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TRANSPORT IN SEMICONDUCTORS AT SATURATED
VELOCITIES∗

JAN HASKOVEC† AND CHRISTIAN SCHMEISER‡

Abstract. A model for the transport of electrons in a semiconductor is considered where the
electrons travel with saturation speed in the direction of the driving force computed self consis-
tently from the Poisson equation. Since the velocity is discontinuous at zeroes of the driving force,
an interpretation of the model in the distributional sense is not necessarily possible. For a spatially
one-dimensional model existence of distributional solutions is shown by passing to the limit in a regu-
larized problem corresponding to a scaled drift-diffusion model with a velocity saturation assumption
on the mobility. Several explicit solutions of the limiting problem are computed and compared to
the results of numerical computations.
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1. Introduction
We investigate initial-boundary value problems for the system

∂2Φ
∂x2

=n−C , (1.1)

∂n

∂t
+
∂

∂x

(
nsign

∂Φ
∂x

)
=0, (1.2)

for the unknown functions Φ(x,t), n(x,t), with 0<x<1, t>0. The function C(x)>0
is considered given. The system (1.1), (1.2) can be interpreted as a model for the
one-dimensional flow of electrons (density n) in a semiconductor crystal with built-in,
positively charged background ions (density C) under the action of an electric field
−∂Φ

∂x . The electrostatic potential Φ satisfies the Poisson equation (1.1), and the field
dependent drift velocity of the electrons is given by sign∂Φ

∂x .
Of course, some interpretation of the equation (1.2) is necessary since the drift

velocity is in general discontinuous even for smooth electric fields. In [8] a theory for
transport equations ∂n

∂t + ∂(nv)
∂x =0 with given non-smooth coefficients v(x,t) has been

developed (see also [2], [3]). Solutions are constructed in the form of time dependent
measures transported along Filippov characteristics x=X(t), defined by appropriately
generalized [4] solutions of

Ẋ(t)=v(X(t),t).
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In the neighbourhood of jumps of v with respect to x, three typical types of behaviour
can be distinguished:

1. The characteristics pass through the jump from left to right or from right
to left. In this case, the solution in the neighbourhood of the jump can be
interpreted in the distributional sense. This is the typical situation for shock
waves in nonlinear hyperbolic equations. Note that the Filippov character-
istics (which have the interpretation of particle paths) are different from the
standard characteristics in this case.

2. The characteristics move into the jump from both sides. In this case, concen-
tration occurs at the jump. The solution n is a Delta distribution, and the
definition of the flux nv is not obvious (see [7]).

3. The characteristics move out of the jump on both sides. Then the Filippov
characteristics and, consequently, solutions of the transport equation exist,
but are not unique.

These comments are only partially relevant for solutions of (1.1), (1.2) because of the
self consistent nonlinear coupling. It is plausible that concentration is inhibited by
the Coulomb interaction. We expect that only case 1 will occur.

Our analysis below shows that the nonlinear coupling generically leads to solutions
where the field vanishes in subsets of (0,1)×(0,∞) of positive measure. This raises
the question which value the drift velocity takes in such regions. As a first step, the
sign function will be considered as set valued with

signE=



{1}, E >0,
{−1}, E <0,
[−1,1] , E=0,

and (1.2) will be replaced by

∂n

∂t
+
∂

∂x
(nv)=0, v∈ sign

∂Φ
∂x

. (1.3)

If ∂Φ/∂x=0 in an open domain, then n=C and, consequently, ∂(vC)/∂x=0 holds
there. In the examples in section 4 this provides sufficient information for the com-
putation of v.

Also the evaluation of the product nv can be avoided by rewriting (1.3) even
further:

∂n

∂t
+
∂

∂x

(
∂

∂x

∣∣∣∣∂Φ
∂x

∣∣∣∣+vC
)

=0, v∈ sign
∂Φ
∂x

. (1.4)

The formal equivalence of (1.1), (1.4) to (1.1), (1.2) is obvious.
In section 2 a regularized version of (1.1), (1.2) is derived by scaling a version

of the semiconductor drift-diffusion model with a velocity saturation assumption on
the (field dependent) mobility. Existence, uniqueness and smoothness of solutions of
appropriate initial-boundary value problems has been shown in previous work (see [6]
for references).

In section 3, uniform estimates in terms of the regularization parameter are de-
rived and the limiting procedure is carried out proving convergence to solutions of
(1.1), (1.4).
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Finally, four typical weak solutions of the limiting problem in the form (1.1),
(1.3) are computed explicitly in section 4. As an illustration they are compared with
numerical solutions of the regularized problem.

2. Scaling. The regularized problem
In the drift-diffusion model (see, e.g., [6])

εs
∂2Φ
∂x2

= q(n−C), (2.1)

∂n

∂t
=

∂

∂x

(
D
∂n

∂x
−nv∞v

(
1

Eref

∂Φ
∂x

))
, (2.2)

the parameters εs, q, D, v∞, Eref denote the semiconductor permittivity, the elemen-
tary charge, the diffusivity of the electrons, the saturation velocity and, respectively,
a reference field strength. The dimensionless function v is assumed to be smooth and
to satisfy

v′(s)>0, lim
s→±∞v(s)=±1. (2.3)

A typical model is (see [1] for a derivation from a kinetic model)

v(s)=
s√

1+s2
.

Assuming the equations to be posed on a space interval of length L, we scale length
by L, time by L/v∞, the potential by L2Erefv∞/D, and the densities n and C by
εsErefv∞/(qD). The dimensionless parameter

ε=
D

Lv∞

measures the strength of the diffusion term in relation to the convection term in (2.2).
The scaled version of (2.1), (2.2) reads

∂2Φ
∂x2

=n−C , (2.4)

∂n

∂t
=

∂

∂x

(
ε
∂n

∂x
−nv

(
1
ε

∂Φ
∂x

))
, (2.5)

where, for notational simplicity, the same symbols as in (2.1), (2.2) have been used
for the scaled quantities. We shall be interested in situations where ε is small and
C(x) takes moderate (positive) values. Obviously, (1.1), (1.2) is the formal limit of
(2.4), (2.5) as ε→0.

The system (2.4), (2.5) will be considered for 0<x<1 and t>0, subject to the
initial condition

n(x,0)=nI(x), (2.6)

and boundary conditions

n(0,t)=nl(t), n(1,t)=nr(t), Φ(0,t)=0, Φ(1,t)=U(t), (2.7)
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where the data satisfy

nI ,C ∈L∞((0,1)), nl,nr ∈W 1,1
loc ([0,∞)),

nI ,nl,nr≥0, U ∈H1
loc([0,∞)). (2.8)

Global existence and uniqueness of a smooth solution of (2.4)–(2.7) with n≥0 is by
now a standard result of the theory of the drift-diffusion model [6]. In the following
section the limit ε→0 will be carried out.

3. The limiting problem
We start by deriving uniform estimates.

Lemma 3.1. Assume (2.3) and (2.8) and let (n,Φ) be the solution of (2.4)–(2.7).
Then n and, consequently, ∂2Φ

∂x2 are bounded in L∞loc([0,1]× [0,∞)) uniformly in terms
of ε>0.

Proof. Expanding the derivatives in (2.5) and using the Poisson equation gives

∂n

∂t
=ε

∂2n

∂x2
− ∂n

∂x
v− nv′

ε
(n−C).

With (2.3) and (2.8), an application of the maximum principle immediately implies

0≤n(x,t)≤max{sup
(0,1)

nI , sup
(0,1)

C, sup
(0,t)

nl, sup
(0,t)

nr}.

This proves the claim for n. The boundedness of ∂2Φ
∂x2 is a trivial consequence of the

Poisson equation.

Lemma 3.2. With the assumptions of Lemma 3.1, ε∂n
∂x and ∂2Φ

∂x∂t are bounded in
L2

loc([0,1]× [0,∞)) uniformly for small ε>0.

Proof. Multiplication of (2.5) by n−nD =n−nl +x(nl−nr) and integration by
parts gives

1
2

∫ 1

0

(n−nD)2dx
∣∣T
t=0

=−ε
∫ T

0

∫ 1

0

(
∂n

∂x

)2

dxdt+
∫ T

0

∫ 1

0

nv
∂n

∂x
dxdt

−
∫ T

0

∫ 1

0

(n−nD)
∂nD

∂t
dxdt+ε

∫ T

0

(nr−nl)2dt

−
∫ T

0

(nr−nl)
∫ 1

0

nvdxdt. (3.1)

With nv ∂n
∂x ≤ ε

2

(
∂n
∂x

)2
+ 1

2ε (nv)2, the first two terms of the right hand side can be
estimated from above by

−ε
2

∫ T

0

∫ 1

0

(
∂n

∂x

)2

dxdt+
1
2ε

∫ T

0

∫ 1

0

(nv)2dxdt.

Since n, v, and (by assumption 2.8) also the remaining terms on the right hand side
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of (3.1) are uniformly bounded, this completes the proof of the uniform boundedness
of ε∂n

∂x . Now we take the derivative of the Poisson equation (2.4) with respect to
t, substitute for ∂n

∂t from (2.5) and integrate with respect to x. The result is the
displacement current relation

∂2Φ
∂x∂t

=ε
∂n

∂x
−nv+

∫ 1

0

nvdx+U ′+ε(nl−nr).

The lemma now follows from our previous estimates and the assumptions (2.8) on the
data.

By the previous two results, the spatial derivative of the electric field ∂Φ
∂x is

bounded in L∞ and the time derivative is bounded in L2. The following anisotropic
generalization of the Morrey inequality provides information on the smoothness of
∂Φ
∂x .

Lemma 3.3. ([5]) Let Ω⊂ IRn be an interval and let

∂u

∂xj
∈Lpj (Ω), 1<pj≤∞, j=1,...,n, with α :=

n∑
j=1

1
pj
<1.

Then

|u(x)−u(y)|
|x−y|β ≤ 2

β

n∑
j=1

∥∥∥∥ ∂u∂xj

∥∥∥∥
Lpj (Ω)

∀x,y∈Ω,

holds with

β=
1−α

1−α+n/minj pj
.

Corollary 3.1. With the assumptions of Lemma 3.1, ∂Φ
∂x is bounded in

C
0,1/3
loc ([0,1]× [0,∞)) uniformly for small ε>0.

Now we turn to the limit ε→0. By the boundedness of n (Lemma 3.1) and of v (by
|v|<1), we have convergence of n and v to n0 and, respectively, v0 in L∞((0,1)×(0,T ))
weak* for T <∞ (for a subsequence). Also Corollary 3.1 implies uniform convergence
of ∂Φ

∂x to ∂Φ0
∂x in [0,1]× [0,T ] (again for a subsequence). Obviously we can pass to the

limit in the Poisson equation (2.4).
The weak formulation of the continuity equation (2.5) can be written as

−
∫ 1

0

ψ(t=0)nIdx−
∫ ∞

0

∫ 1

0

n
∂ψ

∂t
dxdt

=
∫ ∞

0

∫ 1

0

[
εn
∂2ψ

∂x2
−εV

(
1
ε

∂Φ
∂x

)
∂2ψ

∂x2
+v
(

1
ε

∂Φ
∂x

)
C
∂ψ

∂x

]
dxdt, (3.2)

with ψ∈C∞0 ((0,1)× [0,∞)) and any primitive V of v. It is easily shown that εV (z/ε)
converges to |z| uniformly in bounded z-intervals. This implies uniform convergence
of εV

(
1
ε

∂Φ
∂x

)
to
∣∣∂Φ0

∂x

∣∣ in supp(ψ). Also, v
(

1
ε

∂Φ
∂x

)
converges to sign

(
∂Φ0
∂x

)
pointwise in

supp
(

∂Φ0
∂x

)
and, thus, v0 is an element of (the set valued) sign

(
∂Φ0
∂x

)
.
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As a consequence of these observations we can pass to the limit in (3.2), showing
that (n0,Φ0,v0) is a weak solution of the system (1.1), (1.4) subject to the initial
conditions (2.6). Also, by the uniform convergence, the limiting potential satisfies the
boundary conditions for Φ in (2.7). We collect our results in the following theorem.

Theorem 3.4. Assume (2.3) and (2.8) and let (n,Φ) be the solution of (2.4)–(2.7).
Then, as ε→0, restricting to subsequences,

n→n0 in L∞loc([0,1]× [0,∞)) weak *,

v

(
1
ε

∂Φ
∂x

)
→v0 in L∞loc([0,1]× [0,∞)) weak *,

Φ→Φ0 in C1
loc([0,1]× [0,∞)),

where (n0,v0,Φ0) solve (1.1), (1.4) (in the sense of distributions), (2.6), Φ0(0,t)=0,
and Φ0(1,t)=U(t).

Our estimates do not allow to pass to the limit in the boundary conditions (2.7)
for the density. This was to be expected since the limiting transport equation is
hyperbolic. The limiting problem becomes formally well posed for inflow boundary
conditions of the form

n0(0,t)=nl(t), for v0(0,t)>0,
n0(1,t)=nr(t), for v0(1,t)<0.

For v0(0,t)≤0 (v0(1,t)≥0), no boundary condition can be prescribed at x=0 (x=1).

4. Some Typical Solutions
In this section we compute solutions of the problem

∂2Φ
∂x2

=n−1, (4.1)

∂n

∂t
+
∂

∂x
(nv)=0, v∈ sign

(
∂Φ
∂x

)
, (4.2)

for x∈ (0,1), t>0, subject to the initial conditions

n(x,0)=nI =const, (4.3)

and to the boundary conditions

Φ(0,t)=0, Φ(1,t)=U >0, (4.4)
n(0,t)=0, for v(0,t)>0, (4.5)
n(1,t)=1, for v(1,t)<0. (4.6)

Uniqueness of solutions is only a conjecture and we do not make any claims in that
direction. Consequently, some assumptions about the structure of the solution are
introduced without justification in the following, although in some cases heuristic
arguments are available. Support for our results will also be provided by comparisons
with numerical results for the regularized problem (2.4)–(2.7). These are computed
using a fractional time step approach where (4.1), (4.4) as a problem for Φ and (4.2),
(4.5), (4.6) as a problem for n, are solved consecutively. An explicit finite difference
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method is used to solve (4.2), with upwinding for the convection terms, 104 equidistant
grid points in the spatial direction, regularization parameter ε=10−4, and time steps
according to the CFL limit ∆t=∆x.

A possible physical interpretation of the problem is that the x-interval [0,1] rep-
resents the n-region of a pn-diode with the pn-junction located at x=0 and a contact
at x=1. In this interpretation the positivity of the applied voltage U means reverse
bias, where current flow through the diode is expected to be blocked in a steady state.
For U < 1

2 , a steady state solution is given by

ns(x)=
{

0, for 0<x<
√

2U ,
1, for

√
2U <x<1,

Φs(x)=
{
x
√

2U−x2/2, for 0<x<
√

2U ,
U , for

√
2U <x<1,

(4.7)

vs(x)=
{

1, for 0<x<
√

2U ,
0, for

√
2U <x<1.

The value of vs for x>
√

2U is chosen by making the flux nsvs constant (nsvs =0, as ex-
pected). The occurrence of the depletion region (0,

√
2U) is a well known phenomenon

in semiconductor physics. For U > 1
2 , the depletion region covers the whole interval

[0,1]. In physically more accurate models (e.g., the bipolar drift-diffusion model over
the full length of the diode), the approximative boundary condition ns(0)=0 breaks
down in this case and the diode looses its ability to block the current, a phenomenon
called punch through in the semiconductor literature (see [6]).

The explicit solution

Φ(x,t)=Ux+
∫ 1

0

g(x,ξ)(n(ξ,t)−1)dξ (4.8)

of the Poisson problem (4.1), (4.4), with the Green’s function

g(x,ξ)=
{
x(ξ−1), for x<ξ ,
ξ(x−1), for x>ξ ,

will be used in the following. The only information we need to extract from this
formula is the sign of the electric field.

Initially (at t=0), three generic cases occur. For 2U > |nI−1| (the high volt-
age case), the initial potential Φ(x,0) is strictly monotonically increasing (implying
v(x,0)=1). On the other hand, for 0<2U < |nI−1|, the initial field ∂Φ

∂x (x,0) changes
sign at

x=x0 =
1
2

+
U

1−nI
∈ (0,1). (4.9)

Depending on the convexity properties of the initial potential, we distinguish between
the compressive case (2U <1−nI) and the expansive case (2U <nI−1).

In terms of the qualitative behaviour of solutions of the problem (4.1)–(4.6), we
arrive at a further subdivision of the parameter region defined by U >0 and nI >0
into seven subregions, as shown in the following picture:
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0 n I1 2 3

U

1
2

1

HV III SE II

C

HV II HV I SE I

WE

diagram.01

Legend:

C - compressive
WE - weakly expansive
SE - strongly expansive
HV - high voltage

We shall not discuss HV II, HV III, and SE II in the following. In these cases
the solution is qualitatively similar to HV I and SE I, respectively. Apart from that,
the solution for U > 1

2 (cases HV III and SE II) is of limited physical interest, as
mentioned above.

The remaining four cases are discussed in the following sections:

4.1. The compressive case: nI <1, 2U <1−nI . In this case the initial
potential is concave with

v(x,0)=sign(x0−x).
Initially, the characteristics of (4.2) are pointing inwards at the boundaries and both
conditions (4.5) and (4.6) are effective. Close to x=0, t=0, the density is given by

n(x,t)=
{

0, for 0<x<t,
nI , for 0<t<x,

and similarly close to x=1, t=0. Less clear is what happens close to x=x0. Assuming
a tendency to charge neutrality, we construct a solution of the form

n(x,t)=




0, for 0<x<t,
nI , for t<x<x1(t),
1, for x1(t)<x<x2(t),
nI , for x2(t)<x<1− t,
1, for 1− t<x<1,

(4.10)

with x1(0)=x2(0)=x0. This representation is valid for t<t0, where at t= t0 at least
one of the above subregions vanishes: t0 =x1(t0) or x1(t0)=x2(t0) or x2(t0)=1− t0.

The maximum of the potential at x=x0 is assumed to develop into a plateau
between x1(t) and x2(t):

∂Φ
∂x

(x,t)=0 for x1(t)≤x≤x2(t). (4.11)

After substitution of (4.10) into (4.8), (4.11) gives

t2−2U+(1−nI)(x2
1−(1−x2)2)=0. (4.12)
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Since in the plateau region the field vanishes, the values of v are not determined.
However, from n=1 and from the transport equation (4.2) we obtain v(x,t)= v̄(t) for
x1(t)<x<x2(t). Looking for a weak solution of (4.2), the Rankine-Hugoniot jump
relations at x=x1(t) and at x=x2(t),

ẋ1(nI−1)=nI− v̄ , ẋ2(1−nI)= v̄+nI , (4.13)

have to be satisfied (in general: ẋj [n]= [nv], where [·] denotes the jump of a quantity
across x=xj). Elimination of v̄ from this system and subsequent integration with
respect to time gives (1−nI)(x2−x1)=2nIt. From this equation and from (4.12) we
compute x1 and x2:

x1(t)=
1
2

+
U− t2/2

1−nI−2nIt
− nIt

1−nI
,

x2(t)=
1
2

+
U− t2/2

1−nI−2nIt
+

nIt

1−nI
.

The velocity in the plateau region is given by

v̄(t)=
nI(x1(t)+x2(t)−1)− t

x1(t)+1−x2(t)
.

For the condition v∈ sign∂Φ
∂x , it remains to show that |v̄|≤1 holds. Using t≤x1 and

x2≤1, which holds in the domain of validity of the ansatz (4.10), we easily show

−1<−max{nI , 1−nI}≤ v̄(t)≤nI <1.

Finally, straightforward estimates give

ẋ1<v̄, 1, ẋ2>v̄,−1,

and, thus, that the Filippov characteristics move through the discontinuity at x=x1(t)
from left to right and at x=x2(t) from right to left.

As the next step we check, when the solution of the form (4.10) ceases to exist. It
is easily shown that for 8U =(1−nI)2 both x1(t)= t and x2(t)=1− t happen at the
same time. We shall consider the situation

8U > (1−nI)2 ,

where a t0>0 exists with x2(t0)=1− t0 and x1(t0)>t0. Note that at t= t0, the
plateau of the potential stretches from x=x1(t0) to x=1. For t>t0 the ansatz (4.10)
is replaced by

n(x,t)=




0, for 0<x<t,
nI , for t<x<x1(t),
1, for x1(t)<x<1.

(4.14)

Now x1(t) can be computed from the requirement ∂Φ
∂x (x1(t),t)=0:

x1(t)=

√
2U−nIt2

1−nI
,
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and v(x,t)= ṽ(t), x1(t)<x<1, from the Rankine-Hugoniot condition at x=x1(t):

ṽ(t)=nI

(
1− t

x1(t)

)
.

For t1 =
√

2U , x1(t1)= t1 and ṽ(t1)=0 hold. The region where n takes the initial
value nI vanishes, and the solution for t>t1 is equal to the steady state (4.7). Thus,
the steady state is reached in finite time.

Finally, we present the results of numerical simulations for this case (with nI =0.3
and U =0.12) in the four qualitatively different stages of the evolution process:

0   0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

0.2

0.4

0.6

0.8

1

t=0.00 (initial) t=0.12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

0.2

0.4

0.6

0.8

1

t=0.25 t=0.49 (steady)

4.2. The high voltage case: 1<nI <2, nI−1<2U <1. Now an initial
density above the equilibrium value 1 is assumed. The assumptions on the voltage
imply a strictly monotone initial potential and the existence of a steady state solution
of the form (4.7). By ∂Φ

∂x (x,0)>0, the density for small times is given by

n(x,t)=
{

0, for 0<x<t,
nI , for t<x<1.

The strict positivity of the field holds until

t= t0 =
nI−1+

√
2UnI−nI +1
nI

<1,

whence

min
x∈[0,1]

∂Φ
∂x

(x,t0)=
∂Φ
∂x

(t0,t0)=0.
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For t>t0, we construct a solution of the form

n(x,t)=




0, for 0<x<x1(t),
1, for x1(t)<x<x2(t),
nI , for x2(t)<x<1,

with

∂Φ
∂x

(x,t)=0, v(x,t)= v̄(t), for x1(t)<x<x2(t).

From this ansatz and from the Rankine-Hugoniot jump conditions at x=x1 and at
x=x2, the equations

2U =x2
1 +(nI−1)(1−x2)2 , x1 +x2(nI−1)=nIt,

determining x1(t) and x2(t), can be derived. For

t= t1 =
nI−1+

√
2U

nI
,

x2(t1)=1 and x1(t1)=
√

2U hold and, thus, the steady state (4.7) is again reached in
finite time.

Again, we include results of our numerical simulations for this case (with the data
nI =1.1 and U =0.1) in the four qualitatively different stages of the evolution process:
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4.3. The strongly expansive case: nI >1, nI−1<2UnI < (nI−1)nI . Now
(by the last inequality) the initial field vanishes at x=x0 (see (4.9)). We construct
a solution where the density is not piecewise constant as in the preceding cases, but
(for small times) given by

n(x,t)=



nI , for 0<x<x1(t),
ñ(x− t−x0), for x1(t)<x<x0 + t,
nI , for x0 + t<x<1.

The potential remains convex with ∂Φ
∂x (x1(t),t)=0. With the ansatz for the density,

this equation can be written as

U+
nI−1

2
(
x2

1−(1−x0− t)2
)
+
∫ 0

s(t)

(η+ t+x0−1)(ñ(η)−1)dη=0,

with s(t)=x1(t)−x0− t. Introducing s as a new variable (instead of the time t),
differentiation with respect to s gives

x1(nI +1)−(1−x0− t)(nI−1)+
2nI(ñ(s)−1)
nI− ñ(s)

+
∫ s

0

(ñ(η)−1)dη=0, (4.15)

where the Rankine-Hugoniot condition at x=x1(t), ẋ1(nI− ñ(s))=−nI− ñ(s), has
been used for the computation of

dx1

ds
=
ẋ1

ṡ
=

ẋ1

ẋ1−1
=
nI + ñ
2nI

and

dt

ds
=−nI− ñ

2nI
.

With s=0 we obtain

ñ(0)=nI
nI +1−2x0nI

3nI−1−2x0nI
, (4.16)

lying between 1 and nI . A further differentiation of (4.15) with respect to s leads to
a differential equation for ñ:

ñ′=− ñ(nI− ñ)2

nI(nI−1)
. (4.17)

The initial value problem (4.16), (4.17) has to be solved for s<0. Then x1(t) can be
determined from

ẋ1 =−nI + ñ(x1−x0− t)
nI− ñ(x1−x0− t) , x1(0)=x0 .

Here we stop the explicit computations for this case. The further qualitative behaviour
of the solution is as follows: Eventually, the location x=x1(t) of the minimum of the
potential reaches the left boundary x=0. After that, the potential is monotonically
increasing (as a function of x), and the solution qualitatively behaves like in the
preceding high voltage case.
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Finally, we present the results of numerical simulations for this case (with nI =2.0
and U =0.3) in the six qualitatively different stages of the evolution process:
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4.4. The weakly expansive case: 0<2UnI <nI−1. Again, the initial field
vanishes at x=x0. For small times, the density now has the form

n(x,t)=



nI , for 0<x<x1(t),
1, for x1(t)<x<x2(t),
nI , for x2(t)<x<1,

with a plateau region for the potential:

∂Φ
∂x

(x,t)=0, v(x,t)= v̄(t), for x1(t)<x<x2(t).
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Similarly to the compressive case, the jump locations and the velocity in the plateau
region can be computed from the jump conditions:

x1(t)=
1
2
− U

nI−1−2nIt
− nIt

nI−1
,

x2(t)=
1
2
− U

nI−1−2nIt
+

nIt

nI−1
,

v̄(t)=
2nIU(nI−1)

(nI−1−2nIt)2
.

The inequalities characterizing the weakly expansive case guarantee 0<v̄(0)<1.
The above solution breaks down at

t= t0 =
nI−1
2nI

(
1−
√

2nIU

nI−1

)
,

whence v̄(t0)=1 holds. For t>t0, a unique minimum of the potential develops, and
a solution of the form

n(x,t)=



nI , for 0<x<x1(t),
ñ(x−x1(t0)− t+ t0), for x1(t)<x<x1(t0)+ t− t0 ,
1, for x1(t0)+ t− t0<x<x2(t0)+ t− t0 ,
nI , for x2(t0)+ t− t0<x<1,

can be constructed, with

∂Φ
∂x

(x1(t),t)=0.

The construction of ñ and the qualitative behaviour after t= t0 is similar to the
strongly expansive case.

The results of numerical simulations for this case (with nI =1.3 and U =0.08) in
the six different stages of the evolution process are shown in the next page.
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