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APPROXIMATE MODEL EQUATIONS FOR WATER WAVES∗

RAZVAN FETECAU† AND DORON LEVY‡

Abstract. We present two new model equations for the unidirectional propagation of long waves
in dispersive media for the specific purpose of modeling water waves. The derivation of the new
equations uses a Padé (2,2) approximation of the phase velocity that arises in the linear water wave
theory. Unlike the Korteweg-deVries (KdV) equation and similarly to the Benjamin-Bona-Mahony
(BBM) equation, our models have a bounded dispersion relation. At the same time, the equations
we propose provide the best approximation of the phase velocity for small wave numbers that can
be obtained with third-order equations. We note that the new model equations can be transformed
into previously studied models, such as the BBM and the Burgers-Poisson equations. It is therefore
straightforward to establish the existence and uniqueness of solutions to the new equations. We also
show that the distance between the solutions of one of the new equations, the KdV equation, and
the BBM equation, is of the small order that is formally neglected by all models.
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1. Introduction
The first published observation of a solitary wave (a single and localized wave)

was made by John Scott Russel on the Edinburgh-Glasgow canal in 1834. An account
of his observation is given in his 1844 report to the British Association [11]. In this
report, Russel describes how he followed a solitary water wave for more than one mile
on horseback, observing that the wave preserves its original shape. He also noted that
higher waves travel faster, that an initial profile evolves into several waves which then
move apart and approach solitary waves as time t→∞, and that solitary waves that
move with different speeds, undergo a nonlinear interaction from which they emerge
in their original shape.

In 1872, Joseph Boussinesq proposed a variety of possible models for describing
the propagation of water waves in shallow channels [3], including what is now referred
to as the Korteweg-deVries (KdV) equation

ut +ux +uux +uxxx =0. (1.1)

The form of equation (1.1) is non-dimensional: the physical parameters are scaled
into the definition of space x, time t, and the water velocity u(x,t). In his work,
Boussinesq found the first members of what is now known to be an infinite hierarchy
of conservation laws for (1.1). He also gave some evidence that the solutions to his
model resemble Russel’s solitary wave. In 1895 Korteweg and de Vries re-derived Eq.
(1.1) [10]. Their main contribution was in paying specific attention to the solitary
wave solution of (1.1).

While the KdV equation has remarkable properties [6], some other aspects of this
equation are less favorable. This includes, e.g., an unbounded dispersion relation, that
is obviously non-physical. Several noticeable attempts to improve the KdV model were
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taken over the years. In particular, we would like to mention two such models: the
Benjamin-Bona-Mahony (BBM) equation [1] and the Camassa-Holm (CH) equation
[4, 8]. The BBM equation,

ut +ux +uux−uxxt =0, (1.2)

replaces the third-order derivative in (1.1) by a mixed derivative, −uxxt, which, in
turn, results in a bounded dispersion relation. This boundedness was utilized to prove
existence, uniqueness, and regularity results for solutions of the BBM equation [1].
Most of these results are by now also known for the KdV equation (see [5] and the
references therein). A second model, the so-called Camassa-Holm (CH) equation,

ut +kux +3uux−uxxt−(2uxuxx +uuxxx)=0, k≥0, (1.3)

was derived from an asymptotic expansion of the Hamiltonian for the incompressible
Euler equations in the shallow water regime [4]. The CH equation is bi-Hamiltonian,
completely integrable and has an infinite number of conservation laws. BBM-like and
CH-like equations play a major role in the present study.

In this work we are interested in developing approximate models for water waves.
We present a framework for deriving such models, all of which are based on approx-
imating the linear theory dispersion relation. Some of the models that result from
our approach are well-known, such as the KdV, the BBM, and the Burgers-Poisson
equations. A couple of other (also third-order) models are derived in this paper for
the first time. These models are based on second-order Padé approximations. They
provide a better approximation of the dispersion relation for small wave numbers.

The structure of the paper is as follows: we start in Section 2 with a short review
of the linear water wave theory. The main goal here is to recall the dispersion relation
that is associated with this problem. A unified approach to weakly nonlinear waves
is then discussed in Section 3. Here, we use two different strategies to approximate
the dispersion relation derived in Section 2. First, we invoke the procedure that was
proposed by Whitham [13] for deriving a nonlinear equation from a given dispersion
relation. Using this strategy we obtain the KdV equation from a second-order Taylor
approximation, the Burgers-Poisson equation from a (0,2) Padé approximation (sim-
ilarly to what was done in [7]), and a new (third-order) model equation from a (2,2)
Padé approximation. This equation is referred to as the Padé-I equation. We then
follow Benjamin et al. [1], and use asymptotic expansions arguments to simplify the
model equation. In practice, this amounts to removing the same nonlinear terms that
one has to add to the BBM equation in order to turn it into the Burgers-Poisson
equation [7]. This procedure yields a simplified version of the new model equation,
which we refer to as the Padé-II equation.

In Section 4 we formulate the existence and uniqueness theory for the new Padé-I
and Padé-II equations. These results follow from a change of variables that transforms
the two equations into the BBM and the Burgers-Poisson equations. We also provide
a comparison between solutions of the KdV, BBM, and the Padé-II equations. This
analysis is based on the ideas of [2].

2. Linear water wave theory
The water wave equations. We consider a two-dimensional inviscid incompress-

ible fluid in a constant gravitational field. The space coordinates are (x,y) and the
gravitational acceleration g is in the negative y direction. Let h0 be the undisturbed
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depth of the fluid and let y=η(x,t) represent the free surface of the fluid (see Fig-
ure 2.1). We also assume that the motion is irrotational and let ϕ(x,y,t) denote the
velocity potential (u=∇ϕ).
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Fig. 2.1. Geometrical configuration for water waves

The divergence-free condition on the velocity field implies that the velocity po-
tential ϕ satisfies the Laplace’s equation [9]:

∂2ϕ

∂x2
+
∂2ϕ

∂y2
=0, for −h0<y<η(x,t). (2.1)

On a solid fixed boundary, the normal velocity of the fluid must vanish. For a hori-
zontal flat bottom, h0 is constant and we have

∂ϕ

∂y
=0, on y=−h0. (2.2)

The boundary conditions at the free surface y=η(x,t) are given by

∂ϕ

∂y
− ∂η

∂t
− ∂ϕ

∂x

∂η

∂x
=0, (2.3a)

∂ϕ

∂t
+

1
2

[(
∂ϕ

∂x

)2

+
(
∂ϕ

∂y

)2
]

+gη=0. (2.3b)

Equation (2.3a) is a kinematic boundary condition, while (2.3b) represents the conti-
nuity of pressure at the free surface, as derived from Bernoulli’s equation.

The linearized theory. We assume small perturbations of the water surface
that is initially at rest. In this case, η and ϕ are small, and the equations can be
linearized. The Laplace equation (2.1) and the boundary conditions (2.2) on the
bottom are already linear and are independent of η. Moreover, η can be eliminated
from the linear versions of (2.3a) and (2.3b). The linear problem for ϕ alone is:

∂2ϕ

∂x2
+
∂2ϕ

∂y2
=0, for −h0<y<0, (2.4a)

∂ϕ

∂y
=0, on y=−h0, (2.4b)

∂2ϕ

∂t2
+g

∂ϕ

∂y
=0, on y=0. (2.4c)

We assume a solution in the form of a sinusoidal wave

ϕ(x,y,t)= ϕ̂(y)ei(kx−ωt). (2.5)
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Then, (2.4a) yields the solution

ϕ̂(y)=Acoshk(y+h0)+B sinhk(y+h0), (2.6)

where A and B are arbitrary constants. The boundary condition (2.4b) implies B=0,
while the remaining condition (2.4c) gives the dispersion relation:

ω2 =gktanhkh0. (2.7)

This dispersion relation, (2.7), will play a critical role in the following sections.

3. A unified approach to weakly nonlinear waves
In this section we consider various approximations of the dispersion relation (2.7).

These approximations are then used to derive nonlinear PDEs for which the approx-
imation of (2.7) is the exact dispersion relation of the corresponding linear PDE.
Clearly, without any additional constraints on the nonlinear terms (or on the equa-
tion as a whole), there is no unique correspondence between a PDE and a given
approximate dispersion relation. Our starting point is the systematic way of invert-
ing the dispersion relation (and hence, picking a particular form of the PDE) given
by Whitham [13].

Following Whitham’s strategy, for a given arbitrary dispersion relation

ω

k
= c(k), (3.1)

a corresponding linear equation is given in [13, Section 13.14] as the integro-differential
equation

ut +
∫ ∞

−∞
K(x−ξ)uξ(ξ,t)dξ=0, (3.2)

with a kernel, K(x), that is given by

K(x)=
1
2π

∫ ∞

−∞
c(k)eikxdx. (3.3)

The dispersive effects can be then combined with nonlinear effects (see [13, Section
13.14]) to give:

ut +
3
2
c0
h0
uux +

∫ ∞

−∞
K(x−ξ)uξ(ξ,t)dξ=0. (3.4)

Here, h0 is the depth of the fluid and c0 =
√
gh0.

We are now ready to consider several small k approximations of the phase velocity,
c(k) (given by the linear water wave theory (2.7)),

c(k)= c0

√
tanh(kh0)

kh0
. (3.5)

We will discuss three such approximations: one truncated Taylor series and two Padé
approximations.
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Taylor expansion. We consider the Taylor expansion of (3.5) truncated to
second order:

c(k)= c0

(
1− 1

6
(kh0)2

)
= c0− 1

6
c0h

2
0k

2. (3.6)

Using (3.6) in (3.3) yields

K(x)= c0δ(x)+
1
6
c0h

2
0δ
′′(x). (3.7)

For K(x) given by (3.7), the PDE (3.4) reduces to the KdV equation:

ut +c0ux +
3
2
c0
h0
uux +

1
6
c0h

2
0uxxx =0. (3.8)

Padé (0,2). The Padé (0,2) approximation of (3.5) is given by

c(k)= c0
1

1+ 1
6h

2
0k

2
. (3.9)

The kernel K(x) that corresponds to (3.9) can be easily computed by recalling that
G(x)= 1

2αe
− |x|

α is the Green’s function for the operator L=Id−α2∂2
x. Its Fourier

transform Ĝ is given by Ĝ(k)= 1
1+α2k2 . Hence,

K(x)=
c0
√

6
2h0

e−
−√6|x|

h0 . (3.10)

With this kernel, the nonlinear dispersive wave equation (3.4) is the Burgers-
Poisson (BP) equation

ut +c0ux +
3
2
c0
h0
uux− 1

6
h2

0uxxt− 1
4
c0h0(3uxuxx +uuxxx)=0. (3.11)

Remark 3.1. Local and global existence for a scaled version of the BP equation (3.11)
were recently studied in [7]. This work contains also a detailed study of traveling
wave solutions of (3.11). Interestingly, this model was already considered by Whitham
in [13, Section 13.14], where he proposes to use the approximate kernel (3.10) in
the nonlinear wave equation (3.4). Nevertheless, we note that the equation (3.11) is
not explicitly written in [13]. It is also demonstrated in [13] that kernels like (3.10)
translate into PDE’s that feature wave breaking in finite time. The reason is that the
dispersive term in (3.11) is milder, making a sufficiently asymmetric hump break in
the typical hyperbolic manner.

Padé (2,2). The dispersion relation (3.5) is an even function, and hence the
Padé (1,2) is identical to the (0,2) case. The next case of interest is therefore the
Padé (2,2) approximation of (3.5), which is

c(k)= c0
1+ 3

20h
2
0k

2

1+ 19
60h

2
0k

2
. (3.12)

The kernel K(x) that corresponds to (3.12) is

K(x)= c0

[
9
19
δ(x)+

10
19

1
2β
e−

|x|
β

]
, (3.13)
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where β2 = 19
60h

2
0. Substituting (3.13) into (3.4), we obtain

ut +c0ux +
3
2
c0
h0
uux− 19

60
h2

0uxxt− 3
20
h2

0c0uxxx− 19
40
c0h0(3uxuxx +uuxxx)=0. (3.14)
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Fig. 3.1. Approximations of the scaled phase velocity c(k)=
q

tanhk
k

in the range of small k.

Remarks 3.2.
1. Figure 3.1 compares the different approximations of the function c(k)=√

tanhk
k . It is important to note that the Padé (2,2) approximation (3.12)

provides a better small k approximation for the phase velocity (3.5), while
keeping the phase velocity positive and the group velocity bounded.

2. The special interest we have in the Padé (2,2) approximation is due to the
fact that we can seemingly improve the quality of the approximation of the
dispersion relation for small k while still considering a third-order equation.
Higher-order Padé and Taylor approximations correspond to equations of or-
der higher than three. Taylor approximations of higher order have an asso-
ciated non-bounded phase velocity which is the main source of the theoretical
difficulties that are associated with the KdV equation.

3. The Padé (2,2) model, (3.14), does not seem to have been previously consid-
ered.

In order to simplify the nonlinear dispersive equations (3.8), (3.11) and (3.14),
we rescale u, x and t by 2

3 , 1√
6

and 1√
6
, respectively, and set h0 =1 and c0 =1. The

equations then become, respectively:

ut +ux +uux +uxxx =0, (3.15)

ut +ux +uux−uxxt−(3uxuxx +uuxxx)=0, (3.16)

ut +ux +uux− 9
10
uxxx− 19

10
uxxt− 19

10
(3uxuxx +uuxxx)=0. (3.17)

For future reference we label equation (3.17) the Padé-I equation.
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Other water wave models. We briefly overview a couple of other water wave
models that are related to this work.

BBM equation. The Benjamin-Bona-Mahony model, given by (1.2), was intro-
duced in [1] as an alternative to the KdV equation.

As stated in [1], the BBM equation represents, in important respects, a more
satisfactory model than the KdV equation. The main argument is that the phase
velocity ω/k and the group velocity dω/dk in the KdV model (see (3.6)) are not
bounded from below (as functions of k), which means that there is no control over the
rate at which the fine scale features are transmitted in the negative (−x) direction.
In contrast, the BBM equation has a phase velocity (see (3.9)) and a group velocity
both of which are bounded for all k. They also approach zero as k→∞.

Camassa-Holm equation. The Camassa-Holm equation (see (1.3)) was first ob-
tained by Fokas and Fuchssteiner [8] as a formally integrable bi-Hamiltonian nonlinear
PDE. Its physical derivation as a model for shallow water waves is due to Camassa
and Holm [4]. The derivation uses an asymptotic expansion in the Hamiltonian for
incompressible Euler equations in the shallow water regime.

While the terms in (1.3) correspond to those in (3.16), equation (1.3) has some
additional appealing features: it is completely integrable, it is bi-Hamiltonian and it
possesses an infinite number of conservation laws. Similarly to (3.16), for k=0, the
Camassa-Holm equation (1.3) admits peaked solitary wave solutions (peakons) given
by u(x,t)=σexp(−|x−σt|). In addition to permanent wave forms, it also features
breaking phenomena, which makes it an attractive model for shallow water waves.

BBM, KdV or Padé?
The derivation of the KdV equation in [1] uses a scaling of the variables u, x and

t, and a perturbation expansion argument in such a way that the dispersive and the
nonlinear effects become small. Such a scaled KdV equation reads:

ut +ux +ε(uux +uxxx)=0, (3.18)

where ε is a small perturbation parameter.
The main argument that was used in [1] to derive the BBM equation is that, to

the first order in ε, the scaled KdV equation (3.18) is equivalent to

ut +ux +ε(uux−uxxt)=0, (3.19)

as both equations reduce to ut +ux =0 at zero order.
While the derivation presented in [1] is formally valid, it is important to note

that the particular choice of the mixed derivative −uxxt as a replacement of uxxx

may seem arbitrary from the point of view of asymptotic expansions. Indeed, any
admissible combination1 of these two terms could be valid based on the zero-order
correspondence between the derivatives in space and time (ut =−ux).

An approximation theory point of view sheds a somewhat different light on this
argument. Based on the Padé approximations (3.9) and (3.12) of the linear water
wave phase velocity c(k) given by (3.5), it is clear that not every combination of the
two third-order terms is valid. In fact, the only valid choices (in addition to KdV),
are precisely (3.9) and (3.12).

1An admissible combination is a sum αuxxx−βuxxt, with α+β =1 (where α and β are not
necessarily positive).
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The Padé (0,2) approximation used in this BBM-type derivation yields the BBM
equation (3.19). By similar arguments, the same procedure can be repeated for the
Padé (2,2) approximation, to yield (compare with (3.17)):

ut +ux +ε
(
uux− 9

10
uxxx− 19

10
uxxt

)
=0. (3.20)

The parameter ε can be eliminated from equations (3.19) and (3.20) by rescaling
u, x and t with 1

ε ,
√
ε and

√
ε, respectively. With such a scaling, one obtains the form

(1.2) and

ut +ux +uux− 9
10
uxxx− 19

10
uxxt =0. (3.21)

We would like to emphasize that (3.21) is the third-order equation that provides
the best approximation of the dispersion relation (2.7) for small k. Together with
the Padé-I equation, (3.17), it will serve as the main model equation that will be
investigated in the next section. For future reference we label equation (3.21) as
Padé-II.

We conclude this section by noting that the linear part of the BBM equation
(1.2) can be obtained from (3.2) where K(x) is the Green’s function of the operator
Id−∂2

x. The nonlinear term uux, however, has to be added separately, unlike the case
of the Burgers-Poisson equation (3.16), which was derived using the unified Whitham
approach provided by (3.4). This fact emphasizes again the non-uniqueness of the
nonlinear terms in the various dispersive water wave models.

4. Analysis
We now discuss the analytical properties of the two PDE’s ((3.21) and (3.17))

that were derived from a Padé (2,2) approximation of the linear phase velocity.
Change of variables. Using the notation

a2 =
9
10
, b2 =

19
10
, p=

a2

b2
, (4.1)

equations (3.21) and (3.17) read, respectively:

ut +ux +uux−a2uxxx−b2uxxt =0, (4.2)

ut +ux +uux−a2uxxx−b2uxxt−b2(3uxuxx +uuxxx)=0. (4.3)

We now consider the following change of variables:

v(x,t)=u(bx+bpt,bt). (4.4)

Then (4.2) becomes

vt +(1−p)vx +vvx−vxxt =0, (4.5)

and (4.3) becomes

vt +(1−p)vx +vvx−vxxt−(3uxuxx +uuxxx)=0. (4.6)

Moreover, the coefficient 1−p can also be eliminated from (4.5) and (4.6) by substi-
tuting

v(x,t)=(1−p)U, t=
T

1−p . (4.7)

This change of variables transforms (4.5) into the BBM equation (1.2) and (4.6) into
the Burgers-Poisson equation (3.16).
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Existence and Uniqueness. As a result of this transformation, the existence and
uniqueness results for (3.21) and (3.17) (or (4.2) and (4.3) with the notations (4.1))
follow from the known results for the BBM and Burgers-Poisson equations [1, 7]. We
summarize these results below.

We start with an existence and uniqueness result for the Cauchy problem associ-
ated with (4.2): 


ut +ux +uux−a2uxxx−b2uxxt =0,

u(x,t=0)=u0(x).
(4.8)

We denote by CT the space of functions, v(x,t), that are continuous and uniformly
bounded on R× [0,T ]. The space Cl,m

T is the set of function v(x,t) such that ∂i
x∂

j
t v∈CT

for 0≤ i≤ l, 0≤ j≤m. Using these notations, Theorems 1 and 4 in [1] imply

Proposition 4.1. Let u0∈C2(R) and assume that
∫∞
−∞(u2

0 +u′20 )dx<∞. Then (4.8)
has a unique solution u∈C2,∞

∞ .

Remark 4.2. Note that Proposition 4.1 holds for any b 6=0.
We now consider the Cauchy problem associated with the Padé-I equation (4.3):


ut +ux +uux−a2uxxx−b2uxxt−b2(3uxuxx +uuxxx)=0,

u(x,t=0)=u0(x).
(4.9)

Using the change of variables (4.4), (4.7), the problem (4.9) reduces to the Cauchy
problem for the Burgers-Poisson equation (3.16). Hence, the results from [7, Theorem
4.1] imply the following

Proposition 4.3. Assume u0∈Hk(R) with k> 3
2 . Then, there exists a time T >0

such that (4.9) has a unique solution u∈L∞((0,T );Hk(R))∩C([0,T ];Hk−1(R)).

Whitham (see [13, Section 13.14]) presents an argument due to Selinger [12] ac-
cording to which a solution with sufficiently asymmetric initial data for (3.16) would
break in finite time. Clearly, a similar result holds for the Padé-I equation (3.17) as
well.

Global weak solutions of the Cauchy problem for (3.16) were studied in [7]. Ac-
cording to [7, Theorem 4.2], for initial data in BV (R), the equation (3.16) has a
global weak solution u∈L∞loc([0,∞);BV (R)). Moreover, the weak solution satisfies an
appropriate entropy condition. The analog of this theorem for the Cauchy problem
(4.9) is

Proposition 4.4. If u0∈BV (R), there exists a global weak solution u∈
L∞loc([0,∞);BV (R)) of (4.9), satisfying the entropy condition

(
u2

)
t
+

[
2
3
u3 +

a2

b2
u2 +

(
1− a2

b2

)(
ψ2−b2ψ2

x

)]
x

≤0, (4.10)

where

ψ−b2ψxx =u.
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Proof. The regularity result follows immediately from [7, Theorem 4.2]. As for
the entropy condition, we rewrite (4.3) as

ut +uux +ϕ[u]x =0, (4.11)

where

ϕ[u]=K ∗u.
The kernel K(x) is

K(x)=
a2

b2
δ(x)+

(
1− a2

b2

)
1
2b
e−

|x|
b . (4.12)

Note that the kernel (4.12) is a scaled version of (3.13). The entropy condition (4.10)
can be then obtained from (4.11) by standard arguments.

BBM, KdV or Padé? (revisited). We are interested in comparing solutions of
the Cauchy problems for (3.18), (3.19) and (3.20), with the same initial data g(x).
The technique follows [2].

We first note that, rescaling u, x and t in (3.18), (3.19) and (3.20) by 1
ε ,
√
ε and√

ε, respectively, reduces the problem to comparing the solutions of (3.15), (1.2) and
(3.21) with identical initial data

g0(x)= εg(ε
1
2x). (4.13)

Following [2], we consider the initial-value problem for the KdV equation

ηε

t +ηε
x +ηεηε

x +ηε
xxx =0, for (x,t)∈R×R

+,

ηε(x,0)= εg(ε1/2x),
(4.14)

and the corresponding initial-value problem for the BBM equation

ξε
t +ξε

x +ξεξε
x−ξε

xxt =0, for (x,t)∈R×R
+,

ξε(x,0)= εg(ε1/2x).
(4.15)

In addition, we consider the Cauchy problem associated with the Padé-II equation
(3.21): 


µε

t +µε
x +µεµε

x− 9
10µ

ε
xxx− 19

10µ
ε
xxt =0, for (x,t)∈R×R

+,

µε(x,0)= εg(ε1/2x).
(4.16)

The proximity of the solutions of (4.16) and (4.14) follows from the results of [2]
concerning the estimates on the distance between the solutions of (4.14) and (4.15).
The following change of variables

x 7→ x√
ε
+

t

ε
√
ε
, t 7→ t

ε
√
ε
, u=

ηε

ε
, v=

ξε

ε
, w=

µε

ε
,

transforms the Cauchy problems (4.14), (4.15), and (4.16) into

ut +uux +uxxx =0, (4.17)
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vt +vvx +vxxx−εvxxt =0, (4.18)

wt +wwx +wxxx−ε19
10
wxxt =0, (4.19)

respectively. The initial data becomes u(x,0)=v(x,0)=w(x,0)=g(x). The only dif-
ference between (4.18) and (4.19) is the coefficient of the mixed derivative term. In
view of [2, Theorem 1] we have

Proposition 4.5. Let g∈Hk+5 with k≥0. Let ε>0 and ηε, µε be the unique
solutions of the Cauchy problems (4.14), (4.16). Then, there is an ε0>0 and constants
Mj such that if 0<ε≤ ε0, then

||∂j
xη

ε(·,t)−∂j
xµ

ε(·,t)||2≤Mjε
j
2+ 13

4 t, (4.20)

at least for 0≤ t≤ ε− 3
2 , where 0≤ j≤k.

Proof. We note that the existence and uniqueness for (4.14) is standard (see [2]
for instance), and the existence and uniqueness for (4.16) is guaranteed by Proposi-
tion 4.1. The proof is identical to the proof of [2, Theorem 1] taking into account the
different constants.

Remarks 4.6.
1. A simpler comparison analysis can be done for the linear versions of (4.14),

(4.15) and (4.16). The technique is to estimate the distance between the
solutions of the linear equations in the Fourier space and then transform these
estimates back to the physical space (see [2] for how this technique is used to
compare solutions of the linearized (4.14) and (4.15)).

2. Clearly, a result identical to (4.20) holds with respect to the distance between
solutions of (4.15) and (4.16).
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