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STABILITY OF STEADY STATES IN KINETIC FOKKER-PLANCK

EQUATIONS FOR BOSONS AND FERMIONS∗

LUKAS NEUMANN† AND CHRISTOF SPARBER‡

Abstract. We study a class of nonlinear kinetic Fokker-Planck type equations modeling quan-
tum particles which obey the Bose-Einstein and Fermi-Dirac statistics, respectively. We establish the
existence of classical solutions in the perturbative regime and prove exponential convergence towards
the equilibrium.
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1. Introduction and main results

In recent years the rigorous mathematical study of kinetic equations has been
enlarged to a class of models which take into account also quantum effects, cf. [25]
for a general overview. This so-called quantum kinetic theory can be seen as an
attempt to incorporate certain properties of an underlying quantum system into the
framework of classical statistical mechanics. One might hope that these “hybrid
models” on the one hand allow for a somewhat simpler description of the particle
dynamics, while maintaining, on the other hand, some purely quantum mechanical
features such as generalized statistics for Bosons and Fermions. Clearly such models
can only be justified in a semi-classical regime, respectively, in situations where the
transport properties of the particles are mainly governed by Newtonian mechanics.
Indeed, this point of view has already been adopted in the classical paper by Uehling
and Uhlenbeck [24], in which they derived their celebrated nonlinear Boltzmann type
equation for quantum particles.

Following their spirit most of the quantum kinetic models studied so far invoke
nonlinear collision operators of Boltzmann type, see, e.g., [5, 6, 16, 17]. For these
kind of models, a focus of interest is on the long time behavior of their solutions,
in particular the convergence towards steady states, which generalize the classical
Maxwellian distribution, cf. [8, 16, 18, 20]. Very often though, the simplified case of
a spatially homogeneous gas is considered.

In the present work, we shall also be interested in such relaxation-to-equilibrium
phenomena, in the spatially inhomogeneous case. We shall not deal with a Boltzmann
type equation, but rather study a nonlinear Fokker-Planck type model (FP). More
precisely, we consider

∂tf +p ·∇x(f +κf2)= divp (∇pf +pf(1+κf)) , (1.1)

where, for any t≥0, f =f(t,x,p)≥0 denotes the particle distribution on phase space
Ωx×R

d
p. In what follows, the spatial domain is chosen to be Ωx =T

d, the d-
dimensional torus. This setting can be seen as a convenient and mathematically
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simpler replacement for the incorporation of confining potentials V (x) needed to
guarantee the existence of nontrivial steady states in the whole space. In (1.1) we
set κ=−1 for Fermions and κ=1 for Bosons. For κ=0 equation (1.1) simplifies to
the classical linear Fokker-Planck equation (or Kramer’s equation) on phase space.
For this linear model, the convergence to equilibrium has recently been studied in
[4, 11, 19], using several different approaches.

The FP type model (1.1) has been introduced in [14], for classical particles obeying
an exclusion principle. A formal derivation from a generalized Boltzmann equation
for fermions and Bosons is given in [12], and from the Uehling-Uhlenbeck equation
in [21]. Different physical applications can be found in [9, 13, 15] dealing with, both
the spatially homogeneous as well as the inhomogeneous case (see also [10] and the
references therein). More recently a similar but somewhat simpler FP type model has
been proposed in [22, 23] to describe self-gravitating particles and the formation of
Bose-Einstein condensates in a kinetic framework. The authors consider

∂tf +p ·∇xf = divp (∇pf +pf(1+κf)) , (1.2)

where, in contrast to (1.1), only the diffusive part of the equation includes a nonlin-
earity. As we will see, however, both equations share the same steady states. In order
to deal with both models at the same time we study from now on the following initial
value problem:

{
∂tf +p ·∇x(f +σκf2)= divp (∇pf +pf(1+κf)) ,

f
∣∣
t=0

=f0(x,p),
(1.3)

with σ =1, or σ =0, corresponding to the case (1.1) and (1.2), respectively. We note
that the long time behavior of these models in the spatially homogeneous case (and for
d=1) has been rigorously investigated quite recently in [3] via an entropy-dissipation
approach.

In what follows, the initial phase space distribution f0∈L1(Td
x×R

d
p) is assumed

to be normalized according to
∫∫

Td×Rd

f0(x,p)dxdp=M, (1.4)

for some given mass M >0. This normalization is conserved by the evolution. More-
over in the fermionic case, i.e. κ=−1, we require f0(x,p)<1, ∀(x,p)∈T

d×R
d, as

usual in the physics literature [9]. In particular the latter is needed to define the
associated quantum mechanical entropy functional, i.e.

H[f ] :=

∫∫

Td×Rd

( |p|2
2

f +f lnf −κ(1+κf)ln(1+κf)

)
dxdp,

which obviously requires f(t,x,p)<1, if κ=−1. It is now straightforward to verify
that (independent of the particular choice of σ) the unique steady state of (1.3) is
given by

f∞ =
1

exp
(

|p|2

2 +θ
)
−κ

, (1.5)

where the constant θ is used to ensure that f∞ satisfies the mass constraint (1.4).
In the Bosonic case we require θ∈R+, whereas in the fermionic case we can allow
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for θ∈R, cf. [3, 7] for more details. In the latter situation the distribution (1.5) is
the well known Fermi-Dirac equilibrium distribution. On the other hand, for κ=1,
f∞ is the so-called regular Bose-Einstein distribution. Finally, if κ=0, formula (1.5)
simplifies to the classical Maxwellian, i.e.

f lin
∞ =

M

(2π)d/2
e−|p|2/2,

where log(M(2π)−d/2)=−θ. Note that in any case the equilibrium state is indepen-
dent of x since we have chosen our spatial domain to be T

d.
In the Bosonic case there is an additional difficulty, at least for d≥3, since one

can not associate an arbitrary large M >0 to the steady state. More precisely, the
maximum amount of mass comprised by f∞ is determined via

∫∫

Td×Rd

1

e|p|2/2−1
dxdp=:Mcrit <∞,

i.e. for θ =0. Due to mass conservation this induces a threshold on M . This problem,
which does not appear in dimensions d=1 or 2, has led to the introduction of more
general Bosonic steady states, where an additional δ-distribution (appropriately nor-
malized) is added to f∞, cf. [6, 8]. This singular measure can then be interpreted as a
so-called Bose-Einstein condensate (BEC). The formation of a δ-measure in finite or
infinite time is a task of extensive research in quantum kinetic theory, see, e.g., [2, 8].
For our nonlinear model though, including such generalized solutions on a rigorous
mathematical level seems to be out of reach so far and we thus have to impose θ >0 in
the Bosonic case. (Indeed, as we shall see below, we also require θ >0 in the fermionic
case, although for different and rather technical reasons.)

Our main task here is the description of the convergence for solutions of (1.3)
towards the steady state (1.5). To this end we shall conceptually follow the approach
given in [19] where the trend to equilibrium is studied for a wide class of kinetic
models close to equilibrium. The difference in our case is mainly that we are dealing
with local nonlinearities which moreover are also allowed to enter in the transport
part of the considered equation. Mathematically speaking, the approach is based on
the so-called hypo-coercivity property of the linearized equation [26, 27].

We consequently linearize the solution f of (1.3) around the steady state f∞ in
the form

f =f∞+g
√

µ∞, (1.6)

where the new unknown g(t,x,p)∈R can be interpreted as a perturbation of the equi-
librium state such that

∫∫

Td×Rd

g
√

µ∞dxdp=0.

In (1.6) we use the additional (time-independent) scaling factor

µ∞ :=f∞+κf2
∞,

which allows for an easier description in the functional framework given below. Plug-
ging (1.6) into (1.3), straightforward calculations formally yield the following equation
for g:

∂tg+(1+2σκf∞)p ·∇xg =L(g)+Q(g). (1.7)
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Above, the linearized collision operator L is given by

L(g)=
1√
µ∞

divp

(
∇p (g

√
µ∞)+pη∞g

√
µ∞

)

= ∆pg+g

(
d

2
η∞−|p|2

(
1

4
+2κµ∞

))
, (1.8)

where we use the short hand notation η∞ :=1+2κf∞. The quadratic remainder Q is

Q(g)=
κ√
µ∞

(
divp

(
pµ∞g2

)
−σµ∞p ·∇x(g2)

)
. (1.9)

The main result of our work is as follows.

Theorem 1.1. Let f0 be of the form

0≤f0 =f∞+g0
√

µ∞,

with θ >0. Moreover if κ=σ =1, i.e. the Bosonic case with nonlinear transport, as-
sume that in addition θ >θ∗, for a certain θ∗ >0.

For k∈N with k >1+d/2 there exists an ǫ0 >0, such that for all f0 with ||g0 ||Hk ≤
ǫ0, the equation (1.3) admits a unique solution 0≤f ∈C([0,∞);Hk(Td

x×R
d
p)). More-

over,
∣∣∣
∣∣∣µ−1/2

∞

(
f(t)−f∞

)∣∣∣
∣∣∣
Hk

≤C(ǫ0)e
−τt,

where C(ǫ0) and τ are positive constants.

First we collect several preliminary results in Section 2. The proof of Theorem
1.1 is then given in Section 3.

Remark 1.1.

• For Bosons it is crucial to avoid the possible formation of a BEC by imposing
θ >0, since formal calculations given in [23] indicate that an analogous theo-
rem cannot hold if M >Mcrit, see also [8]. In the fermionic case the reason
to impose θ >0 is to guarantee η∞ >0, which we will make use of several
times. It might be possible to overcome this restriction for fermions by using
a different approach, see [3].

• The additional requirement θ >θ∗ is not needed for the model (1.2), where
only a nonlinear diffusion operator is present. The reason for this constraint
when dealing with (1.1) is that we have to maintain a fundamental regularizing
property in x of the transport part, cf. Section 3 for more details. Since θ∗ is
then determined by a transcendental equation, we do not give an exact value
for θ∗ but only perform numerical experiments which indicate that θ∗≈0.451.

• As already discussed in [19] one could also take into account self-consistent
potentials, which stem from a coupling to Poisson’s equation. The latter
case might be particularly interesting in semiconductor modeling, where the
fermionic FP-type equation could be used to describe the dynamical behavior
of charge carriers obeying the “physically correct” equilibrium statistics.

Corollary 1.2. Under the same assumptions as above,

H[f(t)]−H[f∞]≤Ce−τt,
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i.e. we have exponential decay in relative entropy.

Proof. Inserting f =f∞+
√

µ∞g into H[f ], having in mind
∫∫ √

µ∞gdxdp=0, we
perform a Taylor expansion around the steady state f∞ and finally use Theorem 1.1.
This yields the assertion of the corollary.

2. Study of the linearized collision operator

We shall now derive several properties of the linearized collision operator L to be
used in the proof of the main result. First note that L is self adjoint on L2(Rd

p), and,
by partial integration, one obtains

〈L(g),g〉L2(Rd
p) =−

∫

Rd

∣∣∣∇pg+
p

2
η∞g

∣∣∣
2

dp=−
∫

Rd

∣∣∣∣∇p

(
g√
µ∞

)∣∣∣∣
2

µ∞dp . (2.1)

Thus the kernel of the non-positive operator L is given by

Ker(L)=span{√µ∞}.

Let us define the orthogonal projection in L2(Rd
p) onto this kernel via

Π(f) :=

(
1

ρ∞

∫

Rd

f
√

µ∞ dp

)√
µ∞ ,

where we set

ρ∞ =

(∫

Rd

µ∞ dp

)
>0

for reasons of normalization. Note that this is only a projection in the momentum
variable p∈R

d. Motivated by (2.1) we introduce the following weighted space

Λp :=
{
f ∈L2(Rd

p) : ||f ||Λp
<∞

}
,

where

||f ||2Λp
:= ||∇pf ||2L2

p
+ ||pη∞f ||2L2

p
.

Here, and in what follows, we write L2
p ≡L2(Rd

p) for simplicity. Moreover, we denote
by

||f ||Λ :=
∣∣∣
∣∣∣ ||f ||Λp

∣∣∣
∣∣∣
L2(Td

x)
,

the induced norm on phase space. Obviously the Λp-norm controls the L2
p-norm for

κ nonnegative. In the fermionic case (κ=−1), however, this is not true in general
since η∞ may change sign. For our functional approach the control of L2

p via Λp is
crucial and thus we have to guarantee that η∞ >0 by assumption. This implies that
for κ=−1 we need to impose f∞ <1/2, ∀p∈R

d, or equivalently θ >0. This certainly
is more restrictive than the usual bound, i.e. f∞ <1, used in the physics literature.
In summary we require θ >0 in the Bosonic case to prevent BEC and in the fermionic
case to ensure that η∞ is globally bounded away from zero.

First, we obtain a Poincaré inequality for the steady state of the linearized model.
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Lemma 2.1. If θ >0 then the (strictly positive and normalized) measure µ∞/ρ∞
satisfies a Poincaré inequality on R

d
p, i.e.

∫

Rd

g2µ∞dp− 1

ρ∞

(∫

Rd

gµ∞dp

)2

≤Cp

∫

Rd

|∇pg|2µ∞dp, Cp >0.

Note that in the fermionic case, κ=−1, this lemma indeed holds more generally
for any θ∈R.

Proof. Let A be defined by A=−lnµ∞. Inequality (3.6) in [1] shows that if A is
uniformly convex then a Poincaré inequality with measure µ∞/ρ∞ (where we divide
by ρ∞ for normalization purposes) holds. Moreover, Theorem 3.3 in [1] allows to take
into account also L∞ perturbations of A. Thus we wish to decompose

A=A1 +A2,

where A1(p) is uniformly convex and A2(p) is an L∞ perturbation. To this end note
that A is given by

A= − log

(
e|p|

2/2+θ

(e|p|2/2+θ−κ)2

)
=

|p|2
2

+θ−2log

(
e|p|

2/2+θ

e|p|2/2+θ−κ

)

=
|p|2
2

+θ+2log

(
1− 1

κe|p|2/2+θ

)
.

We now pick A1 = |p|2/2 and A2 to be the rest of the terms appearing on the right
hand side. Then A2 is bounded if κ=−1, or if κ=1 and θ >0, which concludes the
proof.

With the above lemma in hand we can now establish the coercivity of the lin-
earized collision operator. From now on we will denote by K,K1,... generic (positive)
constants, to be used several times in different proofs, whereas the constants C1,C2,...
will be fixed throughout the work in order to be able to track their appearance.

Lemma 2.2. For θ >0 there exists a λ>0 such that

〈L(g),g〉L2
p
≤−λ ||g−Π(g)||2Λp

, ∀g∈Λp.

The coercivity property (in p∈R
d) of the operator L is indeed an essential re-

quirement to establish our main result.

Proof. We start with

〈L(g),g〉L2
p
= −ρ∞

∫ ∣∣∣∣∇p

(
g√
µ∞

)∣∣∣∣
2
µ∞

ρ∞
dp

≤ −Cp

(∫
g2dp− 1

ρ∞

(∫ √
µ∞gdp

)2
)

≤ −K1

∫ (
g−

√
µ∞

ρ∞

∫ √
µ∞gdp

)2

dp= −K1 ||g−Π(g)||2L2
p
,
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for some K1 >0, where we used the fact that the measure µ∞/ρ∞ satisfies a Poincaré
inequality due to the previous lemma. Now to improve on the L2

p-norm we use

〈L(g),g〉L2
p
=−

∫ (
∇p(g−Π(g))+

p

2
η∞(g−Π(g))

)2

dp

≤ −K2 ||g−Π(g)||2Λp
+K3 ||g−Π(g)||2L2

p
.

Adding the two inequalities above (multiplied by appropriate constants) finishes the
proof.

We get a similar result for the derivatives w.r.t. p∈R
d.

Lemma 2.3. Let θ >0, then there exist positive constants C1 and C2, such that for
any g∈L2

p with ∇pg∈Λp,

〈∇pL(g),∇pg〉L2
p
≤−C1 ||∇pg||2Λp

+C2 ||g||2L2
p
.

Proof. A lengthy calculation yields

〈∇pL(g),∇pg〉L2
p
=

∫
−(∆pg)2 + |∇pg|2

(
d

2
η∞− |p|2

4
−2κµ∞|p|2

)
dp

+

∫
g2

2

(
d2κµ∞+

d

2
+4κdµ∞

)
dp

− κ

2

∫
g2|p|2µ∞

(
(d+10)η∞−2|p|2µ∞η∞

)
dp.

The last integral on the right hand side is dominated by the L2
p-norm, since µ∞

decays exponentially fast as |p|→∞. We also have that 1/4+2κµ∞≥C >0, ∀p∈R
d.

This obviously holds true for the Bosonic case but is also guaranteed in the fermionic
situation where f∞ <1/2. Thus we can estimate

〈∇pL(g),∇pg〉L2
p
≤−C1 ||∇pg||2Λp

+
d

2

∫
η∞|∇pg|2dp+C2 ||g||2L2

p

and a classical interpolation argument applied to the second term on the right hand
side yields the assertion of the lemma (with different constants C1, C2).

Finally we need the following technical lemma.

Lemma 2.4. For g,h∈Λp it holds that

〈L(h),g〉L2
p
≤C3 ||g||Λp

||h||Λp
, C3 >0.

The combination of Lemma 2.2 and Lemma 2.4 induces the particular choice of
Λp and its corresponding norm.

Proof. We first note that

||g||Λp
||h||Λp

=
(
||∇pg||2L2

p
+ ||pη∞g||2L2

p

) 1
2
(
||∇ph||2L2

p
+ ||pη∞h||2L2

p

) 1
2

≥ 1

C3

(
||∇pg||2L2

p
+

∫
(1+ |p|2)η2

∞g2dp

) 1
2
(
||∇ph||2L2

p
+

∫
(1+ |p|2)η2

∞h2dp

) 1
2

,
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for some C3 >0, since the Λp-norm dominates the L2
p-norm. Using the following

simple algebraic estimate,

(
(a2 +b2)(c2 +d2)

) 1
2 ≥ac+bd ,

(with a,b,c,d∈R) we further obtain

C3 ||g||Λp
||h||Λp

≥||∇pg||L2
p
||∇ph||L2

p
+

(∫
(1+ |p|2)η2

∞g2dp

∫
(1+ |p|2)η2

∞h2dp

) 1
2

.

The proof then follows by applying the Cauchy-Schwarz inequality to both terms on
the right hand side and integrating by parts in the first one.

3. Convergence for the linear model and proof of Theorem 1.1

Now we are able to establish the long time asymptotics for the linearized equa-
tion, which eventually will be translated also to the nonlinear model (1.3) in the
perturbative setting.

Proposition 3.1. Consider the linearized Fokker-Planck type equation

∂tg+(1+2σκf∞)p ·∇xg =L(g), (3.1)

with L given by (1.8) and θ >0. Moreover, if κ=σ =1, assume in addition that θ >θ∗.
Let the initial data g0∈Hk(Td×R

d), for k∈N. Then the solution g(t) exists globally
in time, and

||g(t)−g∞||Hk ≤Ce−τt , with C =C(‖g0‖Hk), τ >0,

where the global equilibrium g∞ is given by

g∞ =

(
1

ρ∞

∫∫

Td×Rd

g0
√

µ∞ dpdx

)√
µ∞.

We want to remind the reader of the discussion of the role of θ∗ in Rem. 1.1.

Proof. For the proof we proceed similarly to [19]. We will sketch the main ideas
and stress the differences which occur due to the changes in the transport operator.
Note that, since the equation is linear, we can withour restriction of generality consider
the case where g∞≡0. This can always be achieved by subtracting initially the
projection onto the global equilibrium, i.e. by considering initial data g̃0 =g0−g∞.

We start with k =1. The main idea of the proof is to study the time evolution of a
combination of derivatives w.r.t. x and p. More precisely, we consider the functional

F [g(t)] :=α ||g||2 +β ||∇xg||2 +γ ||∇pg||2 +δ 〈∇xg,∇pg〉,

where || ·|| denotes the standard norm on L2(Td
x×R

d
p) and α,β,γ,δ are some positive

constants. We note that δ has to be small enough in comparison to β and γ such
that F is positive and controlled from above and below by the square of the usual
H1(Td

x×R
d
p)-norm of g. On the other hand, δ has to be strictly positive, in order to

close the argument (see below). We aim to prove that

d

dt
F [g(t)]≤−C̃

(
||g||2Λ + ||∇x,pg||2Λ

)
, C̃ >0. (3.2)
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To this end we calculate the time derivatives of the various summands in F . First,
for the L2-norm we have

d

dt
||g||2 =2〈L(g),g)〉≤−2λ ||g−Π(g)||2Λ , (3.3)

where we have used that the transport part does not contribute due to its divergence
form (which is a straightforward calculation) and the assertion of Lemma 2.2.

Next the spatial derivatives evolve according to

d

dt
||∇xg||2 =2〈∇xL(g),∇xg〉≤−2λ ||∇xg−Π(∇xg)||2Λ , (3.4)

where we again used that the contribution from the transport term vanishes and the
fact that L commutes with ∇x, thus allowing us to apply Lemma 2.2 also to ∇xg.

For the derivatives w.r.t. p we get some additional terms from the coefficient of
the transport operator

d

dt
||∇pg||2 = 2〈∇pL(g),∇pg〉+

〈(
4κσµ∞|p|2−2η∞(1+2κσf∞)

)
∇xg,∇pg

〉

≤ 2〈∇pL(g),∇pg〉+K

∫∫
|∇pg||∇xg|dpdx.

Here we have used that f∞ as well as |p|2µ∞ are uniformly bounded in L∞. Now the
first term on the r.h.s. is estimated by Lemma 2.3, which yields some damping for
∇pg in the Λ-norm, i.e.

d

dt
||∇pg||2≤−2C1 ||∇pg||2Λ +2C2 ||g||2 +K

∫∫
|∇pg||∇xg|dpdx

≤−K1 ||∇pg||2Λ +K2 ||∇xg||2 +2C2 ||g||2 , (3.5)

with K1,K2 >0. In order to deal with the term proportional to ||g||2, we split

g =(g−Π(g))+Π(g)

and estimate

||g||2≤||g−Π(g)||2 + ||Π(g)||2≤||g−Π(g)||2 +CT ||∇xg||2 , CT >0.

In the second step, we used the classical Poincaré inequality with respect to x∈T
d

and the fact that Π(g) has zero mean on the torus, since
∫∫

g∞dpdx=0. Together
with (3.5), this yields

d

dt
||∇pg||2≤−K1 ||∇pg||2Λ +2C2 ||g−Π(g)||2 +K3 ||∇xg||2 , (3.6)

where K3 =K2 +2C2CT. Note that this is an improvement to (3.5), since the term
‖g−Π(g)‖2 can be controlled by adjusting α and having in mind (3.3).

Finally we look at the mixed derivatives w.r.t. x and p, which evolve according
to

d

dt
〈∇xg,∇pg〉=2〈L(∇xg),∇pg〉−

〈
∇xg,

(
1+2σκf∞−2σκµ∞|p|2)

)
∇xg

〉
. (3.7)
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For the first term on the right hand side we invoke Lemma 2.4, which together with
the Cauchy-Schwarz inequality in x implies

〈L(∇xg),∇pg〉≤C3η ||∇xg−Π(∇xg)||2Λ +C3η
−1 ||∇pg||2Λ , ∀η >0.

The second term on the right hand side of (3.7), which stems from the transport part,
generates a damping for ||∇xg|| (which the operator L cannot provide since it only
acts in p), provided that

1+2κσf∞−2κσµ∞|p|2≥K4 >0. (3.8)

Assuming for the moment that (3.8) is true we obtain

d

dt
〈∇xg,∇pg〉≤2C3η ||∇xg−Π(∇xg)||2Λ +2C3η

−1 ||∇pg||2Λ−K4 ||∇xg||2 .

In summary, this estimate, together with (3.3), (3.4), and (3.6), yields

d

dt
F [g(t)]≤−2(λα−C2γ)||g−Π(g)||2Λ−2(βλ−C3ηδ)||∇xg−Π(∇xg)||2Λ

−(K1γ−2C3δη
−1)||∇pg||2Λ−(K4δ−K3γ)||∇xg||2 .

It remains to find coefficients α,β,γ,δ,η in F , such such that all “bad” terms in
the above given estimates (i.e. those which come with the wrong or without sign)
can be controlled and the differential inequality (3.2) holds true. This can be done
analogously to Step 4 in the Proof of Theorem 1.1 in [19] and we therefore will not
elaborate further on it. Note that the functional F then clearly induces a new norm
on phase space, equivalent to H1(Rd×T

d), via ||g ||2H1 :=F [g ].
To retain the (fundamental) damping property in the spatial derivatives coming

from the evolution of the mixed term it remains to show that the constraint (3.8)
holds true. We denote

Ψκ(p;θ) :=1+2κf∞−2κµ∞|p|2.

If κ=−1 and since θ >0, it is clear that Ψ−1(p;θ)≥K4 >0, because η∞≥0 in this
case. For Bosons, i.e. κ=1, however the situation is more difficult. Note that

lim
|p|→∞

Ψ1(p;θ)= lim
|p|→∞

(η∞−2µ∞|p|2)=1, ∀θ >0,

and thus by continuity it is enough to make sure that Ψ1(p;θ) 6=0, ∀p∈R
d,θ >θ∗.

Straightforward calculations show that Ψ1(p;θ) can only be zero if

(
e|p|

2/2+θ
)2

−2|p|2e|p|2/2+θ−1=0 ,

which implies

e|p|
2/2+θ = |p|2 +

√
|p|4 +1 .

Obviously this equality can not be true for θ larger than some critical value θ∗.
Numerical experiments suggest that this critical value is approximately θ∗≈0.451. In
summary one obtains the final estimate (3.2), which finishes the proof for k =1.
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To proceed to higher order estimates in the Sobolev index k∈N, we observe that
the proof of Lemma (2.3) can be generalized in a straightforward way to obtain

〈∂xℓ
∂pj

L(g),∂xℓ
∂pj

g〉
L2

p

≤−C1,k

∣∣∣∣∂xℓ
∂pj

g
∣∣∣∣2

Λp
+C2,k ||g||2Hk−1

p
,

for any multi-indices j,ℓ such that k = |j|+ |ℓ|, |j|≥1. An induction argument in
k∈N, similar to the one given in [19, Theorem 3.1], then yields the corresponding
statement in Hk. There are no additional problems due to the coefficient in the
transport operator, since the terms containing the highest order derivatives of g can
be treated as above and the lower order terms, which contain derivatives of Ψκ(p;θ),
can be handled by interpolation since ∂pj

Ψκ(p;θ)∈L∞. This concludes the proof.

Now we apply the result for the linearized equation to the nonlinear problem.

Proof of Theorem 1.1.

Proof. We have to show that the quadratic nonlinearity does not change the
estimates obtained for the linearized equation, as long as the deviation from the

equilibrium is small. The function g =(f −f∞)µ
−1/2
∞ solves (1.7), from which we

deduce

d

dt
||g||2Hk = 2〈Tg,g〉Hk +2〈Q(g),g〉Hk ,

where T :=L−(1+2σκf∞)p ·∇x and L,Q are given in (1.8), (1.9), respectively. From
the proof of Proposition 3.1 we know that

〈Tg,g〉Hk ≤−C̃




∑

|j|+|ℓ|≤k

∣∣∣∣∂xℓ
∂pj

g
∣∣∣∣2

Λ


 ,

where C̃ is as in (3.2). Thus, if we can prove the following property for the nonlinear
part

〈Q(g),g〉Hk ≤CQ ||g||2Hk




∑

|j|+|ℓ|≤k

∣∣∣∣∂xℓ
∂pj

g
∣∣∣∣

Λ


 , (3.9)

it follows, since || ·||Hk ≃||·||Hk , that

d

dt
||g ||2Hk

≤−2C̃




∑

|j|+|ℓ|≤k

∣∣∣∣∂xℓ
∂pj

g
∣∣∣∣2

Λ


+CQ ||g||2Hk




∑

|j|+|ℓ|≤k

∣∣∣∣∂xℓ
∂pj

g
∣∣∣∣

Λ




≤−2C̃




∑

|j|+|ℓ|≤k

∣∣∣∣∂xℓ
∂pj

g
∣∣∣∣2

Λ


+ǫCQ ||g||2Hk +CǫCQ ||g||2Hk




∑

|j|+|ℓ|≤k

∣∣∣∣∂xℓ
∂pj

g
∣∣∣∣2

Λ


.

Now choosing ǫ small enough, such that ǫCQ ≤ C̃, we derive

d

dt
||g ||2Hk ≤−C̃




∑

|j|+|ℓ|≤k

∣∣∣∣∂xℓ
∂pj

g
∣∣∣∣2

Λ


+C∗ ||g||2Hk




∑

|j|+|ℓ|≤k

∣∣∣∣∂xℓ
∂pj

g
∣∣∣∣2

Λ


 .
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This concludes the proof of Theorem 1.1 by maximum principle as long as ‖g0‖Hk is
sufficiently small.

In order to prove (3.9), we recall that Q(g) is given by

Q(g)=
κ√
µ∞

(
divp(pµ∞g2)

)
− κ√

µ∞

(
σµ∞p ·∇x(g2)

)
≡Q1(g)−Q2(g),

and note that µ
−1/2
∞ ∂xℓ

∂pj
(pµ∞)∈L∞(Td

x×R
d
p), for all multi-indeces ℓ,j∈N

d. We

shall now treat Q1(g) and Q2(g) separately, using that Hk(Rd)⊂L∞(Rd), for k >d/2,
together with Leibniz’ formula to differentiate Q(g). It is relatively easy to see that
(3.9) holds for Q1(g), by estimates in the spirit of (3.10) below, since the Λ norm
incorporates an additional derivate w.r.t p∈R

d. The estimate for 〈Q2(g),g〉Hk is
more complicated though, since Q2 contains a derivate w.r.t. x∈T

d that is not taken
into account by the Λ-norm.

Thus we have to estimate

〈Q2(g),g〉Hk =−κσ
∑

|j|+|ℓ|≤k

〈
∂xℓ

∂pj

(√
µ∞p ·∇x(g2)

)
, ∂xℓ

∂pj
g
〉

L2 .

Since ∂xℓ
∂pj

√
µ∞∈L∞(Td

x×R
d
p), the highest order terms are of the form

〈√
µ∞p ·∇x∂xℓ

∂pj
(g2), ∂xℓ

∂pj
g
〉

L2 , |j|+ |ℓ|=k.

Moreover, because of the additional derivative w.r.t. p in the Λ-norm, the most
problematic terms are those where |ℓ|=k. Denoting ∂ℓ ≡∂xℓ

, we compute
〈√

µ∞p ·∇x∂ℓ(g
2), ∂ℓg

〉
L2 = 2〈√µ∞gp ·∇x∂ℓg, ∂ℓg〉L2

+

d∑

i=1

〈√
µ∞pi

∑

0≤r≤ℓ+δi
0<|r|<|ℓ|+1

(
ℓ+δi

r

)
∂rg∂ℓ+δi−r g, ∂ℓg

〉
L2 ,

where δi denotes the i-th standard basis vector in R
d. Using the divergence theorem,

we obtain
〈√

µ∞p ·∇x∂ℓ(g
2), ∂ℓg

〉
L2 = −〈√µ∞ (p ·∇xg)∂ℓg, ∂ℓg〉L2

+
d∑

i=1

〈√
µ∞pi

∑

0≤r≤ℓ+δi
1≤|r|<|ℓ|

(
ℓ+δi

r

)
∂rg∂ℓ+δi−r g, ∂ℓg

〉
L2 .

To estimate the first term on the right hand side we note that (remember |ℓ|=k)

〈√µ∞ (p ·∇xg)∂ℓg, ∂ℓg〉L2 ≤K1 ||∂ℓg ||2L2 ||∇xg ||L∞ ≤K2 ||g ||2Hk ||g ||Hk , (3.10)

as soon as N∋k >1+d/2 and analogously for all other appearing terms. Since

||g ||Hk ≤K3

∑

|j|+|ℓ|≤k

∥∥∥∂xℓ
∂pj

g
∥∥∥

Λ
,

we obtain the desired estimate (3.9).
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