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PDE’S ON SURFACES – A DIFFUSE INTERFACE APPROACH∗

ANDREAS RÄTZ† AND AXEL VOIGT‡

Abstract. We introduce a new approach to deal with the numerical solution of partial dif-
ferential equations on surfaces. Thereby we reformulate the problem on a larger domain in one
higher dimension and introduce a diffuse interface region of a phase-field variable, which is defined
in the whole domain. The surface of interest is now only implicitly given by the 1/2-level set of
this phase-field variable. Formal matched asymptotics show the convergence of the reformulated
problem to the original PDE on the surface, as the diffuse interface width shrinks to zero. The main
advantage of the approach is the possibility to formulate the problem on a Cartesian grid. With
adaptive grid refinement the additional computational cost resulting from the higher dimension can
be significantly reduced. Examples on linear diffusion and nonlinear phase separation demonstrate
the wide applicability of the method.
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1. Introduction
While the solution of PDEs on Cartesian grids has become a standard tool in

computational science, numerical approaches to solve PDEs on surfaces is much less
understood. However such problems received growing interest over the last years,
due to a variety of applications. Problems of interest include image processing (e.g.
[15] image the human brain), geometry (e.g. [11] deal with splines on manifolds),
physiology (e.g. [10] model the liquid delivery into the lung and analyse the role of
surfactants), cell-biology (e.g. [2] study domain formation in vesicles), solidification
(e.g. [16] simulate ice formation on aircrafts) and gravitation (e.g. [13] simulate the
bending of space and time in the surrounding of black holes).

As long as a triangulation of the surface is available such problems can be solved
by parametric finite elements. See Fig. 1.1 for the solution of a viscous Cahn-Hilliard
equation on various surfaces. The equations for the concentration u and the chemical
potential µ on a surface Γ are given by

ut =ν∆Γµ, (1.1)
µ=−γ∆Γu+γ−1G′(u)+αγut (1.2)

with ∆Γ the surface Laplacian, G(u) :=18u2(1−u2) a double well potential, ν >0 a
constant mobility, α>0 a constant kinetic coefficient and γ >0 a small parameter.
u=0 and u=1 are the two stable steady states, representing the two phases. As
initial conditions we use a small zero mean perturbation of u=0.5.

In a finite element software package as AMDiS [22] the same algorithms as used
on a Cartesian grid can be used to solve problems on triangulated surfaces. However,
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Fig. 1.1. Coarsening in the viscous Cahn-Hilliard equation. Initial condition u=0.5 (slightly
perturbed), dark denotes u=0 and light denotes u=1. (top) Evolution on a sphere at timesteps
t=1.3 ·10−3, t=4.4 ·10−3, t=1.2 ·10−2 and t=1.8 ·10−1, (bottom) evolution on a torus at timesteps
t=1.4 ·10−3, t=5.4 ·10−3, t=2.0 ·10−2 and t=7.4 ·10−2. All simulations are performed in AMDiS
[22].

well known convergence results of the numerical scheme on a Cartesian grid, can
not easily be transferred to the algorithm if applied to solve the same PDE on a
surface. Some of the resulting numerical analysis problems for elliptic equations are
addressed in [12], but a comparable theory for parabolic problems is not available. A
second problem with this approach results from the need of an appropriate surface
mesh, which might not be easy to generate for complicated surfaces. Furthermore, if
the surface evolves by itself, possible topological changes are hard to include in this
approach.

To overcome these difficulties there have been several attempts to solve PDEs on
only implicitly defined surfaces. In [3] an Eulerian method for this problem has been
introduced using only a discretization on a Cartesian grid. By representing a (d−1)-
dimensional surface as the 0-level set of a level set function φ defined in a domain
Ω⊂Rd containing the surface, one can derive the Eulerian representation by replacing
the surface derivatives with projections of the derivatives in the embedding Eulerian
space and then solve this new representation on a Cartesian grid. In particular, the
surface gradient and surface Laplacian are written as

∇Γu=P∇ũ and ∆Γu=∇·(P∇ũ), (1.3)

with the projection

P = I−∇φ⊗∇φ

|∇φ|2 , (1.4)

onto the surface; note that ∇φ is normal to Γ. Furthermore it is assumed that ũ
is a smooth function defined in Ω, and u is the restriction of ũ to the surface. In
order to increase the efficiency of the method one can apply a narrow band approach
where all operations are performed on a narrow band surrounding the surface. This
procedure has been applied to linear diffusion, anisotropic diffusion, and reaction
diffusion equations [3], to the Eikonal equation [14] and more recently it has been
extended to solve higher order equations [9], on surfaces of varying complexity. The
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viscous Cahn-Hilliard equation (1.1), (1.2) in this setting reads

ũt =ν∇·(P∇µ̃), (1.5)

µ̃=−γ∇·(P∇ũ)+γ−1G′(ũ)+αγũt. (1.6)

The equation has been solved in [9] on the same domains as used in Fig. 1.1, leading
to similar results. But despite the wide applicability of the method, several difficulties
have been reported. Applying the method to diffusion problems results in a degenerate
diffusion equation in the embedding space, as there is no diffusion in the direction
perpendicular to the surface. The degeneracy problem is most severe for higher order
equations and has been pointed out in [9]. A second difficulty arises by extending off
initial data of the surface to the embedding domain. This has to be done with care,
because the solution at the surface will be affected by these extensions. However, no
matter how the extension is chosen it will change in time, and re-extension might be
necessary from time to time. Furthermore the method relies on the signed-distance
property of the level set function. All these difficulties can probably be overcome
and have been dealt with in the level set context [21, 17]. Recently [8] improved
the approach to overcome some of the difficulties. However, with no doubt, it is a
powerful approach, which has already been applied to study evolution equations on
varying surfaces [23].

We will present a different approach to solve PDEs on implicitly defined surfaces,
which is based on a diffuse interface method, where we assume the surface to be
represented by the 1/2-level set of a phase-field variable φ defined in a domain Ω⊂
Rd containing the surface Γ. The key ingredient is the function B =B(φ)=φ2(1−
φ)2, which vanishes outside the diffuse interface. Such a mobility function has been
introduced in [5] to model surface diffusion within a diffuse interface approximation.
Here the function B(φ) allows us to rewrite rather general quasilinear elliptic and
parabolic PDEs on surfaces into PDEs in Rd. The implicit version of the viscous
Cahn-Hilliard equation (1.1), (1.2) for example reads

B(φ)ũt =ν∇·((δ(ε)+B(φ))∇µ̃), (1.7)

B(φ)µ̃=−γ∇·((δ(ε)+B(φ))∇ũ)+γ−1B(φ)G′(ũ)+αγB(φ)ũt (1.8)

with ũ and µ̃ smooth functions defined in Ω⊂Rd approximating the solutions of (1.1),
(1.2) at the interface. Furthermore ε>0 measures the width of the diffuse interface
and δ(ε) is chosen such that 0<δ(ε)¿ ε. For the increase of numerical efficiency we
use an adaptively refined mesh. In this paper we will analyze the phase-field approach
in detail. A similar approach to deal with elliptic PDEs on implicit surfaces has been
studied in [4].

The paper is organized as follows. In Section 2 we introduce the diffuse interface
approach for a linear diffusion equation, provide a matched asymptotic analysis show-
ing the formal convergence towards the sharp interface problem as the width of the
diffuse interface shrinks to zero and compare numerical results of the diffuse interface
ansatz with analytic solutions and with numerical results of sharp interface simula-
tions of the diffusion equation. In Section 3 we consider the viscous Cahn-Hilliard
equation as an example of a fourth order equation and again show through matched
asymptotic analysis the formal convergence of the equations (1.7) and (1.8) to the
viscous Cahn-Hilliard equation on a surface (1.1) and (1.2). Furthermore we show the
thermodynamic consistency of the formulation. In Section 4 we describe an adaptive
finite element discretization of the approximated viscous Cahn-Hilliard equation and
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Fig. 2.1. Schematic picture for d=2.

in Section 5 we show several simulation results for (1.7) and (1.8). Finally we draw
conclusions.

2. Diffuse interface approximation
We consider a fixed closed and smooth (d−1)-dimensional surface Γ⊂Rd with

d≥2 and are interested in solving PDEs on Γ.

2.1. Linear diffusion equation. To fix ideas we will first consider a linear
diffusion equation

ut−∆Γu=f on Γ×I, (2.1)

for u : Γ×I→R, I⊂R, where ∆Γ denotes the surface Laplacian on Γ and f : Γ→R is
a smooth function. Furthermore we assume

u(x,0)=u0(x) for x∈Γ

for some prescribed and smooth initial solution u0 : Γ→R. Let n : Γ→Sd−1 denote a
normal to the surface Γ. Assuming that Γ is contained in a bounded domain Ω⊂Rd

with sufficiently smooth boundary ∂Ω this defines an interface separating Ω in two
domains Ωin and Ωout, where we use the convention that n points from the inner
domain Ωin into the outer domain Ωout. Then one can define an indicator function φ0

being 1 in Ωin and 0 in Ωout (see Fig. 2.1). In order to introduce a diffuse interface
approximation of (2.1) we assume that Γ can be approximated by the 1/2-level set
Γε of a phase-field function φ=φε :Ω→R with ε>0 obtained by smearing out the
discrete function φ0 on a lengthscale of order ε. To be more precise we consider a
monotone decreasing function ψ :R→ (0,1) with

lim
z→+∞

ψ(z)=0 and lim
z→−∞

ψ(z)=1

and

lim
|z|→∞

zψ(z)2(1−ψ(z))2 =0.
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For the signed distance function r = r(x) :Ω→R measuring the distance of a point
x to Γ being positive in Ωout and negative in Ωin we define

φε(x) :=ψ

(
r(x)

ε

)
.

This means that φε is obtained from φ0 by smearing out in the direction normal to
Γ. Then a phase-field approximation for (2.1) can be given by

B(φε)ũt−∇·(δ(ε)+B(φε))∇ũ)=B(φε)f̃ on Ω (2.2)

for ũ :Ω×I→R with B(φ)=φ2(1−φ)2 and a sufficiently smooth extension f̃ of f to
the domain Ω. Additionally we consider an intitial solution ũ0 :Ω→R with ũ0|Γ =u0

and assume the initial condition

ũ(x,0)= ũ0(x) for x∈Ω.

Furthermore one has to assume certain boundary conditions for ũ and ũ0 on ∂Ω. In all
numerical applications presented here we will consider cubic domains Ω and periodic
boundary conditions for the solutions.

The addition of the paramteter δ = δ(ε) to the function B in the second order
term of (2.2) makes the above mathematical problem well posed. For the asymptotic
analysis (see section 2.2) to yield the diffusion equation (2.1) as ε→0 the choice
δ = ε would be sufficient, but in order to obtain satisfactory numerical results a much
smaller value has to be required. The dependence of the solution on δ will be studied
in Table 2.2. Thus the parameter δ should be viewed as having a regularizing meaning.

2.2. Asymptotic analysis for linear diffusion equation. We now provide
a matched asymptotic analysis (see e.g. [18, 5]) to show the formal convergence of
(2.2) to (2.1) as ε→0. In the following we will drop the˜in the notation, thus u and
f now also denote functions in Ω. Furthermore we assume δ(ε)=O(ε).

2.2.1. New coordinates. New coordinates are established in a neighborhood
of the interface Γ. To this end r = r(x;ε) is defined as the signed distance of x from
Γε being positive in Ωout. Furthermore let X :S→Rd be a parametric representation
of Γε, where S is an oriented surface of dimension d−1. Let n=n(s;ε), s∈S, denote
the normal. Then we assume that for 0<ρ¿1 there exists a neighborhood

Uε ={(x)∈Ω: |r(x;ε)|<ρ} (2.3)

of Γε such that one can write x=X(s;ε)+r(x;ε)n(s;ε) for x∈Uε. Now one transforms
u and φ to the new coordinate system:

û(r,s,t;ε) :=u(X(s;ε)+rn(s;ε),t;ε), x∈Uε,

φ̂(r,s;ε) :=φε(X(s;ε)+rn(s;ε))=ψ
(r

ε

)
, x∈Uε,

f̂(r,s;ε) :=f(X(s;ε)+rn(s;ε)), x∈Uε.

Furthermore a stretched variable is introduced z := r
ε , and one defines

U(z,s,t;ε) := û(r,s,t;ε),

Φ(z,s;ε) := φ̂(r,s;ε)=ψ(z),

F (z,s;ε) := f̂(r,s;ε).
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In addition the following Taylor expansion approximations for small ε are assumed to
be valid

u(x,t;ε)=u0(x,t)+O(ε), (2.4)
û(r,s,t;ε)= û0(r,s,t)+O(ε), (2.5)

U(z,s,t;ε)=U0(z,s,t)+εU1(z,s,t)+ε2U2(z,s,t)+O(ε3), (2.6)
f(x)=f0(x), (2.7)

f̂(r,s;ε)= f̂0(r,s)+O(ε), (2.8)
F (z,s;ε)=F0(z,s)+O(ε), (2.9)
φε(x)=φ0(x)+O(ε), (2.10)

φ̂(r,s;ε)= φ̂0(r,s)+O(ε), (2.11)
Φ(z,s;ε)=Φ0(z,s)=ψ(z), (2.12)

for which (2.4), (2.5) and (2.10), (2.11) are called outer expansions while (2.6), (2.12)
are called inner expansion. It is assumed that these hold simultaneously in some over-
lapping region and represent the same functions, which yields the matching conditions

lim
r→±0

û0(r,s,t)= lim
z→±∞

U0(z,s,t), (2.13)

lim
r→±0

φ̂0(r,s)= lim
z→±∞

Φ0(z,s). (2.14)

Let H =H(s;ε)=
∑d−1

i κi denote the mean curvature of Γ with the principal curva-
tures κi. The transform of the derivatives into the new coordinates (z,s) lead

∇u= ε−1∂zUn+
2∑

i,j=1

gij∂siU∂sjX+O(ε), (2.15)

∆u= ε−2∂2
zU +ε−1H∂zU +∆ΓU +O(ε), (2.16)

where gij :=φsi
·φsj

and (gij) :=(gij)−1. We will need the formula

∇·((δ(ε)+B(φ))∇u)

= ε−2∂z((δ(ε)+B(Φ))∂zU)+ε−1(δ(ε)+B(Φ))H∂zU +B(Φ)∆ΓU +O(ε). (2.17)

Because the surface Γ is fixed, we have the time derivative

∂tu=∂tU.

2.2.2. Outer expansion. By assumption we have φ0 =1 in Ωin and
φ0 =0 in Ωout and therefore limz→+∞Φ0 =limr→+0φ0 =0 as well as limz→−∞Φ0 =
limr→−0φ0 =1.

2.2.3. Inner expansion. Using (2.17) in (2.2) we obtain in
O(ε−2)

∂z(B(Φ0)∂zU0)=0

which yields ∂zU0 =0. From this one gets
O(ε−1)

∂z(B(Φ0)∂zU1)=0
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and therefore ∂zU1 =0. And finally we have in
O(ε0)

B(Φ0)∂tU0−∂z(B(Φ0)∂zU2)−B(Φ0)∆ΓU0 =B(Φ0)F0, (2.18)

where we have used ∂siΦ0 =0 for i=1,2. Furthermore one easily verifies that ∂zF0 =0,
and integration of (2.18) yields

∫ +∞

−∞
B(Φ0)dz∂tU0−

∫ +∞

−∞
B(Φ0)dz∆ΓU0 =

∫ +∞

−∞
B(Φ0)dzF0.

Dividing this equation by
∫ +∞
−∞ B(Φ0)dz we end up with

∂tU0−∆ΓU0 =F0.

Thus with F0 =f and limz→±∞U0 =limr→±0u0 =u0|Γ we have shown the formal con-
vergence to the linear diffusion equation (2.1) on the surface Γ.

To provide a rigorous proof of this formally derived result one would have to apply
the techniques of [1].

2.3. Numerical results. As an example we consider the sphere Γ=S2, which
is embedded into the domain Ω=(−2,2)3. The function

φε =φε(x)=
1
2

(
1−tanh

(
3
ε
(|x|−1)

))
=

1
2

(
1−tanh

(
3r

ε

))
(2.19)

serves as a phase-field approximation of Γ. On ∂Ω we assume periodic boundary
conditions for ũ. For the heat equation (2.1) and (2.2), respectively, we take the right
hand side function

f(x)=2x1 for x∈S2 and f̃(x)=2x1 for x∈Ω,

which yields the spherical harmonic

u(x)=x1 (2.20)

as the stationary solution of (2.1) and therefore a numerical benchmark to test our
approach on.

Fig. 2.2 shows the solution of (2.1) and (2.2) with initial functions u(x,0)=
ũ(x,0)=0. Different timesteps are depicted until the stationary solution is reached.

The dynamic evolution in both approaches nicely agrees and both simulations
converge to the stationary solution of (2.1) and (2.2), respectively. The solutions of

−∆Γu=f (2.21)

and

−∇·((δ(ε)+B(φε))∇ũ)=B(φε)f̃ (2.22)

are shown in Fig. 2.3. The stationary solution in both approaches can not be dis-
tinguished from each other and agree with the solution of the dynamic problem at
t=3.5. In both cases we have used the parameters ε=0.1 and δ =10−5.
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Fig. 2.2. Evolution of the temperature: (top) solution u of (2.1), (bottom) solution ũ|Γ of (2.2),
both at timesteps t=0, t=0.5, t=1.0 and t=3.5.

Fig. 2.3. Stationary temperature: (left) solution u of (2.21), (right) solution ũ|Γ of (2.22).

In the following we consider the error of the discrete solution uh in the L∞-norm
with h being the grid size

‖u−uh‖L∞(Γ) , (2.23)

where u denotes the analytic solution (2.20). The grid size h is represented by the
number of grid points in the interface region p∈N. Table 2.1 shows the convergence
of the discrete solution towards the analytic one as ε,h→0 with fixed δ =10−6. In
Table 2.2 one can see for fixed ε=0.3 the approximation of the analytic solution with
decreasing δ.

p=2 p=3 p=4 p=5 p=6
ε=0.5 3.35 ·10−2 3.06 ·10−2 2.50 ·10−2 2.62 ·10−2 2.63 ·10−2

ε=0.4 2.92 ·10−2 1.93 ·10−2 1.85 ·10−2 1.76 ·10−2 1.64 ·10−2

ε=0.3 3.15 ·10−2 1.52 ·10−2 1.21 ·10−2 9.65 ·10−3 9.28 ·10−3

ε=0.2 1.97 ·10−2 7.59 ·10−3 5.81 ·10−3 4.90 ·10−3 3.93 ·10−3

ε=0.1 9.58 ·10−3 2.80 ·10−3 1.89 ·10−3 1.07 ·10−3 6.26 ·10−4

Table 2.1. Error in the L∞-norm with fixed δ =10−6

.
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p=2 p=3 p=4 p=5 p=6
δ =10−2 6.49 ·10−1 6.79 ·10−1 6.86 ·10−1 6.90 ·10−1 6.93 ·10−1

δ =10−3 1.73 ·10−1 1.86 ·10−1 1.90 ·10−1 1.92 ·10−1 1.94 ·10−1

δ =10−4 3.31 ·10−2 2.69 ·10−2 2.04 ·10−2 1.92 ·10−2 1.89 ·10−2

δ =10−5 2.92 ·10−2 1.26 ·10−3 9.46 ·10−3 7.34 ·10−3 6.58 ·10−3

δ =10−6 3.15 ·10−2 1.52 ·10−2 1.21 ·10−2 9.65 ·10−3 9.28 ·10−3

Table 2.2. Error in the L∞-norm with fixed ε=0.3

.

Both tables indicate that within the constraint of limited computing time and
memory the choice δ =10−5, ε=0.1 and p=5 leads to acceptable tolerances. These
parameters will be used in the more demanding computations in section 5.

Furthermore we would like to mention that changing the extension f̃ in the linear
diffusion equation (2.2) in the numerical studies into f̃(x)= 2x1

|x|2 for x 6=0 and f̃(0)=0
yields that the influence of the choice of the extension of parameters is negligible.

2.4. More general parabolic equations. After this promising result we
want to generalize the equation and summerize the ingredients for the diffuse-interface
approach to solve problems on surfaces. Denoting the tangent space of Γ in x∈Γ with
TxΓ a more general second order PDE on a surface Γ reads

ut−∇Γ ·(A∇Γu)+b ·∇Γu+cu=f

with a positive definite symmetric endomorphism A=A(u,∇Γu,x,t) :TxΓ→TxΓ, b=
b(u,∇Γu,x,t) :TxΓ→R, c= c(u,∇Γu,x,t)∈R and f =f(x,t). Here A(·), b(·), c(·) and
f(·) are assumed to be sufficiently smooth. To transform it into a PDE in Ω we
need to extend all parameters in a sufficiently smooth manner. The diffuse interface
approximation then reads

B(φε)ũt−∇·((δ(ε)+B(φε))Ã∇ũ)+B(φε)b̃ ·∇ũ+B(φε)c̃ũ=B(φε)f̃ ,

where Ã is a positive definite extension of the endomorphism A to normal vectors
and the extension b̃ of b to normal vectors can be arbitrarily chosen. The matched
asymptotic analysis can be done along the same lines as for the linear problem.

3. The viscous Cahn-Hilliard equation
We will now return to the viscous Cahn-Hilliard equation (1.1), (1.2) on a closed

surface Γ and its diffuse interface approximation on a domain Ω containing the surface

B(φ)ut =ν∇·((δ(ε)+B(φ))∇µ), (3.1)

B(φ)µ=−γ∇·((δ(ε)+B(φ))∇u)+γ−1B(φ)G′(u)+αγB(φ)ut, (3.2)

where we have dropped the subscript ε and used φ instead of φε. Besides we have
dropped the˜for u. One has to assume u(x,0)=u0(x) for x∈Ω and an initial function
u0 :Ω→R coinciding on Γ with the initial function for the sharp interface problem.
Furthermore we again assume periodic boundary conditions on ∂Ω.

In the case of a (viscous) Cahn-Hilliard equation in Rn existence results are known
(see e.g. [7]) also with a degenerate mobility function [6]. To the authors’ knowledge
there are no corresponding results for a Cahn-Hilliard equation on a surface or in the
implicit form (3.1), (3.2).
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3.1. Thermodynamic consistency. The diffuse-interface approximation to
the viscous Cahn-Hilliard equation on a surface (3.1) and (3.2) has the properties of
a gradient flow of the following energy

E (u)=
∫

Ω

γ−1B(φ)G(u)+γ
1
2
(δ(ε)+B(φ))|∇u|2. (3.3)

The time derivative can thus be computed as

∂tE (u)=
∫

Ω

γ−1B(φ)G′(u)∂tu+γ(δ(ε)+B(φ))∇u ·∇ut

=
∫

Ω

(
γ−1B(φ)G′(u)−γ∇·((δ(ε)+B(φ))∇u)

)
ut

=
∫

Ω

(B(φ)µ−αγB(φ)ut)ut

=
∫

Ω

µν∇·((δ(ε)+B(φ))∇µ)−αγB(φ)(ut)2

=
∫

Ω

−ν(δ(ε)+B(φ))(∇µ)2−αγB(φ)(ut)2 ≤ 0,

where eq. (1.7) and (1.8) have been used. Thus the dissipation inequality holds
for the introduced diffuse interface approximation, which shows its thermodynamic
consistency. The same holds for the two limiting cases:
(A) the Cahn-Hilliard equation, which is obtained as α→0

B(φ)ut =ν∇·((δ(ε)+B(φ))∇µ),

B(φ)µ=−γ∇·((δ(ε)+B(φ))∇u)+γ−1B(φ)G′(u),

and
(B) the Allen-Cahn equation, which can be obtained as ν→∞

αγB(φ)ut =γ∇·((δ(ε)+B(φ))∇u)−γ−1B(φ)G′(u).

It remains to show the convergence of the diffuse interface approximation to the
viscous Cahn-Hilliard equation on a surface (1.1) and (1.2) as ε→0.

3.2. Asymptotic analysis for viscous Cahn-Hilliard equation. Note
that we have two distinguished interface parameters: γ the intrinsic diffuse interface
width in the viscous Cahn-Hilliard equation on the surface Γ, and ε the diffuse interface
width of the phase-field approximation in Ω. Here we consider the limit ε→0.

3.2.1. New coordinates. Extending the notation in Section 2.2 by introduc-
ing

µ̂(r,s,t;ε) :=µ(X(s;ε)+rn(s;ε),t;ε), x∈Uε

and

M(z,s,t;ε) := µ̂(r,s,t;ε)

and assuming the Taylor expansion approximations for small ε to be valid

µ(x,t;ε)=µ0(x,t)+O(ε), (3.4)
µ̂(r,s,t;ε)= µ̂0(r,s,t)+O(ε), (3.5)

M(z,s,t;ε)=M0(z,s,t)+εM1(z,s,t)+ε2M2(z,s,t)+O(ε3) (3.6)



A. RÄTZ AND A. VOIGT 585

and that these hold simultaneously in some overlapping region and represent the same
functions, we obtain the additional matching condition

lim
r→±0

µ̂0(r,s,t)= lim
z→±∞

M0(z,s,t). (3.7)

3.2.2. Outer expansion. See the case of the linear diffusion equation.

3.2.3. Inner expansion. Using the inner expansions in (3.1) and (3.2) we
obtain in
O(ε−2)

∂z(B(Φ0)∂zM0)=0,

∂z(B(Φ0)∂zU0)=0

which yield ∂zM0 =0 and ∂zU0 =0. From these one gets in
O(ε−1)

∂z(B(Φ0)∂zM1)=0,

∂z(B(Φ0)∂zU1)=0

and therefore ∂zM1 =0 and ∂zU1 =0. And finally we have in
O(ε0)

B(Φ0)∂tU0 =ν(∂z(B(Φ0)∂zM2)+B(Φ0)∆ΓM0),

B(Φ0)M0 =−γ
(
∂z(B(Φ0)∂zU2)+B(Φ0)∆ΓU0

)

+γ−1B(Φ0)G′(U0)+αγB(Φ0)∂tU0

Integration of both equations yields

∫ +∞

−∞
B(Φ0)dz∂tU0=ν

∫ +∞

−∞
B(Φ0)dz∆ΓM0,

∫ +∞

−∞
B(Φ0)dzM0=−

∫ +∞

−∞
B(Φ0)dzγ∆ΓU0

+
∫ +∞

−∞
B(Φ0)dzγ−1G′(U0)+

∫ +∞

−∞
B(Φ0)dzαγ∂tU0.

Dividing these equations by
∫ +∞
−∞ B(Φ0)dz we end up with

∂tU0 =ν∆ΓM0,

M0 =−γ∆ΓU0 +γ−1G′(U0)+αγ∂tU0,

on Γ, which is by matching conditions (2.13) and (3.7) the viscous Cahn-Hilliard
equation (1.1) and (1.2) for u0|Γ and µ0|Γ.

4. Numerical approach
We adapt the numerical approach used in [19] to solve a viscous Cahn-Hilliard

equation with a degenerate mobility function. Furthermore we use the definition

C(φ) := δ(ε)+B(φ).
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4.1. Finite element discretization. The time interval is split by discrete
time instants 0= t0 <t1 <..., from which one gets the time steps ∆tm := tm+1− tm.
The derivative of the doublewell potential is linearized by

G′(u(m+1))≈G′(u(m))+G′′(u(m))(u(m+1)−u(m))

=G′′(u(m))u(m+1) +G′(u(m))−G′′(u(m))u(m).

Using this time discretization one ends up with the weak formulation
1

∆tm

∫

Ω

B(φ)u(m+1)ψ+ν

∫

Ω

C(φ)∇µ(m+1) ·∇ψ

=
1

∆tm

∫

Ω

B(φ)u(m)ψ,

−
∫

Ω

B(φ)µ(m+1)ψ+γ

∫

Ω

C(φ)∇u(m+1) ·∇ψ

+γ−1

∫

Ω

B(φ)G′′(u(m))u(m+1)ψ+
γα

∆tm

∫

Ω

B(φ)u(m+1)ψ

=
γα

∆tm

∫

Ω

B(φ)u(m)ψ−γ−1

∫

Ω

B(φ)(G′(u(m))−G′′(u(m))u(m))ψ

for all ψ∈Xd :=
{
ψ∈H1(Ω) : ψ|∂Ω periodic

}
. To discretize in space, let Th be a

conforming triangulation of Ω. Define the finite element space of globally continuous,
piecewise linear elements Vh ={vh∈Xd : vh|T ∈P1 ∀T ∈Th}. The space discretization
now reads: Find u

(m+1)
h ,µ

(m+1)
h ∈Vh such that

1
∆tm

∫

Ω

B(φ)u(m+1)
h ψ+ν

∫

Ω

C(φ)∇µ
(m+1)
h ·∇ψ

=
1

∆tm

∫

Ω

B(φ)u(m)
h ψ,

−
∫

Ω

B(φ)µ(m+1)
h ψ+γ

∫

Ω

C(φ)∇u
(m+1)
h ·∇ψ

+γ−1

∫

Ω

B(φ)G′′(u(m)
h )u(m+1)

h ψ+
γα

∆tm

∫

Ω

B(φ)u(m+1)
h ψ

=
γα

∆tm

∫

Ω

B(φ)u(m)
h ψ−γ−1

∫

Ω

B(φ)(G′(u(m)
h )−G′′(u(m)

h )u(m)
h )ψ

for all ψ∈Vh. These lead to a linear system of equations for U (m+1) and W (m+1),
with u

(m+1)
h =

∑
U

(m+1)
i ψi and µ

(m+1)
h =

∑
W

(m+1)
i ψi

1
∆tm

MU (m+1) +νAW (m+1) =
1

∆tm
MU (m),

−MW (m+1) +γAU (m+1) +γ−1GiU (m+1) +
γα

∆tm
MU (m+1) =

γα

∆tm
MU (m)

−γ−1Ge

with

M =(Mij)Mij =(B(φ)ψi,ψj)Ω,

A=(Aij)Aij =(C(φ)∇ψi,∇ψj)Ω,

Gi =(Gi
ij)G

i
ij =(B(φ)G′′(u(m)

h )ψi,ψj)Ω,

Ge =(Ge
i )G

e
i =(B(φ)(G′(u(m)

h )−G′′(u(m)
h ))u(m)

h ,ψi)Ω,
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where (·,·)Ω denotes the L2 scalar product. Thus, written in block-matrix-form the
linear system

(
νA 1

∆tm
M

−M γA+γ−1Gi + γα
∆tm

M

)(
W (m+1)

U (m+1)

)
=

(
1

∆tm
MU (m)

γα
∆tm

MU (m) +γ−1Ge

)

has to be solved in every timestep. The system is not symmetric and is iteratively
solved by a stabilized bi-conjugate gradient method (BiCGStab). In order to verify
the regularity of the system matrix on the left hand side of the above system we
assume that (W,U) is a solution of the homogeneous linear system. We denote the
corresponding functions in Vh by µh and uh. Then we arrive at the homogeneous
system

1
∆tm

∫

Ω

B(φ)uhψ+ν

∫

Ω

C(φ)∇µh ·∇ψ =0, (4.1)

−
∫

Ω

B(φ)µhψ+γ

∫

Ω

C(φ)∇uh ·∇ψ (4.2)

+γ−1

∫

Ω

B(φ)G′′(uh)uhψ+
γα

∆tm

∫

Ω

B(φ)uhψ =0

for all ψ∈Vh. Then we obtain by testing (4.1) equation with µh

1
∆tm

(B(φ)uh,µh)Ω +ν(C(φ)∇µh,∇µh)Ω =0

and therefore

(B(φ)uh,µh)Ω≤0. (4.3)

Now we test (4.2) with uh and arrive at

−(B(φ)uh,µh)Ω +
αγ

∆tm
(B(φ)uh,uh)Ω

+γ(C(φ)∇uh,∇uh)Ω +γ−1(B(φ)G′′(uh),uh)Ω =0.

Using (4.3) and

(C(φ)∇uh,∇uh)Ω≥0

one gets with ‖uh‖Ω :=
√

(uh,uh)Ω

αγδ

∆tm
‖uh‖2Ω≤γ−1|Ω|1/2max(B)max(|G′′|)‖uh‖Ω.

If we choose ∆tm sufficiently small we obtain ‖uh‖Ω =0 and therefore uh =µh =0
showing the regularity of the system matrix in the above linear system.

4.2. Adaptivity. Adaptive mesh refinement is a key ingredient to an effi-
cient algorithm for this class of problems, because it helps to reduce the amount of
additional work the extra dimension requires. Outside the diffuse interface region
the mesh can be rather coarse, without influencing the solution on the surface. As a
first approach towards an adaptive scheme we therefore choose a jump residual as an
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Fig. 4.1. Adaptively refined mesh (cross section): (left) sphere, (right) torus.

indicator, to refine the mesh. An error estimate for the viscous Cahn-Hilliard equa-
tion itself, accounting for different grid refinements within the diffuse interface, has
not been used yet. Thus the grid is homogeneous within the diffuse interface, with
approximately p=5 grid points in the interface region, which corresponds to h≈0.04.
Fig. 4.1 shows the grid used in the computations.

Furthermore a simple strategy of time adaptivity is used, where the timestep is
inversely proportional to the maximum of the normal velocity of the Cahn-Hilliard
interface leading to timesteps ∆tm∈ [10−5,10−4]. This means that the timesteps are
increased by approximately one order of magnitude compared to a restriction of order
h4≈2.56 ·10−6 an explicit scheme would require.

5. Simulation results
The method is implemented in AMDiS [22]. As in the simulations shown in Fig.

1.1 we use as initial conditions a small zero mean perturbation of u=0.5. Again
the sphere is given as the level set φ=1/2 of the function (2.19), and in the case of
the torus we have used a slightly more complicated tanh-construction than for the
sphere. Fig. 5.1 shows the evolution of the diffuse interface approximation of the
viscous Cahn-Hilliard equation on a surface. The figure shows the value of u on the
1/2-level set of the phase-field variable φ. The simulation results agree very well with
the results shown in Fig. 1.1 at corresponding timesteps, where in all cases we have
used the parameters γ =0.05 and α=ν =1.0 and for the diffuse interface approach
ε=0.1 and δ =10−5.

The phase-field variable φ is in both cases constructed by hand. For more complex
geometries this is unfeasible. In these cases an indicator function I(x), with I(x)=0
on one side of the surface Γ and I(x)=1 on the other side, can be used as an initial
function for φ. To construct an appropriate phase-field variable to represent the
surface, a few time steps of

φt = ε−1∇·((δ(ε)+B(φ))∇µ),
µ=−ε∆φ+ε−1G′(φ)

can be performed. The equation will smear out the initial function at the beginning,
without changing the 1/2-level set too much.
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Fig. 5.1. Coarsening in the viscous Cahn-Hilliard equation (diffuse interface approximation).
Dark denotes u=0 and light denotes u=1. (top) Evolution on a sphere at timesteps t=1.3 ·10−3,
t=4.4 ·10−3, t=1.2 ·10−2 and t=1.8 ·10−1, (bottom) evolution on a torus at timesteps t=1.4 ·10−3,
t=5.4 ·10−3, t=2.0 ·10−2 and t=7.4 ·10−2.

6. Conclusion
We have presented a new approach to solve PDEs on surfaces. The problem is

reformulated on a larger domain in one higher dimension and is based on a diffuse
interface approximation. The surface is the 1/2-level set of a phase-field variable.
Formal matched asymptotics show the convergence to the PDE on the surface
as the diffuse interface width shrinks to zero. The method is applied to a linear
diffusion problem, which serves as a benchmark and to a nonlinear fourth-order
problem to demonstrate its applicability for a general class of PDEs. The approach
is here restricted to stationary surfaces, however the way to include motion of the
surface is straight forward and is under investigation [20]. The introduced diffuse
interface approach has the same advantages as the level set method to solve an
Eulerian representation of the PDE on the surface. Especially with the use of
an adaptive grid, it can compete with the common narrow-band approach in the
level set method. Furthermore, due to the decoupling of the surface representation
through the phase-field variable φ and the evolution equation, the method is much
more insensitive on the way data are extended away from the surface, and the initial
properties of φ remain unchanged throughout the simulation.
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