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MASS AND ENERGY BALANCE LAWS DERIVED FROM
HIGH-FIELD LIMITS OF THERMOSTATTED BOLTZMANN

EQUATIONS∗

P. DEGOND† AND B. WENNBERG‡

Abstract. We derive coupled mass and energy balance laws from a High-Field limit of ther-
mostatted Boltzmann equations. The starting point is a Boltzmann equation for elastic collisions
subjected to a large force field. By adding a thermostat correction, it is possible to expand the solu-
tions about a High-Field equilibrium obtained when balancing the thermostatted field drift operator
with the elastic collision operator. To this aim, a hydrodynamic type scaling of the thermostatted
Boltzmann equation is used, considering that the leading ‘collision operator’ actually consists of the
combination of the thermostatted field operator and of the elastic collision operator. At leading order
in the Knudsen number, the resulting model consist of coupled nonlinear first order partial differ-
ential equations. We investigate two cases. The first one is based on a one-dimensional BGK-type
operator. The second one is three dimensional and concerns a Fokker-Planck collision operator. In
both cases, we show that the resulting models are hyperbolic, thereby indicating that they might be
appropriate for a use in physically realistic situations.

Key words. Boltzmann equation, Fokker-Planck equation, thermostat, hydrodynamic limit,
High-Field limit, hyperbolic balance laws, mass and energy transfer

AMS subject classifications. 82C70, 82C40, 82C21, 82B40, 82B21, 35J05, 76M28

1. Introduction
In semiconductor or plasma physics, much use is made of mass and energy transfer

models which sometimes bear the name (mostly in the semiconductor community) of
Energy-Transport models [1, 2, 3, 14, 20, 21, 23, 34, 40, 48, 49] (see also the review
articles [18], [19] and references therein). They consist of coupled convection-diffusion
equations for the particle and energy densities of each species of particles. They are
valid in situations where the particles (e.g. the electrons and holes in semiconductors,
the electrons and ions in plasmas) evolve under the combined influence of an external
or mean-field force (e.g. the electrostatic or electromagnetic force) and collisions with
a background (e.g. impurities and phonons in semiconductors, neutral molecules in
plasmas).

During a collision event, particles exchange momentum and energy with the back-
ground. The relative magnitude of the collision processes compared with the other
physical phenomena such as the external or mean-field force is measured by the in-
verse of the Knudsen number where the Knudsen number represents the ratio of the
collision mean free path to the typical length scales of the system. If the collisions are
strong, or in other words, if the Knudsen number is small, a quick relaxation of the
particle distribution towards a state of Local Thermodynamical Equilibrium (LTE)
occurs. In the present case, the LTE is characterized by the same mean velocity and
temperature as the background. Usually, the background is at rest and the mean
velocity is equal to zero. Then, the LTE only depends on a single free parameter, the
chemical potential (or equivalently the dual extensive variable, namely the density),
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which evolves under a single convection-diffusion equation. This yields the so-called
drift-diffusion model which has been widely used in the semiconductor or plasma
literature for decades [30], [41], [44], [50].

However, in some situations far from equilibrium, the energy exchanges between
the particles and the background are much slower than the momentum exchanges, and
for a long period of time, an intermediate equilibrium persists, in which the particle
temperature is different from the background temperature. In semiconductors, energy
exchanges occur by quanta equal to the phonon energy ~ω0 and in sub-microelectronic
devices, the typical particle energy is much larger. Therefore, the relative energy
exchanges between electrons and phonons during one single collision event are very
small. In plasmas, the small mass ratio between the electrons and the neutrals or ions
also makes the energy exchange processes extremely inefficient.

In such situations, it is legitimate to say that the LTE is characterized by two
parameters instead of one, the chemical potential (or the density) and the temperature
(or the energy density). These two quantities now evolve by means of two coupled
diffusion equations. This yields the so-called Energy-Transport model. Its derivation
from the Boltzmann equation by means of a Hilbert perturbation expansion has been
outlined in [23] in the plasma context and by [3] and [2] in the semiconductor context
(see also the reviews [18], [19]). In these references, the entropic structure of the
Energy-Transport model has been emphasized: indeed, the fluxes of the conservative
variables (density and energy) are expressed in terms of the gradients of the dual
entropic variables (chemical potential and temperature) through a symmetric positive-
definite diffusion matrix. For numerical methods we refer the reader to [21], and for
recent applications to [34].

In both the Drift-Diffusion and Energy-Transport models, the LTE (a Maxwellian
in the case of Boltzmannian particles, a Fermi-Dirac distribution in the case of
Fermions) is a spherically symmetric function of the microscopic particle momenta.
However, in the presence of strongly non-equilibrium phenomena, the applied forces
(typically the electric or electromagnetic forces in the case of plasmas or semiconduc-
tors) strongly modify the shape of the momentum distribution function and generate
an anisotropy in the direction of the force field. This indicates that a perturbation
expansion about a spherically symmetric LTE is not legitimate. In such regimes,
both the Drift-Diffusion and Energy-Transport models must be invalid (although the
Energy-Transport model, by assuming a different temperature than the background,
is probably less inaccurate). This remark has been the starting point of many studies
in which new macroscopic models are sought by expanding the distribution function
about “High-Field Equilibria” obtained by balancing the actions of the field and of
the collisions.

Such High-Field models have been investigated in [4], [12], [22], [45], [46], [47].
At leading order in the Knudsen number, these models consist of linear or nonlinear
hyperbolic equations for the local density. By expanding the distribution function
to the next order in the Knudsen number, diffusive corrections can be obtained by
means of a Hilbert or Chapman-Enskog technique. In these earlier approaches, it was
assumed that the collision operator relaxes to the local Maxwellian with zero mean
velocity and fixed background temperature. In other words, it was assumed that the
energy exchanges during collisions are of the same order of magnitude as momentum
exchanges. In this sense, these High-Field models are a natural extension of the
Drift-Diffusion model. Actually, a Small-Field asymptotic of these models (including
diffusive corrections) restitutes the Drift-Diffusion model. The existence of a leading
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order distribution function is not an obvious question and is related to integrability
conditions on the collision frequency. This question has been investigated in [10], [11],
[29], [47].

A natural question is therefore investigating the possibility of High-Field mod-
els which would extend the Energy-Transport model. Such a possibility relies on the
possibility of making a High-Field limit of a Boltzmann model where the collision oper-
ator conserves energy and relaxes the distribution function towards a local Maxwellian
with an arbitrary temperature. However, determining the leading order term of the
High-Field expansion requires solving an equation for the leading order distribution
function where the collision operator is balanced by the field acceleration. Such a
problem is obviously ill-posed and actually has no solution at least of finite energy.
Indeed, the field brings energy into the physical system which the collisions, being
elastic, are unable to dissipate. Actually, it is easily shown that a space-homogeneous
distribution function which evolves under the combined actions of the field and of an
elastic operator does not converge for large times towards a finite energy distribution
function. This problem has prevented the development of High-Field counterparts of
the Energy-Transport model for some time.

The present paper reports on the first attempt (to our knowledge) to use a ther-
mostatted field operator in order to overcome this problem.

The notion of thermostats in the sense used here has its origin in molecular
dynamics and simulation of non-equilibrium phenomena, with the works of e.g. D.
J. Evans, W. G. Hoover, G. P. Morriss and others in the beginning of the eighties
(see [25, 26, 35] and some of the available textbooks ([37, 36, 28]). The basic problem is
to study (mechanical) systems under the influence of a steady external field. To obtain
a stationary state, the energy supplied by the external field must be absorbed by some
means, and the so-called Gaussian iso-kinetic thermostat achieves this by adding a
(non-holonomic) constraint force that forces the system to remain on a submanifold of
constant kinetic energy. Similarly an iso-energetic thermostat constrains the system
to conserve energy. The word Gaussian refers to the link with Gauss’ principle of
least constraint for non-holonomic constraints in mechanical systems.

While the Gaussian thermostats correspond to a micro-canonical ensemble, the
Nos-Hoover thermostat aims at simulating the canonical ensemble. There the original
Hamiltonian system is supplemented with an additional canonical pair of variables,
which model the contact with a reservoir (see [43, 27]).

There are many different forms of both the Gaussian thermostats and the Nos-
Hoover thermostats. Some of the applications and qualities of the different versions
are described in [38] and [42].

Among the rather few rigorous results concerning thermostatted dynamics, we
mention the work by Chernov et al [15, 16], which concerns the Lorentz gas subject to
a (small) force field and a Gaussian iso-kinetic thermostat. The authors prove, among
other things, that if the force field is sufficiently small, there is a unique stationary
measure for the evolution, and that Ohm’s law holds. Careful numerical simulations
indicate that the same is true for stronger force fields, but that the results depend in
an irregular way on the strength of the field [6, 7].

The thermostats as described here deal with the evolution of a finite number of
particles under the influence of a thermostatted force field. In kinetic theory, one is
concerned with the evolution of a phase space density of particles. The Boltzmann
equation can be derived as the limit of infinitely many particles that obey the classical
laws of mechanics. The Boltzmann equation for a system of particles that are subject
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to a thermostatted force field has been studied by Wondmagegne [53, 52, 51, 5]. A
formal derivation of a Boltzmann equation for a thermostatted system is carried out,
and rigorous results on non-equilibrium stationary states are obtained for Kac’s toy
model of the Boltzmann equation [39].

Here, the usage of thermostats will be slightly different. They will help us in de-
termining the leading order term in the High-Field expansion of the kinetic equation.
However, the overall energy budget of the problem will not be modified, and actu-
ally, the energy increase due to the field operator will be duely accounted for in the
limit model. To this aim, we add and subtract the thermostat correction, leading to
corrections and counter-correction terms in the kinetic equation whose respective con-
tributions exactly cancel each other. However, the thermostat correction is grouped
with the field and collision operators in the leading order term of the Hilbert expan-
sion, while the counter-correction term is grouped with the transport operator and is
considered as a next order correction.

The so-called High-Field equilibrium can now be determined. Indeed, the energy
brought into the system by the field is dissipated by the thermostat and allows to find
a manifold of distribution functions (depending on two parameters, the density and
the local temperature) which exactly balance the thermostatted field operator by the
elastic collision operator.

As is frequent in this methodology, a general theory for the existence of High-
Field equilibria is hard to develop and we rather focus on two specific model collision
operators: a one-dimensional BGK relaxation type operator (where the distribution
function relaxes to a Maxwellian with same density and temperature) and a three-
dimensional Fokker-Planck operator (where again, the density and energy are pre-
served).

The resulting High-Field models consist of mass and energy balance equations
which are first order nonlinear Partial Differential Equations. The mass and energy
fluxes are just those of the above-mentioned High-Field equilibria and, in the special
case considered, lead to explicit algebraic constitutive relations. The energy balance
equation retains the work of the force field as an order ε−1 term (ε being the Knudsen
number), as a reminiscence that the field was considered large enough to balance
the collisions. Therefore, the solution of the model can be viewed more as a formal
asymptotic limit of the original kinetic distribution function than as a regular limit.
However, in realistic situations, ε has a definite value, and it is not more complicated
to deal with this term within the present model than within the classical Energy-
Transport model.

Of course, one could try to continue the expansion and compute the next order
terms, i.e. the O(ε) diffusive corrections. This computation will be developed in a
future work together with a proof that, for O(ε) fields, the model gives back the stan-
dard Energy-Transport model. However, already at leading order the well-posedness
of the models is not obvious. We give an answer to this question in the case of a given
external electric field by showing that the systems are hyperbolic. Of course, when
the electric field is coupled to the Poisson equation, more investigations are needed
since another source of nonlinearity appears.

The paper is organized as follows. In section 2, we give a presentation of the
thermostat concept and adapt it in the kinetic modeling setting. In section 3, we
consider a one-dimensional thermostatted BGK equation, and introduce the High-
Field scaling for this equation. The associated High-Field fluid model is formally
derived and the hyperbolicity of the model is proved.
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In section 4, a more realistic d-dimensional model is considered. Here the con-
sidered collision operator is of Fokker-Planck type and two types of thermostats are
examined, an isotropic thermostat and a thermostat acting only in the direction of
the electric field E. The stationary solutions for both thermostats can be analytically
computed and consist of a displaced Maxwellian (whose mean velocity is parallel to
E) in the case of the isotropic thermostat and an anisotropic Gaussian whose mean
velocity is parallel to E but whose thermal velocity is smaller in the direction parallel
to E in the case of the parallel thermostat. The stationary solution for the parallel
thermostat has a remarkable energy equipartition property: all directions (including
the one parallel to E) carry the same amount of energy, while those of the isotropic
thermostat carry more energy in the E direction. The corresponding fluid models are
obtained and their hyperbolicity is proved. The properties of the two thermostats are
discussed, and in view of this discussion the isotropic thermostat is preferred. The
paper ends with a concluding section 5.

2. Thermostats
In this section we present the thermostatted particle systems that present the

microscopic picture of our models.
Consider first a system of N identical particles with mass m, moving in one

dimension under the influence of a (scalar) force field E. The equations are then, of
course,

d

dt
xj(t)=vj(t), (2.1a)

m
d

dt
vj(t)=E, j =1,··· , N. (2.1b)

We are interested in very large systems of particles that, in addition to a force field
as above, are subject to collisions, both among themselves and with the environment.

If the number of particles per unit length is very large (where the length scale
is defined in terms of the gradient of E), it is relevant to consider a thermostat
acting locally, i.e. on particles belonging to a small neighborhood of the position x.
Therefore, we only deal with the velocities of the particles, having in mind that all
these particles are localized in space around the point x. Similarly, we assume that
the electric field is locally constant, which means that the potential energy is locally
linear.

The total energy of this (local) system is

N∑

j=1

(
1
2
mvj(t)2−Exj(t)

)

which, of course, is constant in a homogeneous situation. However, the kinetic energy
is not; the particles will accelerate infinitely. In some cases it is interesting to modify
the field so as to obtain a constant kinetic energy (see e.g. [42] and references therein).
These are the so-called isokinetic thermostats. For a particle system moving in Rd,
the velocity component of the phase space is Rd×N , and the surface of constant kinetic
energy is given by

SW =



(v1,...,vN ) :

N∑

j=1

|vj |2 = NW



 (2.2)
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and an iso-kinetic thermostat projects the force field E=(E,....,E) onto the tangent
space of SW . A Gaussian iso-kinetic thermostat is obtained by choosing the orthogonal
projection, which corresponds to Gauss’ principle of minimal constraint force for non-
holonomic constraints in mechanics. For the system (2.1), the Gaussian iso-kinetic
thermostat takes the form (from now on, we set the particle mass equal to one)

v̇j =E− E ·∑N
k=1vk∑N

k=1 |v|2
vj = E− E ·J

2W
vj , (2.3)

where J =
∑N

k=1vj , and W = 1
2

∑N
k=1 |vj |2,

An alternative to the isotropic thermostat defined in (2.3) is to modify the field
in the direction parallel to E only. To this end we define

W‖=
1
2

N∑

k=1

(E ·vk)2

|E|2 ,

and then set

v̇j ==E− (E ·J)(E ·vj)
2W‖|E|2

E. (2.4)

In Section 3 and 4, we consider kinetic equations where the particles are acceler-
ated by thermostatted force fields, and in particular, we derive the corresponding fluid
models. In particular, we will see, in Section 4, that the two different thermostats
give a qualitative difference in the kinetic equations.

3. A one-dimensional model

3.1. Definitions and motivations. The starting point in this section is the
following one-dimensional kinetic equation:

∂tf +v∂xf +∂v(Ef)=Q(f). (3.1)

Here, f =f(t,x,v) is the phase-space distribution function, x,v∈R are the one-
dimensional position and velocity, and t≥0 is the time. The force field E =E(x,t) is
supposed to be known and independent of v. However, the case where E is dependent
of v is a straightforward extension and is left to the reader. We can also allow for self
consistent force fields such as an electric field which would be a solution of Poisson’s
equation. Again, this extension is left to the reader.

To allow for explicit calculations, we take a one-dimensional BGK-operator with
constant collision frequency,

Q(f)(v)=ν (nMT (v)−f(v)). (3.2)

Here ν is the collision frequency, and MT (v) is a centered Maxwellian with variance T ,
i.e.,

MT (v)=
1√
2πT

exp
(
− v2

2T

)
. (3.3)

The functions n and T are determined by

n(t,x)=
∫

R
f(t,x,v)dv , (3.4)

n(t,x)T (t,x)=2W (t,x) =
∫

R
f(t,x,v)v2dv . (3.5)
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This implies in particular that
∫

R
fdv =n

∫

R
MT dv and

∫

R
fv2dv =n

∫

R
MT v2dv ,

or, in other words, the BGK operator (3.2) conserves mass and energy:
∫

R
Q(f)(v)dv =0

∫

R
Q(f)(v)|v|2dv =0. (3.6)

Operator (3.2) is a toy model of realistic collision operators in semiconductor or
plasma physics. In the semiconductor case, the actual collision operator is the sum of
the phonon collision operator (in the elastic limit, i.e. when one neglects the phonon
energy as compared with the typical electron energy) and of the electron-electron
collision operator [3]. The resulting operator preserves mass and energy, exactly
like (3.6), but not momentum (as the phonon collision operator does not preserve
momentum). In plasmas, a similar consideration holds for the electrons against the
neutrals and the ions. However, against the ions, the operator is more of a Fokker-
Planck type form, and is best modeled by the Fokker-Planck operators of section
4.

The left-hand side of equation (3.1) is the kinetic equation corresponding to the
equation (2.1), and because the collision term in the right hand side does not dissipate
energy, the total kinetic energy will be increasing. With a thermostatted force field
(equation (2.3)), the term ∂v ·(Ef) is replaced by ∂v ·(Ef)−TE(f), where

TE(f)=∂v

(
Ej

2W
vf

)
, (3.7)

where W is as defined above, and the current j is defined by

j =
∫

R
vf dv . (3.8)

3.2. Rescaling and the strong field approximation. We first review the
standard diffusion scaling and the obstructions to making a High-Field Ansatz.

Investigating the large-scale behavior of particle systems described by eq. (3.1)
first requires a change of time and length of diffusion type: x′= εx, t′= ε2t, E =
εE′. The new space and time variables (those bearing the primes) are macroscopic
variables, which vary of the order of unity when the old ones vary of order 1/ε or 1/ε2.
In these new variables, eq. (3.1) is recast into (omitting the primes):

∂tf
ε +

1
ε
(v∂xf ε +∂v(Ef ε))=

1
ε2

Q(f ε). (3.9)

In the limit ε→0, f ε converges to an element of the null-space of Q, i.e. a Maxwellian
of the form (3.3), whose density n(x,t) and temperature T (x,t) satisfy a system of cou-
pled drift-diffusion equations, named as the Energy-Transport model (see [44], [30]).
The determination of the model follows from the application of standard perturbation
techniques named as the Hilbert or Chapman-Enskog expansions [13], [24], [33]. A
diffusion system is obtained in the limit ε→0, because the leading order Maxwellian
has zero mean-velocity. Therefore, mean velocities are of order ε compared with the
thermal velocity, which is typical of a diffusion process.
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For the diffusion scaling to be valid, the force field E must be small of order ε (as
apparent in the change of scale to E′). In strongly non-equilibrium situations, this
assumption is not valid and the field term becomes of the same order as the collision
term (High-Field regime also denoted by drift-collision balance). In this regime, there
is no change of scale on the field to be done. Also, because the drift due to the
field becomes important, mean velocities become of order unity and a hydrodynamic
scaling rather than a diffusion scaling is in order, setting x′= εx, t′= εt. Therefore, a
High-Field scaling for (3.1) would read

∂tf
ε +v∂xf ε +

1
ε
∂v(Ef ε)=

1
ε
Q(f ε). (3.10)

In taking the limit ε→0, the first task is to identify the solutions of the homoge-
neous leading order equation

Q̃E(f) :=0 , QE(f)=Q(f)−∂v(Ef), (3.11)

where the operator Q̃E(f) is the sum of the collision operator and the field operator
and depends parametrically on the constant field E. By looking for solutions of (3.11),
we are looking for distribution functions in which the collision operator is not zero
but balances the field operator (so-called drift-collision balance). By analogy with
the High-Field scaling of the Drift-Diffusion model [12], [45], [46], [47], one would
expect that the solutions of (3.11) make an E-dependent manifold of dimension 2,
parameterized by two quantities which might be viewed as High-Field generalizations
of the chemical potential and temperature. The trouble is that no solution of (3.11)
with finite energy can be found.

Indeed, integrating (3.11) with respect to velocity against v and v2 and using
(3.2), we find

0=−νj +En, Ej =0 .

Therefore, if E 6=0 then successively j =0 and n=0. Then, since the distribution
function is a positive quantity, we eventually find f =0. This is due to the fact that
the energy increase in the system due to the field Ej is not balanced by any energy
dissipation from the elastic collision operator. Another way to see this is to look at
the homogeneous equation

∂tf = Q̃E(f), f |t=0 =f0 ,

and to compute the evolution equation for the energy W (t). We get the following
evolution equations

∂tn=0 , ∂tj +νj =En, ∂tW =Ej .

Therefore, the current j converges exponentially fast to the constant value j∞=En/ν
as t→∞ and consequently, W grows asymptotically linearly. Thus, the energy does
not converge to a finite value in time, which is the signature of the fact that the energy
increase due to the field is not balanced by the collisions.

Because of this difficulty, there is no High-Field Energy-Transport model like
there are High-Field Drift-Diffusion models. The present paper represents, to our
knowledge, the first attempt to overcome this difficulty. To do so, we introduce
a thermostat and look for stationary solutions of the thermostatted field operator
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instead of the bare field operator. By using an iso-kinetic thermostat, we correct
the energy increase of the field operator by a corresponding energy loss due to the
thermostat, in such a way that the overall operator Q̃E preserves energy (and not
only the bare collision operator Q).

We start by adding and subtracting the thermostat operator to the kinetic equa-
tion (3.1):

∂tf +v∂xf +TE(f)=−E∂vf +TE(f)+Q(f), (3.12)

where TE(f) is the thermostat operator (3.7). Then, we make a High-Field rescaling
x′= εx, t′= εt while keeping the field E of order unity. The rescaled kinetic equation
is written: ε→0:

ε

(
∂tf

ε +v∂xf ε +
1
ε
TE(f ε)

)
=−E∂vf ε +TE(f ε)+Q(f ε). (3.13)

In investigating the High-Field limit ε→0 of this equation, we shall make the assump-
tion that the thermostat operator at the right-hand side is of order 1, the thermostat
operator at while the thermostat operator at the left-hand side is of order ε.

Of course, from a strict mathematical standpoint, it is inconsistent to have the
same thermostat operator appearing at different orders. In an attempt to make this
approach more consistent, we split the parameter ε into two parameters ε and η and
transform eq. (3.13) into the following:

ε

(
∂tf

ε +v∂xf ε +
1
η
TE(f ε)

)
=−E∂vf ε +TE(f ε)+Q(f ε). (3.14)

Of course, (3.14) is only equivalent to (3.13) if η = ε. On the other hand, it is legit-
imate, from a mathematical viewpoint, to investigate the limit ε→0 in (3.14) while
keeping η fixed. Eventually, once the macroscopic system has been derived, we must
bear in mind that η = ε.

At leading order, when ε→0 with η kept fixed, f solves the homogeneous sta-
tionary equation

QE(f) :=−E∂vf +TE(f)+Q(f)=0 . (3.15)

This stationary equation involves a composite operator made of the field operator
corrected by its thermostat and the collision operator.

Obviously, the thermostat operator at the left-hand side of (3.14) contributes to
the macroscopic energy balance law by a term of order 1/η representing the work
of the electric force. Therefore, if η = ε in the resulting macroscopic equations, the
correct magnitude of this term is recovered. The only change that this approach
provides compared to the conventional one is that, in the limit ε→0, the leading order
distribution function is a solution of (3.15) rather than a mere Maxwellian. Because
(3.15) carries information about the field, we expect this solution to be closer to the
actual f ε than the Maxwellian. Of course, while this assertion is certainly true from a
mathematical viewpoint if η is kept fixed as ε→0, it is far less obvious (and certainly
hard to formalize mathematically) if η has the correct value η = ε. Nonetheless, we
have physical reasons to believe that this approach will provide an improved model
as compared with the standard approach. Additionally, when E is weak, the solution
of (3.15) is actually close to that of Q(f)=0, i.e. is close to a Maxwellian. Thus,
we expect that the solution of (3.15) is some kind of perturbation of the Maxwellian,
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which takes into account the deformation of the distribution function in the direction
of the field.

We shall see that (3.15) is actually solvable and its solution space is a two-dimen-
sional manifold.

Since the solution of (3.15) is parametrized by the field, the associated mass and
energy fluxes are also field dependent. Therefore, this approach provides a justifica-
tion (and a practical computational methodology) to the field-dependent mass and
energy fluxes that are used in practice and which are, so far, based on phenomeno-
logical considerations. In the Drift-Diffusion case, this approach (without the need of
thermostats) provides field-dependent expressions of the carrier mobilities which are
closer to the experimentally measured ones than those predicted by the Low-Field
scaling (3.9) (see [4], [22]). Similarly, here, we also expect that these expression can
lead to a better fit of the experimental values than the field-independent expressions
obtained by the Low-Field scaling (3.9).

3.3. The leading order distribution in the High-Field approximation.
We now investigate the limit ε→0 of (3.14). We suppose that f ε→f as smoothly

as needed. Then at leading order, f solves (3.15). In this section, we investigate the
solvability of (3.15). Inserting the expression (3.2) of Q, (3.15) is written:

−E∂vf +TE(f)+νnMT −νf =0 , (3.16)

or, using the expression (3.7) for TE(f) and setting j =nu:

−E∂v

((
1− nuv

2W

)
f
)

+νnMT −νf =0 . (3.17)

By homogeneity we may assume that n=
∫
Rf(v)dv =1, and transforming to non-

dimensional variables,

ṽ =v/
√

T , (3.18a)

ũ=u/
√

T , (3.18b)

f̃(ṽ)=T 1/2f(
√

T ṽ), (3.18c)

Ẽ =E/ν
√

T , (3.18d)
W̃ =W/T , (3.18e)

leads to the equation

−Ẽ∂ṽ

((
1− ũṽ

2W̃

)
f̃

)
+M1− f̃ =0. (3.19)

It is almost obvious from the construction that 2W̃ =1, and it can be checked by
multiplying (3.19) by |ṽ|2 and integrating.

In this particular case, where Q is a BGK-type kernel, equation (3.19) can be
solved almost explicitly. After dividing by Ẽ(1− ũṽ),

∂ṽ f̃− Ẽũ−1
Ẽ(1− ũṽ)

f̃ =
1

Ẽ(1− ũṽ)
M1 . (3.20)

An integrating factor for this ordinary differential equation is

1− Ẽũ

Ẽũ
log

∣∣∣∣ṽ−
1
ũ

∣∣∣∣=log

(∣∣∣∣ṽ−
1
ũ

∣∣∣∣
1

Ẽũ
−1

)
. (3.21)
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The mean velocity ũ for the stationary problem depends on Ẽ, and to find this
relation multiply by ṽ and integrate, to get

Ẽ(1− ũ2)− ũ=0 , (3.22)

or

ũ=
−1±

√
1+4Ẽ2

2Ẽ
=

√
1+4Ẽ2−1

2Ẽ
. (3.23)

(Only this solution satisfies the energy constraint.) We also see that Ẽũ=1⇔ Ẽ =
√

2,
and that

Ẽ <
√

2 ⇒ 1
Ẽũ

−1>0 and Ẽ >
√

2 ⇒ 1
Ẽũ

−1<0. (3.24)

Equation (3.20) can be solved using the integrating factor, and the result, f̃E(v),
which depends on the parameter Ẽ, can be written

f̃Ẽ(ṽ)=
1

Ẽũ

∣∣∣∣ṽ−
1
ũ

∣∣∣∣
1

Ẽũ
−1





∫ ṽ

−∞
M(w)

∣∣∣∣w−
1
ũ

∣∣∣∣
− 1

Ẽũ

dw ṽ <1/ũ

∫ ∞

ṽ

M(w)
∣∣∣∣w−

1
ũ

∣∣∣∣
− 1

Ẽũ

dw ṽ >1/ũ.

(3.25)

Finally, the normalized (i.e. with total integral unity) leading order distribution has
the following expression:

FE,T (v)=
1√
T

f̃E/ν
√

T (v/
√

T ). (3.26)

3.4. The fluid equations. From the previous section, the limit f of f ε when
ε→0 is of the form

f =nFE,T (v), (3.27)

where n>0 and T >0 are free parameters, such that
∫

R
f

(
1
|v|2

)
dv =

(
n

W = 1
2nT

)
, (3.28)

and where again, n is the particle density and W the energy density.
Eq. (3.17) is a homogeneous equation, and does not imply anything about the

dependence of f upon (x,t). Therefore, the parameters n and T are functions of (x,t).
Again, the force field E(x,t) is supposed known and a function of (x,t) in general. To
determine n and T , we return to (3.14) and use the fact that the operator QE defined
by (3.15) is mass- and energy-conservative (the latter being the consequence of the
addition of the thermostat), i.e. QE satisfies

∫

R
QE(f)

(
1
|v|2

)
dv =0 . (3.29)
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Therefore, integrating (3.14) with respect to v after multiplication by 1 and |v|2 we
get

∂tn
ε(x,t)+∂xjε(x,t) = 0 (3.30)

∂tW
ε(x,t)+∂xjε

W (x,t)+
1
2η

∫

R
v2∂v

(
jεE

2W ε
vf ε

)
dv = 0 (3.31)

where nε, W ε, jε are respectively the density, energy and particle current associated
with f ε according to (3.4), (3.5), (3.8), and

jε
W =

1
2

∫

R
f ε(x,v,t)v3dv (3.32)

is the energy current. We note that the conservation equations (3.30), (3.31) are
satisfied ε being zero or not. They express the general laws of local conservation of
mass and energy. We first note that the integral term in (3.31) (which is due to the
thermostat) can be computed directly by integration by parts:

1
2

∫

R
v2∂v

(
jεE

2W ε
vf ε

)
dv =−jεE. (3.33)

Therefore, the energy conservation equation is also written:

∂tW
ε(x,t)+∂xjε

W (x,t) =
1
η
jεE. (3.34)

The term at the right hand-side is nothing but the work of the electric force (respon-
sible for Joule heating). In the original physical model η = ε. Therefore, the Joule
heating term is of order 1/ε because the field is of this order.

Now, in the limit ε→0, we have f ε→f (formally) where f is given by (3.27).
Therefore, in taking the limit ε→0 in (3.30), (3.34), we can express the fluxes j and
jW in terms of n, T and E by using (3.27). We now perform this computation.

Note that in physical variables, equation (3.23) becomes

u√
T

=

√
1+4E2/ν2T −1

2E/
√

ν2T
, (3.35)

which means that no equation is needed for the first moment of f ;

j =nu = n
√

T

√
ν2T +4E2−

√
ν2T

2E
. (3.36)

The energy flux is given by

jW =
1
2

∫

R
f(x,v,t)v3dv =

1
2
nT 3/2

∫

R
f̃ ṽ3dṽ = nT 3/2j̃W , (3.37)

where j̃W can be obtained by multiplying equation (3.19) by ṽ3 and integrating:
∫

R
3Ẽṽ2 (1− ũṽ) f̃ dṽ+

∫

R
M1(ṽ)ṽ3dṽ−

∫

R
ṽ3f̃ dṽ =0 , (3.38)

i.e.

3Ẽ(
1
2
− ũj̃W )− j̃W =0 ,
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or

j̃W =
3Ẽ

2(1+3Ẽũ)
.

Using equation (3.23) gives 1+3Ẽũ= 1
2

(
3
√

1+4Ẽ2−1
)
, and then

j̃W =
3
4

Ẽ(3
√

1+4Ẽ2 +1)
2+9Ẽ2

,

and in physical variables

jW =
3
4
nT 3/2 E(3

√
ν2T +4E2 +

√
ν2T )

2ν2T +9E2
. (3.39)

In summary, writing jW = 1
2nTuW , where uW is the convection velocity for the energy

W = 1
2nT , the full, limiting system becomes





∂tn+∂x(nu) = 0

∂tW +∂x(WuW )− 1
η
Enu = 0

u =
√

T

√
ν2T +4E2−

√
ν2T

2E

uW =
3
2

√
T

E(3
√

ν2T +4E2 +
√

ν2T )
2ν2T +9E2

W =
1
2
nT

. (3.40)

Back to the original physical problem, we must set η = ε.

3.5. Hyperbolicity of the limiting system. We first write system (3.40)
in an abstract way.

Let U =
(

n
W

)
, f(U)=

(
nu

WuW

)
, and g(U)=

(
0

1
η Enu

)
.

Then (3.40) becomes

∂tU +∂xf(U)=g(U),

and proving the hyperbolicity of the system amounts to showing that f ′(U) has two
different real eigenvalues. Since W = 1

2nT , we may write, for a function of T only,
∂n =

(− 2W
n2

)
∂T , and ∂W =

(
2
n

)
∂T , and hence

f ′(U)=




u+n(−2W

n2
)∂T u n

(
2
n

)
∂T u

W

(
−2

W

n2

)
∂T uW uW +W

2
n

∂T uW




=




u−T∂T u 2∂T u

−T 2

2
∂T uW uW +T∂T uW


 .
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Therefore, the characteristic polynomial of f ′(U) has the following expression:

P (λ) :=det(f ′(U)−λI)
= (u−T∂T u−λ)(uW +T∂T uW −λ)+T 2∂T u∂T uW

= λ2−λ(u−T∂T u+uW +T∂T uW )
+(u−T∂T u)(uW +T∂T uW )+T 2∂T u∂T uW .

The hyperbolicity of the system (3.40) can then be established by showing that the
discriminant ∆ to P (λ) is positive.

We have by elementary manipulations:

∆=(u−T∂T u+uW +T∂T uW )2

−4[(u−T∂T u)(uW +T∂T uW )+T 2∂T u∂T uW ]
= (u−T∂T u−uW −T∂T uW )2−4T 2∂T u∂T uW

=(u−uW )2 +(T∂T (u+uW ))2−2(u−uW )(T∂T (u+uW ))
−4T 2∂T u∂T uW

=(u−uW )2 +(T∂T (u−uW ))2−2(u−uW )(T∂T (u+uW )).

Now, in this last equality, the first two terms are obviously positive. We are going to
show that the last term is positive by showing that u and uW are increasing functions
of T on the one hand and that u<uW on the other hand.

For this purpose, we introduce the short-hand notations z =ν
√

T/(2E). We shall
assume that E >0; the case E <0 can be easily deduced by a change of variables.
Then:

u=
2E

ν
z(

√
z2 +1−z), uW =

6E

ν

z(3
√

z2 +1+z)
8z2 +9

. (3.41)

Now, it is a matter of elementary algebra to show that

u′(z)=
2E

ν

(
√

z2 +1−z)2√
z2 +1

>0,

u′W (z)=
6E

ν

30z2 +27+18z
√

z2 +1
(8z2 +9)2

√
z2 +1

>0,

showing that u and uW are increasing functions of T . Now, again, elementary algebra
gives:

uW

u
=1+

4z2 +12z
√

z2 +1
(8z2 +9)

>1,

showing that uW >u. Therefore, ∆>0 and the system is strictly hyperbolic.
The strict hyperbolicity of the system guarantees its well-posedness, at least when

the electric field E is given. If E is coupled to n through Poisson’s equation, the well-
posedness of the system is an open question. The complexity of the dependence of u
and uW upon T makes it difficult to explore further properties of the system, such
as showing that the two fields are genuinely nonlinear, but we conjecture that this is
actually the case.
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3.6. Remarkable limit cases and monotonicity with respect to E.
We investigate the two remarkable limit cases z→∞ (Low-Field case) and z→0

(High-Field case).

(i) Low-Field case z→∞: then

u∼ E

ν
, uW ∼ 3E

ν
.

We recover mobility laws, with a Low-Field mobility equal to ν−1 as it should be
and the mobility of the energy is three times the mobility for the density. We notice
here that the energy velocity is larger than the particle velocity, which confirms our
general result just proven above.

(ii) High-Field case z→0: then

u∼
√

T , uW ∼
√

T .

Here, the particle and energy velocities are equal and both are close to
√

T . We
emphasize the fact that

√
T should not be viewed as a thermal velocity because the

energy satisfies W =nT/2 which shows that
√

T is the magnitude of the total velocity
rather than magnitude of the thermal velocity. Indeed, in the High-Field case, the
particle distribution function concentrates onto a delta function at velocity “

√
T”,

which explains why both the particle and energy velocities are equal to. If the next
order correction term is retained, for large but not infinite field values, we find

u∼
√

T − νT

2E
, uW ∼

√
T +

νT

6E
.

Again, we see that as E−1 increases, the energy velocity is larger than
√

T while the
particle velocity is smaller, and in particular we again find that u<uW .

Another interesting consideration is to look for the monotonicity with respect to
E. For this purpose, we introduce y = 2E

ν
√

T
= 1

z and write

u=
√

T
1
y
(
√

1+y2−1)=
√

T
1√

1
y2 +1+ 1

y

, (3.42)

uW =3
√

Ty
3
√

1+y2 +1
4+9y2

=3
√

T (3
√

1+y2 +1)
1

4
y2 +9

. (3.43)

Both functions at the right-hand sides of (3.42) and (3.43) are increasing w.r.t.y,
showing that both u and uW are monotonically increasing functions of the electric
field. The limit cases E small and E large have already been given above.

4. A d-dimensional model: the Fokker-Planck equation

4.1. Setting of the model. In this section we consider equation (3.14) in
three dimensions and with the Fokker-Planck collision operator:

Q(f)=Qfp(f)=ν∇v ·(vf +T∇vf) ,
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where the temperature T is related to f through

dnT =2W =
∫

Rd

f |v|2dv , n=
∫

Rd

f dv . (4.1)

The collision frequency ν is supposed constant. In this form, it conserves mass and
energy, i.e.

∫

Rd

Qfp(f)(v)dv =0
∫

Rd

Qfp(f)(v)|v|2dv =0, (4.2)

but not momentum, i.e.
∫

Qfp(f)(v)vdv 6=0.
There is obviously no unique way in which a thermostat can be introduced, and

here we consider first the natural, isotropic thermostat, corresponding to (3.7),

TE,iso =∇v ·
(

E ·j
2W

vf

)
,

and a thermostat that acts only parallel to the (constant) field E,

TE,‖=∇v ·
(

E ·j
2W‖

(E ·v)E
|E|2 f

)
,

where

W =
1
2

∫

Rd

|v|2f dv and W‖=
1
2

∫

Rd

|E ·v|2
|E|2 f dv ,

and where

j =nu =
∫

Rd

vf dv . (4.3)

It is easy to check that both TE,iso and TE,‖ accomplish energy conservation:

∫

Rd

(
∇v ·(Ef)−TE,iso(f)

)
|v|2dv =

∫

Rd

(∇v ·(Ef)−TE,‖(f)
) |v|2dv =0 .

In this section, we are interested in finding formally the asymptotics of the kinetic
equation

ε

(
∂tf

ε +v ·∇xf ε +
1
ε
TE(f ε)

)
=−E ·∇vf ε +TE(f ε)+Qfp(f ε) (4.4)

with f ε =f ε(x,v,t), x∈Rd, v∈Rd and t>0, where TE(f) is one of TE,iso and TE,‖
and considering that the thermostat operator at the left-hand side is of order ε while
that at the right-hand side is of order 1.

4.2. The leading order distribution in the High-Field approximation:
general considerations. To derive fluid equations we first need to solve the
zeroth order equations

∇v ·(Ef)−TE(f)=ν∇v ·(vf +T∇vf) ,
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where TE(f) is one of TE,iso and TE,‖. In both cases, one can immediately integrate
once to obtain

Ef− E ·j
2W

vf =νvf +νT∇vf and (4.5a)

Ef− E ·j
2W‖

(E ·v)E
|E|2 f =νvf +νT∇vf (4.5b)

respectively. The constant of integration must be zero because f is supposed to be
in L1. These equations are homogeneous in f , and so there is no loss of generality at
this point in assuming that n=

∫
Rd f dv =1. It is convenient to rewrite the equations

in non-dimensional variables, using

ṽ =v/
√

T ũ=u/
√

T j̃ = j/
√

T

f̃(ṽ)=T d/2f(
√

T ṽ) Ẽ =E/ν
√

T

W̃ =W/T W̃‖=W‖/T (4.6)

and because n=1, j̃ = ũ. In these variables, the equations (4.5) become

Ẽf̃− Ẽ · ũ
2W̃

ṽf̃ = ṽf̃ +∇ṽ f̃ and (4.7a)

Ẽf̃− Ẽ · ũ
2W̃‖

(Ẽ · ṽ)Ẽ
|Ẽ|2 f̃ = ṽf̃ +∇ṽ f̃ . (4.7b)

Some conclusions may be drawn directly from these equations.
First of all, by integrating over Rd one may see that for both equations, the mean

velocity ũ is parallel to the field Ẽ, and of course the same holds in the dimensional
variables. This is an effect of the strong field approximation, and will result in fluid
equations that are essentially one-dimensional in x. The components of x that are
orthogonal to E are only parameters, and we will find equations that are very similar
to the genuinely one-dimensional case that was considered in Section 3.

Next, in both cases the left-hand side vanishes if the equations are multiplied by
ṽ and integrated. This implies that

0=
∫

Rd

|ṽ|2f̃ dṽ+
∫

Rd

ṽ ·∇ṽ f̃ dṽ = 2W̃ −d

∫

Rd

f̃ dṽ = 2W̃ −d,

just as one should expect from the scaling. Below, 2W̃ will hence be replaced by d.
Next we multiply by (Ẽ · ṽ)Ẽ, and integrate. This gives for equation (4.7b) that

0=
∫

Rd

(Ẽ · ṽ)2f̃ dṽ+
∫

Rd

(Ẽ · ṽ)Ẽ ·∇ṽ f̃ dṽ = 2|Ẽ|2W̃‖−|Ẽ|2
∫

Rd

f̃ dṽ ,

which implies that 2W̃‖=1. This can be interpreted as a result on the equipartition
of energy for a solution to (4.7b). For symmetry reasons, we must have

∫
Rd ṽ2

kf̃ dṽ =1
for any vk orthogonal to E, and hence, for any vector A∈Rd,

∫

Rd

(A · ṽ)2f̃ dṽ = |A|2 .

On the other hand, multiplying (4.7a) with (Ẽ · ṽ)Ẽ, and integrating gives

|Ẽ|2Ẽ · ũ− Ẽ · ũ
d

2|Ẽ|2W̃‖=2|Ẽ|2W̃‖−|Ẽ|2 ,
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because the right-hand side is the same for the two equations. Then, for the isotropic
thermostat,

2W̃‖=
Ẽ · ũ+1
Ẽ·ũ
d +1

=
dẼ · ũ+d

Ẽ · ũ+d
>1,

and for a strong field E almost all kinetic energy lies in velocity components parallel
to Ẽ.

4.3. The leading order distribution for an isotropic thermostat. First
we rewrite (4.7a) as

∇ṽ f̃ = Ẽf−
(

1+
Ẽ · ũ

d

)
ṽf̃ . (4.8)

Then, multiplication with Ẽ and integration yields

0= |Ẽ|2−
(

1+
Ẽ · ũ

d

)
Ẽ · ũ, (4.9)

and with

β =1+
Ẽ · ũ

d
, (4.10)

this is the same as

β2−β− |Ẽ|
2

d
=0 , (4.11)

or

β =
1+

√
1+4|Ẽ|2/d

2
. (4.12)

From (4.8) we now find

log f̃ =C + Ẽṽ− β

2
|ṽ|2 = C− β

2

∣∣∣∣∣ṽ−
Ẽ

β

∣∣∣∣∣

2

, (4.13)

i.e. the leading order distribution function

f̃(ṽ)=
(

β

2π

)d/2

exp


−β

2

∣∣∣∣∣ṽ−
Ẽ

β

∣∣∣∣∣

2



is a Maxwellian with temperature 1/β, and displaced along Ẽ. Equation (4.12) shows
that 1/β→0 when Ẽ→∞; for a very strong field, the Maxwellian is concentrated
very near the point v =dẼ/|Ẽ|.

In the dimensional variables, the normalized leading order distribution is a
Maxwellian which has the following expression:

F iso
E,T =

(
β

2π

)d/2

exp

(
− β

2T

∣∣∣∣v−
E

νβ

∣∣∣∣
2
)

, (4.14)

where

β =

√
dν2T +

√
dν2T +4|E|2

2
√

dν2T
.
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4.4. The fluid equations for the isotropic thermostat. The first order
fluid equations are obtained by a procedure similar to that exposited in section 3 for
the one-dimensional case. The procedure will not be repeated here and only the result
is given. The fluid equations are written:

∂tn(x,t)+∇x ·j(x,t) = 0, (4.15a)

∂tW (x,t)+∇x ·jW (x,t) =
1
η
E ·j dv , (4.15b)

where we recall that the energy flux jW is given by

jW =
1
2

∫

Rd

f(x,v,t)|v|2vdv . (4.16)

The mass and energy fluxes j and jW are computed by inserting expression (4.14) for
the leading order distribution nF iso

E,T into the integral definitions (4.3) and (4.16).
First, the mass flux is given by

j =nu=nu‖
E

|E| ,

and u‖ can be obtained from ũ‖=d(β−1)/|Ẽ| (see equation (4.10)), or directly from
equation (4.14)

u=
E

νβ
=

2
√

dν2T√
dν2T +

√
dν2T +4|E|2

E

ν

=
√

dT

√
dν2T +4|E|2−

√
dν2T

2|E|2 E.

Hence the component of u parallel to E is essentially the same as in the one-
dimensional case considered in Section 3.

The expression of the energy flux jW can be found either from the Maxwellian
(4.14), or directly from the kinetic equation (4.5). Still using the notation f for nF iso

E,T

and f̃ for its dimensionless version, we have

jW =nT 3/2j̃W = W
2
√

T

d
j̃W , j̃W =

1
2

∫

Rd

f̃ |ṽ|2ṽ dṽ.

Multiplying (4.8) by |ṽ|2 and integrating gives

−ũ=W̃ Ẽ−βj̃W ,

and therefore

2j̃W =
dẼ +2ũ

β
=

dβ+2
β2

Ẽ . (4.17)

Using (4.11), we finally obtain

2j̃W =
dβ+2

β+ |Ẽ|2/d
Ẽ .
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This can now be expressed as a function of Ẽ:

2j̃W =
d
√

1+4|Ẽ|2/d+d+4
√

1+4|Ẽ|2/d+1+2|Ẽ|2/d
Ẽ

=
d
√

dν2T +4|E|2 +(d+4)
√

dν2T√
dν2T +4|E|2 +(1+2|E|2/(dν2T ))

√
dν2T

E

ν
√

T
.

As before, the last term in (4.15b) is equal to −nEu/ε, and so we finally obtain
the following system:





∂tn+∂x‖(nu‖) = 0

∂tW +∂x‖(WuW‖)−
1
ε
Enu = 0

u‖ =
√

dT

√
dν2T +4|E|2−

√
dν2T

2|E|
uW‖ =

d
√

dν2T +4|E|2 +(d+4)
√

dν2T

d
√

dν2T +4|E|2 +(d+2|E|2/(ν2T ))
√

dν2T

|E|
ν

W = n
dT

2

. (4.18)

Here x‖ denotes the component of x that is parallel to E and ∂x‖ the directional
derivative in this direction; the other components act only as parameters in this
problem. Back to the original physical problem, we must set η = ε in this system.

Now, the expression of the energy velocity uW‖ can be further simplified. Intro-
ducing the auxiliary variable z = ν

√
dT

2E (we assume that E >0 to fix the ideas), we can
write

u‖=
2E

ν
z(

√
z2 +1−z), (4.19)

uW‖=
2E

νd

z(d
√

z2 +1+(d+4)z)
2z
√

z2 +1+2z2 +1
. (4.20)

We first note that, upon the multiplication of z by
√

d, the expression of u‖ is the
same as in the one-dimensional case. We immediately deduce that u‖ is an increasing
function of z and thus of T . Then, by multiplying by the conjugate quantity of the
denominator of (4.20), we find the simpler expression

uW‖=
2E

νd
z((−d+4)z+8z3 +d

√
z2 +1−8z2

√
z2 +1). (4.21)

Returning to physical variables,this is:

uW‖=

√
T

d

1
(2E)3

[
(−d+4)(2E)2ν

√
dT +8(ν

√
dT )3+

+d(2E)2
√

ν2dT +4E2−8ν2dT
√

ν2dT +4E2
]
. (4.22)

We use these expressions to show the hyperbolicity of system (4.18) below.
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4.5. Hyperbolicity of the fluid model for the isotropic thermostat.
Like in the one-dimensional case (see section 3.5), we show that both u‖ and uW‖ are
nondecreasing functions of T (or equivalently, of z) and that uW‖>u‖. That u‖ is
nondecreasing with z follows directly from the expression (4.19), which is identical to
the one-dimensional expression. We now show that uW‖ is nondecreasing with respect
to z. We compute:

u′W‖(z)=
2E

νd

1√
z2 +1

U(z),

U(z)=32z3
√

z2 +1+2(−d+4)z
√

z2 +1−32z4 +(2d−24)z2 +d.

We note that U(0)=d>0. We now show that U(z) does not vanish for z≥0, which
shows that U(z)≥0 for z≥0 and consequently that uW‖ is nondecreasing. Suppose
that U(z)=0. Then

32z3
√

z2 +1+2(−d+4)z
√

z2 +1=32z4 +(24−2d)z2−d. (4.23)

Squaring each side of this equation leads, after some algebra, to the unique root

z =
d

4
√

d+4
.

Inserting this value into (4.23), we realize that this is a spurious root, introduced by
the squaring procedure. Indeed, for this value of z, the left-hand side of (4.23) equals
2d(d+8)
(d+4)2 , while the right-hand side is equal to the negative of this value. Therefore,
there is no positive root z to the equation U(z)=0 which concludes the proof that
uW‖ is non decreasing with respect to z and T .

Now, using (4.19), (4.20), we can write

uW‖=u‖+
2E

νd
4z2[1−2z(

√
z2 +1−z)].

Because
√

z2 +1−z =1/(
√

z2 +1+z)<1/(2z), the bracket at the right-hand side is
positive and thus uW‖>u‖. This concludes the proof of the hyperbolicity of the fluid
model for the isotropic thermostat.

4.6. Isotropic thermostat: remarkable limit cases and monotonicity
with respect to E. Like in the one dimensional case, we investigate the two limit
cases: z→∞ (weak field) and z→0 (strong field).
(i) Low-Field case z→∞: then

u‖∼
E

ν
, uW‖∼

d+2
d

E

ν
.

The Low-Field mobility for the current is the same as in the one-dimensional case
(see section section 3.6), and does not depend on the dimension. By contrast, the
Low-Field mobility for the energy current depends on the dimension. We note that
it is larger than the mobility for the current, which is consistent with the result
just proven, and that, for d=1, we recover the value which was obtained in section 3.6.

(ii) High-Field case z→0: then

u∼
√

dT , uW ∼
√

dT .
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Here too, the particle and energy velocities are equal and both are close to
√

dT . If
the next order correction term is retained, for large but not infinite field values, we
find

u∼
√

dT − νdT

2E
, uW ∼

√
dT −(1− 4

d
)
νdT

2E
.

Again we find that u<uW . For dimensions d≤3, as E−1 increases, the energy velocity
is larger than

√
dT while the particle velocity is smaller.

In order to investigate the monotonicity with respect to E, we introduce the new
variable y = 1

z = 2E
ν
√

T
. In this new variable, we have

u‖=
√

dT
1
y
(
√

1+y2−1), (4.24)

uW‖=

√
dT

d

1
y3

[(4−d)y2 +8+dy2
√

1+y2−8
√

1+y2]. (4.25)

The expression of u‖ as a function of y is the same as for the one-dimensional model
(see section 3.6) and is therefore a monotonically increasing function of y and thus of
E. At variance, the expression of uW‖ is different and it is a surprising fact here that
uW‖ is not monotonically increasing with respect to y in the physically relevant cases
d≤3. By contrast, it is a monotonically increasing function of y in the non-physical
cases d≥4.

To prove this result, we first rewrite (4.25) as

uW‖=
dy√

y2 +1+1
+

4y

(
√

y2 +1+1)2
, (4.26)

and then compute the derivative, which after some simplification becomes

u′W‖(y)=
(2d+4)(

√
y2 +1+1)−(4−d)y2

(
√

y2 +1+1)3
√

y2 +1
. (4.27)

When d≥4 this obviously is strictly positive for all y, which implies that in this
case uW‖ is strictly increasing as a function of y2. For d<4, we solve the equation
u′W‖(y)=0, i.e.

(2d+4)(
√

y2 +1+1)=(4−d)y2 . (4.28)

It is easy to see that this equation has only one positive solution,

y2
max =

24(d+2)
(4−d)2

. (4.29)

Now, the maximal value umax
W‖ =uW‖(ymax) can be easily computed and leads to

umax
W‖ =

√
dT

√
2

3
√

3
(d+2)3/2

d
. (4.30)

The limit value of uW‖ when y→∞ is
√

dT . umax
W‖ exceeds that value by the factor

√
2

3
√

3

(d+2)3/2

d . This factor can be computed and is respectively equal to
√

2≈1.414,
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4
√

2
3
√

3
≈1.089 and 5

√
10

9
√

3
≈1.014 in the cases d=1,2 and 3. The corresponding values of

ymax are 2
√

2, 2
√

6 and 2
√

30 respectively.
Therefore, the isotropic thermostat used in conjunction with the Fokker-Planck

operator leads to a remarkable negative differential velocity for the energy velocity.
Usually, we find negative differential velocities in connection with collision mechanisms
which have energy thresholds (such as intervalley scattering in the case of Gallium
Arsenide, see e.g. [17]). Here, we find another source of negative differential velocity.
Additionally, this phenomenon appears in the energy velocity but not in the particle
velocity.

4.7. The leading order distribution for the parallel thermostat. In
order to find the leading order distribution in the case of the parallel thermostat, we
need to solve (4.7b). Similar computations as above lead to

f̃(ṽ)=

√
β‖

(2π)d/2
exp


−β‖

2

(
ṽ‖−

|Ẽ|
β‖

)2

− |ṽ⊥|
2

2


 , (4.31)

with

β‖=1+ Ẽ · ũ=
1+

√
1+4|Ẽ|2
2

. (4.32)

We note that β‖ satisfies the equation

β‖
2−β‖−|Ẽ|2 =0 , (4.33)

which is exactly the equation for β in the previous calculation, if one sets d=1.
It is then easy to check that

∫

Rd

ṽ‖f̃(ṽ)dṽ =
|Ẽ|
β‖

= ũ‖ , (4.34)

∫

Rd

ṽ2
‖ f̃(ṽ)dṽ =

β‖+ |Ẽ|2
β‖

2 = 1 , (4.35)

∫

Rd

|ṽ⊥|2f̃(ṽ)dṽ =d−1. (4.36)

Expressed in the original variables, we find that the leading order distribution function
is nF

‖
E,T with

F
‖
E,T (v)=

√
β‖

(2πT )d/2
exp

(
− β‖

2T

(
v‖−u‖

)2− |v⊥|
2

2T

)
. (4.37)

To conclude, the 0-th order solution is a Gaussian, not a Maxwellian, which sat-
isfies the property of equipartition of energy. This is achieved by a lower temperature
in the direction parallel to the field.

4.8. The fluid equations for the parallel thermostat; hyperbolicity and
limit cases. The strong field limit implies that both the mass flux and the energy
flux are parallel to the field, and so this system is a 2×2 system, parameterized by
the x-components orthogonal to E. The first order fluid equations are obtained by
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closing (4.15a), (4.15b) using the Gaussian function from above. After some easy
computations, we find:





∂tn+∂x‖(nu‖) = 0

∂tW +∂x‖(WuW‖)−
1
ε
Enu = 0

u‖ =
√

ν2T 2 +4TE2−νT

2|E|
uW‖ =

d
√

ν2T +4|E|2 +(d+4)
√

ν2T

d
√

ν2T +4|E|2 +d(1+2|E|2/(ν2T ))
√

ν2T

|E|
ν

W = n
dT

2

(4.38)

with η = ε to match the physical setting.
It is easily shown that the change of variable z = ν

√
T

2E leads to the same formulas
(4.19) and (4.20) for u‖ and uW ‖ as in the isotropic thermostat case. Therefore,
formula (4.21) also holds true, and going back to physical variables, leads to

uW‖=

√
T

d

1
(2E)3

[
(−d+4)(2E)2ν

√
T +8(ν

√
T )3+

+d(2E)2
√

ν2T +4E2−8ν2T
√

ν2T +4E2
]
. (4.39)

As an immediate consequence of the analysis of section 4.5, we find that the model
(4.38) is hyperbolic. We also have the following limit cases:
(i) Low-Field case z→∞: then

u‖∼
E

ν
, uW‖∼

d+2
d

E

ν
.

(ii) High-Field case z→0: then

u∼
√

T − νT

2E
, uW ∼

√
T −(1− 4

d
)
νT

2E
.

and the same conclusions can be drawn as in the isotropic thermostat case.
We note that the High-Field velocity is

√
T instead of

√
dT for the isotropic ther-

mostat. This can be explained by the fact that, in the limit E→∞, the equilibrium
distribution function for the parallel thermostat nF

‖
E,T has still an extension in the

direction v⊥ (in other words, is a measure supported by the hyperplane v‖=
√

T ),
while the equilibrium distribution from two of the isotropic thermostat nF iso

E,T con-
centrates onto a delta distribution at the point

√
dT . Therefore, the parallel velocity

is larger in the case of the isotropic thermostat than for the parallel thermostat. On
the other hand, the Low-Field mobilities are the same.

As for the monotonicity with respect to the field, upon introducing the new
variable y = 1

z = 2E
ν
√

T
, u‖ and uW‖ have the same expressions (4.24), (4.25) as in

the case of the isotropic thermostat. Therefore, the same conclusions can be drawn,
i.e. u‖ is a monotonically increasing function of the field but uW‖ is first increasing
towards a maximum and then decreases to its limit value

√
T for y→∞. Therefore,

also here, uW‖ presents a negative differential velocity feature at High-Field.
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4.9. The High-Field limit. In this section, we investigate the High-Field
limit. The fact that the particle and energy velocities saturate in this limit can be
viewed as non-physical. Indeed, one could think that these velocities should become
extremely large as the field becomes large. However, the fact that they saturate to
the thermal velocity is paradoxically exactly what they should do. We try to explain
this fact below.

We suppose that u‖ and uW‖ are replaced by their High-Field limit u∞‖ =u∞W‖=√
dT in the case of the isotropic thermostat and u∞‖ =u∞W‖=

√
T in the case of the

parallel thermostat.
For the isotropic thermostat, we find the following system (restricted to one di-

mension for the sake of convenience):





∂tn+∂x(nu∞) = 0

∂tW +∂x(Wu∞)− 1
η
Enu∞ = 0,

u∞=
√

dTSign(E).

(4.40)

Here we take into account that E can be positive or negative and we have to make
sure that u∞ points in the same direction as E.

The corresponding High-Field drift-diffusion system (i.e. when only the conti-
nuity equation is retained) coupled with the Poisson equation for the field has been
studied in [32] where existence of solutions is proved by a regularization procedure
and numerical simulations are given. The study of the present more general system
is in progress.

Here, we focus on the very simple case where E has a constant sign. Then, we can
recast the second equation (4.40) into an equation for the velocity u∞ itself which we
simply denote by u. We indeed find that the system is equivalent to the Pressureless
Gas Dynamics equations with a force field:





∂tn+∂x(nu) = 0,

∂tu+u∂xu =
1
η
E .

(4.41)

This system is actually the system of equations that ballistic particles would follow.
Indeed, taking the collisionless Vlasov equation (i.e. (4.4) without the collision and
thermostat terms) and looking for ballistic solutions of the form of delta measure
solutions f(x,v,t)=n(x,t)δ(v−u(x,t)) would exactly lead to system (4.41) for n and
u. Therefore, the high field velocities u∞‖ =u∞W‖=

√
dT have exactly the right value

which allows us to recover a ballistic particle, which is how they should behave. We
refer to [8], [9], [31] for references on Pressureless Gas Dynamics.

Note that in the case of the parallel thermostat, because the limiting velocity is√
T instead of

√
dT , the corresponding velocity equation becomes

∂tu+u∂xu =
1
dη

E . (4.42)

This equation corresponds to a ballistic particle in a field divided by d and is not
the correct ballistic limit. This is an argument for preferring the isotropic thermostat
rather than the parallel one.
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5. Conclusion and future developments
In this paper, we have proposed a novel approach for deriving mass and energy

balance laws for dissipative systems subject to a large driving force. This approach
consists in using a thermostat which makes the composite operator constructed on
the field and collision operators globally mass and energy-conservative. We have
restricted ourselves to the leading order in the Hilbert expansion. The resulting
models are hyperbolic systems of balance laws for the local density and energy. This
approach has been carried out in the framework of two simplified collision operators:
a one-dimensional BGK operator and a multi-dimensional Fokker-Planck operator.

Clearly, in order to be able to produce physically realistic models, this approach
should be continued to include second order diffusive corrections as would be obtained
by a Chapman-Enskog procedure. Without such diffusive corrections, the model does
not retain enough physical detail. After these diffusive corrections are introduced, the
model will be ready for numerical simulations. This program will be carried out in
future work.

Another path towards more physically realistic models is the inclusion of more
realistic collision operators, such as impurity and phonon scattering in the case of
semiconductors, and scattering against ions and neutral molecules in the case of plas-
mas. If a complex collision operator is used, the simple algebraic manipulations
which allowed us to get analytical expressions of the High-Field equilibrium distribu-
tion functions and of the velocity-field or temperature relationships would no lower
be possible. One should resort to more analytic techniques to prove the existence of
such equilibria, and to numerical simulations to compute the velocity functions. This
is another track for current research.

Finally, the mathematical analysis of the resulting systems (in particular when
the field is coupled with the particles through Maxwell’s or Poisson’s equations) is
another open question. The special case of the High-Field limit as expounded in
section 4.9 is of particular interest as it provides a very simple model with potentially
novel mathematical features.
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