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AUTOMATIC COORDINATE TRANSFORMATION FOR
TWO-POINT BOUNDARY VALUE PROBLEMS*

AADITYA V. RANGANT

Abstract. When one is attempting to build a general boundary value problem solver which uses
Green’s functions, it is often desirable to automatically transform inhomogeneous boundary value
problems into homogeneous boundary value problems If the sum of the boundary matrices is singular,
a change of coordinates is required which can transform the inhomogeneous boundary value problem
into a homogeneous boundary value problem. This change of coordinates is an invertible C'! path in
matrix space with endpoints that can multiply the boundary matrices to produce a nonsingular sum.
Here we propose a simple automatic coordinate transformation that performs this task. We prove
that this algorithm constructs a coordinate transformation whenever such a transformation exists,
and provide numerical examples illustrating the practicability of the method.
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1. Introduction

Boundary value problems often arise from studies in science and engineering [1,
6, 7, 8, 10]. For example, partial differential equations can be reduced to sequences of
boundary value problems via Rothe’s method [2]. Many of these naturally occurring
boundary value problems are stiff, and require specialized numerical methods to solve.

The integral methods of [9, 14] are particularly useful for solving stiff 1-
dimensional two-point boundary value problems, since they can adaptively discretize
space as necessary in an asymptotically optimal manner. These integral methods can
be applied to find the vector-valued solution ®(z):[—1,+1] — R™ of a linear two-point
boundary value problem of the form

0:®(z) +p(x)0(z) = f(2),
AD(—1)+CD(+1) =0, (1.1)

with matrix-valued coefficient function p(x):[—1,4+1]— R™*"™, vector-valued forc-
ing function f(x):[—1,1]— R™, and boundary matrices A,C € R"*™. This integral
method uses the fact that the solution to the linear homogeneous boundary value
problem Equation (1.1) can be written using the Green’s function [5]. The Green’s
function G(z,y) is the solution of Equation (1.1) with the right hand side f=d(z—y),
and can be used to generate the solution of Equation (1.1) for arbitrary f(x) by simple
linear superposition,

®(x) = [, Gx,)f(y)dy. (1.2)

In order for this Green’s function formulation to be applicable, the original linear two-
point boundary value problem (Equation (1.1)) must have homogeneous boundary
conditions (i.e., A®(—1)+CP®(+1)=0).
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724 AUTOMATIC COORDINATE TRANSFORMATION

If we want to solve a linear two-point boundary value problem with inhomoge-
neous boundary conditions

9o ®(z) +p(x)0(2) = f(2),
AD(—1)+CD(+1) =7, (1.3)

with nonzero boundary vector v€ R™, then we cannot directly apply the integral
method [14]. When confronted with inhomogeneous boundary conditions, one stan-
dard strategy is to transform the original problem Equation (1.3) into a boundary
value problem with homogeneous boundary conditions [9]. The way this is accom-
plished is to define

A=(A+C) "y,
b(a) = B(r) 3,
f(x)=f(z)—p(z)y (1.4)

and rewrite Equation (1.3) as

00 ® () +p(2)®(z) = f (),
AD(—1)4+CP(+1) =0. (1.5)

However, there are many two-point boundary value problems where the matrix
sum A+ C is singular, and the simple transformation Equation (1.4) cannot be ap-
plied [5]. One common situation where this can occur is when components of a
differential equation have periodic boundary conditions (i.e., in the simplest case of
fully periodic boundary conditions, A=—C=1I,x,). Another common situation is
when a second order system of differential equations with, say, Dirichlet boundary
conditions is reduced to a first order system. For example, the simple second order
equation 9,y = L-y with boundary conditions y(—1)=+"1,y(1) =7 reduces to the

first order system
P y | _|0 1__ Y
“1oy] |[LO] |Owy]’
with boundary conditions

oo [ah b |+ [3] Lot =[]

It is also possible for these two situations to be combined, as occurs within a large
second (or higher) order system where some components have periodic boundary
conditions.

In addition, there are several cases where the condition number of the matrix
sum A+ C is very high, even though the matrix is not exactly singular. This can
result in poorly conditioned Green’s function operators (which often rely heavily on
multiplication by (A+C)~! [14]), and consequent loss of numerical precision. One
such example can be found in systems of kinetic equations for neuronal network
dynamics [3, 12], which govern the evolution of a single particle (i.e., single neuron)
probability density function. In this case, the sum of boundary matrices A+ C can
be arbitrarily ill-conditioned, depending on the neuron’s ‘firing-rate’ (i.e., level of
neuronal activity). To complicate matters, the firing rate of the system itself is a
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sensitive functional of the probability distribution, and can change over time. The
accurate application of integral equation methods to this problem depends critically
on the accurate resolution of the firing rate and probability distribution [13]. Thus,
situations where the boundary matrix A+ C is nearly singular must be treated with
care.

Nevertheless, even when the simple change of variables above Equation (1.4)
cannot be directly applied, it may still be possible to transform problems of type
(1.3) with singular D into problems of type (1.1) as follows.

If v is nonzero and D = A+ C'is singular, we can attempt to construct an invertible
and differentiable coordinate transformation

T(z):[-1,+1]— R™™" (1.6)
such that
D=AT(~1)+CT(+1) (1.7)
is nonsingular. Given such a transformation 7, we can transform the problem
=Dy,
p=T ()" (8:T (z) +p(2)T (x)),
fa)=T(x)"" f(2)—p4,
B(a)=T(2) ' D(x) 4, (1.8)

so that ®(z) satisfies the boundary value problem:

0,9 () +p(z)d(z) = f(x),
AT (—1)®(=1)+CT (+1)d(+1) =0, (1.9)

with homogeneous boundary conditions.

If the dimension n is very large, or one wishes to solve many two-point boundary
value problems, it becomes cumbersome to construct 7 () by hand, and it becomes
desirable to have a method for constructing 7 (z). In addition, when designing an
automatic two-point boundary value problem solver (such as a module which can ap-
ply the integral solvers of [9]), it is desirable to automatically generate the coordinate
transformation 7 (), as well as its derivative and inverse (note the terms 7 (z)~!
and 0,7 () in Equation (1.8)). For the integral solvers of [9], space is discretized
adaptively, therefore, it also becomes necessary to evaluate 7 (z),0,7 (z) and 7 (z)~!
for arbitrary x within the domain.

In this paper, we provide a simple algorithm which, given the boundary matri-
ces A and C, generates a coordinate path 7 (x) whenever such a path exists. Our
method uses scaling matrices, reflection matrices and permutation matrices to pro-
vide analytical formulas for 7 (x), 8,7 (z) and 7 ~!(z), which can then be evaluated
for any . Our method performs very well in practice, and when tested on pairs
of random matrices with singular sums, produces well-conditioned transformations
T(x),0.7T (z),T ().

The paper is organized as follows. In Section 2, we give an example which de-
scribes and illustrates the main features of our method. In Section 3, we detail the
construction of the algorithm and provide a proof that this method constructs a path
whenever a path exists. In Section 4, we provide numerical examples which show that
this method is practicable and produces well-conditioned coordinate transformations.
Finally, in Section 5, we present psuedocode for our algorithm.
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2. Automated coordinate change: overview

For the remainder of this paper, we assume that matrices A and C are given,
such that the condition number of D= (A+C) is large (or infinite). We focus on the
issue of constructing a continuous invertible 7 (z) such that D= AT (—1)+C7 (+1) is
invertible with a low condition number. The apparatus we construct revolves around
two basic ideas.

Consider, first, the case

A=1, C=-1. (2.1)

Here we only have one dimension to work with. There is no room to ‘rotate’. There-
fore, naturally, our transformation 7 must scale. That is, 7(—1) must be different
from 7 (4+1). (As discussed above 7 (x) has to be continuous and invertible for all x,
therefore 7(—1) and 7 (41) must be of the same sign). So here, any simple scaling
will do, such as 7 (z)=1+(e—1)(z+1)/2.

Now consider the case
10 00
) o)

Here we have two dimensions. No simple scaling will work. In fact, since we want D
to be invertible, (and 7 to be invertible), we have no choice but to require that

DT (1) '=A+C(T(+1)T(-1)™Y) (2.3)

must be invertible. Therefore, 7 (+1)7 (—1)~! must permute the columns of C. With-
out loss of generality assume that 7 (—1)=1. This means that a good choice for 7 (+1)
is
01
ren=[ %] o
Note that we require that the sign of det(7 (+1)) match the sign of det(7 (—1)). (This
follows from continuity and invertibility of 7 (x) for all ).

So our algorithm for constructing 7 must accommodate for both scaling and
permutation. We also need to ensure that the determinant of 7 be nonzero (i.e.,
possess the same sign) over the interval [—1,+1]. Finally, we would like to keep the
condition number of 7 low over the interval [—1,+1]. (We will see that this last
condition can conflict with our desire to keep the condition number of D low).

There is a simple necessary condition for 7 to exist. No matter what 7 is, the
column space of D is just the column space of D, which is a subset of the column
space of the augmented matrix [A|C]. Therefore, in order for D to be invertible (that
is, in order for the column space of D to be all of R™), we must have that the columns
of [A|C] span R™. It turns out (as we will show later), that this simple necessary
condition also turns out to be sufficient.

The basic idea behind our algorithm is this: [A|C] has 2n columns, but only n of
them are needed for the column space to be R™. We find these n relevant ‘dominant’
columns. Some of them will come from A, and some will come from C. Sometimes
(as in the case of our first example), all (or most) of them will come from one of the
boundary matrices. In this case we apply a scaling that will mitigate the effect of the
other irrelevant ‘non-dominant’ columns from the other boundary matrix. Sometimes
(as in the case of the second example), some of the dominant columns will come from
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one boundary matrix, and some will come from the other boundary matrix. In this
case we need to permute the relevant dominant columns into the correct positions
so that the sum D has full rank. Most of the time both of these effects happen
simultaneously. We end up choosing a 7 that permutes the dominant columns into
the correct positions, and scales the non-dominant columns so that they do not affect
the rank of D.

2.1. Example. Here is an example which illustrates most of the relevant ideas
in the algorithm. Let

0 11-2 1-2-12
2-10 0 1 0 13
A= 0 00-1}’ C= 2 1 04} (2.5)
1 00-1 0 2 26
so that A+C' is given by
1-100
3-113
D=A+C= 2 103 (2.6)
1 225

which is singular (i.e., the vector [1,1,1,—1]T is in the null space of D).

The first step in our algorithm is to find the dominant columns of [A|C]. This can
be carried out either by taking a QRP factorization of [A|C], or a PLU factorization
of [A|C]T. We choose the PLU factorization (with partial pivoting) since the pivoting
for a QRP factorization is not as easy. This PLU factorization produces matrices P,
a 2n X 2n permutation matrix, L, a 2n xn lower triangular matrix, and U, an n xn
upper triangular matrix such that P[A|C]T = LU:

(000100007 0 2 0 1
00000001 1-1 0 0
10000000 1 000
p_ 00001000 {AT] -2 0-1-1
“lo0100000|” |CT|T | 1 1 2 0
00000100 -2 0 1 2
00000010 -1 1 0 2
(01000000 ]| | 2 3 4 6]
1 0 0 0]
-1 1 0 0
0 2/3 1 0 —20-1 -1
—1/2 1/3 -1/4 1 03 3 5
L= —1/2 0 1/4-30/99 U= 002 ~7/3 (2.7)
1 0 —1-24/99 00 0-—11/4
1/2 1/3 1/4 —51/99
| —1/2-1/3 —1/4 —21/99 |

First, we look at the diagonal entries of U. Since they are all nonzero, we know that
the matrix [A|C] has full rank. Now we can move on to choosing 7. The only relevant
part of this factorization (other than invertibility of U) is the matrix P. The matrix
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P corresponds to a reordering of the rows of [A|C]T, that is, to the columns of [A|C].
The first n rows of P correspond to the dominant columns of [A|C]. The last n rows
of P correspond to the non-dominant columns of [A|C]. Now we can read off from
the top half of P exactly which columns of [A|C] went into making the final upper
triangular matrix U, and which of them were shuffled down to the bottom (and later
forgotten). From Equation (2.7) we see that the dominant columns are (in the order
of the PLU factorization): (i) the fourth column of A, (ii) the fourth column of C,
(iii) the first column of A, (iv) the first column of C. Two of these come from A, and
the other two come from C.

The second step of the algorithm involves setting up the preliminary skeletons
for 7(—1) and 7(+1). We know that we will want 7(—1) to emphasize the fourth
and first columns of A. We also know that we will want 7(41) to emphasize the
fourth and first columns of C. Moreover, we want the sum A7 (—1)+C7 (+1) to be
invertible. This leads us to an initial choice of

0100 0001
0000 0000

TED=0000]  TED= 0000 (2.8)
1000 0010

This immediately implies that the first two columns of A7 (—1) will be the fourth and
first columns of A (respectively). Similarly, the last two columns of C7(—1) will be
the fourth and first columns of C' (respectively). So if we add AT (—1) to CT (+1) we
obtain exactly the selection of columns of [A4|C] we need for a full column space. Now
we also need 7(—1) and 7(+1) to be invertible. As they stand, they are singular,
since they are essentially permutation matrices with some columns missing. An easy
way to make them invertible is to just ‘complete’ the permutation structure of 7 (—1)
and 7 (+1) by putting in the missing unit vectors. However, in order to maintain
the invertibility of ﬁ, we cannot throw in the missing unit vectors at full strength.
Rather, we complete the permutation structure of 7 (—1) and 7 (1) with unit vectors
of magnitude e. That is, without fixing € we set

0100 0001
000 € €000

T~ g0eols TED=]0 00l (2.9)
1000 0010

Here note that if we choose e=0, then we have the case of Equation (2.8), and D
is invertible, so det(ﬁ) #0. Therefore, since det is a continuous function of matrix
entries, there must be some nonzero positive e such that D specified by Equation (2.9)
is nonsingular. (Note that we have not set € yet, we are just filling in the permutation
structure of 7 (—1) and 7 (+1)).

Now, for the third step of the algorithm, we need to ensure that 7(—1) and
T (+1) are compatible. Recall that we need 7 () to be invertible for all . Therefore
det(7(—1)) must match det(7(4+1)) in sign. However, in Equation (2.9), we see
that the sign of 7(—1) is positive (it is an even permutation). The sign of 7(41) is
negative (it is an odd permutation). We can easily fix this simply by negating one of
the components of 7 (+1). It does not matter which one we negate, as can be seen
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by taking the lim,_,q+. This sets

0100 000 -1
000 € e00 O

T~ g0e0l TED=|G 0 o (2.10)
1000 001 O

At this point, we can choose € if we wish. We are guaranteed that an e exists,
but in general, it is difficult to find the maximum possible €. Therefore, we just try
different values for ¢ until we find one that works. This involves plugging in an ¢, and
then checking the condition number of the corresponding D. If the condition number
is too high, then we halve our value for ¢ and try again. For this we need a fast
condition number estimator [4]. We use Haag’s 1-norm condition number estimator
(which requires one PLU factorization of D as well as O(n2) additional work). In this

particular case, e:% works fine. This fixes

0100 000-1
(o004 {200 o0

T(-1)= 001 0" T(+1)= 610 0 (2.11)
1000 001 0

(In practice, it is observed that e almost always ends up within the interval [£,1]).

The fourth step of the algorithm involves finding a way to link 7(—1) and 7 (+1)
with a continuous nonsingular transformation 7 (x). We do this as follows. First
define functions

(x)=e+(z+1)(1—e)/2,

o-[u(2)”
)]

These are constructed so that v(x) is a linear scaling from € to 1. Similarly, v(—z)
scales from 1 to e. And c(x) goes from 1 to 0, while s(z) moves from 0 to 1. (The
particular choice of ¢(z) and s(z) stem from our desire to make the analytical inverse
T (x)~! easy to write down, as we will discuss in more detail later). Now express

0c¢(-1)0 O 10 0 O
. 0 0 0¢-1) 01 0 O
TED=1 0 o eo(-=1)0 || 0 0y(=1)0
co(-1)0 0 0 0 0 0~(-1
0 0 0-—s(+1)] [v(=1)0 0 0
ls(+no 0 0 0 7(=1)0 0
TED= "0 530 0 0 0 10 |
0 0s(+1) 0 0 0 01
which can be immediately generalized to
0clz) 0—s(x) (=) 0 0 0
sy 0 0 c(x) 0~v(—z) 0 0
T(w)= s(@) e(z) 0 0 0~(te) 0 |’ (2.13)
c(z)  0s(x) 0 0 0 0 ~v(+x)
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or, more succinctly,

T(—1)=c¢(-1)P"4. 5%t
T(+1)=s(+1) P . R14}. 521,
T(v)= [c(z)PnA +s(x) P ~R{4}} g2 (+a), 10

where P4, P"¢ are permutation matrices, S27(=#):7(+2) is a diagonal scaling matrix,
and R*} is a diagonal reflection matrix which negates only the fourth column of P"¢.
We will precisely define this notation later (see Equation (3.3), Equation (3.4) and
Equation (3.7)).

This procedure always works (see Lemma (3.3)), and we can in fact prove that

det(7 () == [Ty (c(x)™ +5(2)*)] y(+2)" Py (~a)" (2.15)

where
1. n is the dimension of the system (in the above case n=4)
2. {aq,...,a} is some partition of n (above we have k=1, and oy =4)
3. p is the number of dominant columns coming from A (above we have p=2).

Thus, if we choose ¢(z) and s(x) correctly, T (z) will always be invertible. (In practice
we usually choose ¢ and s to be cosines or sines). Moreover, we can define

p=[pna’ . pne. R = pnane. pid} (2.16)
and notice the following geometric series

(C?’P”/_*1 — 25D P 4s2P2?.pPia — g3 P3 'P”21> .
(P +sP7e . RN = (AT +s'T) =1 (2.17)

This allows us to immediately write down the inverse of 7 (z) in Equation (2.13) as

1
=2 0 0 cs? 3 —c%s
0 —— 0 0 3 2 3 _ .2
—1_ =) | c s s cs
7 0 0 ﬁ 0 —?s —cs? A3 53 (2.18)
0 0 0 ﬁ —s3 3 s s

It is the geometric series Equation (2.17) and the resulting inverse Equation (2.18)
which motivate our original choice for ¢(z) and s(z) (see Equation (2.12)). If the
composite permutation P41 had been a product of disjoint 2-cycles (instead of a
single 4-cycle), we would have chosen ¢(z) and s(x) differently (see Lem. 3.3 for more
details).

It should be noted that sometimes there is a conflict between optimization of the
condition number of D and optimization of the condition number of 7. In certain
scenarios (such as Equation (2.2)), the condition number of D is optimized by choosing
e very small. However, this results in a poorly conditioned scaling matrices S(z), and
hence a poorly conditioned 7 (z). In these cases it is usually best to compromise, and
choose € so that the condition number of both D and S(z) are reasonably low.
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3. Automated coordinate change: detailed explanation

Our algorithm for constructing D and T involves permutations, reflections and
scalings. The algorithm is structured such that the determinant of 7 is nonzero over
the interval [—1,+1], and the inverse 7 (x)~! can be easily constructed. As partially
illustrated by the example of Section 2.1, the basic ideas behind our algorithm are:

1. Perform a PLU decomposition of the augmented matrix [A|C]T to find the
n relevant ‘dominant’ columns. (Compare with Equations (2.5)——(2.7).)

2. Construct the corresponding permutation matrices, which shuffle the relevant
‘dominant’ columns into the correct positions. (Compare with Equations
(2.8)——(2.9).)

3. By inspecting the structure of the permutation matrices, design appropri-
ate reflection matrices which ensure that the derivative of 7 (z) is never 0.
(Compare with Equation (2.10).)

4. Fix the correct scalar paths and scaling matrices so that 7 will be easy to
invert. (Compare with eqgs. (2.12)——(2.13).)

5. Put all the ingredients together and define 7 (). (Compare with Equation
(2.14)). If required, we can write down the analytical inverse of 7 (x). (Com-
pare with Equation (2.17).)

Here we will further detail each step and along the way provide a proof that this
algorithm works whenever the matrix [A|C] has full rank (i.e., whenever a valid trans-
formation exists).

3.1. Step 1: determine the dominant columns. First we perform a PLU
decomposition:

P [AlIC)T=L-U,
P=2nx2n  a permutation matrix,

L=2nxn a lower triangular matrix,

U=nxn aupper triangular matrix. (3.1)

We inspect the first n rows of P. The nonzero entries correspond to the n dominant
columns of [A|C]. We record these column indices and divide them into two groups:

1. i’f‘p..,i;‘ correspond to the p dominant columns of A;
2. i§+1,...,z‘,€ correspond to the n —p dominant columns of C.

We then record the column indices of the irrelevant columns of A and C:

1. iﬁ+1,...,iﬁ correspond to the n —p irrelevant columns of A;

2. if,...,ig correspond to the p irrelevant columns of C.

3.2. Step 2: construct permutation matrices. We define permutations
na(j) =i ne(j)=1i§ (3.2)
and permutation matrices
1,

Pt =0imat Pif” = 0imci)- (3.3)

The permutation matrix P"4 shuffles the p dominant columns of A to the front, and
P1¢ ghuffles the n—p dominant columns of C' to the back. The first p columns of
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AP"4 and the last n—p columns of CP"° can be combined to make an invertible
matrix.

Now we concentrate on scaling down the effect of the irrelevant columns of [A|C].
We define scaling matrices

8 <
sy =g e TP (3.4)
V(Sij J>Dp.

Now ASP#" is the matrix A with the first p columns multiplied by p and the re-
maining n —p columns multiplied by v. With our notation, the nonzero columns of
AP 5710 are simply the p dominant columns of A. Similarly, the nonzero columns
of CP"¢8P:0:1 are the n —p dominant columns of C. The sum

APnagpL0 L orpno gp0i1 (3.5)

is invertible by construction. Unfortunately, we cannot simply choose 7 (—1)=
P14 SPL0 and T (+1) = P1e SP01 gince SP10, SP0:1 are not invertible. Nevertheless,
the sum

APT4a§PLe o pio gpiel (3.6)

is invertible for some € > 0 since the determinant is a continuous function of the matrix
coefficients. We do not specify € just yet, but later we will find € numerically simply
by trying different values until we find one that works. In practice we almost always
find e€[1/8,1/2], and so this step is neither time-consuming nor conducive to ill-
conditioned coordinate-transformations. The structure of Equation (3.6) suggests a
choice of T(—1) = P"48P:1¢ and T (+1) = P"c SP<1. However, if we make this choice,
we may not be able to construct an invertible matrix path 7 (z) between these two
boundary values. In particular, the determinants of P74 SP1:¢ and P7¢ §P-%1 must
have the same sign.

3.3. Step 3: design reflection matrices. To ensure that det(7(—1)) and
det(7(41)) have the same sign, we design reflection matrices:

0s5 ]
Rfj{ . il (3.7)
—0ij JEL,

where £ can be any set of indices. The matrix AR* is just the matrix A where the
columns referred to by £ have been negated. We form the matrices

T(—1)=PraSrLe T(41)=Pne 8Pl RE (3.8)

where £ has not yet been chosen. It is well known that GL,, has two path-connected
components, namely, matrices with positive determinant and matrices with negative
determinant [15]. We can easily choose £ (either empty or a singleton set) to ensure
that there exists a path between 7(—1) and 7 (+1). However, we will choose £ in a
way that makes the path 7 (z) easy to invert.

To start we construct the scalar paths

c(x,m)=cos(m(z+1)/4)%™,
(z,m) =sin(r(x+1)/4)>™,
v(z)=e+(z+1)(1—¢€)/2, (3.9)

S
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and the matrix paths

c(z) =diag(c(xz,my),...,c(x,my,)),

s(x) =diag(s(x,mq),...,s(x,my)),

P(z)=P"c(z)+ P" R*s(x),

S(z) =g (=2)ate)

T (x)=P(x)S(x). (3.10)

Here ¢(x,m),s(x,m) are positive continuous paths linking 1 to 0, and y(z) is a positive
continuous path linking € to 1. The matrix paths ¢(x), s(z) simply link I to 0 with
different paths for different indices. At this point €,£ and m; are not chosen, but we
will fix all of these parameters later. We will eventually choose € and £ so that D is
invertible, and we will choose the my,...,m,, to make 7 (z) easy to invert. With this
current representation for 7 we have

D=AT(~1)+CT(+1) = AP" §PLe . 0 Pre §Pel RE. (3.11)

Note that D will be invertible for any choice of £. This is the invertible boundary
matrix we want. Since det(S(x))> €™ for every z, 7 (x) will be invertible if and only
if P(x) is invertible.

In order to determine the underlying permutation structure of P(x), we apply a
preliminary transformation

(P") "1 P(x) = c(x)+ (P") "' P R s(z). (3.12)
Noting that
PP = PR (3.13)
we write
P(x)=(P")"'P(z) = c(z)+ P" R  s(x), (3.14)

where we have defined
N=n3 nc. (3.15)

We need to show that P(z) is invertible. To do this we decompose 7 into k disjoint
cycles (cyclic permutations) [11],

f=ag-ag_1-ar, (3.16)

where each «; has length I;. We associate to each «; the set of indices (coordinates)
B; that it permutes. The f3; form a partition of the set {1,...,n}.

Note that if we write 7 as the product of k£ disjoint cycles ﬁ:H}:kai each of
length [;, then P7= P% ... P is a matrix with k blocks, each of size [; x ;. If we
associate with each «; its set 3; of permuted indices, then the blocks of P" are those
associated with the coordinate groups 8;. This block matrix becomes visually obvious
if we reorder coordinates such that the indices in each cycle ;41 are larger than the
indices in the previous cycle «;. (Alternatively, we could require the entries of 3,41
to be larger than the entries of 3;).
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Armed with this cycle decomposition of 7, we write:
P=c(z)+ P ... P*1 R s(x). (3.17)

It is convenient to define the restriction

P X
[P‘ﬁ]ij - { 5;— :;tjhirfvise. (3.18)
Note that
P 5= P (3.19)
and
RF|, =RANP:, (3.20)

Note also that since the [3; form a partition of {1,...,n}, the product H}:kA‘,g. is

simply the matrix A restricted to the blocks 3; (with zeros elsewhere). Using Equation
(3.18) we rewrite Equation (3.17) as

P=1]e@)|, +][(P*R"s(x))],,
1=k

i=k

Bi

1
— H (c(z)+ P RFs(x))
ik

:H(c(x)’ﬁi+PO‘iR£ﬂﬁis(m)|Bi). (3.21)
i=k

Essentially, the matrix path P(m) is equivalent to a product of simpler matrix paths
which are each built from disjoint cyclic permutations. So the determinant of P is
given by the product of the determinant of the coordinate blocks

1
det(P) = Hdet (c(a:) |,Bi 4+ pwi Rﬁﬂﬁis(x”m) ) (3.22)
i=k

To prove that each of these coordinate blocks has nonzero determinant we use the
following lemma:

LEMMA 3.1. If a is a single cycle of length n operating on every coordinate, and
c(x)=c(z,n)I and s(x)=s(x,n)I, then

det(c(x) 4+ P*R s(x)) =c"(x,n) + (—1)" "L det(R*)s" (s,n).

Proof. We use the following definition of determinant: Given an n X n matrix M,
let £(¢) be the fully alternating antisymmetric n-tensor:

o :{ 0 ¢ not an n-cycle (3.23)

parity of ¢ ¢ is an n-cycle.
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The determinant of M is given by

det(M) =" " e(Q)My,c1yMa () M c(n)
CESn

=D (O M; (). (3.24)

CESR
Now when considering terms of
M =c(x)+ P*R s(x)

we have the following possibilities for ng?Mj,c(j) and e(:
1. The single term ¢"(z,n) corresponds to {(j)=j, and so £({)=1.
2. The single term det(R*)s™(z,n) corresponds to ((j)=a(j) and so &(¢)=
parity(a).
3. The cross terms +c™(z,n)s
and some c¢(z,n)-terms from M.
We examine this last case. Since « is a full n-cycle, we know that each row and
each column of M has one s(z,n)-term and one c¢(x,n)-term. We also know that the
c(x,n)-terms are on the diagonal. Therefore, any term of the form ¢ (z,n)s"~™(x,n)
must take m c¢(z,n)-terms from the diagonal of M. The columns containing the m
¢(x,n)-terms must also contain m s(z,n)-terms, since « is a permutation. Similarly,
the rows containing the m c¢(x,n)-terms must contain m s(x,n)-terms.

If there were only m s(z,n)-terms in those particular m rows and columns of M
altogether, then they would all have to be in the m x m subblock of M which contains
the m c(z,n)-terms. However, since « is an n-cycle, no m x m subblock of P can
have m s(x,n)-terms in it. So there must be at least (m+1) s(x,n)-terms in those m
particular rows and columns of M. That leaves only (n—m—1) s(x,n)-terms in the
remaining (n—m) x (n—m) block submatrix of M.

In order for ¢(¢) to be nonzero, the (n—m) s(z,n)-terms must have come from
the remaining (n—m) x (n—m) block submatrix of M. This is not possible, and so
£(¢) must be zero. So

n=m (g n) for 0 <m <n include some s(x,n)-terms

" (z,n) +det( RF)parity(a)s™(x,n)
"(z,n)+(=1)""tdet(RF)s" (z,n).

det(M) =

c
c
|
Under the assumptions of the lemma, we can easily choose £ so that M is in-
vertible. Namely, we start with an empty £, and refer back to Equation (3.16).
Then, we simply inspect the parity of each element of the disjoint cycle decomposi-
tion ay ---aq =17. For each cycle a; with negative parity, we add an element of 3; to L.
This will guarantee that the analog of the determinant in Lem. 3.1 will be nonzero.

So, to recapitulate, at this point we have a coordinate transformation 7 (z) given
by

c(z) =diag(c(x,my),...,c(x,my)),
x iag(s(xz,m1),...,s(x,my)),
(-

()=

()=

(2) =P c(x)+ P REs(),
()=

()=

Q

S

)

P,y (=), 7(+w)

S
T

(Q

T

x)=P(z)S(x), (3.25)



736 AUTOMATIC COORDINATE TRANSFORMATION

where L is fixed so that, for any set of positive m; and sufficiently small €, the matrix
7 (x) will be invertible (compare with Equation (3.10)).

3.4. Step 4: write down the inverse. The next step is to fix the m; so that
the inverse 7 (z)~! is easy to write down.

LEMMA 3.2. Assume « is a single cycle of length n operating on every coordinate.
Also assume that c(x) =c(z,n)I and s(x)=s(x,n)I. If a has positive parity (n is odd),
then let £ be empty. If a has negative parity (n is even), then let L be a singleton set
of any index permuted by o. Then

V= (c(x,n)I +s(x,n)P*R*)~!
n—1
=Y (='e(z,n)" " "s(z,n)' (P RFY, (3:26)
i=0
and
n—1
||V||1:HV||OO:Zc(az,n)”_l_zs(x,n)l<n. (3.27)
i=0

Proof. Assume first that a has positive parity. Then n is odd, and R*=1. We
have

(c(x,n)I +s(x,n)P*RE)V =c(x,n)" I+ s(x,n)" (P*)". (3.28)
Since « is an n-cycle, (P*)" =1 and we have
(c(x,n) I+ s(x,n)P*REV = c(x,n)" I+ s(x,n)"I=1. (3.29)

Now if a has negative parity, then n is even. Without loss of generality, assume that
L={1} and R* reflects the first column of the preceding matrix. In this case

(c(z,n)I +s(z,n)P*RE)V* = c(x,n)"I — s(x,n)" (P*R")". (3.30)

The term (P*R*)" is formed by starting with the identity matrix 7, and then per-
forming n permutation-reflections. Each permutation-reflection shuffles the columns
around via the n-cycle a;, and then negates the first resultant column. After n of these
permutation-reflections every original column has been in each column position, and
has been negated exactly once (since « is an n-cycle). Therefore (P R5)" =—1I, and
we have

(c(x,n)I +s(z,n)P*RE)\V* = c(x,n)"I —s(x,n)"(—I)=1. (3.31)
Using similar reasoning, we can deduce the structure of V<. Each term
c(x,n)" " is(x,n) (PYRE)"

is composed of i permutation-reflections as described above. The matrix V' is formed
by summing up the results of n — 1 successive permutation-reflections. Therefore, each
column of V has n unique nonzero entries, with magnitudes

c(z,n)"ts(z,n)°,...,c(z,n)s(x,n)" 1.
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The same result holds for the rows of V. Thus we can bound the co-norm condition
number of c(z,n)I +s(z,n)P*R* by 2n. O

Lem. 3.2 immediately suggests a method for choosing the set {m,...,m,}. Re-
ferring back to the disjoint cyclic decomposition ay, - -- a1 =7 (see Equation (3.16)), we
can simply set m; to be the length /; of the cyclic permutation «; which acts on the
index 7€ ;. Then, the construction of ¢(x) and s(x) via Equation (3.10) will allow
for the manipulations of Lem. 3.2, and the inverse 7 (z)~! will be easy to write down.

To be more precise, we can simultaneously choose £ and the m; and write down
the inverse 7 (z)~! as follows:

LEMMA 3.3. Assume =y -y is a disjoint cycle decomposition with corresponding
coordinate blocks {Bk,...,01} of respective lengths {lg,...,l1}. Choose m; to be the
length 1; of the cycle o that acts on index i. Construct c(z),s(z) as in Equation
(3.10). Initialize L to be the empty set. For each cycle o; with negative parity,
append an index permuted by «; to L. Now we have

det(P(x)) =+ [ ¢ (x,1;) +det (RN parity (as)s" (x,1)

i=k
=41, (3.32)
We can write P(z)™! as
1;—1
V(@) = [ ST (1P e 1 1) s ) (P RENSY ||
7=0
A k
Pl =]V (). (3.33)
i=1

Moreover, we can bound the co-norm condition number of P(x)

koo (P()) < 2n. (3.34)

This establishes the invertibility of P(z), P(z) and 7 (z). Using Equation (3.10)
and Equation (3.33), we can construct

T(x) '=8(x) 'P(x)!
= gpl/v(=2),1/7(+2) p(g)=1(pra)~1

k
:Sp,l/v(fm),l/v(er)(va (z))(P74)~L, (3.35)

i=1
Using Equation (3.34), we can bound the co-norm condition number of 7 (z).

|17 (2) " loo < 2¢7"(20),
Koo (T (z)) < 8ne ™. (3.36)
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3.5. Step 5: Construct 7 (z). Finally, we have fixed £ and the m;, and are
able to construct 7 (z) (see Equation (3.25)) and 7 (z)~! (see Equation (3.35)). The
final remaining task is to fix the parameter ¢ which has been floating throughout this
procedure. To do so we simply set e=1/2 and construct

D=AT(-1)+CT(+1). (3.37)

We can check the condition number of D using any standard tool (such as Haag's
condition number estimator [4]). If D is nearly singular, we go back and halve e,
check the condition number of D again, and repeat. This fixes all the parameters,
and finalizes the coordinate transformation.

Note that we can easily make our algorithm more flexible. For example:

1. There is no reason to choose only one € in Equation (2.9), or to set the other
entries to 1. We could choose a different € for each column of 7(—1) or
T (41), choosing some values near 1, and other values as small as necessary.
This would result in a different scaling for each column, but these scalings
could be chosen to minimize the condition number of ﬁ, or to minimize the
condition number of 7.

2. In step 2, we can also choose the signs of the columns of 7(—1) and 7 (+1)
to minimize the condition number of D. (Ideally, we do not want the angle
between any two columns of D to be too small). We still have to ensure that
the determinants at both endpoints match in sign, but other than than that,
we have freedom to choose.

3. In Equation (2.12) we do not have to scale linearly, or choose sines and cosines.
We can always choose functions that are flatter in certain regions and steeper
in others. This allows us to somewhat compensate (and have a relatively

constant 7) in regions where f and p are changing quickly.

In addition, note that, with the analytical apparatus constructed above, we can easily
construct an alternative coordinate transformation as follows. First we define the

simple linking matrices P”__ (z) which connect transpositions over a small interval.
[#1,72]

T €S, is a transposition,
[x1,22] is some interval,

I = one of the indices swapped by 7 ,

- T1+To\ T2o— 27 T1+2T2 \ XT2—T1  p{l,
P[I17$2]($):c(<x_ 92 ) 9 )Inxn+5<(x_ B )2>P R{l }

(3.38)

So P[;hm](xl)zl is the identity matrix, and P (z2)=PTRY-} is the identity

matrix with two rows swapped (those specified by 7) and one negated. PL wz](x)
merely provides a nonsingular path between these two endpoints.

Now we can decompose 7721170 =7p---71 as the product of k transpositions, and
let I; be one of the indices swapped by 7;. We also choose k41 points

=<1 <...<xp_1 <=1
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TABLE 4.1. Results for 6 by 6 boundary matrices, 500 trials each

Rank of Rank R(D) kmax (D) R(7T (z)) kmax (7 (x)) R(T'(z)) rmax (7 (x))
A and C of D

6 4 4x 10" 2% 107 8 x 107 2% 107 1x 102 6x 107

6 2 7x 10T 3% 10 8 % 100 2x 10T 2 % 102 1x 107

6 0 4x10° 9% 10° 6 x 107 6 x 107 8 x 107 9% 107

5 4 5x 10T 1x10° 8 x 109 2x 10T 1% 102 5x 10°

5 2 3% 107 2% 107 8 x 107 3x 10T 1x 102 7% 10%

4 4 2% 102 6% 10° 8 % 100 2x 10T 2 % 102 5x 10°

inside the interval [—1,1]. Now we can write
PlnA P[?o@l] (x) z € [xo,21]
PnapmRA 1}P[x21,x2] (x) x € [z1,29]

P(x) — Pna pm2T1 R{ll,IQ}P[;gz,aB] (.’17) xT e [ZCQ,.%'?,] . (339)

pna pre--m plli,le} pTe () T €xK—1,7k]

[zk—1,21]
Now P(x) goes through k steps, swapping two columns with each step. Note that
with the construction of Equation (3.39), it is convenient to choose ¢ and s such
that ¢c+s=1. This means that each P[;l 2] ACES only on the columns swapped by

7, and does not scale any other columns. (Note that c(z)=cos?((z+1)r/4) and
s(z)=sin?((x+1)7/4) will do the job).

Construction (3.39) is useful because it is especially easy to invert. Unfortunately,
the 7 constructed is not necessarily as smooth as ¢ and s. (In the case of c=cos?,s=
sin?, 7 is only C'). Here however, we can choose ¢ and s such that 7 is as smooth

as we desire.

4. Numerical examples

We test the performance of this method by constructing several boundary matrices
A and C such that their sum D is singular. We construct a coordinate transformation
T(z) on the interval [—1,1] for each pair of boundary matrices. We measure the
average condition number and maximum condition number of D= AT (—1)+CT (+1),
7T (x) and 7'(x) over several trials. The process used to construct singular boundary
matrices is as follows:

1. Choose the dimension n of the boundary matrices.

Choose the rank j <n of A and C.
Choose an even number d for the rank of D=A+C.
Let k=j— %.
Construct 2j — k rank-1 outer products u;-v§ at random.
Set A:Ezzlui vl
Set C'= Zg:j—kﬂ —u; v+ Z?i;f-l ui vl
8. Now in general, D= A+ C will have rank 2(j —k)=d.

In general, [A|C] will have full rank if 2j—k>n. This is equivalent to requiring
2j+d>2n. Table (4.1) contains the results for n==6 and values of j ranging from 6
to 4. Each test was carried out using 500 trials. The condition numbers of ﬁ,’T(x)
and 7' (z) are all fairly low, even in the worst cases. The condition number of D is

R
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highest when D is singular. However, in this case the condition numbers of 7 and 7"’
are at their lowest.

5. Algorithm Psuedocode

Assume that we are given matrices A € R"*™ and C € R™*" such that their sum D
is singular. We focus on the problem of constructing a differentiable path 7 :[—1,1] —
R™ " such that D=AT(—1)+C7(+1) is nonsingular and 7 (z) is invertible for all
. Note that the column space of D lies within the column space of [A|C]. Therefore
[A|C] must have full rank in order for 7 (x) to exist. This simple necessary condition
for the existence of 7 proves to be sufficient. The apparatus we construct revolves
around permutation, reflection and scaling matrices:

ALGORITHM 5.1. Build T
1. Determine the dominant columns of [A—C] (See Section 3.1).
e Read A and C as input.
e Perform a PLU decomposition P[A|C]T=LU. Inspect the diagonal en-
tries of U, and ascertain that [A|C] has full rank.
e Inspect the upper n x 2n submatriz of P. There will be n nonzero entries.
Divide the column indices of these entries into two sets. Set 1 of length
p is the set of column indices between 1 and n. Set 2 of length n—p is
the set of column indices between n+1 and 2n. Subtract n from each
element of Set 2.
2. Construct the permutation matrices (See Section 3.2).
e (Create a permutation matriz P"* such that the row indices of the first
p columns of P"4 are each elements of Set 1.
o (Create a permutation matrix P"C such that the row indices of the last
n—p columns of P"° are each elements of Set 2.
3. Construct the reflection matrices (See Section 3.3 and Section 3.4).
o Inspect the permutation (P"4)~1pPnc,
Initialize L={} to be the empty set.
Initialize {m1,...,mp} to be 0.
Decompose this permutation into k disjoint cycles
(pm)—lpnc =qp--aq,
each of length l; acting on coordinate sets (;.
fori=1,...,k
if a; has negative parity, append an index permuted by c; to L.
for each index j acted on by o, set m;=1;.
end for
Define R* to be a diagonal matriz with entries of —1 in the columns
listed in L, and entries of 1 in the other columns.
4. Construct 7 and fix € (See Section 3.5).
Define y(z) =€+ (1+z)(1—€)/2. We will choose € later.
Define c(x,m)=cos(m(1+2x)/4)>™, s(x,m)=sin(r(1+2z)/4)%>/™.
Define c(x) =diag(c(xz,mq),...,c(x,my)).
Define s(x)=diag(s(z,m1),...,s(z,my,)).
Define SP*¥ to be a diagonal matriz with p for the first p entries and
v in the final n—p entries.
Define T (x) = (P c(z) + P"° RFs(x)) P (@) (=2),
o Initialize e=1/2
while { AP"4SPLe 4 CPieSPel s nearly singular}
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e=¢/2
end while

e Now T (x) is a differentiable invertible matriz path from A to C.
5. If required, construct 7! (See Section 3.4).

e Define P]‘?;; =0j,a:(k)-
Define V()= Y0 (—1)7 =13 (w,1;) 9 (,1;) (P RENGi)I
Set Vﬁc (x)=4, for pairs j,k not both within 3;.
T (x)~t can be evaluated analytically via
Sp,l/v(m)’l/v(fr)(nleVoci (z))(Pra)~1L.
The condition number koo (7 (x)) is bounded by 8ne~".
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