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SELF-SIMILAR SOLUTIONS OF THE NON-STRICTLY
HYPERBOLIC WHITHAM EQUATIONS∗
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Abstract. We study the Whitham equations for the fifth order KdV equation. The equations
are neither strictly hyperbolic nor genuinely nonlinear. We are interested in the solution of the
Whitham equations when the initial values are given by a step function. We classify the step-like
initial data into eight different types. We construct self-similar solutions for each type.
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1. Introduction
It is known that the solution of the KdV equation

ut +6uux +ε2uxxx =0 (1.1)

has a weak limit as ε→0 while the initial values

u(x,0;ε)=u0(x)

are fixed.
The weak limit is described by hyperbolic equations. It satisfies the Burgers

equation

ut +(3u2)x =0 (1.2)

until its solution develops shocks. Immediately after, the weak limit is governed by
the Whitham equations [4, 5, 12, 13]

uit +λi(u1,u2,u3)uix =0, i=1,2,3, (1.3)

where the λi’s are given by formulae (2.12). Equations (1.3) form a 3×3 system of
hyperbolic equations. After the breaking of the solution of (1.3), the weak limit is
described by a 5×5 system of hyperbolic equations similar to (1.3). Similarly, after
the solution of the 5×5 system breaks down, the weak limit is characterized by a
7×7 system of hyperbolic equations. In other words, for general initial data u0(x),
one must construct the weak limit by patching together solutions of (1.2), (1.3), 5×5,
7×7, etc systems in the x-t plane.

The KdV equation (1.1) is just the first member of an infinite sequence of equa-
tions, the second of which is the so-called fifth order KdV equation

ut +30u2ux +20ε2uxuxx +10ε2uuxxx +ε4uxxxxx =0. (1.4)
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The solution of the fifth order KdV equation (1.4) also has a weak limit as ε→0. As
in the KdV case, this weak limit satisfies the Burgers type equation

ut +(10u3)x =0 (1.5)

until the solution of (1.5) forms a shock. After the breaking of the solution of (1.5),
the limit is governed by equations similar to (1.3), namely,

uit +µi(u1,u2,u3)uix =0, i=1,2,3, (1.6)

where µi’s are given in (2.18). They will also be called the Whitham equations. As
in the KdV case, after the solution of (1.6) breaks down, the weak limit is described
by a 5×5 system of hyperbolic equations.

In this paper, we are interested in the solution of the Whitham equation (1.6) for
the fifth order KdV (1.4) with a step-like initial function

u0(x)=
{

a, x<0,
b, x>0.

a 6= b. (1.7)

For such an initial function with a>0, b<a or a<0, b>a, the solution of the Burgers
type equation (1.5) has already developed a shock at the initial time, t=0. Hence,
immediately after t=0, the Whitham equations (1.6) kick in. Solutions of (1.6) occupy
some domains of the space-time while solutions of (1.5) occupy other domains. These
solutions are matched on the boundaries of the domains.

Equations (1.2) and equations (1.5) are prototypes in the theory of hyperbolic
conservation laws [6]. Their solutions will generally develop shocks in finite times.
The solutions can be extended beyond the singularities as the entropy solutions. The
entropy solution of the Burgers equation (1.2) with initial function (1.7) is simple: it
is either a rarefaction wave or a single shock wave. The Burgers type equation (1.5) is
more complicated, as its flux function changes convexity at u=0. Its entropy solution
with step-like initial data (1.7) can be a rarefaction wave, a single shock wave or a
combination of both [6].

Solutions of equations (1.2) or equations (1.5), in the theory of the zero dispersion
limit, are not extended as weak or entropy solutions after the formation of singular-
ities. Instead, they are extended to match the Whitham solutions of (1.3) or (1.6).
For initial data (1.7), the resulting solutions of the Whitham equations (1.6) will be
seen to be more complex than those of (1.3) in the KdV case. Indeed, there are eight
types of different solutions in the former case while there is only one type of solution
in the latter case.

The KdV case with the step-like initial data (1.7) was first studied by Gurevich
and Pitaevskii [2]. The Burgers solution of (1.2) develops a shock only for a>b.
Moreover, because of the Galilean invariance of the KdV equation, the corresponding
initial function is equivalent to the case a=1, b=0. In this case, Gurevich and
Pitaevskii found that it was enough to use the Burgers solution of (1.2) and the
Whitham solution of (1.3) to cover the whole x-t plane, without going to the 5×5 or
7×7 system. Namely, the space-time is divided into three parts

(1)
x

t
<−6, (2) −6<

x

t
<4, (3)

x

t
>4.

The solution of (1.2) occupies the first and third parts,

u(x,t)≡1 when x
t <−6, u(x,t)≡0 when x

t >4. (1.8)
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The Whitham solution of (1.3) lives in the second part,

u1(x,t)≡1,
x

t
=λ2(1,u2,0), u3(x,t)≡0, (1.9)

when −6<x/t<4.
Whether the second equation of (1.9) can be inverted to give u2 as a function of

the self-similarity variable x/t hinges on whether

∂λ2

∂u2
(1,u2,0) 6=0.

Indeed, Levermore [7] has proved the genuine nonlinearity of the Whitham equations
(1.3), i.e.,

∂λi

∂ui
(u1,u2,u3)>0, i=1,2,3, (1.10)

for u1 >u2 >u3.
For the fifth order KdV (1.4), equations (1.6), in general, are not genuinely non-

linear, i.e., a property like (1.10) is not available. Hence, solutions like (1.8) and (1.9)
need to be modified.

Our construction of solutions of the Whitham equation (1.6) makes use of the
non-strict hyperbolicity of the equations. For KdV, it is known that the Whitham
equations (1.3) are strictly hyperbolic, namely:

λ1(u1,u2,u3)>λ2(u1,u2,u3)>λ3(u1,u2,u3)

for u1 >u2 >u3. For the fifth order KdV (1.4), different eigenspeeds of (1.6),
µi(u1,u2,u3)’s, may coalesce in the region u1 >u2 >u3.

For the fifth order KdV with step-like initial function (1.7) where a=1 and b=0,
the space time is divided into four regions (see Figure 1.1)

(1)
x

t
<−15, (2) −15<

x

t
<α, (3) α<

x

t
<16, (4)

x

t
>16,

where α is determined by (3.15). In the first and fourth regions, the solution of (1.5)
governs the evolution:

u(x,t)≡1 where x/t<−15 and u(x,t)≡0 where x/t>16 .

The Whitham solution of (1.6) lives in the second and third regions; namely:

u1(x,t)≡1,
x

t
=µ2(1,u2,u3),

x

t
=µ3(1,u2,u3), (1.11)

when −15<x/t<α, and

u1(x,t)≡1,
x

t
=µ2(1,u2,0), u3(x,t)≡0,

when α<x/t<16.
Equations (1.11) yield

µ2(1,u2,u3)=µ3(1,u2,u3)
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Fig. 1.1. Self-Similar solution of the Whitham equations for a=1 and b=0 of type II.

on a curve in the region 0<u3 <u2 <1. This implies the non-strict hyperbolicity of
the Whitham equations (1.6) for the fifth order KdV.

The organization of the paper is as follows. In Section 2, we will study the
eigenspeeds, µi(u1,u2,u3)’s, of the Whitham equations (1.6). In Section 3, we will
construct the self-similar solution of the Whitham equations for the initial function
(1.7) with a=1, b=0. In Section 4, we will use the self-similar solution of Section 3
to construct the minimizer of a variational problem for the zero dispersion limit of the
fifth order KdV. In Section 5, we will consider all the other possible step-like initial
data (1.7). We find that there are eight different types of initial data. We construct
self-similar solutions for each type.

2. The Whitham equations
In this section we define the eigenspeeds of the Whitham equations for both the

KdV (1.1) and fifth order KdV (1.4). We first introduce the polynomials of ξ for
n=0,1,2,.. . [1, 3, 10]:

Pn(ξ,u1,u2,u3)= ξn+1 +an,1ξ
n + ···+an,n+1, (2.1)

where the coefficients, an,1,an,2,.. .,an,n+1 are uniquely determined by the two condi-
tions

Pn(ξ,u1,u2,u3)√
(ξ−u1)(ξ−u2)(ξ−u3)

= ξn−1/2 +O(ξ−3/2) for large |ξ| (2.2)

and
∫ u2

u3

Pn(ξ,u1,u2,u3)√
(ξ−u1)(ξ−u2)(ξ−u3)

dξ =0. (2.3)

Here the sign of the square root is given by
√

(ξ−u1)(ξ−u2)(ξ−u3)>0 for ξ >u1

and the branch cuts are along (−∞,u3) and (u2,u1).
In particular,

P0(ξ,u1,u2,u3)= ξ+a0,1, P1(ξ,u1,u2,u3)= ξ2− 1
2
(u1 +u2 +u3)ξ+a1,2, (2.4)
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where

a0,1 =(u1−u3)
E(s)
K(s)

−u1,

a1,2 =
1
3
(u1u2 +u1u3 +u2u3)+

1
6
(u1 +u2 +u3)a0,1.

Here

s=
u2−u3

u1−u3

and K(s) and E(s) are complete elliptic integrals of the first and second kind.
K(s) and E(s) have some well-known properties [8, 9]. They have the expansions

K(s)=
π

2
[1+

s

4
+

9
64

s2 + ···+(
1 ·3···(2n−1)

2 ·4···2n
)2sn + ···], (2.5)

E(s)=
π

2
[1− s

4
− 3

64
s2−···− 1

2n−1
(
1 ·3···(2n−1)

2 ·4···2n
)2sn−···], (2.6)

for |s|<1. They also have the asymptotics

K(s)≈ 1
2

log
16

1−s
, (2.7)

E(s)≈1+
1
4
(1−s)[log

16
1−s

−1], (2.8)

as s is close to 1. Furthermore,

dK(s)
ds

=
E(s)−(1−s)K(s)

2s(1−s)
, (2.9)

dE(s)
ds

=
E(s)−K(s)

2s
. (2.10)

It immediately follows from (2.5) and (2.6) that

1
1− s

2

<
K(s)
E(s)

<
1− s

2

1−s
for 0<s<1. (2.11)

The eigenspeeds of the Whitham equations (1.3) are defined in terms of P0 and
P1 of (2.4),

λi(u1,u2,u3)=12
P1(ui,u1,u2,u3)
P0(ui,u1,u2,u3)

, i=1,2,3,

which give

λ1(u1,u2,u3)=2(u1 +u2 +u3)+4(u1−u2)
K(s)
E(s)

,

λ2(u1,u2,u3)=2(u1 +u2 +u3)+4(u2−u1)
sK(s)

E(s)−(1−s)K(s)
,

λ3(u1,u2,u3)=2(u1 +u2 +u3)+4(u2−u3)
K(s)

E(s)−K(s)
. (2.12)
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Using (2.11), we obtain

λ1−2(u1 +u2 +u3)>0, (2.13)
λ2−2(u1 +u2 +u3)<0, (2.14)
λ3−2(u1 +u2 +u3)<0, (2.15)

for u1 >u2 >u3. In view of (2.5-2.8), we find that λ1, λ2 and λ3 have behavior:
(1) At u2 = u3:

λ1(u1,u2,u3)=6u1,
λ2(u1,u2,u3)=λ3(u1,u2,u3)=12u3−6u1.

(2.16)

(2) At u1 = u2:

λ1(u1,u2,u3)=λ2(u1,u2,u3)=4u1 +2u3,
λ3(u1,u2,u3)=6u3.

(2.17)

The eigenspeeds of the Whitham equations (1.6) are

µi(u1,u2,u3)=80
P2(ui,u1,u2,u3)
P0(ui,u1,u2,u3)

, i=1,2,3. (2.18)

They can be expressed in terms of λ1, λ2 and λ3 of the KdV.

Lemma 2.1. [10] The eigenspeeds, µi’s, satisfy:
1.

µi(u1,u2,u3)=
1
2

[λi−2(u1 +u2 +u3)]
∂q

∂ui
(u1,u2,u3)+q(u1,u2,u3), (2.19)

where q(u1,u2,u3) is the solution of the boundary value problem of the Euler-
Poisson-Darboux equations:

2(ui−uj)
∂2q

∂ui∂uj
=

∂q

∂ui
− ∂q

∂uj
, i,j =1,2,3 ;i 6= j, (2.20)

q(u,u,u)=30u2.

2.

∂µi

∂uj
=

∂λi

∂uj

λi−λj
[µi−µj ], i 6= j. (2.21)

The solution of (2.20) is a symmetric quadratic function of u1, u2 and u3

q(u1,u2,u3)=6(u2
1 +u2

2 +u2
3)+4(u1u2 +u1u3 +u2u3). (2.22)

For KdV, λi’s satisfy [8]

∂λ3

∂u3
<

3
2

λ2−λ3

u2−u3
<

∂λ2

∂u2

for u3 <u2 <u1. Similar results also hold for the fifth order KdV.
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Lemma 2.2.

∂µ2

∂u2
>

3
2

µ2−µ3

u2−u3
if

∂q

∂u2
>0, (2.23)

∂µ3

∂u3
<

3
2

µ2−µ3

u2−u3
if

∂q

∂u3
>0, (2.24)

for u3 <u2 <u1.

Proof. We use (2.19) to calculate

∂µ3

∂u3
=

1
2

∂λ3

∂u3

∂q

∂u3
+

1
2
[λ3−2(u1 +u2 +u3)]

∂2q

∂u2
3

<
3
4

λ2−λ3

u2−u3

∂q

∂u3
+

1
2
[λ3−2(u1 +u2 +u3)]

∂2q

∂u2
3

, (2.25)

and

µ2−µ3 =
1
2

(λ2−λ3)
∂q

∂u3
+

1
2
[λ3−2(u1 +u2 +u3)]

(
∂q

∂u2
− ∂q

∂u3

)

=
1
2

(λ2−λ3)
∂q

∂u3
+

1
2
[λ3−2(u1 +u2 +u3)]2(u2−u3)

∂2q

∂u2∂u3

=
2
3
(u2−u3)

(
3
4

λ2−λ3

u2−u3

∂q

∂u3
+

3
2
[λ3−2(u1 +u2 +u3)]

∂2q

∂u2∂u3

)
, (2.26)

where we have used equation (2.20)

∂q

∂u2
− ∂q

∂u3
=2(u2−u3)

∂2q

∂u2∂u3
.

It follows from formula (2.22) for q that

3
∂2q

∂u2∂u3
=

∂2q

∂u2
3

,

which, along with with (2.25) and (2.26), proves (2.23).
Inequality (2.24) can be proved in the same way.

The following calculations are useful in the subsequent sections.
Using formula (2.19) for µ2 and µ3 and formulae (2.12) for λ2 and λ3, we obtain

µ2(u1,u2,u3)−µ3(u1,u2,u3)=
2(u2−u3)K

(K−E)[E−(1−s)K]
M(u1,u2,u3), (2.27)

where

M(u1,u2,u3)= [
∂q

∂u3
+(1−s)

∂q

∂u2
]E−(1−s)(

∂q

∂u2
+

∂q

∂u3
)K.

We then use (2.9), (2.10) and (2.22) to calculate

∂M(u1,u2,u3)
∂u2

=
10(u1−3u2−u3)

u1−u3
(E−K). (2.28)
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We next consider

F (u1,u2,u3) :=
µ2(u1,u2,u3)−µ3(u1,u2,u3)

u2−u3
. (2.29)

Using formula (2.19) for µ2 and µ3 and formulae (2.12) for λ2 and λ3, we obtain

F =−2
(1−s)K

E−(1−s)K
∂q

∂u2
+2

K

K−E

∂q

∂u3

=−4
s(1−s)K

E−(1−s)K
(u1−u3)

∂2q

∂u2∂u3
+2[

K

K−E
− (1−s)K

E−(1−s)K
]

∂q

∂u3
,

where we have used equations (2.20) in the last equality. Finally, we use the expansions
(2.5-2.6) for K and E to obtain

F (u1,u2,u3)=−4[(2− 7
4
s+ ···)(u1−u3)

∂2q

∂u2∂u3
+(−3

4
+O(s2))

∂q

∂u3
]

=−16[(2− 7
4
s+ ···)(u1−u3)+(−3

4
+O(s2))(u1 +u2 +3u3)], (2.30)

where we have used formula (2.22) for q in the last equality.

3. A Self-similar solution
In this section, we construct the self-similar solution of the Whitham equations

(1.6) for the initial function (1.7) with a=1 and b=0. We will study all the other
step-like initial data in Section 5.

Theorem 3.1. (see Figure 1.1) For the step-like initial data u0(x) of (1.7) with
a=1,b=0, the solution of the Whitham equations (1.6) is given by

u1 =1, x=µ2(1,u2,u3)t, x=µ3(1,u2,u3)t (3.1)

for −15t<x≤αt and by

u1 =1, x=µ2(1,u2,0)t, u3 =0 (3.2)

for αt≤x<16t, where α=µ2(1,u∗,0) and u∗ is the unique solution u2 of µ2(1,u2,0)=
µ3(1,u2,0) in the interval 0<u2 <1. Outside the region −15t<x<16t, the solution
of the Burgers type equation (1.5) is given by

u≡1 x≤−15t (3.3)

and

u≡0 x≥16t. (3.4)

The boundaries x=−15t and x=16t are called the trailing and leading edges,
respectively. They separate the solutions of the Whitham equations and Burgers type
equations. The Whitham solution matches the Burgers type solution in the following
fashion (see Figure 1.1):

u1 =the Burgers type solution defined outside the region, (3.5)
u2 =u3, (3.6)
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at the trailing edge;

u1 =u2, (3.7)
u3 =the Burgers type solution defined outside the region, (3.8)

at the leading edge.
The proof of Theorem 3.1 is based on a series of lemmas.
We first show that the solutions defined by formulae (3.1) and (3.2) indeed satisfy

the Whitham equations (1.6) [1, 11].

Lemma 3.2.
1. The functions u1, u2 and u3 determined by equations (3.1) give a solution of

the Whitham equations (1.6) as long as u2 and u3 can be solved from (3.1)
as functions of x and t.

2. The functions u1, u2 and u3 determined by equations (3.2) give a solution
of the Whitham equations (1.6) as long as u2 can be solved from (3.2) as a
function of x and t.

Proof. (1) u1 obviously satisfies the first equation of (1.6). To verify the second
and third equations, we observe that

∂µ2

∂u3
=

∂µ3

∂u2
=0 (3.9)

on the solution of (3.1). To see this, we use (2.21) to calculate

∂µ2

∂u3
=

∂λ2
∂u3

λ2−λ3
(µ2−µ3)=0.

The second part of (3.9) can be shown in the same way.
We then calculate the partial derivatives of the second equation of (3.1) with

respect to x and t.

1=
∂µ2

∂u2
tu2x, 0=

∂µ2

∂u2
tu2t +µ2,

which give the second equation of (1.6).
The third equation of (1.6) can be verified in the same way.
(2) The second part of Lemma 3.2 can easily be proved.

We now determine the trailing edge. Eliminating x and t from the last two
equations of (3.1) yields

µ2(1,u2,u3)−µ3(1,u2,u3)=0. (3.10)

Since it degenerates at u2 =u3, we replace (3.10) by

F (1,u2,u3) :=
µ2(1,u2,u3)−µ3(1,u2,u3)

u2−u3
=0. (3.11)

Here, the function F is also defined in (2.29).
Therefore, at the trailing edge where u2 =u3, i.e., s=0, equation (3.11), in view

of the expansion (2.30), becomes

2(1−u3)− 3
4
(1+4u3)=0,



808 SELF-SIMILAR SOLUTION OF THE WHITHAM EQUATIONS

which gives u2 =u3 =1/4.

Lemma 3.3. Equation (3.11) has a unique solution satisfying u2 =u3. The solution
is u2 =u3 =1/4. The rest of equations (3.1) at the trailing edge are u1 =1 and x/t=
µ2(1,1/4,1/4)=−15.

Having located the trailing edge, we now solve equations (3.1) in the neighborhood
of the trailing edge. We first consider equation (3.11). We use (2.30) to differentiate
F at the trailing edge u1 =1, u2 =u3 =1/4

∂F (1, 1
4 , 1

4 )
∂u2

=
∂F (1, 1

4 , 1
4 )

∂u3
=40,

which show that equation (3.11) or equivalently (3.10) can be inverted to give u3 as
a decreasing function of u2

u3 =A(u2) (3.12)

in a neighborhood of u2 =u3 =1/4.
We now extend the solution (3.12) of equation (3.10) in the region 1>u2 >1/4>

u3 >0 as far as possible. We deduce from Lemma 2.2 that

∂µ2

∂u2
>0,

∂µ3

∂u3
<0 (3.13)

on the solution of (3.10). Because of (3.9) and (3.13), solution (3.12) of equation
(3.10) can be extended as long as 1>u2 >1/4>u3 >0.

There are two possibilities: (1) u2 touches 1 before or simultaneously as u3 reaches
0 and (2) u3 touches 0 before u2 reaches 1.

It follows from (2.17) and (2.19) that

µ2(1,1,u3)>µ3(1,1,u3) for 0≤u3 <1.

This shows that (1) is impossible. Hence, u3 will touch 0 before u2 reaches 1. When
this happens, equation (3.10) becomes

µ2(1,u2,0)−µ3(1,u2,0)=0. (3.14)

Lemma 3.4. Equation (3.14) has a simple zero in the region 0<u2 <1, counting
multiplicities. Denoting the zero by u∗, then µ2(1,u2,0)−µ3(1,u2,0) is positive for
u2 >u∗ and negative for u2 <u∗.

Proof. We now use (2.27) and (2.28) to prove the lemma. In equation (2.27),
K−E and E−(1−s)K are all positive for 0<s<1 in view of (2.11). By (2.28),

∂M(1,u2,0)
∂u2

=10(3u2−1)[K−E] for 0<u2 <1.

Since M(1,u2,0) vanishes at u2 =0 and is positive at u2 =1 in view of (2.5-2.8), we
conclude from the above derivative that M(1,u2,0) has a simple zero in 0<u2 <1.
This zero is exactly u∗ and the rest of the theorem can be proved easily.
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Having solved equation (3.10) for u3 as a decreasing function of u2 for 1/4≤u2≤
u∗, we turn to equations (3.1). Because of (3.13), the second equation of (3.1) gives
u2 as an increasing function of x/t, for −15≤x/t≤α, where

α=µ2(1,u∗,0). (3.15)

Consequently, u3 is a decreasing function of x/t in the same interval.

Lemma 3.5. The last two equations of (3.1) can be inverted to give u2 and u3 as
increasing and decreasing functions, respectively, of the self-similarity variable x/t in
the interval −15≤x/t≤α, where α=µ2(1,u∗,0) and u∗ is given in Lemma 3.4.

We now turn to equations (3.2). We want to solve the second equation when x/t>
α or equivalently when u2 >u∗. According to Lemma 3.4, µ2(1,u2,0)−µ3(1,u2,0)>0
for u∗<u2 <1, which, together with (2.23), shows that

∂µ2(1,u2,0)
∂u2

>0.

Hence, the second equation of (3.2) can be solved for u2 as an increasing function of
x/t as long as u∗<u2 <1. When u2 reaches 1, we have

x/t=µ2(1,1,0)=16,

where we have used (2.17) and (2.19) in the last equality. We have therefore proved
the following result.

Lemma 3.6. The second equation of (3.2) can be inverted to give u2 as an increasing
function of x/t in the interval α≤x/t≤16.

We are ready to conclude the proof of Theorem 3.1.
The Burgers type solutions (3.3) and (3.4) are trivial.
According to Lemma 3.5, the last two equations of (3.1) determine u2 and u3

as functions of x/t in the region −15≤x/t≤α. By the first part of Lemma 3.2,
the resulting u1, u2 and u3 satisfy the Whitham equations (1.6). Furthermore, the
boundary conditions (3.5) and (3.6) are satisfied at the trailing edge x=−15t.

Similarly, by Lemma 3.6, the second equation of (3.2) determines u2 as a function
of x/t in the region α≤x/t≤16. It then follows from the second part of Lemma 3.2
that u1, u2 and u3 of (3.2) satisfy the Whitham equations (1.6). They also satisfy the
boundary conditions (3.7) and (3.8) at the leading edge x=16t.

We have therefore completed the proof of Theorem 3.1.
A graph of the Whitham solution is given in Figure 1.1. It is obtained by plotting

the exact solutions of (3.1) and (3.2).

4. The Minimization problem
The zero dispersion limit of the solution of the fifth order KdV equation (1.4)

with step-like initial function (1.7), a=1, b=0, is also determined by a minimization
problem with constraints [4, 5, 12]

Minimize
{ψ≥0, ψ∈L1}

{− 1
2π

∫ 1

0

∫ 1

0

log
∣∣∣η−µ

η+µ

∣∣∣ψ(η)ψ(µ)dηdµ+
∫ 1

0

[ηx−16η5t]ψ(η)dη}. (4.1)

In this section, we will use the self-similar solution of Section 3 to construct the
minimizer. We first define a linear operator

Lψ(η)=
1
2π

∫ 1

0

log

(
η−µ

η+µ

)2

ψ(µ)dµ.
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The variational conditions are

Lψ =xη−16tη5 where ψ >0, (4.2)
Lψ≤xη−16tη5 where ψ =0. (4.3)

The constraint for the minimization problem is

ψ≥0. (4.4)

The minimizer of (4.1) is given explicitly:

Theorem 4.1. The minimizer of the variational problem (4.1) is as follows:

1. For x≤−15t,

ψ(η)=
−xη+80tη(η4− 1

2η2− 1
8 )√

1−η2
.

2. For −15t<x<αt,

ψ(η)=





−−xηP0(η
2,1,u2,u3)+80tηP2(η

2,1,u2,u3)√
(1−η2)(u2−η2)(u3−η2)

, η <
√

u3,

0,
√

u3 <η <
√

u2
−xηP0(η

2,1,u2,0)+80tηP2(η
2,1,u2,0)√

(1−η2)(η2−u2)(η2−u3)
,

√
u2 <η <1,

,

where P0 and P2 are defined in (2.1) and u2 and u3 are determined by equa-
tions (3.1).

3. For αt<x<16t,

ψ(η)=

{
0, η <

√
u2,

−xP0(η
2,1,u2,0)+80tP2(η

2,1,u2,0)√
(1−η2)(η2−u2)

,
√

u2 <η <1,

where u2 is determined by (3.2).
4. For x≥16t,

ψ(η)≡0.

Proof. We extend the function ψ defined on [0,1] to the entire real line by setting
ψ(η)=0 for η >1 and taking ψ to be odd. In this way, the operator L is connected
to the Hilbert transform H on the real line [4]:

Lψ(η)=
∫ η

0

Hψ(µ)dµ where Hψ(η)=
1
π

P.V.

∫ +∞

−∞

ψ(µ)
η−µ

dµ.

We verify case (4) first. Clearly, ψ(η)=0 satisfies the constraints (4.4). We now
check the variational conditions (4.2-4.3). Since ψ =0,

Lψ =0≤xη−16tη5,

where the inequality follows from x≥16t and 0≤η≤1. Hence, variational conditions
(4.2-4.3) are satisfied.
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Next we consider case (1). We write ψ(η) as the real part of g1(η) for real η,
where

g1 =
√−1(x−80tη4)+

√−1[−xη+80tη(η4− 1
2η2− 1

8 )]√
η2−1

.

The function g1 is analytic in the upper half complex plane Im(η)>0 and g1(η)≈
O(1/η2) for large |η|. Hence, Hψ(η)= Im[g1(η)]=x−80tη4 on 0≤η≤1, where H is
the Hilbert transform [4]. We then have for 0≤η≤1

Lψ(η)=
∫ η

0

Hη(µ)dµ=xη−16tη5,

which shows that the variational conditions are satisfied. Since 15+80(η4− 1
2η2− 1

8 )=
80(η2− 1

4 )2≥0, it follows from x≤−15t that ψ≥0. Hence, the constraint (4.4) is
verified.

We now turn to case (2). By Lemma 3.5, the last two equations of (3.1) determine
u2 and u3 as functions of the self-similarity variable x/t in the interval −15≤x/t≤α.

We write ψ =Re(g2) for real η, where

g2 =
√−1(x−80tη4)+

√−1[−xηP0(η2,1,u2,u3)+80tηP2(η2,1,u2,u3)]√
(η2−1)(η2−u2)(η2−u3)

.

The function g2 is analytic in Im(η)>0 and g2(η)≈O(1/η2) for large |η| in view of
the asymptotics (2.2) for P0 and P2. Hence, taking the imaginary part of g2 yields

Hψ(η)=





x−80tη4, 0<η <
√

u3,

x−80tη4− [−xP0(η
2,1,u2,0)+80tP2(η

2,1,u2,0)]η√
(1−η2)(u2−η2)(η2−u3)

,
√

u3 <η <
√

u2,

x−80tη4,
√

u2 <η <1.

We then have

Lψ(η)=





xη−16tη5, 0<η <
√

u3,

xη−16tη5−∫ η√
u3

[−xP0+80tP2]µ√
(1−µ2)(u2−µ2)(µ2−u3)

dµ,
√

u3 <η <
√

u2,

xη−16tη5,
√

u2 <η <1.

where we have used
∫ √

u2

√
u3

[−xP0 +80tP2]µ√
(1−µ2)(u2−µ2)(µ2−u3)

dµ=0, (4.5)

which is a consequence of (2.3) for P0 and P2.
We study the zeros of −xP0 +80tP2. It has two zeros at η =

√
u2 and η =

√
u3.

This follows from (2.18) and (3.1). It also has a zero between
√

u2 and
√

u3 because
of (4.5). Since it is a cubic polynomial of η2, −xP0 +80tP2 has no more than three
zeros on the positive η axis and furthermore these three positive zeros are simple.

Since the leading term in −xP0 +80tP2 is 80tη6, the polynomial is positive for
η >

√
u2 and negative for 0≤η <

√
u3. This proves ψ≥0; so (4.4) is verified. Since

−xP0 +80tP2 changes sign at each simple zero, it follows from (4.5) that
∫ η

√
u3

[−xP0 +80tP2]µ√
(1−µ2)(u2−µ2)(µ2−u3)

dµ>0
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for
√

u3 <η <
√

u2. This verifies the variational conditions (4.2) and (4.3).
We finally consider case (3). By Lemma 3.6, the second equation of (3.2) deter-

mines u2 as an increasing function of x/t in the interval α≤x/t≤16.
We write ψ =Re(g3) for real η, where

g3 =
√−1(x−80tη4)+

√−1[−xP0(η2,1,u2,0)+80tP2(η2,1,u2,0)]√
(η2−1)(η2−u2)

.

The function g3 is analytic in Im(η)>0 and g3(η)≈O(1/η2) for large |η| in view of
the asymptotics (2.2) for P0 and P2. Hence, taking the imaginary part of g3 yields

Hψ(η)=

{
x−80tη4− −xP0(η

2,1,u2,0)+80tP2(η
2,1,u2,0)√

(1−η2)(u2−η2)
, 0<η <

√
u2,

x−80tη4,
√

u2 <η <1.

We then have

Lψ(η)=

{
xη−16tη5−∫ η

0
−xP0+80tP2√
(1−µ2)(u2−µ2)

dµ, 0<η <
√

u2,

xη−16tη5,
√

u2 <η <1.

where we have used
∫ √

u2

0

−xP0(µ2,1,u2,0)+80tP2(µ2,1,u2,0)√
(1−µ2)(u2−µ2)

dµ=0, (4.6)

which is a consequence of (2.3) for P0 and P2.
The function −xP0(η2,1,u2,0)+80tP2(η2,1,u2,0) has two zeros on the positive

η-axis. One is at η =
√

u2, in view of (2.18) and (3.2). The other is between 0 and√
u2, in view of (4.6). At η =0, the function has a positive value. To see this,

−xP0(0,1,u2,0)+80tP2(0,1,u2,0)=P0(0,1,u2,0)[−x+ tµ3(1,u2,0)]. (4.7)

According to Lemma 3.4, µ2(1,u2,0)>µ3(1,u2,0) when u2 >u∗ or equivalently when
α<x/t<16. It follows from formula (2.4) and inequality (2.11) that P0(0,1,u2,0)<0.
Hence, the right hand side of (4.7) is bigger than

P0(0,1,u2,0)[−x+ tµ2(1,u2,0)]=0,

where the equality comes from (3.2). Since it is a cubic polynomial in η2 and since it
is positive for large η >0, the function −xP0(η2,1,u2,0)+80tP2(η2,1,u2,0) can have
at most two zeros on the positive η-axis. Hence, the above two zeros are all simple
zeros.

It now becomes straight forward to check the variational conditions (4.2-4.3) and
the constraint (4.4), just as we do in case (2).

5. Other step like initial data
In this section, we will classify all types of step-like initial data (1.7) for equation

(1.4). When a=0, since b 6=0, the solution of (1.5) will never develop a shock. We
therefore study the cases a>0 and a<0. In the former case, it is easy to check that,
when b>a, the solution of equation (1.5) will never develop a shock; accordingly, we
will restrict to b<a. Similarly, in the latter case, we will confine ourselves to b>a.

We will only present our proofs briefly, since they are, more or less, similar to
those in Section 3.
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Fig. 5.1. Self-similar solution of the Whitham equations for a=1 and b=1/3 of type I.

5.1. Type I: a>0, a/4≤ b<a.

Theorem 5.1. (see Figure 5.1) For the step-like initial data (1.7) with a>0, a/4≤
b<a, the solution of the Whitham equations (1.6) is given by

u1 =a, x=µ2(a,u2,b)t, u3 = b

for µ2(a,b,b)<x/t<µ2(a,a,b), where µ2(a,b,b)=−10a2−40ab+80b2 and µ2(a,a,b)=
16a2 +8ab+6b2. Outside this interval, the solution of (1.5) is given by

u≡a x/t≤µ2(a,b,b)

and

u≡ b x/t≥µ2(a,a,b).

Proof. It suffices to show that µ2(a,u2,b) is an increasing function of u2 for
b<u2 <a. By (2.28), we have

dM(a,u2,b)
du2

=
10(3u2 +b−a)

a−b
[K−E]>0

for b<u2 <a, where we have used a/4≤ b<a in the inequality. Since M(a,u2,b)=0
at u2 = b, this implies that M(a,u2,b)>0 for b<u2 <a. It then follows from (2.27)
that µ2(a,u2,b)−µ3(a,u2,b)>0. By Lemma 2.2, we conclude that

dµ2(a,u2,b)
du2

>0

for b<u2 <a.

5.2. Type II: a>0, −2a/3<b<a/4. Theorem 3.1 is a special case of the
following theorem.

Theorem 5.2. (see Figure 1.1) For the step-like initial data (1.7) with a>0, −2a/3<
b<a/4, the solution of the Whitham equations (1.6) is given by

u1 =a, x=µ2(a,u2,u3)t, x=µ3(a,u2,u3)t
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for −15a2 <x/t≤µ2(a,u∗∗,b) and by

u1 =a, x=µ2(a,u2,b)t, u3 = b

for µ2(a,u∗∗,b)≤x/t<16a2 +8ab+6b2, where u∗∗ is the unique solution u2 of
µ2(a,u2,b)=µ3(a,u2,b) in the interval b<u2 <a. Outside the region −15a2 <x/t<
16a2 +8ab+6b2, the solution of the Burgers type equation (1.5) is given by

u≡a x/t≤−15a2

and

u≡ b x/t≥16a2 +8ab+6b2.

Proof. The trailing edge is determined by

F (a,u2,u3)=0 (5.1)

when u2 =u3. Here F is given by (2.29). In view of the expansion (2.30), the above
equation when u2 =u3, i.e., s=0, reduces to

2(a−u3)− 3
4
(a+4u3)=0,

which gives u2 =u3 =a/4 at the trailing edge.
Having located the trailing edge, we solve equation (5.1) in the neighborhood of

u2 =u3 =a/4. We use the expansion (2.30) to calculate

∂F (a, a
4 , a

4 )
∂u2

=
∂F (a, a

4 , a
4 )

∂u3
=40,

which implies that equation (5.1) can be solved for u3 as a decreasing function of u2

near u2 =u3 =a/4.
The solution of

µ2(a,u2,u3)−µ3(a,u2,u3)=0 (5.2)

can be extended as long as a>u2 >a/4>u3 >b. To see this, we need to show that

∂µ2(a,u2,u3)
∂u3

=0,
∂µ3(a,u2,u3)

∂u2
=0,

∂µ2(a,u2,u3)
∂u2

>0,
∂µ3(a,u2,u3)

∂u3
<0

on the solution of (5.2). The proof of the equalities is the same as that of (3.9) in
Section 3. To prove the inequalities, in view of Lemma 2.2, it is enough to show that

∂q(a,u2,u3)
∂u2

>0,
∂q(a,u2,u3)

∂u3
>0.

We use formulae (2.19) to rewrite equation (5.2) as

1
2
[λ2−2(a+u2 +u3)]

∂q(a,u2,u3)
∂u2

=
1
2
[λ3−2(a+u2 +u3)]

∂q(a,u2,u3)
∂u3

,
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which, together with inequalities (2.14) and (2.15), proves that ∂q
∂u2

and ∂q
∂u3

have the
same sign on the solution of (5.2). On the other hand, we calculate from (2.22)

∂q(a,u2,u3)
∂u2

=4(a+3u2 +u3)>0

for a>u2 >a/4>u3 >b>−2a/3.
We now extend the solution of (5.2) as far as possible in the region a>u2 >a/4>

u3 >b. There are two possibilities: (1) u2 touches a before or simultaneously as u3

reaches b and (2) u3 touches b before u2 reaches a.
Possibility (1) is impossible. To see this, we use (2.17) and (2.19) to calculate

µ2(a,a,u3)−µ3(a,a,u3)=2(a−u3)
∂q(a,a,u3)

∂u3
=8(a−u3)(2a+3u3), (5.3)

which, in view of b>−2a/3, is positive for b≤u3 <a.
Therefore, u3 will touch b before u2 reaches a. When this happens, we have

µ2(a,u2,b)−µ3(a,u2,b)=0. In the same way as we prove Lemma 3.4, we can show
that this equation has a unique solution u2 in the interval b<u2 <a.

The rest of the proof is similar to that of Theorem 3.1.

5.3. Type III: a>0, b=−2a/3.

Fig. 5.2. Self-similar solution of the Whitham equations for a=1 and b=−2/3 of type III.

Theorem 5.3. (see Figure 5.2) For the step-like initial data (1.7) with a>0, b=
−2a/3, the solution of the Whitham equations (1.6) is given by

u1 =a, x=µ2(a,u2,u3)t, x=µ3(a,u2,u3)t

for −15a2 <x/t<40a2/3. Outside the region, the solution of the Burgers type equation
(1.5) is given by

u≡a x/t≤−15a2

and

u≡ b x/t≥40a2/3.
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Proof. It suffices to show that u2 and u3 of µ2(a,u2,u3)−µ3(a,u2,u3)=0 reaches
a and b=−2a/3, respectively, simultaneously. To see this, we deduce from equation
(5.3) that

µ2(a,a,−2a/3)−µ3(a,a,−2a/3)=8(a−2a/3)[2a+3(−2a/3)]=0. (5.4)

5.4. Type IV: a>0, b<−2a/3.

Fig. 5.3. Self-similar solution of the Whitham equations for a=1 and b=−1.1 of type IV.

Theorem 5.4. (see Figure 5.3) For the step-like initial data (1.7) with a>0, b<
−2a/3, the solution of the Whitham equations (1.6) is given by

u1 =a, x=µ2(a,u2,u3)t, x=µ3(a,u2,u3)t

for −15a2 <x/t<40a2/3. Outside the region, the solution of the Burgers type equation
(1.5) is given by

u≡a x/t≤−15a2

and

u=
{−√

x
30t 40a2/3≤x/t≤30b2

b x/t≥30b2 .

Proof. By the calculation (5.4), when u2 of µ2(a,u2,u3)−µ3(a,u2,u3)=0 touches
a, the corresponding u3 reaches −2a/3, which is above b. Hence, equations

x=µ2(a,u2,u3)t, x=µ3(a,u2,u3)t

can be inverted to give u2 and u3 as functions of x/t in the region µ2(a,a/4,a/4)<
x/t≤µ2(a,a,−2a/3). To the right of this region, the Burgers type equation (1.5) has
a rarefaction wave solution.

5.5. Type V: a<0, b≤−a/4.

Theorem 5.5. (see Figure 5.4) For the step-like initial data (1.7) with a<0, a<b≤
−a/4, the solution of the Whitham equations (1.6) is given by

u1 = b, x=µ2(b,u2,a)t, u3 =a
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Fig. 5.4. Self-Similar solution of the Whitham equations for a=−1 and b=0 of type V.

for µ2(b,b,a)<x/t<µ2(b,a,a), where µ2(b,b,a)=6a2 +8ab+16b2 and µ2(b,a,a)=
80a2−40ab−10b2. Outside this interval, the solution of (1.5) is given by

u≡a x/t≤µ2(b,b,a)

and

u≡ b x/t≥µ2(b,a,a).

Proof. It suffices to show that µ2(a,u2,b) is a decreasing function of u2 for a<
u2 <b. By (2.19), we have

∂µ2(b,u2,a)
∂u2

=
1
2

∂λ2

∂u2

∂q

∂u2
+

1
2
[λ2−2(b+u2 +a)]

∂2q

∂u2
2

.

The second term is negative because of (2.14) and ∂2q
∂u2

2
=12>0. The first term is also

negative. Its first factor is positive in view of (1.10). The second factor

∂q

∂u2
=4(b+3u2 +a)<0

for a<u2 <b because of b≤−a/4.

5.6. Type VI: a<0, −a/4<b<−2a.
Theorem 5.6. (see Figure 5.5) For the step-like initial data (1.7) with a<0, −a/4<
b<−2a, the solution of the Whitham equations (1.6) is given by

x=µ1(u1,u2,a)t, x=µ2(u1,u2,a)t, u3 =a (5.5)

for 5a2 <x/t≤µ2(b,u∗∗∗,a) and by

u1 = b, x=µ2(b,u2,a)t, u3 =a (5.6)

for µ2(b,u∗∗∗,a)≤x/t<80a2−40ab−10b2, where u∗∗∗ is the unique solution u2 of
µ1(b,u2,a)=µ2(b,u2,a) in the interval a<u2 <b. Outside the region 5a2 <x/t<
80a2−40ab−10b2, the solution of the Burgers type equation (1.5) is given by

u≡a x/t≤5a2



818 SELF-SIMILAR SOLUTION OF THE WHITHAM EQUATIONS

Fig. 5.5. Self-Similar solution of the Whitham equations for a=−1 and b=1.2 of type VI.

and

u≡ b x/t≥80a2−40ab−10b2.

Proof. We first locate the “leading” edge, i.e., the solution of equation (5.5) at
u1 =u2. Eliminating x/t from the first two equations of (5.5) yields

µ1(u1,u2,a)−µ2(u1,u2,a)=0. (5.7)

Since it degenerates at u1 =u2, we replace (5.7) by

G(u1,u2,a) :=
µ1(u1,u2,a)−µ2(u1,u2,a)

(u1−u2)K(s)
=0. (5.8)

Using formulae (2.19) for µ1 and µ2 and formulae (2.12) for λ1 and λ2, we write

G(u1,u2,a)=
2

E[E−(1−s)K]
{( ∂q

∂u1
+s

∂q

∂u2
)E−(1−s)

∂q

∂u1
K}.

In view of (2.7) and (2.8), equation (5.8) reduces to

∂q(u1,u2,a)
∂u1

+
∂q(u1,u2,a)

∂u2
=0

at the “leading” edge u1 =u2. This gives

u1 =u2 =−a

4
.

Having located the “leading” edge, we solve equation (5.8) near u1 =u2 =−a/4.
We calculate

∂G(−a/4,−a/4,a)
∂u1

=
∂G(−a/4,−a/4,a)

∂u2
=32.

These show that equation (5.8) gives u1 as a decreasing function of u2

u1 =B(u2) (5.9)



V. U. PIERCE AND F.-R. TIAN 819

in a neighborhood of u1 =u2 =−a/4.
We now extend the solution (5.9) of equation (5.7) as far as possible in the region

a<u2 <−a/4<u1 <b. We use formula (2.19) to calculate

∂µ1

∂u1
=

1
2

∂λ1

∂u1

∂q

∂u1
+

1
2
[λ1−2(u1 +u2 +a)]

∂2q

∂u2
1

,

∂µ2

∂u2
=

1
2

∂λ2

∂u2

∂q

∂u2
+

1
2
[λ2−2(u1 +u2 +a)]

∂2q

∂u2
2

.

In view of (1.10), (2.13) and (2.14), we have

∂µ1

∂u1
>0 if

∂q

∂u1
>0,

∂µ2

∂u2
<0 if

∂q

∂u2
<0.

We claim that

∂q

∂u1
>0,

∂q

∂u2
<0 (5.10)

on the solution of (5.7) in the region a<u2 <−a/4<u1 <b. To see this, we use
formula (2.19) to rewrite equation (5.7) as

1
2
[λ1−2(u1 +u2 +a)]

∂q

∂u1
=

1
2
[λ2−2(u1 +u2 +a)]

∂q

∂u2
.

This, together with

∂q

∂u1
− ∂q

∂u2
=2(u1−u2)

∂2q

∂u1∂u2
=8(u1−u2)>0

for u1 >u2, and inequalities (2.13) and (2.14), proves (5.10).
Hence, the solution (5.9) can be extended as long as a<u2 <−a/4<u1 <b.
There are two possibilities: (1) u1 touches b before u2 reaches a and (2) u2 touches

a before or simultaneously as u1 reaches a.
Possibility (2) is impossible. To see this, we use (2.16), (2.19) and (2.22) to

calculate

µ1(u1,a,a)−µ2(u1,a,a)=40(u1−a)(u1 +2a), (5.11)

which is negative for −a/4<u1≤ b<−2a.
Therefore, u1 will touch b before u2 reaches a. When this happens, we have

µ1(b,u2,a)−µ2(b,u2,a)=0. (5.12)

Lemma 5.7. Equation (5.12) has a simple zero, counting multiplicities, in the interval
a<u2 <b. Denoting this zero by u∗∗∗, then µ1(b,u2,a)−µ2(b,u2,a) is positive for
u2 >u∗∗∗ and negative for u2 <u∗∗∗.

Proof. We write

µ1(b,u2,a)−µ2(b,u2,a)=
2(b−u2)K

E[E−(1−s)K]
{( ∂q

∂u1
+s

∂q

∂u2
)E−(1−s)

∂q

∂u1
K}. (5.13)
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Denote the parenthesis of (5.13) by N(b,u2,a). Since E−(1−s)K >0 for a<u2 <b,
the left hand side has a zero iff N(b,u2,a) on the right has one.

We now calculate

∂N(b,u2,a)
∂u2

=
30E(s)
b−a

[u2− a−b

3
].

Since N(b,u2,a) is zero at u2 =a and positive at u2 = b, we conclude from the above
derivative that N(b,u2,a) has a simple zero in a<u2 <b.

We now continue to prove Theorem 5.6. Having solved equation (5.7) for u1 as a
decreasing function of u2 for u∗∗∗<u2 <−a/4, we can then use the last two equations
of (5.5) to determine u1 and u2 as functions of x/t in the interval µ2(−a/4,−a/4,a)<
x/t<µ2(b,u∗∗∗,a).

We finally turn to equations (5.6). We want to solve the second equation of (5.6),
x/t=µ2(b,u2,a), for u2 <u∗∗∗. It is enough to show that µ2(b,u2,a) is a decreasing
function of u2 for u2 <u∗∗∗.

According to Lemma 5.7, µ1(b,u2,a)−µ2(b,u2,a)<0 for u2 <u∗∗∗. Using formula
(2.19) for µ1 and µ2, we have

1
2
[λ1−2(b+u2 +a)]

∂q

∂u1
<

1
2
[λ2−2(b+u2 +a)]

∂q

∂u2
.

This, together with

∂q

∂u1
− ∂q

∂u2
=2(b−u2)

∂2q

∂u1∂u2
=8(b−u2)>0

for u1 >u2, and inequalities (2.13) and (2.14), proves

∂q(b,u2,a)
∂u2

<0

for u2 <u∗∗∗. Hence,

∂µ2

∂u2
=

1
2

∂λ2

∂u2

∂q

∂u2
+

1
2
[λ2−2(b+u2 +a)]

∂2q

∂u2
2

<0.

5.7. Type VII: a<0, b=−2a.

Theorem 5.8. (see Figure 5.6) For the step-like initial data (1.7) with a<0, b=−2a,
the solution of the Whitham equations (1.6) is given by

x=µ1(u1,u2,a)t, x=µ2(u1,u2,a)t, u3 =a

for 5a2 <x/t<120a2. Outside the region, the solution of the Burgers type equation
(1.5) is given by

u≡a x/t≤5a2

and

u≡ b x/t≥120a2.
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Fig. 5.6. Self-Similar solution of the Whitham equations for a=−1 and b=2 of type VII.

Proof. It suffices to show that u1 and u2 of µ1(u1,u2,a)−µ2(u1,u2,a)=0 reaches
b=−2a and a, respectively, simultaneously. To see this, we deduce from equation
(5.11) that

µ1(u1,a,a)−µ3(u1,a,a)=8(u1−a)(u1 +2a) (5.14)

is negative for u1 <b and vanish when u1 = b=−2a.

5.8. Type VIII: a<0, b>−2a.

Fig. 5.7. Self-Similar solution of the Whitham equations for a=−1 and b=2.5 of type VIII.

Theorem 5.9. (see Figure 5.7) For the step-like initial data (1.7) with a<0, b>−2a,
the solution of the Whitham equations (1.6) is given by

x=µ1(u1,u2,a)t, x=µ2(u1,u2,a)t, u3 =a

for 5a2 <x/t<120a2. Outside the region, the solution of the Burgers type equation
(1.5) is given by

u≡a, x/t≤5a2,

and

u=
{√

x
30t , 120a2≤x/t≤30b2,
b, x/t≥30b2.
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Proof. By the calculation (5.14), when u2 of µ2(u1,u2,a)−µ3(u1,u2,a)=0 touches
a, the corresponding u3 reaches −2a, which is below b. Hence, equations

x=µ2(a,u2,u3)t, x=µ3(a,u2,u3)t

can be inverted to give u2 and u3 as functions of x/t in the region µ2(−a/4,−a/4,a)<
x/t<µ2(−2a,−2a,a). To the right of this region, the Burgers type equation (1.5) has
a rarefaction wave solution.
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