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FAST COMMUNICATION

THE NUMERICAL SPECTRUM OF A ONE-DIMENSIONAL
SCHRÖDINGER OPERATOR WITH TWO COMPETING PERIODIC

POTENTIALS∗

LAURENT GOSSE†

Abstract. We are concerned with the numerical study of a simple one-dimensional Schrödinger
operator − 1

2
∂xx +αq(x) with α∈R, q(x)=cos(x)+εcos(kx), ε>0 and k being irrational. This

governs the quantum wave function of an independent electron within a crystalline lattice perturbed
by some impurities whose dissemination induces long-range order only, which is rendered by means
of the quasi-periodic potential q. We study numerically what happens for various values of k and ε;
it turns out that for k >1 and ε¿1, that is to say, in case more than one impurity shows up inside
an elementary cell of the original lattice, “impurity bands” appear and seem to be k-periodic. When
ε grows bigger than one, the opposite case occurs.
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1. Introduction and modelling
This note is devoted to the numerical investigation of the following eigenvalue

problem:

1
2
∂xxψ+

(
E−αq(x)

)
ψ =0, q(x)=cos(x)+εcos(kx); x∈R. (1.1)

For α∈R and ε=0, (1.1) is known as the 2π-periodic Mathieu (or Hill) equation.
Floquet-Bloch theory thus applies to ensure the existence of so-called “Bloch wave
solutions” reading exp(iκ(E)x)z(κ,x) and indexed by the quasi-momentum κ which
belongs to the first Brillouin zone. This is also one of the simplest models for the
1-D modelling of an independent electron moving inside a static and infinite lattice
of ionic cores; the lows of the potential render the potential wells in the vicinity of
the positively charged atomic nuclei. Solving this eigenvalue problem is an important
stepping stone toward semiclassical WKB approximation because it allows to apply
Peierls’ substitution; see [1, 15, 12, 22]. For weak and slowly-varying external poten-
tials, this line of thinking still works, including the self-consistent Poisson interaction1,
because both tunnelling effects and band coupling remain negligible [13, 14].

However, when one wishes to consider defects in the lattice, the resulting per-
turbations in the potential cease to remain slowly-varying: for instance, a special
case of phonon modelling has been studied in [10]. For this model, the band struc-
ture has been seen to be deeply modified, but still, consistency between the resulting
Schrödinger equation and its semiclassical WKB approximation has been observed
numerically. Besides phonons, a situation of particular interest turns out to be the
inclusion of impurities inside an otherwise perfectly periodic lattice; in semiconductor
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1Hartree equation permits to go beyond the “independent electron” idealization.
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486 SCHRÖDINGER EQUATIONS WITH TWO COMPETING POTENTIALS

theory, this process is called doping [25]. Here we consider (1.1) as the most elemen-
tary model for the Hamiltonian of independent electrons permeating a doped material.
Weak doping corresponds to low values of k, and strong interaction between electrons
and nuclei is rendered through a big α. The value of ε may be interpreted as the type
of impurity disseminated inside the sample; it somehow controls the strength of the
alien ion’s effect on the charge carriers.

Unfortunately, the classic Bloch decomposition no longer applies to (1.1), since
the equation is only quasi-periodic. Indeed, periodicity is a special case of short-range
order, leading generally to an absolutely continuous spectrum (the well-known “band
structure”) and extended eigenstates; quasi-periodicity, though not being completely
disordered, displays only long-range order, thus allowing for singular Cantor-type
spectrum and critical (very peaked) eigenstates, some of which can be seen in [11].
What we aim at here are the variations in the spectrum of (1.1) as k and ε vary;
for very low k’s, very few impurities show up in the medium hence based on com-
mon belief, the original Mathieu band structure should be visible modulo very small
changes, see §3.1. When k is increased but remains below one, there is less than
one impurity inside the Wigner-Seitz cell of the underlying lattice; recent theoretical
results (partially recalled in §2) indicate that for α=O(1), one should expect a sin-
gular Cantor-type spectrum possibly with gaps, see §3.2. The opposite situation is
of course k >1 for which the resulting doping turns out to be very strong; impurity
bands then appear inside the band gaps of the unperturbed problem as seen in §3.3
and in practice correspond to meta-stable states [18, 23].

2. One-dimensional quasi-periodic Schrödinger operators

2.1. A glimpse on theoretical results.
Definition 2.1. Let q(x) be a smooth function R→R; q is said to be quasi-periodic
if there exist d∈N rationally independent constants ~ω =(ω1,...,ωd)∈Rd and a contin-
uous function Q :Rd→R 2π–periodic in each of its arguments such that:

∀x∈R, q(x)=Q(~ω x)
def
= Q(ω1x,...,ωdx).

The d constants ~ω are the basic frequencies of q, and Q is the (non unique) lift of q.

When dealing with quasi-periodic functions, we shall always use capital letters for
the corresponding lifts. The study of quantum particles submitted an incommensurate
potential started with [22] which was dealing with electrons moving inside a magnetic
field. Let v(x) stand for a generic quasi-periodic function, i.e. v(x)=V (~ω x) with
~ω∈Rd, d≥2. The theory mainly focused on the general eigenvalue problem:

1
2
∂xxψ(x)+

(
E−αv(x)

)
ψ(x)=0, x∈R.

It states that both eigenfunctions ψ(x) and eigenvalues E strongly depend on α.
For large α, eigenfunctions are known to decay exponentially. This phenomenon is
referred to as Anderson localization, see e.g. [8]. But for small α/E, the existence
of quasi-Bloch waves, that is to say eigenfunctions of the form

Ψκ(x)=exp(iκ(E)x)z(κ,x), z(κ,x)=Z(~ω x), (2.1)

has been established by means of KAM techniques: consult [5, 21, 26, 7]. To get
control on the recurrent small divisors, it is necessary to assume that ~ω is Diophantine,
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i.e. there exist positive constants C0, τ for which,

∀~ν 6=~0∈Zd, |<~ω,~ν >Rd |≥C0|~ν|−τ , |κ(E)+<~ω,~ν >Rd |≥C0|~ν|−τ . (2.2)

Recently, some interest has been put into perturbed Hill’s equations, of which (1.1) is
an elementary case; results are available in [2, 9]. We notice that, besides Diophantine
conditions, no particular hypotheses are ~ω; one of the purposes of this paper is to
present a case with d=2 where the basic frequencies have a critical importance on
the structure of the spectrum.

2.2. The incommensurate perturbed Mathieu potential. The behavior
of (1.1) in the special case ε=1, α¿1 has been studied theoretically in [8, 26],
numerically in [4, 16, 30] and experimentally in [28] (see also [27]). From [26, 7, 9],
we know that, provided the following Diophantine condition (2.2) holds,

∀m,n 6=0∈Z2, |m+nk|≥ C0

n2
,

for ε small enough and/or E big, “quasi-Bloch waves” Ψκ(x)=exp(iκx)z(κ,x) do
exist and the corresponding modulations z(κ,.) and q share the same kind of quasi-
periodicity:

q(x)=
∑
n,m

Q̂n,m exp(i(n+mk)x), z(κ,x)=
∑
n,m

Ẑn,m(κ)exp(i(n+mk)x). (2.3)

We shall study numerically the case where k = qπ with q∈Q. This doesn’t exactly
enter the preceding framework as, despite being irrational, π isn’t an algebraic number.
Thus it isn’t known if the corresponding frequencies can be Diophantine. The best
which seems to have been proven2 is: |π− p

q |≥ q−42. For completeness, we recall the
continued fraction approximation of π together with its graphical representation on
Fig.2.1:

π' [3,7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,2,1,84,2,1,1,15,3,13,1,4,2,6,6,
99,1,2,2,6,3,5,1,1,6,8,1,7,1,2,3,7,1,2,1,1,12,1,1,1,3,1,1,8,1,1,2,1,6,1,1,

5,2,2,3,1,2,4,4,16,1,161,45,1,22,1,2,2,1,4,1,2,24,1,2,1,3,1,2,1].

However, it seems also interesting to check numerically whether or not the results
based on Diophantine frequencies can extend to irrational numbers possibly better
approximated by rational numbers. In order to study numerically the slightly more
general problem (1.1) with respect to α, k and ε, it is easy to extend the spectral
algorithm proposed by Steve Surace in [26]:

(n+mk+κ)2Ẑn,m +α
(
Ẑn−1,m + Ẑn+1,m +εẐn,m−1 +εẐn,m+1

)
=2EκẐn,m. (2.4)

Due to CPU time, we restricted our computations to n,m∈{−20,20}, which lead to
diagonalizing a 412×412 penta-diagonal matrix for every value of κ. We always took
α=1.

3. Numerical results and discussion
Hereafter, we shall always consider Figure 1 in [12] as the reference for the band

structure of (1.1) with α=1 and ε=0, i.e. of the classical Mathieu equation. We
recall that in this case, bands are to be visualized for κ∈ [− 1

2 , 1
2 ], the first Brillouin

zone.

2see http://mathforum.org/library/drmath/view/69162.html
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Fig. 2.1. Graphical representation of the continued fraction approximation of π.

3.1. Increasing k: from adiabatic decoupling to disorder. In this case,
we took ε=0.15 and let k vary while remaining inside the interval [1/300,1/10]. The
numerical results are displayed on Fig. 3.1 for κ inside the Brillouin zone of the
original problem. One sees at once that the lower k is, the more the spectrum looks
like the Mathieu’s bands. Indeed, states located deep down the well are nearly flat
and a conduction band is visible near the the edge of the potential. We believe that
the “thickness” of the bands has to do with the degeneracy of the (big) matrix coming
from (2.4) as many eigenvalues are very close to each other and this may influence
the numerical diagonalization algorithm; the higher ε, the thicker these bands.

However, if the structure is almost perfect for k'1/300, it surely evolves toward
a different picture as k increases. Indeed, the bands already begin to flatten for
k'1/100, meaning that localized states begin to be numerous. Finally, for k'0.1,
nearly all the bands have become flat, except for the conduction band, which displays
an intriguing structure. Fig. 3.1 (especially the left spectrum) tells us that if the
perturbation potential is really slowly-varying, then Peierls substitution is completely
effective and the electron’s dynamics are driven by usual energy bands (as studied in
[13]). Band gaps are still present in the spectrum for all the considered values.

3.2. Weak disorder: Cantor spectrum for various values of ε. Here
we took k =

√
5−1
2 '0.62, the golden mean, and we want to investigate the stability
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Fig. 3.1. Spectrum for ε=0.15 with k = π
1000

, π
250

, π
50

(left to right). Lowest homogeneous
Mathieu-Hill’s (ε=0) bands are shown on the left for comparison.

of the band gaps as ε varies. First of all, we see that all the original bands have
collapsed into a complicated “Cantor-type structure” as a consequence of the band
nesting phenomenon, see [16], to which critical eigenstates3 should be associated.
Then, band gaps are stable; they roughly agree with former computations for the
simpler model ε=1, α¿1 given in [30]. Indeed, the increase of ε only thickens the
“Cantor areas” and restricts a bit these forbidden zones; this is reminiscent of the
Peierls distortion in which phonons open small gaps inside the conduction band.
It looks also like a smooth process as has been shown in [2] using the concepts of
“resonance tongues” and “instability pockets”. The upper part of the spectrum is
rather messy, so we didn’t display it; see however [11].

3.3. Strong disorder: k-periodic impurity bands for k >1. Here, we
focus on the case for which k = π

3 >1 and let ε vary. Gaps completely disappeared at
the benefit of new “impurity bands”; physically, this is a consequence of the excessive
overlapping of the wave functions associated to the impurity atoms. In the opposite
cases corresponding to Figs. 3.1 and 3.2, impurity wave functions were meant to stay
far enough from each other to prevent band creation. In case k >1, however, they
became closer than the states created by the original Mathieu potential. Moreover,
they are quite stable as can be seen on Fig. 3.3, despite the “thickness” of the
collapsed bands still growing with ε. The new bands look like being k-periodic hence
the original Brillouin zone is now too narrow to include them; see also [11] for a
similar observation with a different type of perturbation. In [11], we observed that
impurity bands appear to be parabolic: a plausible interpretation is that electrons

3Extended states are associated to periodic problems (ε=0). Localized states are usually asso-
ciated to random operators; they have a finite L2(R) norm and decay exponentially for large |x|, see
[4, 8]. Critical states are in between as they are usually made of periodically-repeated spikes; see [17]
and §4 in [11] for an illustration.
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Fig. 3.2. Spectrum with k =
√

5−1
2

and ε=0.02,0.05,0.2 (left to right).
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Fig. 3.3. Spectrum with k = π
3

and ε=0.05,0.15,0.35 (left to right).

perceive somehow the average of the corresponding very oscillating potential (like the
so–called Jellium metal model [6]) and thus display a parabolic dispersion relation.
The effect of the disordered medium boils down to the effective mass only.

3.4. What happens if ε>1 ? One may imagine that for ε big enough, the
collapsed bands will become so thick that no space will be left for the impurity bands
and the resulting sample will be an insulator. This is only partly true, in the sense
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Fig. 3.4. Spectrum with k = π
3

and ε=0.85,5,10,20 (left to right): only localized states separated
by gaps are expected to survive.
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and ε=0.85,10,20,50 (left to right). Extended states can be
expected to develop as ε grows.

that in case ε becomes greater than one, the “perturbation” εcos(kx) becomes the
main potential and thus the term cos(x) reduces to a lower-frequency perturbation.
One can apply the transformation x→kx inside problem (1.1) with α=1 in order to



492 SCHRÖDINGER EQUATIONS WITH TWO COMPETING POTENTIALS

derive:

k2

2
∂xxψ+

(
E−εcos(x)−cos(x/k)

)
ψ =0; x∈R.

For values of k close to one, the factor in front of the second derivative won’t be
important; however, one sees at once that in case ε>1, impurity bands should appear
in the opposite case, that is to say for k <1; this is reminiscent of the mobility edge
phenomenon. So the picture goes as follows: singular spectrum grows in size for
0.2≤ε<1, then for ε>1, we gradually move back to the situation described in Fig.
3.2 or 3.3; we display on Fig. 3.4 the spectrum resulting from “big” values of ε, but
in order to ease the comparison, we divided all eigenvalues by 1+ε. The thickness
of the singular parts decreases slowly and we believe that the bands remaining inside
the gaps result from truncation errors; observe in particular the similarity between
the spectrum on the right of Fig. 3.1 and the one on the left of Fig. 3.4. For
completeness, we display on Fig. 3.5 what happens for increasing values of ε in case
k =

√
5−1
2 ; the results suggest that some bands emerge between the singular parts of

the spectrum which size gradually shrinks (like in the preceding Fig. 3.4). For ε<1,
we observe other bands high in the spectrum; this isn’t in contradiction with our
ideas since standard KAM results (see especially [7, 9]) ensure that higher parts of
the spectrum generally contain extended states. Notice also that in this case, the
“perturbing potential” is still endowed with a Diophantine frequency since 1

k =
√

5+1
2 ,

the inverse of the golden mean, has a continued fraction representation going like
1+[1,1,1,1...].

4. Conclusion
We presented some computational results obtained from a simple spectral algo-

rithm (2.4), which nevertheless has been studied rigorously in [26] in a related context.
We observed that for very dilute perturbations, the original band structure survives,
but it quickly rearranges itself as the parameter k grows. Metallic conduction can be
hoped for, but it should decay with k. For k slightly below one, that is, the frequency
of the underlying lattice, the spectrum is singular continuous, and thus eigenstates are
likely to be critical. The resulting material will therefore be an insulator. Amazingly,
for k >1, intricate “impurity bands” show up inside an otherwise singular spectrum;
hence assuming that electrons might be trapped in these bands, frictionless conduction
remains possible. It seems to be a well-known result that certain forms of disorder
lead to the formation of impurity bands responsible for metallic impurity con-
duction in the sense of [20], see also [3, 25, 29]. This is also used for the design of
semiconductor LASERs, where the stimulated emission of radiation stems from an
inverted population of electrons decaying from an excited band onto a meta-stable
one.
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[5] E. Dinaburg and Yakov Sinäı, The one-dimensional Schrödinger equation with quasi-periodic
potential, Funkt. Anal. i Priloz., 9, 8-21, 1975.

[6] W. Eckardt, Dynamical polarizability of small metal particles: self-consistent spherical jellium
background model, Phys. Rev. Lett., 52, 1925, 1984.

[7] L. H. Eliasson, Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation,
Comm. Math. Phys., 146, 447-482, 1992.
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