∗,

pN
∗

γ−1
+

ρN
∗

2

[
(ugh)2 +(v∗)

2
])T

,

Ugh =

(
ρgh, ρghugh, ρghvgh,

pgh

γ−1
+

ρgh

2

[
(ugh)2 +(vgh)2

])T

,

UN
J,K =





UN
∗ , if v∗−cN

∗ <0,

Ugh, otherwise,

where ρgh =ρJ,K+1, ugh =uB(t), vgh =2vB(t)−vJ,K+1, pgh =pJ,K+1.

Equipped with all the point values required in (3.1), the cell averages {Uj,k} in
the interior cells are evolved from time t to time t+∆t. By that time, the boundary
will move and some boundary cells may become internal. Assume that the status
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of the boundary cell (J,K) has changed from boundary to internal. We then need
to have approximate solution values there, that is, we need to set the cell averages
UJ,K(t+∆t). This is done according to the following algorithm: the cell averages
UJ,K(t+∆t) are obtained as a weighted average of the intermediate states of the
solutions of the aforementioned 1-D Riemann problems — UW

∗ , UE
∗ , US

∗, and UN
∗ , by

UJ,K(t+∆t) :=
αx

αx +αy
· α

EUE
∗ +αWUW

∗

αE +αW
+

αy

αx +αy
· α

NUN
∗ +αSUS

∗

αN +αS
,

where

αE(W) =

{
1, if cell (J±1,K) was internal at time t,
0, otherwise,

αN(S) =

{
1, if cell (J,K±1) was internal at time t,
0, otherwise,

and

αx =max(αE, αW), αy =max(αN, αS).

Notice that this approach would require every boundary cell to have at least one
neighboring internal cell at every time moment.

This completes a description of one evolution step of the proposed 2-D Eulerian
method.

4. Two important remarks

The proposed boundary cell treatment procedures use the O(∆x) accurate infor-
mation on the location of the boundary instead of the exact one and thus the overall

accuracy of the introduced method cannot be higher than the first order (the numerical
convergence rate is measured in Example 2 below). We would like to emphasize that
the main advantage of the new Eulerian method is its simplicity and robustness. To
achieve a higher resolution, one may use an adaptive mesh refinement technique near
the boundary, see, e.g., [2, 3]. The adaptive version of the proposed method will be
developed in future work.

We would also like to point out that our boundary treatment procedure is not
conservative. However, the conservation error occurs only along the boundary surface
of co-dimension one. Thus the total conservation error is expected to be proportional

to the mesh size, as confirmed by our numerical experiments (see Examples 2–7).

5. Numerical experiments

We test the proposed method on a number of 1-D and 2-D problems. In all
the examples below, we apply the semi-discrete second-order central-upwind schemes
[13, 14] to the compressible Euler equations for the ideal gas with γ =1.4. Away from
the boundary, the method employs either the 1-D generalized minmod reconstruction
(2.5)–(2.6) or its 2-D extension (3.2)–(3.4). In Examples 1 and 3–7, we take θ =1.3,
while in Example 2, θ is taken to be 1 in order to minimize the oscillations and
avoid appearance of negative pressure values. In the example with a steady geometry
(Example 3), the time integration is performed using the third-order strong stability
preserving Runge-Kutta method [10], while in the rest of the examples, in which the
boundary moves, we have used the forward Euler method.

The main goal of the presented numerical experiments is to demonstrate the
robustness of the simple Eulerian treatment of moving boundaries. It should be
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noticed that near the boundary, the proposed method is only first-order accurate and,
in the 1-D case, it can hardly compete with higher-order methods, see, e.g., [7, 8]. The
advantage of our approach, however, is in its simple extension to a multiple number
of space dimensions as well as its capability to capture complicated multidimensional
waves and resolve their interactions.
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Fig. 5.1. The piston trajectory as a function of time (left) computed on four different uniform
grids with ∆x=1/100, 1/200, 1/400, and 1/2000. Zoom at [0.89,0.98]× [7.95,8.8] (right).

5.1. One-dimensional examples. We begin with two 1-D tests, in which we
numerically study a gas in a tube with a moving right boundary located at x=xB(t).

Example 1 — piston problem. We first consider a piston problem, taken from
[8] (see also [7]). The tube is bounded by a stationary solid wall at x=0 and a piston
at x=xB(t), which is free to move without friction in the tube. The motion of the
piston is governed by the Newton equation:

d2xB(t)

dt2
=

A

m
(p(xB(t),t)−pout) ,

where A is the area of the piston, m is its mass, and pout is an external pressure.
We obtain the velocity of the piston needed for the boundary treatment procedure

by numerically solving the following ODE:

dẋB(t)

dt
=

A

m
(p∗−pout),

where p∗ is given by either (2.8) or (2.9), depending on the relation between the
current velocity of the piston, ẋB(t), and uJ−1, see Section 2.1.

We take A/m=2 and pout =2 and assume that both the gas in the tube and
the piston are initially at rest (u(x,0)≡0, ẋB(0)=0) and its density and pressure are
constant (ρ(x,0)≡p(x,0)≡1). The piston initial position is xB(0)=1.
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Due to the difference between the interior and exterior pressure, the piston starts
moving into the tube, rising the pressure inside it. When the pressure in the tube
becomes larger than the outside one, the piston decelerates and turns back. The
pattern repeats and the motion of the piston becomes oscillatory. In Figure 5.1, we
plot the piston trajectory as a function of time computed on four different uniform
grids with ∆x=1/100, 1/200, 1/400, and 1/2000 (the computational domain is [0,1]).
These results demonstrate the ability of our method to accurately capture the piston
movement. The obtained numerical solution agrees well with the solution obtained in
[8]. We note that the piston problem is different from other examples considered in the
paper since the piston motion is not a-priori prescribed but depends on the difference
between the pressures inside and outside the tube. However, when the boundary cell
extrapolation procedure is used, the elastic properties of the piston are neglected and
the wall (piston) is assumed to be solid.

Example 2 — solid moving boundary. In the second 1-D example, we con-
sider a different situation, which better fits our Eulerian approach: we assume that
the right boundary of the tube is a solid wall oscillating about xB(0)=0.9 according
to the a-priori prescribed equation of motion

xB(t)=0.9+0.1sin(10πt),

which, unlike in the case of a piston, is independent of the fluid data. The tube is
assumed to be infinitely long on the left (the computational domain is set to [0,1],
but the final times are taken sufficiently small so that no waves reach the left end of
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Fig. 5.2. Example 2: Solution (density) computed at times t=0.05,0.15,0.3, and 0.4.
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Fig. 5.3. Example 2: Solution (velocity) computed at times t=0.05,0.15,0.3, and 0.4.
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Fig. 5.4. Example 2: Zoom at the solution (density) computed at time t=0.4 on different grids.
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the domain). The initial data correspond to a right moving shock, initially positioned
at x=0.5:

(ρ,u,p)=

{
(4/3, 35/99, 1.5), x<0.5,
(1,0,1), 0.5<x<xB(0).

(5.1)

In Figures 5.2 and 5.3, we show the solution (density and velocity) computed on
reasonably coarse uniform spatial grids with ∆x=1/100 and 1/200 and on a very
fine mesh with ∆x=1/51200 at different times. The shock and rarefaction waves,
generated by the moving boundary, interact with the incoming shock. This produces
a quite complicated solution, whose global structure is accurately resolved by the
proposed simple Eulerian method.

t=0.05 t=0.15
∆x Error Rate Error Rate

1/100 5.082 ·10−3 – 2.480 ·10−2 –
1/200 2.666 ·10−3 0.93 1.517 ·10−2 0.71
1/400 1.346 ·10−3 0.99 8.024 ·10−3 0.92
1/800 6.052 ·10−4 1.15 4.376 ·10−3 0.87
1/1600 2.798 ·10−4 1.11 2.434 ·10−3 0.85

Table 5.1. Example 2: Local L1-error computed at times t=0.05 and t=0.15.

t=0.05 t=0.15
∆x Error Rate Error Rate

1/100 1.465 ·10−2 – 5.155 ·10−2 –
1/200 7.582 ·10−3 0.95 3.102 ·10−2 0.73
1/400 3.852 ·10−3 0.98 1.710 ·10−2 0.86
1/800 1.856 ·10−3 1.05 9.273 ·10−3 0.88
1/1600 8.959 ·10−4 1.05 4.926 ·10−3 0.91

Table 5.2. Example 2: L1-error computed at times t=0.05 and t=0.15.

t=0.3 t=0.4
∆x Error Rate Error Rate

1/100 1.159 ·10−2 – 3.700 ·10−3 –
1/200 8.239 ·10−3 0.49 3.339 ·10−3 0.15
1/400 4.934 ·10−3 0.74 3.007 ·10−3 0.15
1/800 3.033 ·10−3 0.70 2.168 ·10−3 0.47
1/1600 1.512 ·10−3 1.00 1.542 ·10−4 0.49

Table 5.3. Example 2: Local L1-error computed at times t=0.3 and t=0.4.

As one may observe in Figure 5.2, the local error seems to be larger near the
moving boundary than inside the computational domain. To study numerical con-
vergence of our method we check the self-convergence of the computed solutions. We
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t=0.3 t=0.4
∆x Error Rate Error Rate

1/100 4.204 ·10−2 – 7.309 ·10−2 –
1/200 2.738 ·10−2 0.62 4.261 ·10−2 0.78
1/400 1.599 ·10−2 0.77 2.465 ·10−2 0.79
1/800 9.057 ·10−3 0.82 1.316 ·10−2 0.90
1/1600 4.727 ·10−3 0.94 7.627 ·10−3 0.79

Table 5.4. Example 2: L1-error computed at times t=0.3 and t=0.4.

t=0.05 t=0.4
∆x Error Rate Error Rate

1/200 4.371 ·10−3 – 2.580 ·10−3 –
1/400 1.995 ·10−3 1.13 1.548 ·10−3 0.74
1/800 9.673 ·10−4 1.04 8.589 ·10−4 0.85
1/1600 4.565 ·10−4 1.08 4.279 ·10−4 1.00
1/3200 2.202 ·10−4 1.05 2.221 ·10−4 0.95

Table 5.5. Example 2: Mass conservation errors at times t=0.05 and t=0.4.

I

0.50.25

II

Fig. 5.5. Initial setting for the 2-D numerical examples.

use the high resolution solution (with ∆x=1/51200) as a reference solution and mea-
sure the L1- and local L1-errors for a sequence of numerical approximations of ρ with
∆x=1/100, 1/200, 1/400, 1/800, and 1/1600. The obtained errors and numerical
orders of convergence are shown in Tables 5.1–5.4 (the local L1-errors were computed
on the intervals [xB(t)−0.1,xB(t)]). We note that the global L1 convergence rate of
the proposed method is in the range of 0.79–1.05 (Tables 5.2 and 5.4). At times 0.05,
0.15, and 0.3, the local convergence rates (Tables 5.1 and 5.3) are about the same as
the global ones, while at time t=0.4 the local convergence rate deteriorates to about
0.49 (see Table 5.3). We believe that this occurs because the boundary layer appear-
ing near x=0.9 at this time is not resolved by low resolution computations. Since
the exact solution of the initial-boundary value problem (2.1), (5.1) is unavailable,
we take a closer look at what happens at the right part of the domain. In Figure
5.4, we plot the density ρ(x,t=0.4) computed on 7 uniform grids with ∆x=1/100,
1/200, 1/400, 1/800, 1/1600, 3200, and 1/51200. To improve the resolution achieved
near the moving boundary, the mesh might be adaptively refined in those areas (an
adaptive implementation of the proposed simple Eulerian method will be explored in



548 COMPRESSIBLE FLUIDS IN DOMAINS WITH MOVING BOUNDARIES

∆ x=∆ y=1/200, t=0.2

0 0.5 1
0

0.2

0.4

0.6

0.8

1
∆ x=∆ y=1/200, t=0.4

0 0.5 1
0

0.2

0.4

0.6

0.8

1

∆ x=∆ y=1/400, t=0.2

0 0.5 1
0

0.2

0.4

0.6

0.8

1
∆ x=∆ y=1/400, t=0.4

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Fig. 5.6. Example 3: Solution (density) computed at times t=0.2 and 0.4 on different grids.

t=0.2 t=0.4
∆x=∆y Error Rate Error Rate
1/100 1.566 ·10−3 – 1.276 ·10−3 –
1/200 1.070 ·10−3 0.55 1.030 ·10−3 0.32
1/400 5.070 ·10−4 1.08 4.892 ·10−4 1.06
1/800 3.163 ·10−4 0.69 2.900 ·10−4 0.75

Table 5.6. Example 3: Mass conservation errors at times t=0.2 and t=0.4.

Entropy Mass Conservation
∆x=∆y Error Rate Error Rate
1/100 2.340 ·10−6 – 1.659 ·10−3 –
1/200 1.424 ·10−6 0.71 9.968 ·10−4 0.73
1/400 9.317 ·10−7 0.61 4.853 ·10−4 1.04
1/800 5.663 ·10−7 0.72 2.948 ·10−4 0.72

Table 5.7. Example 4: L2 errors in entropy and mass conservation errors at time t=0.1.
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Fig. 5.7. Example 4: Solution (density) computed at time t=0.1 on different grids.

t=0.1 t=0.2
∆x=∆y Error Rate Error Rate
1/100 3.949 ·10−3 – 6.647 ·10−3 –
1/200 2.506 ·10−3 0.66 4.003 ·10−3 0.73
1/400 1.878 ·10−3 0.42 2.778 ·10−3 0.53
1/800 1.017 ·10−3 0.89 1.724 ·10−3 0.69

Table 5.8. Example 5: Mass conservation errors at times t=0.1 and t=0.2.

future work).
Finally, we measure the mass conservation errors and report them in Table 5.5.

As expected, these errors are relatively small and decrease as the mesh is refined,
exhibiting the numerical convergence roughly of order one.

5.2. Two-dimensional examples. We now turn to 2-D test problems, in
which we simulate flow around an (oscillating) solid circle in 2-D. We numerically
solve the system (1.1) in the computational domain [0,1]× [0,1]. The fluid domain is
given by [0,1]× [0,1]\BR(t), where BR(t) is the rigid ball of radius R=0.1 and center
(xc(t),yc(t)), see Figure 5.5. We implement inflow boundary conditions at the left
boundary and outflow boundary conditions at the right boundary, while the top and
the bottom boundaries of the domain as well as the boundaries of the moving circle
are assumed to be solid walls.

We consider a simple rigid movement of the ball with respect to the following
equations (a similar problem was considered in [21]):

xc(0)=0.5, ẋc(0)=Aωcos(ωt),
yc(0)=0.5, ẏc(0)=Bωcos(ωt),

(5.2)

where the constants A and B determine the amplitude of the motion (they are selected
sufficiently small so that the ball stays within the computational domain for all times)
and ω is its frequency (we take ω =10π in all the examples below).

Example 3 — moving shock - steady ball. In the first 2-D example, we
consider a flow generated by a right moving vertical shock, initially positioned at
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Fig. 5.8. Example 5: Solution (density) computed at times t=0.1 and 0.2 on different grids.

x=0.25 (see Figure 5.5):

(ρ(x,y,0), u(x,y,0), v(x,y,0), p(x,y,0))=

{
(4/3, 35/99,0, 1.5), x<0.25,
(1,0,0,1), x>0.25,

(5.3)

diffracting around the steady ball, that is, A=B =0 in (5.2).
The densities, computed at t=0.2 and 0.4 using two different uniform meshes

of sizes ∆x=∆y =1/200 and ∆x=∆y =1/400, are plotted in Figure 5.6. One can
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Fig. 5.9. Example 6: Solution (density) computed at time t=0.1 on different grids.

t=0.1
∆x=∆y Error Rate
1/100 5.627 ·10−3 –
1/200 3.005 ·10−3 0.90
1/400 1.518 ·10−3 0.99
1/800 7.032 ·10−4 1.11

Table 5.9. Example 6: Mass conservation errors at times t=0.1

.

t=0.05 t=0.1
∆x=∆y Error Rate Error Rate
1/100 5.056 ·10−4 – 3.984 ·10−3 –
1/200 2.453 ·10−4 1.04 2.513 ·10−3 0.66
1/400 2.105 ·10−4 0.22 1.879 ·10−3 0.42
1/800 9.038 ·10−5 1.22 1.017 ·10−3 0.89

Table 5.10. Example 7: Mass conservation errors at times t=0.05 and t=0.1.
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Fig. 5.10. Example 7: Solution (density) computed on a grid with ∆x=∆y =1/200.

t=0.15 t=0.2
∆x=∆y Error Rate Error Rate
1/100 3.505 ·10−3 – 7.979 ·10−3 –
1/200 2.096 ·10−3 0.74 4.410 ·10−3 0.86
1/400 1.462 ·10−3 0.52 2.992 ·10−3 0.56
1/800 8.112 ·10−4 0.85 1.857 ·10−3 0.69

Table 5.11. Example 7: Mass conservation errors at times t=0.15 and t=0.2.

observe a high resolution achieved by our method despite of its low order boundary
treatment.

The mass conservation errors are shown in Table 5.6. As in the 1-D case, these
errors decrease as the mesh is refined though the experimental order of convergence
is less than one.

Example 4 — no shock - slow-moving ball. In this example, the ball that
moves periodically up and down with a small amplitude (A=0, B =0.01), is placed
in an initially steady flow with

ρ(x,y,0)≡p(x,y,0)≡1, u(x,y,0)≡v(x,y,0)≡0.
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Fig. 5.11. Example 7: Solution (density) computed on a grid with ∆x=∆y =1/400.

The ball oscillations are slow so the solution of this problem remains subsonic. Sub-
sequently, the (exact) entropy, defined by p/ργ , is equal to 1 throughout the com-
putational domain and does not change in time. The main goal of this numerical
experiment is to check the corresponding behavior of the numerical entropy of the
solution, calculated using our method. The L2-errors in entropy are presented in
Table 5.7 together with the mass conservation errors. Even though both quantities
decrease relatively slow as the mesh is refined, the results confirm robustness of the
proposed simple Eulerian method. In Figure 5.7, we also show the density of the
solution computed at time t=0.1 using two uniform grids with ∆x=∆y =1/200 and
∆x=∆y =1/400.

Example 5 — no shock - vertically moving ball. We now consider the
same setting as in Example 4 but with 10 times larger and faster ball oscillations (we
take A=0, B =0.1 in (5.2)). These oscillations generate both shock and rarefection
waves of spherical shapes that propagate, interact, and reflects from the top edge of
the domain. As one can see in Figure 5.8, our method (tested on three uniform grids
with ∆x=∆y =1/200, 1/400, and 1/800) accurately captures the developing solution
structure.

The mass conservation errors, reported in Table 5.8, are about 7 times larger than
those in the case of the slow-moving bowl, but still decrease with the same order as
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Fig. 5.12. Example 7: Solution (density) computed on a grid with ∆x=∆y =1/800.

the mesh is refined.

Example 6 — no shock - diagonally moving ball. In order to check the
grid dependence of our dimension-by-dimension 2-D method, we modify the previous
example by changing the direction of the ball movement from the vertical to a diagonal
one (we take A=B =0.1/

√
2 in (5.2)). For small times (until the waves reach the the

boundary), the exact solution of this problem is just a rotation of the solution of the
problem from Example 5. However, numerical solutions, especially those obtained
using a dimension-by-dimension approach, may be significantly different due to the
Cartesian grid effects.

The solutions at time t=0.1 computed by the proposed simple Eulerian finite-
volume method on three different uniform grids (with ∆x=∆y =1/200, 1/400, and
1/800) are plotted in Figure 5.9. As one can see, the obtained results are close to
the corresponding results presented in the left column of Figure 5.8. The only visible
difference is in the low density rarefection region located behind the ball (notice that,
at time t=0.1, the ball moves in the southwest direction in this example corresponding
to the downward direction in Example 5). The conservation errors, reported in Table
5.9, are even smaller and decrease faster than in Example 5.

Example 7 — moving shock - moving ball. Finally, we combine the data
from Examples 3 and 5 and consider the situation when a shock hits the vertically
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oscillating ball. We take the coefficients A=0, B =0.1 in (5.2) and solve the system
(1.1) subject to the initial condition (5.3). In this example, the resulting solution
structure is even more complicated than in the previous ones. We perform a detailed
numerical study of this problem by implementing our method on uniform meshes
with ∆x=∆y =1/200, 1/400, and 1/800. The densities, computed at four different
times t=0.05, t=0.1, t=0.15, and 0.2 that correspond to different stages of the
ball oscillations, are plotted in Figures 5.10–5.12. The mass conservation errors are
reported in Tables 5.10–5.11. As in the simpler Examples 3 and 5, the proposed
method still achieves a superb resolution.
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