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MULTISCALE FINITE ELEMENT METHODS FOR NONLINEAR
PROBLEMS AND THEIR APPLICATIONS ∗

Y. EFENDIEV † , T. HOU ‡ , AND V. GINTING §

Abstract. In this paper we propose a generalization of multiscale finite element methods (Ms-
FEM) to nonlinear problems. We study the convergence of the proposed method for nonlinear elliptic
equations and propose an oversampling technique. Numerical examples demonstrate that the over-
sampling technique greatly reduces the error. The application of MsFEM to porous media flows
is considered. Finally, we describe further generalizations of MsFEM to nonlinear time-dependent
equations and discuss the convergence of the method for various kinds of heterogeneities.
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1. Introduction
Many processes involve a wide range of scales. Because of the scale disparity in

multiscale problems, it is often impossible to resolve the effects of small scales directly.
For this reason some type of coarsening or upscaling is performed. The main idea
of upscaling techniques is to form coarse-scale equations with a prescribed analytical
form that may differ from the underlying fine-scale equations. In multiscale methods,
by contrast, the fine-scale information may be carried throughout the simulation, and
the coarse-scale equations are generally not expressed analytically, but rather formed
and solved numerically.

Recently, a number of multiscale numerical methods, such as residual free bubbles
[5, 31], variational multiscale method [21], multiscale finite element method (MsFEM)
[19], two-scale finite element methods [25], two-scale conservative subgrid approaches
[1, 2], and heterogeneous multiscale method (HMM) [10] have been proposed. We
remark that special base functions in finite element methods have been used earlier
in [4] and in [3], where using a special base function, the generalized finite element
methods is introduced. In this paper we will generalize MsFEM to nonlinear prob-
lems. Originally, MsFEM is proposed for linear equations and its main idea is to use
oscillatory base functions to capture the local-scale information. The pre-computed
multiscale base functions allow us to interpolate a coarse-scale function, defined at the
nodal values of the coarse grid, to the underlying fine grid. This idea can be naturally
generalized to nonlinear problems if one considers, instead of the base functions, a
multiscale map from the coarse grid space to the underlying fine grid space. This
multiscale map is constructed using the solutions of the local problems and provides
us with the interpolation of the coarse-scale function, defined at the nodal values of
the coarse grid, to the underlying fine grid. For linear problems, our multiscale map is
linear and, thus, the image of the coarse dimensional space is a linear space with the
same dimension. A basis for the multiscale space can be obtained by mapping a basis
of the coarse dimensional space. The latter gives us the multiscale finite element basis
functions introduced in [19]. Once the multiscale mapping is defined, we formulate
the global finite element formulation of the problem. Our multiscale finite element
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methods use a Petrov-Galerkin formulation in which we use multiscale finite element
bases as basis functions and standard linear finite elements as test functions. We note
that the Petrov-Galerkin formulation of MsFEM is found to have an advantage [18]
for linear problems. We would like to stress that the formulation of MsFEM does not
require any assumptions on the nature of heterogeneities, such as periodicity, almost
periodicity, etc.

We consider the analysis of MsFEM for general nonlinear elliptic equations, uε∈
W 1,p

0 (Ω)

−div(aε(x,uε,Dxuε))+a0,ε(x,uε,Dxuε)=f, (1.1)

where aε(x,η,ξ) and a0,ε(x,η,ξ), η∈R, ξ∈Rd satisfy some assumptions given by (3.1)-
(3.5), which guarantee the well-posedness of the nonlinear elliptic problem (1.1). Here
Ω⊂Rd is a Lipschitz domain and ε denotes the small scale of the problem. The
homogenization of nonlinear partial differential equations has been studied previously
(see, e.g., [28]). It can be shown that a solution uε converges (up to a sub-sequence) to
u in an appropriate norm, where u∈W 1,p

0 (Ω) is a solution of a homogenized equation

−div(a∗(x,u,Du))+a∗0(x,u,Du)=f. (1.2)

The homogenized coefficients can be computed if we make an additional assumption
on the heterogeneities, such as periodicity, almost periodicity, or when the fluxes
are strictly stationary fields with respect to spatial variables. In these cases, an
auxiliary problem is formulated and used in the calculations of the homogenized fluxes,
a∗ and a∗0. Our motivation in considering this type of equation stems from porous
media applications, where nonlinear fluxes arise. In particular, we are interested
in porous media flows in unsaturated media and the transport of two-phase flows
in heterogeneous porous media. In these examples, nonlinearities arise due to the
interaction between the phases and components.

In this paper we study the convergence of the generalized MsFEM for periodic
heterogeneities. To analyze the method, we first approximate the solutions of the
local problems by introducing appropriate correctors, which are periodic with respect
to the fast variables. These approximations of the local solutions allow us to extract
the homogenized behavior of MsFEM solutions and compare it with the homogenized
solutions of the continuous equations. Sharp estimates for the corrector approxima-
tions are obtained in the paper. The analysis allows us to understand the resonance
error and propose an oversampling technique as in [19]. Numerical examples are pre-
sented in the paper to show the accuracy of the oversampling method. We use both
periodic and random fields with long-range correlation structures (with and without
discontinuities) in our numerical experiments. We present numerical examples for
both multiscale finite element and multiscale finite volume element methods. Mul-
tiscale finite volume element methods are very closely related to multiscale finite
element method, where the formulation of the method follows the standard finite vol-
ume element methods. All the examples clearly demonstrate the advantages of the
oversampling method. In particular, the oversampling approach provides small errors
for relatively large coarsening. Further generalization of the analysis to the cases of
more general heterogeneities is discussed in the paper. Finally, we would like to note
that the resonance errors are a common feature of multiscale methods unless periodic
problems are considered and the solutions of the local problems in an exact period
are used. In this case, one can solve the local problems in one period to approximate
the multiscale map.
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The paper is organized in the following way. In the next section, we introduce
MsFEM for nonlinear problems. Section 3 is devoted to the analysis of MsFEM.
In Section 4, numerical examples are presented. In particular, we show that with
the oversampling technique, the error is reduced dramatically. The applications of
MsFEM to porous media flows are also considered in Section 4. Finally, in Section
5 some conclusions are drawn. We present further generalizations of MsFEM to
nonlinear parabolic equations and discuss the convergence of the method for various
types of heterogeneities.

2. Multiscale finite element methods (MsFEM)
The goal of MsFEM is to find a numerical approximation of a homogenized so-

lution without solving auxiliary problems (e.g., periodic cell problems) that arise in
homogenization. The homogenized solutions are sought on a coarse grid space Sh,
where hÀ ε. Let Kh be a partition of Ω. We denote by Sh standard family of finite
dimensional space, which possesses approximation properties, e.g., piecewise linear
functions over triangular elements,

Sh ={vh∈C0(Ω) : the restriction vh is linear for each element K and vh =0 on ∂Ω}.
(2.1)

In further presentation, K is a triangular element that belongs to Kh. To formulate
MsFEM for general nonlinear problems, we will need (1) a multiscale mapping that
gives us the desired approximation containing the small scale information and (2) a
multiscale numerical formulation of the equation.

Multiscale mapping. Introduce the mapping EMsFEM :Sh→V h
ε in the following

way. For each element vh∈Sh, vε,h =EMsFEMvh is defined as the solution of

−div(aε(x,ηvh ,Dxvε,h))=0 in K, (2.2)

vε,h =vh on ∂K and ηvh = 1
|K|

∫
K

vhdx for each K. We would like to point out that
different boundary conditions can be chosen to obtain more accurate solutions and this
will be discussed later. Note that for linear problems, EMsFEM is a linear operator,
where for each vh∈Sh, vε,h is the solution of the linear problem. Consequently, V h

ε

is a linear space that can be obtained by mapping a basis of Sh. This is precisely the
construction presented in [19] for linear elliptic equations.

Multiscale numerical formulation. Multiscale finite element formulation of the
problem is the following. Find uh∈Sh (consequently, uε,h(=EMsFEMuh)∈V h

ε ) such
that

〈Aε,huh,vh〉=
∫

Ω

fvhdx ∀vh∈Sh, (2.3)

where

〈Aε,huh,vh〉=
∑

K∈Kh

∫

K

((aε(x,ηuh ,Dxuε,h),Dxvh)+a0,ε(x,ηuh ,Dxuε,h)vh)dx. (2.4)

Note that the above formulation of MsFEM is a generalization of the Petrov-
Galerkin MsFEM introduced in [18] for linear problems. MsFEM, introduced above,
can be generalized to different kinds of nonlinear problems and this will be discussed
later.
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Fig. 2.1. Left: Portion of triangulation sharing a common vertex z and its control volume.
Right: Partition of a triangle K into three quadrilaterals

2.1. Multiscale finite volume element method (MsFVEM). The for-
mulation of multiscale finite element (MsFEM) can be extended to a finite vol-
ume method. By its construction, the finite volume method has local conservative
properties [16] and it is derived from a local relation, namely the balance equa-
tion/conservation expression on a number of subdomains which are called control
volumes. Finite volume element method can be considered as a Petrov-Galerkin fi-
nite element method, where the test functions are constants defined in a dual grid.
Consider a triangle K, and let zK be its barycenter. The triangle K is divided into
three quadrilaterals of equal area by connecting zK to the midpoints of its three edges.
We denote these quadrilaterals by Kz, where z∈Zh(K) are the vertices of K. Also
we denote Zh =

⋃
K Zh(K), and Z0

h are all vertices that do not lie on ΓD, where ΓD is
Dirichlet boundaries. The control volume Vz is defined as the union of the quadrilat-
erals Kz sharing the vertex z (see Figure 2.1). The multiscale finite volume element
method (MsFVEM) is to find uh∈Sh (consequently, uε,h =EMsFV EMuh such that

−
∫

∂Vz

aε (x,ηuh ,Dxuε,h) ·ndS +
∫

Vz

a0,ε (x,ηuh ,Dxuε,h) dx=
∫

Vz

f dx ∀z∈Z0
h,

(2.5)
where n is the unit normal vector pointing outward on ∂Vz. Note that the num-
ber of control volumes that satisfy (2.5) is the same as the dimension of Sh. We
will present numerical results for both multiscale finite element and multiscale finite
volume element methods.

2.2. Examples of V h
ε . Linear case. For linear operators, V h

ε can be obtained
by mapping a basis of Sh. Define a basis of Sh, Sh =span(φi

0), where φi
0 are standard

linear basis functions. In each element K ∈Kh, we define a set of nodal basis {φi
ε},

i=1,... ,nd with nd(=3) being the number of nodes of the element, satisfying

−div(aε(x)Dxφi
ε)=0 in K ∈Kh (2.6)

and φi
ε =φi

0 on ∂K. Thus, we have

V h
ε =span{φi

ε; i=1,... ,nd, K⊂Kh}⊂H1
0 (Ω).

Oversampling technique can be used to improve the method [19].
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Special nonlinear case. For the special case, aε(x,uε,Dxuε)=aε(x)b(uε)Dxuε,
V h

ε can be related to the linear case. Indeed, for this case, the local problems associ-
ated with the multiscale mapping EMsFEM (see (2.2)) have the form

−div(aε(x)b(ηvh)Dxvε,h)=0 in K.

Because ηvh are constants over K, the local problems satisfy the linear equations,

−div(aε(x)Dxφi
ε)=0 in K,

and V h
ε can be obtained by mapping a basis of Sh as it is done for the first example.

Thus, for this case one can construct the base functions in the beginning of the
computations.

V h
ε using subdomain problems. One can use the solutions of smaller (than

K ∈Kh) subdomain problems to approximate the solutions of the local problems (2.2).
This can be done in various ways based on a homogenization expansion. For example,
instead of solving (2.2) we can solve (2.2) in a subdomain S with boundary conditions
vh restricted onto the subdomain boundaries, ∂S. Then the gradient of the solution
in a subdomain can be extended periodically to K to approximate Dxvε,h in (2.4).
vε,h can be easily reconstructed based on Dxvε,h. When the multiscale coefficient has
a periodic structure, the multiscale mapping can be constructed over one periodic cell
with a specified average. In this case, vε,h is approximated by P, which is defined by
(3.18).

3. Analysis of MsFEM
For the analysis of MsFEM, we assume the following conditions for aε(x,η,ξ) and

a0,ε(x,η,ξ), η∈R and ξ∈Rd.

|aε(x,η,ξ)|+ |a0,ε(x,η,ξ)|≤C (1+ |η|p−1 + |ξ|p−1), (3.1)

(aε(x,η,ξ1)−aε(x,η,ξ2),ξ1−ξ2)≥C |ξ1−ξ2|p, (3.2)

(aε(x,η,ξ),ξ)+a0,ε(x,η,ξ)η≥C|ξ|p. (3.3)

Denote

H(η1,ξ1,η2,ξ2,r)=(1+ |η1|r + |η2|r + |ξ1|r + |ξ2|r), (3.4)

for arbitrary η1, η2∈R, ξ1, ξ2∈Rd, and r>0. We further assume that

|aε(x,η1,ξ1)−aε(x,η2,ξ2)|+ |a0,ε(x,η1,ξ1)−a0,ε(x,η2,ξ2)|
≤CH(η1,ξ1,η2,ξ2,p−1)ν(|η1−η2|)
+CH(η1,ξ1,η2,ξ2,p−1−s)|ξ1−ξ2|s, (3.5)

where s>0, p>1, s∈ (0,min(p−1,1)) and ν is the modulus of continuity, a bounded,
concave, and continuous function in R+ such that ν(0)=0, ν(t)=1 for t≥1 and
ν(t)>0 for t>0. Throughout the paper C and c (sometimes with indices) denote
generic constants, q is defined by 1/p+1/q =1, y =x/ε, and ‖·‖p,Ω denotes Lp-norm
(either vector or scalar). In further analysis K ∈Kh will be referred to simply by
K. Inequalities (3.1)-(3.5) are the general conditions that guarantee the existence
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of a solution and are used in homogenization of nonlinear operators [28]. Here p
represents the rate of the polynomial growth of the fluxes with respect to gradient
and, consequently, it controls the summability of the solution. We do not assume
any differentiability with respect to η and ξ in the coefficients. Our objective is to
present MsFEM and study its convergence for general nonlinear equations, where
the fluxes can be discontinuous functions in space. These kinds of equations arise
in many applications such as nonlinear heat conduction, nonlinear elasticity, flow in
porous media, and etc. (see, e.g., [27, 32, 33, 24]). Our interest is in the applications
to porous media flows related to flow in unsaturated media.

In [11] we have shown using G-convergence theory that

lim
h→0

lim
ε→0

‖uh−u‖W 1,p
0 (Ω) =0, (3.6)

(up to a subsequence) where u is a solution of (1.2) and uh is a MsFEM solution
given by (2.3). This result can be obtained without any assumption on the nature of
the heterogeneities and can not be improved because there could be infinitely many
scales, α(ε), present such that α(ε)→0 as ε→0.

For the periodic case (and general random homogeneous case) our goal is to show
the convergence of MsFEM in the limit as ε/h→0. To show the convergence for
ε/h→0, we consider h=h(ε), such that h(ε)À ε and h(ε)→0 as ε→0. We would like
to note that this limit as well as the proof of the periodic case is different from (3.6),
where the double-limit is taken. In contrast to the proof of (3.6), the proof of the
periodic case requires the correctors for the solutions of the local problems.

Next we will present the convergence results for MsFEM solutions. For general
nonlinear elliptic equations under the assumptions (3.1)-(3.5) the strong convergence
of MsFEM solutions can be shown. In the proof of this theorem we show the form
of the truncation error (in a weak sense) in terms of the resonance errors between
the mesh size and small scale ε. The resonance errors are derived explicitly. To
obtain the convergence rate from the truncation error, one needs some lower bounds.
Under the general conditions, such as (3.1)-(3.5), one can prove strong convergence
of MsFEM solutions without an explicit convergence rate (cf.[33]). To convert the
obtained convergence rates for the truncation errors into the convergence rate of
MsFEM solutions, additional assumptions, such as monotonicity, are needed. This is
discussed at the end of this section.
Theorem 3.1. Assume aε(x,η,ξ) and a0,ε(x,η,ξ) are periodic functions with respect
to x and let u be a solution of (1.2) and uh is a MsFEM solution given by (2.3).
Moreover, we assume that Dxuh is uniformly bounded in Lp+α(Ω) for some α>01.
Then

lim
ε→0

‖uh−u‖W 1,p
0 (Ω) =0 (3.7)

where h=h(ε)À ε and h→0 as ε→0 (up to a subsequence).
Theorem 3.2. Let u and uh be the solutions of the homogenized problem (1.2)
and MsFEM (2.3), respectively, with the coefficient aε(x,η,ξ)=a(x/ε,ξ) and a0,ε =0.
Then

‖uh−u‖p

W 1,p
0 (Ω)

≤ c
( ε

h

) s
(p−1)(p−s)

+c
( ε

h

) p
p−1

+ch
p

p−1 . (3.8)

1Please see Remark 3.1 at the end of the proof of Theorem 3.1 for more discussions and partial
results regarding this assumption.
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We will first prove Theorem 3.1. Then, using the estimates obtained in the proof
of this theorem, we will show (3.8). The main idea of the proof of Theorem 3.1 is
the following. First, the boundedness of the discrete solutions independent of ε and
h will be shown. This allows us to extract a weakly converging sub-sequence. The
next task is to prove that a limit is a solution of the homogenized equation. For this
reason correctors for vε,h (see (2.2)) are used and their convergence is demonstrated.
We would like to note that the known convergence results for the correctors assume a
fixed (given) homogenized solution, while the correctors for vε,h are defined for only
uniformly bounded sequence vh, i.e., the homogenization limits of vε,h (with respect
to ε) depend on h, and are only uniformly bounded. Because of this, more precise
corrector results need to be obtained where the homogenized limit of the solution is
tracked carefully in the analysis. Note that to prove (3.6) (see [13]), one does not need
correctors and can use the fact of the convergence of fluxes, and, thus, the proof of
the periodic case presented in this paper differs from the one in [13]. Some results of
our paper (Lemmas 3.3, 3.4, and their proofs) do not require periodicity assumptions.
For these results we will use the notations aε(x,η,ξ) and a0,ε(x,η,ξ) to distinguish the
two cases. The rest of the proofs require periodicity, and we will use a(x/ε,η,ξ) and
a0(x/ε,η,ξ) notations.
Lemma 3.3. There exists a constant C >0 such that for any vh∈Sh

〈Aε,hvh,vh〉≥C‖Dxvh‖p
p,Ω,

for sufficiently small h.
The proof of this lemma is provided in the Appendix 5.3. The following lemma

will be used in the proof of Lemma 3.5.
Lemma 3.4. Let vε−v0∈W 1,p

0 (K) and wε−w0∈W 1,p
0 (K) satisfy the following prob-

lems, respectively:

−div(aε(x,η,Dxvε))=0 in K (3.9)

−div(aε(x,η,Dxwε))=0 in K (3.10)

where η is constant in K. Then the following estimate holds:

‖Dx(vε−wε)‖p
p,K ≤ CH0‖Dx(v0−w0)‖

p
p−s

p,K , (3.11)

where

H0 =
(
|K|+‖η‖p

p,K +‖Dxv0‖p
p,K +‖Dxw0‖p

p,K

)(p−s−1)/(p−s)

,

where s∈ (0,min(1,p−1)), p>1.
Proof of this lemma is presented in Appendix B.
Regarding ηvh , where ηvh = 1

|K|
∫

K
vhdx in each K, we note that Jensen’s inequal-

ity implies

‖ηvh‖p,Ω≤C‖vh‖p,Ω. (3.12)

In addition, the following estimates hold for ηvh :

‖vh−ηvh‖p,K ≤Ch‖Dxvh‖p,K . (3.13)



560 MULTISCALE FINITE ELEMENT METHODS FOR NONLINEAR PROBLEMS

At this stage we define a numerical corrector associated with vε,h =EMsFEMvh,
vh∈Sh. First, let

Pη,ξ(y)= ξ+DyNη,ξ(y), (3.14)

for η∈R and ξ∈Rd, where Nη,ξ ∈W 1,p
per(Y ) is the periodic solution (with average zero)

of

−div(a(y,η,ξ+DyNη,ξ(y)))=0 in Y, (3.15)

where Y is a unit period. The homogenized fluxes are defined as follows:

a∗(η,ξ)=
∫

Y

a(y,η,ξ+DyNη,ξ(y))dy, (3.16)

a∗0(η,ξ)=
∫

Y

a0(y,η,ξ+DyNη,ξ(y))dy, (3.17)

where a∗ and a∗0 satisfy the conditions similar to (3.1) - (3.5). We refer to [28] for
further details. Using (3.14), we denote our numerical corrector by P which is defined
as

P=Pηvh ,Dxvh
=Dxvh +DyNηvh ,Dxvh

(y). (3.18)

Here ηvh is a piece-wise constant function defined in each K ∈Kh by ηvh = 1
|K|

∫
K

vhdx.
Consequently, P is defined in Ω by using (3.18) in each K ∈Kh. For the linear problem
P=Dxvh +N(y) ·Dxvh. Our goal is to show the convergence of these correctors for a
uniformly bounded family of vh in W 1,p(Ω). We would like to note that the corrector
results known in the literature are for a fixed homogenized solution.
Lemma 3.5. Let vε,h satisfy (2.2), where aε(x,η,ξ) is periodic function with respect
to x, and assume that vh is uniformly bounded in W 1,p

0 (Ω). Then

‖Dxvε,h−P‖p,Ω≤C
( ε

h

) 1
p(p−s)

(
|Ω|+‖vh‖p

p,Ω +‖Dxvh‖p
p,Ω

) 1
p

. (3.19)

We note that here s∈ (0,min(p−1,1)), p>1. For the proof of this lemma, we need
the following proposition.
Proposition 3.6. For every η∈R and ξ∈Rd we have

‖Pη,ξ‖p
p,Yε

≤ c(1+ |η|p + |ξ|p)|Yε|, (3.20)

where Yε is a period of size ε. An easy consequence of this proposition is the following
estimate for Nη,ξ (see (3.15)).
Corollary 3.7. For every η∈R and ξ∈Rd we have

‖DyNη,ξ‖p
p,Yε

≤ c(1+ |η|p + |ξ|p)|Yε|. (3.21)

The proof of Proposition 3.6 is presented in Appendix C.
Proof. (Lemma 3.5) Recall that by definition P=Dxvh +DyNηvh ,Dxvh

(y)=
Dxvh +εDxNηvh ,Dxvh

(x/ε), where by using (3.15) Nηvh ,Dxvh
(y) is a zero-mean pe-

riodic function satisfying the following:

−div(a(x/ε,ηvh ,Dxvh +εDxNηvh ,Dxvh
))=0 in K. (3.22)



Y. EFENDIEV, T. HOU AND V. GINTING 561

We expand vε,h as

vε,h =vh(x)+εNηvh ,Dxvh
(x/ε)+θ(x,x/ε). (3.23)

We note that here θ(x,x/ε) is similar to the correction terms that arise in lin-
ear problems because of the mismatch between linear boundary conditions and the
oscillatory corrector, Nηvh ,Dxvh

(x/ε)=N(x/ε) ·Dxvh. Next we denote by wε,h =
vh(x)+εNηvh ,Dxvh

(x/ε). Clearly wε,h satisfies (3.22). Taking all these into account,
the claim in the lemma is the same as to proving

‖Dxθ‖p,Ω =‖Dx(vε,h−wε,h)‖p,Ω≤C
( ε

h

) 1
p(p−s)

(
|Ω|+‖vh‖p

p,Ω +‖Dxvh‖p
p,Ω

) 1
p

.

(3.24)
Here we may write wε,h as a solution of the following boundary value problem:

−div(a(x/ε,ηvh ,Dxwε,h))=0 in K and wε,h =vh +εÑηvh ,Dxvh
on ∂K,

with Ñηvh ,Dxvh
=ϕNηvh ,Dxvh

, where ϕ is a sufficiently smooth function whose value
is 1 on a strip of width ε adjacent to ∂K and 0 elsewhere. We denote this strip by
Sε. This idea has been used in [22]. By Lemma 3.4 we have the following estimate:

‖Dxθ‖p
p,K =‖Dx(vε,h−wε,h)‖p

p,K

≤CH0‖Dx(vh−vh−εÑηvh ,Dxvh
)‖

p
p−s

p,K

≤CH0‖εDxÑηvh ,Dxvh
‖

p
p−s

p,K , (3.25)

where

H0 =
(
|K|+‖ηvh‖p

p,K +‖Dxvh‖p
p,K +‖Dx(vh +εÑηvh ,Dxvh

)‖p
p,K

) p−s−1
p−s

. (3.26)

We need to show that H0 is bounded and ‖εDxÑηvh ,Dxvh
‖p

p,Ω uniformly vanishes as
ε→0. For this purpose, we use the following notations: let JK

ε ={i∈Zd :Y i
ε

⋂
K 6=

0,K\Y i
ε 6=0} and FK

ε =∪i∈JK
ε

Y i
ε . In other words, FK

ε is the union of all periods Y i
ε

that cover the strip Sε. Using these notations and because ϕ is zero everywhere in
K, except in the strip Sε, we may write the following:

‖εDxÑηvh ,Dxvh
‖p

p,K = εp

∫

K

|Dx(ϕNηvh ,Dxvh
)|pdx

= εp

∫

Sε

|Dx(ϕNηvh ,Dxvh
)|pdx

≤ εp

∫

F K
ε

|Dx(ϕNηvh ,Dxvh
)|pdx

= εp
∑

i∈JK
ε

∫

Y i
ε

|Dx(ϕNηvh ,Dxvh
)|pdx

≤ εp
∑

i∈JK
ε

∫

Y i
ε

(|DxNηvh ,Dxvh
|p |ϕ|p + |Nηvh ,Dxvh

|p |Dxϕ|p) dx,

(3.27)
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where we have used the product rule on the partial derivative in the last line of (3.27).
Our aim now is to show that the sum of integrals in the last line of (3.27) is uniformly
bounded. We note that (see Corollary 3.7)

‖Dy Nηvh ,Dxvh
‖p

p,Y i
ε
≤C(1+ |ηvh |p + |Dxvh|p)|Y i

ε |, (3.28)

from which, using the Poincaré-Friedrich inequality we have

‖Nηvh ,Dxvh
‖p

p,Y i
ε
≤C(1+ |ηvh |p + |Dxvh|p)|Y i

ε |. (3.29)

We note also that ηvh and Dxvh are constant in K. Because ϕ is sufficiently smooth,
and whose value is one on the strip Sε and zero elsewhere, we know that |Dxϕ|≤C/ε
(cf. [22]). Applying all these facts to (3.27) we have

‖εDxÑηvh ,Dxvh
‖p

p,K ≤Cεp (1+ |ηvh |p + |Dxvh|p)
∑

i∈JK
ε

(1+ε−p)|Y i
ε |

=C (εp +1)(1+ |ηvh |p + |Dxvh|p)
∑

i∈JK
ε

|Y i
ε |

≤C (1+ |ηvh |p + |Dxvh|p)
∑

i∈JK
ε

|Y i
ε |. (3.30)

Moreover, because all Y i
ε , i∈JK

ε , cover the strip Sε, we know that
∑

i∈JK
ε
|Y i

ε |≤
Chd−1 ε. Hence, we have

‖εDxÑηvh ,Dxvh
‖p

p,K ≤C
hd

hd
(1+ |ηvh |p + |Dxvh|p) hd−1 ε

≤C
ε

h

(
|K|+‖ηvh‖p

p,K +‖Dxvh‖p
p,K

)
. (3.31)

Furthermore, using this estimate and noting that ε/h<1, we obtain from (3.26) that

H0≤C
(
|K|+‖ηvh‖p

p,K +‖vh‖p
p,K +‖Dxvh‖p

p,K

) p−s−1
p−s

. (3.32)

Summarizing the results from (3.25) combined with (3.32) and (3.31), we get

‖Dxθ‖p
p,K ≤CH0‖εDxÑηvh ,Dxvh

‖
p

p−s

p,K

≤C
( ε

h

) 1
p−s

(
|K|+‖ηvh‖p

p,K +‖vh‖p
p,K +‖Dxvh‖p

p,K

)
. (3.33)

Finally summing over all K ∈Kh and applying (3.12) to
∑

K∈Kh ‖ηvh‖p
p,K , we obtain

‖Dxθ‖p
p,Ω =

∑

K

‖Dxθ‖p
p,K

≤C
( ε

h

) 1
p−s

∑

K

(
|K|+‖vh‖p

p,K +‖Dxvh‖p
p,K

)

=C
( ε

h

) 1
p−s

(
|Ω|+‖vh‖p

p,Ω +‖Dxvh‖p
p,Ω

)
. (3.34)

The last inequality uniformly vanishes as ε approaching zero, thus we have completed
the proof of Lemma 3.5.
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The next lemma is crucial for the proof of Theorem 3.1 and it guarantees the
convergence of MsFEM solutions to a solution of the homogenized equation. This
lemma also provides us with the estimate for the truncation error (in a weak sense).

Lemma 3.8. Suppose vh,wh∈Sh where Dxvh and Dxwh are uniformly bounded in
Lp+α(Ω) and Lp(Ω), respectively, for some α>0. Let A∗ be the operator associated
with the homogenized problem (1.2), such that

〈A∗vh,wh〉=
∑

K∈Kh

∫

K

((a∗(vh,Dxvh),Dxwh)+a∗0(vh,Dxvh)wh)dx, ∀vh,wh∈Sh.

(3.35)
Then we have

lim
ε→0

〈Aε,hvh−A∗vh,wh〉=0. (3.36)

The proof of this lemma is presented in Appendix D. Now we are ready to prove
Theorem 3.1.

Proof. (Theorem 3.1) Since Aε,h is coercive, it follows that uh is bounded, which
implies that it has a subsequence (which we also denote by uh) such that uh ⇀ũ in
W 1,p(Ω) as ε→0. Because the operator A∗ is of type S+ (see, e.g., [33], page 3, for
the definition), then by its definition, the strong convergence would be true if we can
show that limsupε→0 〈A∗uh,uh− ũ〉→0. Moreover, by adding and subtracting the
term, we have the following equality:

〈A∗uh,uh− ũ〉= 〈A∗uh−Aε,huh,uh− ũ〉+〈Aε,huh,uh− ũ〉
= 〈A∗uh−Aε,huh,uh〉−〈A∗uh−Aε,huh,ũ〉+(f,uh− ũ). (3.37)

Lemma 3.8 implies that the first and second term vanish as ε→0 provided Dxuh is
uniformly bounded in Lp+α for α>0, while the last term vanishes as ε→0 (up to a sub-
sequence) by the weak convergence of uh. One can assume additional mild regularity
assumptions [26] for input data and obtain Meyers type estimates, ‖Dxu‖p+α,Ω≤C,
for the homogenized solutions. In this case it is reasonable to assume that the discrete
solutions are uniformly bounded in Lp+α(Ω). We have obtained results on Meyers
type estimates for our approximate solutions in the case p=2 [12]. We are currently
studying the generalizations of these results to arbitrary p. Finally, since A∗ is also
of type M (see, e.g., [32], page 38, for the definition), all these conditions imply that
A∗ũ=f , which means that ũ=u.

Remark 3.1. We would like to point out that for the proof of Theorem 3.1 it is
assumed that Dxuh is uniformly bounded in Lp+α(Ω) for some α>0 (see, discussion
after (3.37)). This has been shown for p=2 in [12]. To avoid this assumption, one
can impose additional restrictions on a∗(η,ξ) (see, [13], page 254–255). We would
like to note that the assumption, Dxuh is uniformly bounded in Lp+α(Ω), is not used
for the estimation of the resonance errors, but only used in (D.12).

Next we present some explicit estimates for the convergence rates of MsFEM.
First, we note that from the proof of the Lemma 3.8 it follows that the truncation
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error of MsFEM (in a weak sense) is given by

〈Aε,huh−A∗uh,wh〉

= 〈f−A∗uh,wh〉≤ c
( ε

h

) s
p(p−s)

(
|Ω|+‖uh‖p

p,Ω +‖Dxuh‖p
p,Ω

) 1
q ‖Dxwh‖p,Ω

+c
ε

h

(
|Ω|+‖uh‖p

p,Ω +‖Dxuh‖p
p,Ω

) 1
q ‖Dxwh‖p,Ω +e(h)‖Dxwh‖p,Ω

= c

(( ε

h

) s
p(p−s)

+
ε

h

)(
|Ω|+‖uh‖p

p,Ω +‖Dxuh‖p
p,Ω

) 1
q ‖Dxwh‖p,Ω +e(h)‖Dxwh‖p,Ω,

(3.38)

where e(h) is a generic sequence independent of small scale ε, such that e(h)→0 as
h→0. In particular, the first, second, and third terms on the right side of (3.38) are
the estimates of

∑
K∈Kh IK ,

∑
K∈Kh IIK , and

∑
K∈Kh IIIK , respectively (see (D.3)

and (D.4)). We note that the first term on the right side of (3.38) is the leading order
resonance error caused by the linear boundary conditions imposed on ∂K, the second
term is due to mismatch between the mesh size and the small scale of the problem.
These resonance errors are also present in the linear case [14]. If one uses the periodic
solution of the auxiliary problem for constructing the solutions of the local problems,
then the resonance error can be removed. To obtain explicit convergence rates, we
first derive upper bounds for 〈A∗uh−A∗Phu,uh−Phu〉, where Phu denotes a finite
element projection of u onto Sh, i.e.,

〈A∗Phu,vh〉= 〈f,vh〉, ∀vh∈Sh,

and 〈A∗uh,vh〉 is defined by (3.35). Then using estimate (3.38), we have

〈A∗uh−A∗Phu,uh−Phu〉
= 〈A∗uh−Aε,huh,uh−Phu〉+〈Aε,huh−A∗Phu,uh−Phu〉
= 〈A∗uh−Aε,huh,uh−Phu〉+〈f−A∗Phu,uh−Phu〉
= 〈A∗uh−Aε,huh,uh−Phu〉

≤ c

(( ε

h

) s
p(p−s)

+
ε

h

)(
|Ω|+‖uh‖p

p,Ω +‖Dxuh‖p
p,Ω

) 1
q

‖Dx(uh−Phu)‖p,Ω +e(h)‖Dx(uh−Phu)‖p,Ω. (3.39)

The estimate (3.39) does not allow us to obtain an explicit convergence rate
without some lower bound for the left side of the expression. In the proof of Theorem
3.1, we only use the fact that A∗ is the operator of type S+, which guarantees that the
convergence of the left side of (3.39) to zero implies the convergence of the discrete
solutions to a solution of the homogenized equation. Explicit convergence rates can
be obtained by assuming some kind of an inverse stability condition, ‖A∗u−A∗v‖≥
c‖u−v‖. In particular, we may assume that A∗ is a monotone operator, i.e.,

〈A∗u−A∗v,u−v〉≥ c‖Dx(u−v)‖p
p,Ω. (3.40)

A simple way to achieve monotonicity is to assume aε(x,η,ξ)=aε(x,ξ) and
a0,ε(x,η,ξ)=0, though one can impose additional conditions on aε(x,η,ξ) and
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a0,ε(x,η,ξ), such that monotonicity condition (3.40) is satisfied. For our further cal-
culations, we only assume (3.40). Then from (3.39) and (3.40), and using Young
inequality, we have

‖Dx(uh−Phu)‖p
p,Ω≤ c

( ε

h

) s
(p−1)(p−s)

+c
( ε

h

) p
p−1

+e(h).

Next taking into account the convergence of standard finite element solutions of the
homogenized equation we write

‖DxPhu−Dxu‖p,Ω≤e1(h),

where e1(h)→0 (as h→0) is independent of ε. Consequently, using triangle inequality
we have

‖Dx(uh−u)‖p
p,Ω≤ c

( ε

h

) s
(p−1)(p−s)

+c
( ε

h

) p
p−1

+e(h)+e1(h).

Proof. (Theorem 3.2). For monotone operators, aε(x,η,ξ)=aε(x,ξ) and
a0,ε(x,η,ξ)=0, η∈R and ξ∈Rd, the estimates for e(h) and e1(h) can be easily de-
rived. In particular, because of the absence of η in aε, e(h)=0 (see (D.3) and (D.4)),
while e1(h)≤Ch

1
p−1 (see for example [7]). Combining these estimates we have

‖Dx(uh−u)‖p
p,Ω≤ c

( ε

h

) s
(p−1)(p−s)

+c
( ε

h

) p
p−1

+ch
p

p−1 . (3.41)

From here one obtains (3.8).
Remark 3.2. One can impose various conditions on the operators to obtain different
kinds of convergence rates. For example, under the additional assumptions (cf. [27])

|∂a∗(η,ξ)
∂η

|+ |∂a∗(η,ξ)
∂ξ

|≤C,
∂a∗i (η,ξ)

∂ξj
ζiζj≥C|ζ|2, (3.42)

where ζ ∈Rd is an arbitrary vector, and p=2, following the analysis presented in [27],
pages 51–52, the convergence rate in terms of Lp-norm of uh−Phu can be obtained,

‖Dx(uh−Phu)‖p
p,Ω≤ c

( ε

h

) s
(p−1)(p−s)

+c
( ε

h

) p
p−1

+e(h)+C‖uh−Phu‖p
p,Ω,

where s∈ (0,1), p=2.

Remark 3.3. For the linear operators (p=2, s=1), we recover the convergence rate
obtained in [20], Ch+C1

√
ε/h.

Remark 3.4. We have shown that MsFEM for nonlinear problems has the same error
structure as for the linear problems. In particular, our studies revealed two kinds of
resonance errors for nonlinear problems with the same nature as those that arise in
linear problems [14].

3.1. Approximation of the oscillations. In this section we present a
theorem demonstrating the approximation of oscillatory solutions uε of (1.1).
Theorem 3.9. Let uε be the solution of boundary value problem (1.1) and uh∈Sh and
uε,h∈V h

ε with uε,h =EMsFEMuh be MsFEM solution (homogenized and fluctuating
components, respectively) (2.3). Then limε→0 ‖Dxuε,h−Dxuε‖p,Ω =0.
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K

S

Fig. 3.1. Illustration of oversampling domain. K is a target coarse block, S is an oversampled
domain

.

Below, we outline the proof (the details can be found in [17]). For the proof of
this theorem we first introduce correctors for uε. Define an operator approximating
the identity map in Lp(Ω) by

Mεϕ(x)=
∑

i∈Iε

ΨY i
ε
(x)

1
|Y i

ε |
∫

Y i
ε

ϕ(y)dy, (3.43)

where Y i
ε is a period of size ε for i∈Zd, Iε ={i∈Zd :Y i

ε ⊂Ω} and ΨY i
ε

is an in-
dicator function for Y i

ε . Next we denote P =PMεu,MεDxu(x,x/ε)=MεDxu(x)+
DyNMεu,MεDxu(x/ε), where u is the solution of the homogenized problem. The func-
tion P is a corrector associated with the original boundary value problem (1.1). Now,
by triangle inequality, we have

‖Dxuε,h−Dxuε‖p,Ω≤‖Dxuε,h−P‖p,Ω +‖P−P‖p,Ω +‖P −Dxuε‖p,Ω, (3.44)

where P=Dxuh +DyNηh,Dxuh
(y) as defined before for vε,h. Lemma 3.5 gives the

convergence of the first term. The convergence of the third term can be obtained
using the techniques developed in [8] and the details are in [17]. The convergence of
the second term is due to the fact that Dxuh→Dxu in Lp(Ω)d, and the details can
be found in [17].

3.2. An Oversampling Technique. The approximation property of the
corrector P(x,x/ε) (cf. Lemma 3.5) reveals the existence of a resonance error propor-
tional to ε/h, which is resulted from the mismatch due to the imposed linear boundary
conditions for the local problem in the multiscale map EMsFEM . The correction that
arises in the expansion of the local solutions (3.23) and accounts for the mismatch
is given by θ(x,x/ε). As in the linear problems ([19]), θ(x,x/ε) is the cause of the
resonance errors. In [19] the authors suggested an oversampling technique for reduc-
ing the effects of θ(x,x/ε). The main idea of the oversampling technique is to use
the solutions of the local problems (cf. (2.2)) in larger domains. Here we extend this
technique to nonlinear equations. In particular, the multiscale map EMsFEM is con-
structed using the solutions of the local problems on the element larger than h. For
periodic problems, the size of the larger domain can be chosen to be h+ε, though for
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more general problems without scale separation the size of the larger domain can be
chosen to be h+βh, where β is a constant. In our simulations for general anisotropic
heterogeneities, we choose β =1. Furthermore, only the information from the target
element is used in the multiscale formulation of the problem (see Figure 3.1).

In general, given vh∈Sh, where vh is defined in K, we want to find vε,h that
satisfies

−div(aε(x,ηvh ,Dxvε,h))=0 in S (3.45)

such that vε,h(zi)=vh(zi), where zi are the nodal points of the target coarse element
K. Thus, in general, we need to find a solution of the local equation with given values
at the nodal (interior) points. This problem can be solved for linear problems using
linear combinations of the local solutions in larger domains S. Here we present an
oversampling technique for special cases in which the gradient in the coefficient is
linear, i.e., aε(x,η,ξ)=a(x/ε,η)ξ, given vh∈Sh, we define

vε,h =
3∑

i=1

ciφ
i
ε, (3.46)

where φi
ε satisfies

−div(a(x/ε,ηvh)Dxφi
ε)=0 in S

φi
ε =φi

0 on ∂S.
(3.47)

The constants ci, i=1,2,3 are determined by imposing the conditions

vε,h(zj)=vh(zj) j =1,2,3. (3.48)

We note that the piecewise constants in ηvh are taken as the average over the element
K. We would like to note that the convergence analysis of MsFEM with an over-
sampling technique requires some modifications of the proof presented in this paper
for MsFEM without oversampling. In particular, the improved corrector results (see
Lemma 3.5) are necessary to show the advantages of MsFEM with oversampling. This
is a subject of our future research.

4. Numerical results and applications

4.1. Oversampling vs. non-oversampling. In this section we present
several ingredients pertaining to the implementation of the multiscale finite element
method. We will present numerical results for both MsFEM and the multiscale finite
volume element method (MsFVEM). We use an Inexact-Newton algorithm as an
iterative technique to tackle the nonlinearity. For the numerical examples below, we
use aε(x,uε,Dxuε)=aε(x,uε)Dxuε. Let {φi

0}Ndof

i=1 be the standard piecewise linear
basis functions of Sh. Then the MsFEM solution may be written as

uh =
Ndof∑

i=1

αiφ
i
0 (4.1)

for some α=(α1,α2,··· ,αNdof
)T , where αi depends on ε. Hence, we need to find α

such that

F (α)=0, (4.2)
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Table 4.1. Relative MsFEM Errors without Oversampling

N L2-norm H1-norm L∞-norm
Error Rate Error Rate Error Rate

32 0.029 0.115 0.03
64 0.053 -0.85 0.156 -0.44 0.0534 -0.94

128 0.10 -0.94 0.234 -0.59 0.10 -0.94

where F :RNdof →RNdof is a nonlinear operator such that

Fi(α)=
∑

K∈Kh

∫

K

(aε(x,ηuh)Dxuε,h),Dxφi
0)dx−

∫

Ω

f φi
0dx. (4.3)

We note that in (4.3) α is implicitly buried in ηuh and uε,h. An inexact-Newton
algorithm is a variation of Newton’s iteration for a nonlinear system of equations,
where the Jacobian system is only approximately solved. To be specific, given an
initial iterate α0, for k =0,1,2,··· until convergence do the following:

• Solve F ′(αk)δk =−F (αk) by some iterative technique until ‖F (αk)+
F ′(αk)δk‖≤ βk ‖F (αk)‖.

• Update αk+1 =αk +δk.
In this algorithm F ′(αk) is the Jacobian matrix evaluated at iteration k. We note
that when βk =0 then we have recovered the classical Newton iteration. Here we have
used

βk =0.001
( ‖F (αk)‖
‖F (αk−1)‖

)2

, (4.4)

with β0 =0.001. Choosing βk this way, we avoid over-solving the Jacobian system
when αk is still considerably far from the exact solution.

Next we present the entries of the Jacobian matrix. For this purpose, we
use the following notations. Let Kh

i ={K ∈Kh :zi is a vertex of K}, Ii ={j :
zj is a vertex of K ∈Kh

i }, and Kh
ij ={K ∈Kh

i :K shares zizj}. We note that we may
write Fi(α) as follows:

Fi(α)=
∑

K∈Kh
i

(∫

K

(aε(x,ηuh)Dxuε,h,Dxφi
0)dx−

∫

K

f φi
0dx

)
, (4.5)

with

−div(aε(x,ηuh)Dxuε,h)=0 in K and uε,h =
∑

zm∈ZK

αmφm
0 on ∂K, (4.6)

where ZK is all the vertices of element K. It is apparent that Fi(α) is not fully
dependent on all α1,α2,··· ,αd. Consequently, ∂Fi(α)

∂αj
=0 for j /∈ Ii. To this end, we

denote ψj
ε = ∂uε,h

∂αj
. By applying the chain rule of differentiation to (4.6) we have the

following local problem for ψj
ε :

−div(aε(x,ηuh)Dxψj
ε )=

1
3

div(
∂aε(x,ηuh)

∂u
Dxuε,h) in K and ψj

ε =φj
ε on ∂K.

(4.7)
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Table 4.2. Relative MsFVEM Errors without Oversampling

.9 N L2-norm H1-norm L∞-norm
Error Rate Error Rate Error Rate

32 0.03 0.13 0.04
64 0.05 -0.65 0.19 -0.60 0.05 -0.24

128 0.058 -0.19 0.25 -0.35 0.057 -0.19

Table 4.3. Relative MsFEM Errors with Oversampling

N L2-norm H1-norm L∞-norm
Error Rate Error Rate Error Rate

32 0.0016 0.036 0.0029
64 0.0012 0.38 0.019 0.93 0.0016 0.92

128 0.0024 -0.96 0.0087 1.14 0.0026 -0.71

The fraction 1/3 comes from taking the derivative in the chain rule of differenti-
ation. In the formulation of the local problem, we have replaced the nonlinearity
in the coefficient by ηvh , where for each triangle K ηvh =1/3

∑3
i=1αK

i , which gives
∂ηvh/∂αi =1/3. Moreover, for a rectangular element the fraction 1/3 should be re-
placed by 1/4.

Thus, provided that vε,h has been computed, then we may compute ψj
ε using

(4.7). Using the above descriptions we have the expressions for the entries of the
Jacobian matrix:

∂Fi

∂αi
=

∑

K∈Kh
i

(
1
3

∫

K

(
∂aε(x,ηuh)

∂u
Dxuε,h,Dxφi

0)dx+
∫

K

(aε(x,ηuh)Dxψi,Dxφi
0)dx,

)

(4.8)

∂Fi

∂αj
=

∑

K∈Kh
ij

(
1
3

∫

K

(
∂aε(x,ηuh)

∂u
Dxuε,h,Dxφi

ε)dx+
∫

K

(aε(x,ηuh)Dxψj
ε ,Dxφi

0)dx,

)

(4.9)
for j 6= i, j∈ Ii.

The implementation of the oversampling technique is similar to the procedure
presented above, except the local problems in larger domains are used. From (3.46),
(3.47), and (3.48) we obtain vε,h that satisfies the homogeneous local problem. As in
the non-oversampling case, we denote ψj

ε = ∂vε,h

∂αj
, such that after applying the chain

rule of differentiation to the local problem we have:

−div(aε(x,ηuh)Dxψj
ε )=

1
3

div(
∂aε(x,ηuh)

∂u
Dxvε,h) in S and ψj

ε =φj
0 on ∂S,

(4.10)
where ηuh is computed over the corresponding element K and φj

0 is understood as
the nodal basis functions on oversampled domain S. Then all the rest of the inexact-
Newton algorithms are the same as in the non-oversampling case. Specifically, we also
use (4.8) and (4.9) to construct the Jacobian matrix of the system. We note that we
will only use ψj

ε from (4.10) pertaining to the element K.
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Table 4.4. Relative MsFVEM Errors with Oversampling

N L2-norm H1-norm L∞-norm
Error Rate Error Rate Error Rate

32 0.002 0.038 0.005
64 0.003 -0.43 0.021 0.87 0.003 0.72

128 0.001 1.10 0.009 1.09 0.001 1.08

Table 4.5. Relative MsFEM Errors for random heterogeneities, spherical variogram, lx =0.20,
lz =0.02, σ =1.0

N L2-norm H1-norm L∞-norm hor. flux
Error Rate Error Rate Error Rate Error Rate

32 0.0006 0.0505 0.0025 0.025
64 0.0002 1.58 0.029 0.8 0.001 1.32 0.017 0.57

128 0.0001 1 0.016 0.85 0.0005 1 0.011 0.62

From the derivation (both for oversampling and non-oversampling) it is obvious
that the Jacobian matrix is not symmetric but sparse. Computation of this Jacobian
matrix is similar to computing the stiffness matrix resulting from a standard finite
element, where each entry is formed by accumulation of element by element contri-
bution. Once we have the matrix stored in memory, then its action to a vector is
straightforward. Because it is a sparse matrix, devoting some amount of memory
for entries storage is inexpensive. The resulting linear system is solved using the
preconditioned bi-conjugate gradient stabilized method.

We want to solve the following problem:

−div(a(x/ε,uε)Dxuε)=−1 in Ω⊂R2,

uε =0 on ∂Ω,
(4.11)

where Ω=[0,1]× [0,1], a(x/ε,uε)=k(x/ε)/(1+uε)
l(x/ε), with

k(x/ε)=
2+1.8sin(2πx1/ε)
2+1.8cos(2πx2/ε)

+
2+sin(2πx2/ε)

2+1.8cos(2πx1/ε)
(4.12)

and l(x/ε) is generated from k(x/ε) such that the average of l(x/ε) over Ω is 2. Here we
use ε=0.01. Because the exact solution for this problem is not available, we use a well
resolved numerical solution using the standard finite element method as a reference
solution. The resulting nonlinear system is solved using an inexact-Newton algorithm.
The reference solution is solved on 512×512 mesh. Tables 4.1 and 4.3 present the
relative errors of the solution with and without oversampling, respectively. In tables
4.2 and 4.4, the relative errors for the multiscale finite volume element method are
presented. The relative errors are computed as the corresponding error divided by
the norm of the solution. In each table, the second, third, and fourth columns list the
relative error in L2, H1, and L∞ norm, respectively. As we can see from these two
tables, the oversampling significantly improves the accuracy of the multiscale method.

For our next example, we consider the problem with non-periodic coefficients,
where aε(x,η)=kε(x)/(1+η)αε(x). kε(x)=exp(βε(x)) is chosen such that βε(x) is a
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Table 4.6. Relative MsFVEM Errors for random heterogeneities, spherical variogram, lx =
0.20, lz =0.02, σ =1.0

.

N L2-norm H1-norm L∞-norm hor. flux
Error Rate Error Rate Error Rate Error Rate

32 0.0006 0.0515 0.0025 0.027
64 0.0002 1.58 0.029 0.81 0.0013 0.94 0.018 0.58

128 0.0001 1 0.016 0.85 0.0005 1.38 0.012 0.58

realization of a random field with the spherical variogram [9] and with the correla-
tion lengths lx =0.2, ly =0.02 and with the variance σ =1. αε(x) is chosen such that
αε(x)=kε(x)+const with the spatial average of 2. As for the boundary conditions we
use “left-to-right flow” in Ω=[0,5]× [0,1] domain, uε =1 at the inlet (x1 =0), uε =0
at the outlet (x1 =5), and no flow boundary conditions on the lateral sides x2 =0
and x2 =1. In Table 4.5 we present the relative error for the multiscale method with
oversampling. Similarly, in Table 4.6 we present the relative error for the multiscale
finite volume method with oversampling. Clearly, the oversampling method captures
the effects induced by the large correlation features. Both H1 and horizontal flux
errors are under five percent. Similar results have been observed for various kinds of
non-periodic heterogeneities. In the next set of numerical examples, we test MsFEM
for problems with fluxes aε(x,η) that are discontinuous in space. The discontinuity in
the fluxes is introduced by multiplying the underlying permeability function, kε(x),
by a constant in certain regions, while leaving it unchanged in the rest of the domain.
As an underlying permeability field, kε(x), we choose the random field used for the
results in Table 4.5. In the first set of examples, the discontinuities are introduced
along the boundaries of the coarse elements. In particular, kε(x) on the left half of
the domain is multiplied by a constant J , where J =exp(1), or exp(2), or exp(4).
The results in Tables 4.7-4.9 show that MsFEM converges and the error falls below
five percent for relatively large coarsening. For the second set of examples (Tables
4.10-4.12), the discontinuities are not aligned with the boundaries of the coarse ele-
ments. In particular, the discontinuity boundary is given by y =x

√
2+0.5, i.e., the

discontinuity line intersects the coarse grid blocks. Similar to the aligned case, var-
ious jump magnitudes are considered. These results demonstrate the robustness of
our approach for anisotropic fields where h and ε are nearly the same, and the fluxes
that are discontinuous spatial functions.

As for CPU comparisons, we have observed more than 92 percent CPU savings
when using MsFEM without oversampling. With the oversampling approach, the
CPU savings depend on the size of the oversampled domain. For example, if the over-
sampled domain size is two times larger than the target coarse block (half coarse block
extension on each side) we have observed 70 percent CPU savings for 64×64 and 80
percent CPU savings for 128×128 coarse grid. In general, the computational cost
will decrease if the oversampled domain size is close to the target coarse block size,
and this cost will be close to the cost of MsFEM without oversampling. Conversely,
the error decreases if the size of the oversampled domains increases. In the numerical
examples studied in our paper, we have observed the same errors for the oversam-
pling methods using either one coarse block extension or half coarse block extensions.
The latter indicates that the leading resonance error is eliminated by using a smaller
oversampled domain. Oversampled domains with one coarse block extension are pre-
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Table 4.7. Relative MsFEM Errors for random heterogeneities, spherical variogram, lx =0.20,
lz =0.02, σ =1.0, aligned discontinuity, jump = exp(1)

.

N L2-norm H1-norm L∞-norm hor. flux
Error Rate Error Rate Error Rate Error Rate

32 0.0006 0.0641 0.0020 0.039
64 0.0002 1.58 0.0382 0.75 0.0010 1.00 0.027 0.53

128 0.0001 1.00 0.0210 0.86 0.0005 1.00 0.018 0.59

Table 4.8. Relative MsFEM Errors for random heterogeneities, spherical variogram, lx =0.20,
lz =0.02, σ =1.0, aligned discontinuity, jump = exp(2)

N L2-norm H1-norm L∞-norm hor. flux
Error Rate Error Rate Error Rate Error Rate

32 0.0008 0.0817 0.0040 0.061
64 0.0004 1.00 0.0493 0.73 0.0023 0.80 0.041 0.57

128 0.0002 1.00 0.0256 0.95 0.0011 1.06 0.025 0.71

viously used in simulations of flow through heterogeneous porous media [36]. As it
is indicated in [19], one can use large oversampled domains for simultaneous compu-
tations of the several local solutions. Moreover, parallel computations will improve
the speed of the method because MsFEM is well suited for parallel computation [19].
For the problems where aε(x,η,ξ)=aε(x)b(η)ξ (see section 2.2 and the next section
for applications) our multiscale computations are very fast because the base functions
are built in the beginning of the computations. In this case, we have observed more
than 95 percent CPU savings.

4.2. Applications of MsFEM to Richards’ equation. In this section
we consider the applications of MsFEM to Richards’ equation, which describes the
infiltration of water flow into a porous media whose pore space is filled with air and
some water. The equation describing Richards’ equation under some assumptions is
given by

Dtθ(u)−div(K(x,u)Dx(u+x3))=0 inΩ, (4.13)

where θ(u) is volumetric water content and u is the pressure. The followings are
assumed ([30]) for (4.13): (1) the porous medium and water are incompressible; (2)
the temporal variation of the water saturation is significantly larger than the temporal
variation of the water pressure; (3) air phase is infinitely mobile so that the air pressure
remains constant, in this case it is atmospheric pressure which equals zero; (4) neglect
the source/sink terms.

Constitutive relations between θ and u and between K and u are developed ap-
propriately, which consequently gives nonlinearity behavior in (4.13). The relation
between the water content and pressure is referred to as the moisture retention func-
tion. The equation written in (4.13) is called the coupled-form of Richards’ Equation.
In other literature this equation is also called the mixed form of Richards’ Equation,
due to the fact that there are two variables involved in it, namely, the water content θ
and the pressure head u. Taking advantage of the differentiability of the soil retention



Y. EFENDIEV, T. HOU AND V. GINTING 573

Table 4.9. Relative MsFEM Errors for random heterogeneities, spherical variogram, lx =0.20,
lz =0.02, σ =1.0, aligned discontinuity, jump = exp(4)

N L2-norm H1-norm L∞-norm hor. flux
Error Rate Error Rate Error Rate Error Rate

32 0.0011 0.1010 0.0068 0.195
64 0.0006 0.87 0.0638 0.66 0.0045 0.59 0.109 0.84

128 0.0003 1.00 0.0349 0.87 0.0024 0.91 0.063 0.79

Table 4.10. Relative MsFEM Errors for random heterogeneities, spherical variogram, lx =0.20,
lz =0.02, σ =1.0, nonaligned discontinuity, jump = exp(1)

N L2-norm H1-norm L∞-norm hor. flux
Error Rate Error Rate Error Rate Error Rate

32 0.0006 0.0623 0.0023 0.035
64 0.0002 1.58 0.0366 0.77 0.0014 0.72 0.024 0.54

128 0.0001 1.00 0.0203 0.85 0.0006 1.22 0.016 0.59

function, one may rewrite (4.13) as follows:

C(u)Dtu−div(K(x,u)Dx(u+x3))=0 inΩ, (4.14)

where C(u)=dθ/du is the specific moisture capacity. This version is referred to as
the head-form (h-form) of Richards’ Equation. Another formulation of the Richards’
Equation is based on the water content θ,

Dtθ−div(D(x,θ)Dxθ)− ∂K

∂x3
=0 inΩ, (4.15)

where D(θ)=K(θ)/(dθ/du) defines the diffusivity. This form is called the θ-form of
Richards’ Equation.

The sources of nonlinearity of Richards’ Equation comes from the moisture re-
tention and relative hydraulic conductivity functions, θ(u) and K(x,u), respectively.
Reliable approximation of these relations are in general tedious to develop and thus
also challenging. Field measurements or laboratory experiments to gather the param-
eters are relatively expensive, and furthermore, even if one can come up with such
relations from these works, they will be somehow limited to the particular cases under
consideration.

Perhaps the most widely used empirical constitutive relations for the moisture
content and hydraulic conductivity is due to the work of van Genuchten [34]. He
proposed a method of determining the functional relation of relative hydraulic con-
ductivity to the pressure head by using the field observation knowledge of the mois-
ture retention. In turn, the procedure would require curve-fitting to the proposed
moisture retention function with the experimental/observational data to establish
certain parameters inherent to the resulting hydraulic conductivity model. There
are several widely known formulations of the constitutive relations: Haverkamp
model - θ(u)= α(θs−θr)

α+|u|β +θr, K(x,u)=Ks(x) A
A+|u|γ ; van Genuchten model [34]

- θ(u)= α(θs−θr)
[1+(α|u|)n]m +θr, K(x,u)=Ks(x){1−(α|u|)n−1[1+(α|u|)n]−m}2

[1+(α|u|)n]m/2 ; Exponential

model [35] - θ(u)=θseβu, K(x,u)=Ks(x)eαu.
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Table 4.11. Relative MsFEM Errors for random heterogeneities, spherical variogram, lx =0.20,
lz =0.02, σ =1.0, nonaligned discontinuity, jump = exp(2)

.

N L2-norm H1-norm L∞-norm hor. flux
Error Rate Error Rate Error Rate Error Rate

32 0.0010 0.0785 0.0088 0.052
64 0.0003 1.74 0.0440 0.84 0.0052 0.76 0.031 0.75

128 0.0001 1.59 0.0239 0.88 0.0022 1.24 0.017 0.87

Table 4.12. Relative MsFEM Errors for random heterogeneities, spherical variogram, lx =0.20,
lz =0.02, σ =1.0, nonaligned discontinuity, jump = exp(4)

.

N L2-norm H1-norm L∞-norm hor. flux
Error Rate Error Rate Error Rate Error Rate

32 0.0067 0.1775 0.1000 0.164
64 0.0016 2.07 0.0758 1.23 0.0288 1.80 0.077 1.09

128 0.0009 0.83 0.0687 0.14 0.0423 -0.55 0.039 0.98

The variable Ks in the above models is also known as the saturated hydraulic
conductivity. It has been observed that the hydraulic conductivity has a broad range
of values, which together with the functional forms presented above, confirm the
nonlinear behavior of the process. Furthermore, the water content and hydraulic
conductivity approach zero as the pressure head goes to very large negative values.
In other words, the Richards’ Equation has a tendency to degenerate in a very dry
condition, i.e., conditions with the large negative pressure. Because we are interested
in mass conservative schemes, finite volume formulation (2.5) of the global problem
instead of finite element formulation will be used. For (4.13), it is to find uh∈Sh such
that

∫

Vz

(θ(ηuh)−θn−1)dx−∆t

∫

∂Vz

K(x,ηuh)Dxuε,h ·ndl=0 ∀z∈Z0
h, (4.16)

where θn−1 is the value of θ(ηuh) evaluated at time step n−1, and uε,h∈V h
ε is a

function that satisfies the boundary value problem:

−div(K(x,ηuh)Dxuε,h)=0 in K ∈Sh,

uε,h =uh on ∂K. (4.17)

Here Vz is the control volume surrounding the vertex z∈Z0
h and Z0

h is the collection
of all vertices that do not belong to the Dirichlet boundary.

MsFEM (or MsFVEM) offers great advantage when the nonlinearity and hetero-
geneity of K(x,p) is separable, i.e.,

K(x,u)=ks(x)kr(u). (4.18)

In this case, as we discussed earlier, the local problems become linear and the corre-
sponding V h

ε is a linear space, i.e., we may construct a set of basis functions {ψz}z∈Z0
h

such that they satisfy

−div(ks(x)Dxψz)=0 in K ∈Sh,

ψz =φz on ∂K, (4.19)
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Fig. 4.1. Rectangular porous medium

where φz is a piecewise linear function. We note that if uh has a discontinuity or a
sharp front region, then the multiscale basis functions need to be updated only in that
region. The latter is similar to the use of MsFEM in two-phase flow applications. For
this case the base functions are only updated along the front. Now, we may formulate
the finite dimensional problem. We want to seek uε,h∈V h

ε with uε,h =
∑

z∈Z0
h
pzψz

such that
∫

Vz

(θ(ηuh)−θn−1)dx−∆t

∫

∂Vz

ks(x)kr(ηuh)Dxuε,h ·ndl=0, (4.20)

for every control volume Vz⊂Ω. To this equation we can directly apply the lineariza-
tion procedure described in [17]. Let us here denote

rm =um
ε,h−um−1

ε,h , m=1,2,3,·, (4.21)

where um
ε,h is the iterate of uε,h at the iteration level m. Thus, we want to find rm =∑

z∈Z0
h
rm
z ψz such that for m=1,2,3,··· ‖rm‖≤ δ with δ being some predetermined

error tolerance
∫

Vz

C(ηuh,m−1)rmdx−∆t

∫

∂Vz

ks(x)kr(ηuh,m−1)Dxrm ·ndl=Rh,m−1, (4.22)

with

Rh,m−1 =−
∫

Vz

(θ(ηuh,m−1)−θn−1)dx+∆t

∫

∂Vz

ks(x)kr(ηuh,m−1)Dxum−1
ε,h ·ndl.

(4.23)
The superscript m at each of the functions means that the corresponding functions
are evaluated at an iteration level m.

We present several numerical experiments that demonstrate the ability of the
coarse models presented in the previous subsections. The coarse models are compared
with the fine model solved on a fine mesh. We have employed a finite volume difference
to solve the fine-scale equations. This solution serves as a reference for the proposed
coarse models. The problems that we consider are typical water infiltration into an
initially dry soil. The porous medium that we consider is a rectangle of size Lx×Lz
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Fig. 4.2. Haverkamp model with isotropic heterogeneity. Comparison of water pressure between
the fine model (left) and the coarse model (right).

(see Figure 4.1). The fine model uses 256×256 rectangular elements, while the coarse
model uses 32×32 rectangular elements.

A realization of the permeability field is generated using geostatistical package
GSLIB ([9]). We have used a spherical variogram with prescribed correlation lengths
(lx, lz) and the variance (σ) for this purpose. All examples use σ =1.5.

The first problem is a soil infiltration, which was first analyzed by Haverkamp
(cf. [6]). The porous medium dimension is Lx =40 and Lz =40. The boundary
conditions are as follows: ΓL and ΓR are impermeable, while Dirichlet conditions
are imposed on ΓB and ΓT , namely uT =−21.7 in ΓT , and uB =−61.5 in ΓB . The
initial pressure is u0 =−61.5. The constitutive relations use the Haverkamp model.
The related parameters are as follows: α=1.611×106, θs =0.287, θr =0.075, β =3.96,
A=1.175×106, and γ =4.74. For this problem we assume that the nonlinearity and
heterogeneity are separable, where the latter comes from Ks(x) with Ks =0.00944.
We assume that appropriate units for these parameters hold. There are two cases
considered for this problem, namely, the isotropic heterogeneity with lx = lz =0.1,
and the anisotropic heterogeneity with lx =0.01 and lz =0.20. For the backward
Euler scheme, we use ∆t=10. Note that the large value of ∆t is due to the smallness
of Ks (average magnitude of the diffusion). The comparison is shown in Figures 4.2
and 4.3, where the solutions are plotted at t=360.

The second problem is a soil infiltration through a porous medium whose dimen-
sion is Lx =1 and Lz =1. The boundary conditions are as follows: ΓL and ΓR are
impermeable. Dirichlet conditions are imposed on ΓB with uB =−10. The bound-
ary ΓT is divided into three parts. On the middle part, a zero Dirichlet condition
is imposed, and the rest are impermeable. The constitutive relations use the Expo-
nential model with the following related parameters: β =0.01, θs =1, Ks=1, and
α=0.01. The heterogeneity comes from Ks(x) and α(x). Clearly, for this problem
the nonlinearity and heterogeneity are not separable. Again, isotropic and anisotropic
heterogeneities are considered with lx = lz =0.1 and lx =0.20, lz =0.01, respectively.
For the backward Euler scheme, we use ∆t=2. The comparison is shown in Figures
4.4 and 4.5, where the solutions are plotted at t=10.

We note that the problems that we have considered are vertical infiltration on
the porous medium. Hence, it is also useful to compare the cross-sectional vertical
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Fig. 4.3. Haverkamp model with anisotropic heterogeneity. Comparison of water pressure
between the fine model (left) and the coarse model (right).

Fig. 4.4. Exponential model with isotropic heterogeneity. Comparison of water pressure between
the fine model (left) and the coarse model (right).

Fig. 4.5. Exponential model with anisotropic heterogeneity. Comparison of water pressure
between the fine model (left) and the coarse model (right).
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velocity that will be plotted against the depth z. Here, the cross-sectional vertical
velocity is obtained by taking an average over the horizontal direction (x-axis).
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Fig. 4.6. Comparison of vertical velocity on the coarse grid for Haverkamp model: isotropic
heterogeneity (left) and anisotropic heterogeneity (right).
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Fig. 4.7. Comparison of vertical velocity on the coarse grid for Exponential model: isotropic
heterogeneity (left) and anisotropic heterogeneity (right). The average is taken over the second third
of the domain.

Figure 4.6 shows a comparison of the cross-sectional vertical velocity for the
Haverkamp model. The average is taken over all the horizontal span because the
boundary condition on ΓT (and also on ΓB) is all Dirichlet condition. Both plots
in this figure show a close agreement between the fine and coarse models. For the
Exponential model, as we have described above, there are three different segments for
the boundary condition on ΓT , i.e., a Neumann condition on the first and third part,
and a Dirichlet condition on the second/middle part of ΓT . Thus, we will compare
the cross-sectional vertical velocity in each of these segments separately. Figure 4.7
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shows the comparison for one of these segments. The agreement between the coarse
grid and fine grid calculations is excellent.

5. Extension of MsFEM and concluding remarks

5.1. On the convergence of MsFEM. In this paper we have discussed
the convergence of MsFEM in the limit ε/h→0 for the periodic problems. This
result, we believe, also holds for nonlinear elliptic problems with random homogeneous
coefficients, where we assume aε(x,η,ξ)=a(T (x/ε)ω,η,ξ), where a(ω,η,ξ) is a random
homogeneous field. The analysis of the case with random heterogeneities is different
from the periodic case and it is currently under investigation. For more general cases
without any assumptions on the nature of heterogeneities, one can show (see [13])

lim
h→0

lim
ε→0

‖uh−u‖W 1,p
0 (Ω) =0, (5.1)

(up to a subsequence) where u can be a solution of (1.2) and uh is a MsFEM solution
given by (2.3). The proof of this fact uses only G-convergence results and holds up to
a subsequence of ε. As we mentioned before, this result can not be improved because
there could be infinitely many scales (α(ε)) such that α(ε)→0 as ε→0.

5.2. MsFEM for nonlinear parabolic equations. Consider uε∈W0

Dtuε−div(aε(x,t,uε,Dxuε))+a0,ε(x,t,uε,Dxuε)=f,

where W0 ={u∈W,u(x,t=0)=0}, and

V0 =Lp(0,T,W 1,p
0 (Ω)),

V =Lp(0,T,W 1,p(Ω)),
W ={u∈V0,Dtu∈Lq(0,T,W−1,q(Ω))},
W ={u∈V ,Dtu∈Lq(0,T,W−1,q(Ω))}. (5.2)

Assume 0= t0 <t1 < ···<tM =T , where max(ti+1− ti)=ht and denote h=
max(hx,ht). The multiscale mapping for nonlinear parabolic equations, EMsFEM :
Sh→V h

ε , is constructed in the following way. For each vh∈Sh, vε,h(x,t) is the solution
of

Dtvε,h−div(aε(x,t,ηvh ,Dxvε,h))=0 in K× [tn,tn+1], (5.3)

vε,h =vh on ∂K and vε,h(t= tn)=vh. Note that EMsFEM is a one-to-one map defined
on Ω× [tn,tn+1]. MsFEM formulation of the problem is the following. Find uh(t)∈Sh

(and uε,h∈V h
ε ) such that

∫ tn+1

tn

∫

Ω

Dtuhvhdxdt+〈Aε,huh,vh〉=
∫ tn+1

tn

∫

Ω

fvhdxdt, (5.4)

where

〈Aε,huh,vh〉=
∫ tn+1

tn

∫

Ω

((aε(x,t,ηuh ,Dxuε,h),Dxvh)+a0,ε(x,t,ηuh ,Dxuε,h)vh)dxdt.

One can write (5.4) in the following way
∫

Ω

(uh(tn+1)−uh(tn))vhdx+〈Aε,huh,vh〉=
∫ tn+1

tn

∫

Ω

fvhdxdt.
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Furthermore, taking the present value of uh, i.e., uh(x,tn+1), in 〈Aε,huh,vh〉 we obtain
the implicit MsFEM scheme and taking the value of uh at t= tn we obtain the explicit
MsFEM scheme. For the special periodic case, one can use the solution in the period
to construct EMsFEM as we did in the elliptic case. Finally, we would like to note
that one can develop oversampling techniques for parabolic problems, by extending
both temporal and spatial domains of the local problems, and this is a subject of our
future research.

Next, we consider some concrete examples.
Example 1. Linear Case.
In the linear case, the multiscale map EMsFEM is linear, and consequently, V h

ε is a
linear space. A basis of V h

ε can be found by mapping a basis of Sh, i.e., V h
ε =span(φi

ε),
where φi

ε satisfy

Dtφ
i
ε−div(aε(x,t)Dxφi

ε)=0 in K× [tn,tn+1], (5.5)

φi
ε(t= tn)=φi

0 on ∂K and φi
ε =φi

0, where Sh =span(φi
0). The development of the

oversampling techniques for both space and time is currently under investigation.
Example 2. Spatial case
If we assume aε(x,t,η,ξ) is independent of time, then the following local problems

can be solved for the construction of EMsFEM (instead of (5.3))

−div(aε(x,ηvh ,Dxvε,h))=0 in K× [tn,tn+1], (5.6)

where vε,h =vh on ∂K and vε,h(t= tn)=vh. This simplification of the local problem
can be understood based on the homogenization of parabolic equations. In particular,
the solution of (5.3) can be approximated with the solution of (5.6) in the case of
spatial heterogeneities.

5.3. Further generalizations of MsFEM and concluding remarks.
Next, we present the framework of MsFEM for general equations. Consider

Lεuε =f, (5.7)

where ε is a small scale and Lε :X→Y is an operator. Moreover, we assume that Lε

G-converges to L∗ (up to a sub-sequence), where u is a solution of

L∗u=f, (5.8)

(we refer to [28], page 14 for the definition of G-convergence for operators). The ob-
jective of MsFEM is to approximate u in Sh. Denote Sh a family of finite dimensional
space such that it possesses an approximation property (see [37, 29]) as before. Here h
is a scale of computation and hÀ ε. For (5.7) multiscale mapping, EMsFEM :Sh→V h

ε

, will be defined as follows. For each element vh∈Sh, vε,h =EMsFEMvh is defined as

Lmap
ε vε,h =0 in K, (5.9)

where Lmap
ε can be, in general, different from Lε and allows us to capture the effects of

the small scales. Moreover, the domains different from the target coarse block K can
be used in the computations of the local solutions. To solve (5.9) one needs to impose
boundary and initial conditions. This issue needs to be resolved on a case by case
basis, and the main idea is to interpolate vh onto the underlying fine grid. Further,
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we seek a solution of (5.7) in V h
ε as follows. Find uh∈Sh (consequently uε,h∈V h

ε )
such that

〈Lglobal
ε uε,h,vh〉= 〈f,vh〉, ∀vh∈Sh, (5.10)

where 〈u,v〉 denotes the duality between X and Y , and Lglobal
ε can be, in gen-

eral, different from Lε. For example, for nonlinear elliptic equations we have Lεu=
−div(aε(x,u,Dxu))+a0,ε(x,u,Dxu), Lmap

ε u=div(aε(x,ηu,Dxu)) in K, and Lglobal
ε =

div(aε(x,ηu,Dxu))+a0,ε(x,ηu,Dxu) in K. The convergence of MsFEM is to show
that uh→u and uε,h→uε, where uε,h =EMsFEMuh in appropriate space. The cor-
rect choices of Lmap

ε and Lglobal
ε are the essential part of MsFEM and guarantees the

convergence of the method.
In conclusion, we have presented a natural extension of MsFEM to nonlinear

problems. This is accomplished by considering a multiscale map instead of the base
functions that are considered in linear MsFEM [19]. Our approaches share some com-
mon elements with recently introduced HMM [10], where macroscopic and microscopic
solvers are also needed. In general, the finding of “correct” macroscopic and micro-
scopic solvers is the main difficulty of the multiscale methods. Our approaches follow
MsFEM and, consequently, finite element methods constitute its main ingredient.
The resonance errors, that arise in linear problems also arise in nonlinear problems.
Note that the resonance errors are the common feature of multiscale methods unless
periodic problems are considered and the solutions of the local problems in an exact
period are used. To reduce the resonance errors we use an oversampling technique
and show that the error can be greatly reduced by sampling from the larger domains.
The multiscale map for MsFEM uses the solutions of the local problems in the target
coarse block. This way one can sample the heterogeneities of the coarse block. If
there is a scale separation and, in addition, some kind of periodicity, one can use the
solutions of the smaller size problems to approximate the multiscale map. Note that
a potential disadvantage of periodicity assumption is that the periodicity can act to
disrupt large-scale connectivity features of the flow. For the examples similar to the
non-periodic ones considered in this paper, with the use of the smaller size problems
for approximating the solutions of the local problems, we have found very large errors
(of order 50 percent).

Appendix A. The proof of Lemma 3.3.
Let ṽε,h =vε,h−vh, where vε,h =EMsFEMvh. It follows that ṽε,h∈W 1,p

0 (K) sat-
isfies the following problem:

−div(aε(x,ηvh ,Dxṽε,h +Dxvh))=0 in K. (A.1)

Using (A.1), applying Green’s Theorem we have the following estimate:

〈Aε,hvh,vh〉
=

∑

K∈Kh

∫

K

(aε(x,ηvh ,Dxvh +Dxṽε,h),Dxvh +Dxṽε,h)dx

+
∑

K∈Kh

∫

K

a0,ε(x,ηvh ,Dxvε,h)vhdx
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=
∑

K∈Kh

∫

K

[(aε(x,ηvh ,Dxvh +Dxṽε,h),Dxvh +Dxṽε,h)+a0,ε(x,ηvh ,Dxvε,h)ηvh ]dx

+
∑

K∈Kh

∫

K

a0,ε(x,ηvh ,Dxvε,h)(vh−ηvh)dx. (A.2)

Further, using the coercivity condition (3.3) and the fact that |vh−ηvh |≤Ch|Dxvh|
in each K (note that Dxvh is constant in each K) we have

〈Aε,hvh,vh〉≥ c
∑

K∈Kh

∫

K

|Dxvh +Dxṽε,h|pdx−c1h
∑

K∈Kh

∫

K

a0,ε(x,ηvh ,Dxvε,h)Dxvhdx

≥ (c−c1h)
∑

K∈Kh

∫

K

|Dxvε,h|pdx. (A.3)

Next, we discuss some special cases, where the coercivity can be easily shown. If p=2,
∑

K∈Kh

∫

K

|Dxvε,h|2dx

=
∑

K∈Kh

∫

K

|Dxvh +Dxṽε,h|2dx

=
∑

K∈Kh

∫

K

|Dxvh|2dx+
∑

K∈Kh

∫

K

(Dxvh,Dxvε,h)dx+
∑

K∈Kh

∫

K

|Dxvε,h|2dx

=
∑

K∈Kh

∫

K

|Dxvh|2dx+
∑

K∈Kh

∫

K

|Dxvε,h|2dx

≥
∑

K∈Kh

∫

K

|Dxvh|2dx. (A.4)

Here we have used the fact that ṽε,h =0 on ∂K, and Dxvh is constant in each K. One
can also easily show the coercivity, using rescaling arguments, if aε(x,η,ξ)=aε(x,ξ)
and aε(x,λξ)= |λ|p−1bε(x,ξ).

Next we analyze the general case. Denote by Kr a reference triangle (with the size
of order one) and introduce the change of variables z =x/h. Using Trace Theorem
(see e.g., [27], page 30) ‖u‖Lp(∂Q)≤ c‖u‖W 1,p(Q) and the fact ‖Dxu‖Lp(Q)≥ c‖u−
f(u)‖W 1,p(Q) (see e.g., [15], page 490) where Q is a domain with a Lipschitz boundary
and f(u) can be taken to be the average of u on ∂Q we get the following.

∑

K∈Kh

∫

K

|Dxvε,h|pdx

=
∑

K∈Kh

hd−p

∫

Kr

|Dzvε,h|pdz≥
∑

K∈Kh

hd−p‖vε,h− η̃vh‖W 1,p(Kr)

≥ c
∑

K∈Kh

hd−p

∫

∂Kr

|vh− η̃vh |pdzl

= c
∑

K∈Kh

hd−p

∫

∂Kr

|(Dzvh,z−z0)|pdzl

= c
∑

K∈Kh

hd|Dxvh|p
∫

∂Kr

|(eDzvh
,z−z0)|pdzl. (A.5)
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Here η̃vh is the average of vh along the boundaries, η̃vh = 1
|∂Kr|

∫
∂Kr

vhdzl and vh =
η̃vh +(Dzvh,z−z0), where z0 = 1

|∂Kr|
∫

∂Kr
zdzl. Denote

C(eDzvh
)=

∫

∂Kr

|(eDzvh
,z−z0)|pdzl.

To finish the proof, we need only to claim that C(eξ) is bounded from below indepen-
dent of ξ. By contradiction suppose the claim is not true. Then there exists a sequence
{eξn} that has a sub-sequence (denoted by the same notation) such that eξn →e∗ and
C(eξn

)→0 as n→∞. Because C(eξ) is continuous it follows that C(e∗)=0. This
further implies that (e∗,z)=0 on ∂Kr, and hence e∗=0. This is a contradiction.
Finally, denoting the lower bound of C(eDxvh

) by c0, we have

〈Aε,hvh,vh〉≥ c
∑

K∈Kh

hd |Dxvh|pC(eDxvh
)≥ cc0

∑

K

∫

K

|Dxvh|pdx= c‖Dxvh‖p
p,Ω.

(A.6)

Appendix B. Proof of Lemma 3.4.
First we show the following fact.

Proposition B.1. Let vε−v0∈W 1,p
0 (K) satisfies the following problem:

−div(aε(x,η,Dxvε))=0 in K (B.1)

where η is constant in K. Then

‖Dxvε‖p,K ≤ c(|K| 1p +‖η‖p,K +‖Dxv0‖p,K). (B.2)

Proof. Let ṽε =vε−v0. It follows that ṽε satisfies the following problem:

−div(aε(x,η,Dx(ṽε +v0)))=0 in K and ṽε =0 on ∂K. (B.3)

Multiplying (B.3) with vε, applying Green’s Theorem, and using the fact that ṽε =0
on ∂K, we immediately obtain the following equality:

∫

K

(aε(x,η,Dxvε),Dxvε)dx=
∫

K

(aε(x,η,Dxvε),Dxv0)dx. (B.4)

Next we use coercivity and polynomial growth properties of aε(x,η,ξ) to bound (B.4)
from below and above, respectively. Thus by applying Holder’s and Young’s inequal-
ities we have

c2‖Dxvε‖p
p,K ≤ c1

∫

K

(1+ |η|p−1 + |Dxvε|p−1)|Dxv0|dx

≤ c1

(∫

K

(1+ |η|p + |Dxvε|p)dx

) 1
q

‖Dxv0‖p,K

≤ c1 δ

q

∫

K

(1+ |η|p + |Dxvε|p)dx+
c1

pδ
‖Dxv0‖p

p,K . (B.5)

The claim in this proposition is obtained from this inequality by choosing δ >0 ap-
propriately.
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Next we prove Lemma 3.4. Let ṽε =vε−v0 and w̃ε =wε−w0. It follows that ṽε

and w̃ε satisfy the following problems respectively:

−div(aε(x,η,Dx(ṽε +v0)))=0 in K and ṽε =0 on ∂K, (B.6)

−div(aε(x,η,Dx(w̃ε +w0)))=0 in K and w̃ε =0 on ∂K. (B.7)

Using the monotonicity property of aε(x,η,ξ) and applying Green’s Theorem along
with the fact that ṽε = w̃ε =0 on ∂K, we immediately obtain the following inequality:

c1‖Dx(vε−wε)‖p
p,K

= c1‖Dx(ṽε +v0)−Dx(w̃ε−w0)‖p
p,K

≤
∫

K

(aε(x,η,Dxvε)−aε(x,η,Dxwε),Dx(v0−w0))dx

≤ c4

∫

K

H(η,Dxvε,η,Dxwε,p−1−s)|Dx(vε−wε)|s |Dx(v0−w0)|dx, (B.8)

where on the last line we have used the continuity property of aε(x,η,ξ) and H is
defined in (3.4). Applying Holder’s and Young’s inequalities appropriately we have

‖Dx(vε−wε)‖p
p,K

≤ c

(∫

K

H(η,Dxvε,η,Dxwε,p)dx

) p−s−1
p

‖Dx(v0−w0)‖p,K ‖Dx(vε−wε)‖s
p,K

≤ c
δs

p
‖Dx(vε−wε)‖p

p,K +c
p−s

δp

(∫

K

H(η,Dxvε,η,Dxwε,p)dx

) p−s−1
p−s

‖Dx(v0−w0)‖
p

p−s

p,K . (B.9)

Applying Proposition B.1 and choosing δ >0 appropriately, we obtain the desired
estimate.

Appendix C. Proof Proposition 3.6.
By change of variables, it is sufficient to show that

‖Pη,ξ‖p
p,Y ≤ c(1+ |η|p + |ξ|p), (C.1)

where Y is the unit square. Applying monotonicity and polynomial growth properties
of a(y,η,ξ) we have

‖Pη,ξ‖p
p,Y =

∫

Y

|Pη,ξ−0|pdy

≤ c

∫

Y

(a(y,η,Pη,ξ)−a(y,η,0),Pη,ξ)dy

= c

∫

Y

(a(y,η,Pη,ξ),ξ)dy−c

∫

Y

(a(y,η,0),Pη,ξ) ,dy

≤ c

∫

Y

(1+ |η|p−1 + |Pη,ξ|p−1)|ξ|dy+c

∫

Y

(1+ |η|p−1)|Pη,ξ|dy. (C.2)

Next we use Holder’s inequality with r1 =p/(p−1) and r2 =p on both terms and
afterward apply Young’s inequality, so that for some β >0 we have

‖Pη,ξ‖p
p,Y ≤ c1(β) (1+ |η|p + |ξ|p)+c2(β)‖Pη,ξ‖p

p,Y . (C.3)
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Here c2(β)→0 as β→0. Choosing β appropriately, we obtain the desired estimate.

Appendix D. Proof Lemma 3.8.
The following lemma will be used in the proof (see (D.12)).

Lemma D.1. If uk→0 in Lr(Ω) (1<r <∞) as k→∞ then
∫

Ω

ν(uk)|vk|pdx→0, as k→∞

for all vk either (1) compact in Lp(Ω) or (2) uniformly bounded in Lp+α(Ω), α>0.
Here ν(t) is continuity modulus defined previously and 1<p<∞.

Proof. Because uk converges in Lr(Ω) it converges in measure. Consequently, for
any δ >0 there exists Ωδ and k0 such that meas(Ω\Ωδ)<δ and ν(uk)<δ in Ωδ for
k >k0. Thus

∫

Ω

ν(uk)|vk|pdx=
∫

Ωδ

ν(uk)|vk|pdx+
∫

Ω\Ωδ

ν(uk)|vk|pdx≤Cδ+C

∫

Ω\Ωδ

|vk|pdx.

(D.1)
Next we use the fact that if (1) or (2) is satisfied then the set vk has equi-absolute
continuous norm [23] (i.e., for any ε>0 there exists ζ >0 such that meas(Ωζ)<ζ
implies ‖PΩζ

vk‖p <ε, where PDf ={f(x), if x∈D;0 otherwise). Consequently, the
second term on the right side of (D.1) converges to zero as δ→0.

Given vh∈Sh, we set the corrector P as in (3.18). By adding and subtracting
terms, we have the following equality:

〈Aε,hvh−A∗vh,wh〉=
∑

K∈Kh

(IK +IIK +IIIK)+
∑

K∈Kh

(iK + iiK + iiiK), (D.2)

where

IK =
∫

K

(a(x/ε,ηvh ,Dxvε,h)−a(x/ε,ηvh ,P),Dxwh)dx,

IIK =
∫

K

(a(x/ε,ηvh ,P)−a∗(ηvh ,Dxvh),Dxwh)dx,

IIIK =
∫

K

(a∗(ηvh ,Dxvh)−a∗(vh,Dxvh),Dxwh)dx, (D.3)

and

iK =
∫

K

(a0(x/ε,ηvh ,Dxvε,h)−a0(x/ε,ηvh ,P))whdx,

iiK =
∫

K

(a0(x/ε,ηvh ,P)−a∗0(η
vh ,Dxvh))whdx,

iiiK =
∫

K

(a∗0(η
vh ,Dxvh)−a∗0(vh,Dxvh))whdx. (D.4)

We will show the convergence corresponding to higher order terms, IK , IIK , IIIK .
The convergence estimates for iK , iiK , iiiK are the same and can be obtained in a
very analogous manner.
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Step 1: estimate of IK

Using continuity property (3.5) and Holder’s inequality, IK is estimated in the follow-
ing way:

IK ≤ c

∫

K

|Dxvε,h−P|sH(ηvh ,Dxvε,h,ηvh ,P,p−1−s)|Dxwh|dx

≤ c‖Dxvε,h−P‖s
p,K

(∫

K

H(ηvh ,Dxvε,h,ηvh ,P,p)dx

) p−1−s
p

‖Dxwh‖p,K ,(D.5)

where H is defined by (3.4). Note that on the second term in the last line of (D.5)
we have

∫

K

H(ηvh ,Dxvε,h,ηvh ,P,p)dx

=1+2‖ηvh‖p
p,K +‖Dxvε,h‖p

p,K +‖P‖p
p,K

≤ c
(
1+‖ηvh‖p

p,K +‖Dxvε,h‖p
p,K +‖Dxvh‖p

p,K +‖εDxNηvh ,Dxvh
‖p

p,K

)
. (D.6)

Using Proposition B.1 and a technique similar to the one in the proof of Lemma 3.5,
(see (3.27)) we have

∫

K

H(ηvh ,Dxvε,h,ηvh ,P,p)dx≤ c
(
|K|+‖vh‖p

p,K +‖Dxvh‖p
p,K

)
. (D.7)

With this estimate along with (3.19) it follows from (D.5) that

∑

K∈Kh

IK ≤ c‖Dxvε,h−P‖s
p,Ω

(
|Ω|+‖vh‖p

p,Ω +‖Dxvh‖p
p,Ω

) p−1−s
p ‖Dxwh‖p,Ω

≤ c
( ε

h

) s
p(p−s)

(
|Ω|+‖vh‖p

p,Ω +‖Dxvh‖p
p,Ω

) s
p

(
|Ω|+‖vh‖p

p,Ω +‖Dxvh‖p
p,Ω

) p−1−s
p ‖Dxwh‖p,Ω

≤ c
( ε

h

) s
p(p−s)

(
|Ω|+‖vh‖p

p,Ω +‖Dxvh‖p
p,Ω

) 1
q ‖Dxwh‖p,Ω. (D.8)

By Lemma 3.5 the last inequality vanishes as ε approaching zero.
Step 2: estimate of IIK

Let IK
ε ={i∈Zd :Y i

ε ⊂K} and JK
ε ={i∈Zd :Y i

ε

⋂
K 6=0,K\Y i

ε 6=0}. Let EK
ε =

∪i∈IK
ε

Y i
ε and FK

ε =∪i∈JK
ε

Y i
ε . Then we may break up the integration IIK into the

sum of integral over EK
ε and K\EK

ε . By (3.16) and the fact that Dxwh is constant
in K, we have the following estimate:

IIK =
∑

i∈IK
ε

∫

Y i
ε

(a(x/ε,ηvh ,P)−a∗(ηvh ,Dxvh),Dxwh)dx

+
∫

K\EK
ε

(a(x/ε,ηvh ,P)−a∗(ηvh ,Dxvh),Dxwh)dx

≤
∫

F K
ε

|(a(x/ε,ηvh ,P)−a∗(ηvh ,Dxvh),Dxwh)|dx. (D.9)
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It follows by applying Holder’s inequality appropriately and using Proposition 3.6
that

∑

K∈Kh

IIK

≤
∑

K∈Kh

∑

i∈JK
ε

∫

Y i
ε

(|(a(x/ε,ηvh ,P),Dxwh)|+ |(a∗(ηvh ,Dxvh),Dxwh)|) dx

≤ c
∑

K∈Kh

∑

i∈JK
ε

∫

Y i
ε

H(ηvh ,P,ηvh ,Dxvh,p−1)|Dxwh|dx

≤ c


 ∑

K∈Kh

∑

i∈JK
ε

∫

Y i
ε

H(ηvh ,P,ηvh ,Dxvh,p)dx




1
q


 ∑

K∈Kh

∑

i∈JK
ε

∫

Y i
ε

|Dxwh|pdx




1
p

≤ c


 ∑

K∈Kh

∑

i∈JK
ε

(1+ |ηvh |p + |Dxvh|p) |Y i
ε |




1
q


 ∑

K∈Kh

∑

i∈JK
ε

|Dxwh|p |Y i
ε |




1
p

≤ c


 ∑

K∈Kh

|K| (1+ |ηvh |p + |Dxvh|p) |F
K
ε |
|K|




1
q


 ∑

K∈Kh

|K||Dxwh|p |F
K
ε |
|K|




1
p

≤ cmax
K

( |FK
ε |
|K|

) 1
q (
|Ω|+‖vh‖p

p,Ω +‖Dxvh‖p
p,Ω

) 1
q

max
K

( |FK
ε |
|K|

) 1
q (
‖Dxwh‖p

p,Ω

) 1
p

≤ c
( ε

h

)(
|Ω|+‖vh‖p

p,Ω +‖Dxvh‖p
p,Ω

) 1
q

.‖Dxwh‖p,Ω (D.10)

This expression vanishes as ε approaches to zero.

Step 3: estimate of IIIK

Using (3.5) for the homogenized fluxes and Holder’s inequality we estimate IIIK in
the following way:

IIIK ≤ c

∫

K

H(ηvh ,Dxvh,vh,Dxvh,p−1)ν(|ηvh−vh|)|Dxwh|dx

≤ c

(∫

K

H(ηvh ,Dxvh,vh,Dxvh,p)ν(|ηvh−vh|)q dx

) 1
q

‖Dxwh‖p,K . (D.11)

It follows that

∑

K∈Kh

IIIK ≤ c

(∫

Ω

H(ηvh ,Dxvh,vh,Dxvh,p)ν(|ηvh−vh|)q dx

) 1
q

‖Dxwh‖p,Ω

≤ c

(∫

Ω

(|vh|p + |Dxvh|p)ν(|ηvh−vh|)q dx

) 1
q

‖Dxwh‖p,Ω. (D.12)

Because Dxvh∈Lp+α(Ω), Dxwh∈Lp(Ω) and ηvh−vh converges to zero in Lp(Ω) it
follows from Lemma D.1 that

∑
K∈Kh IIIK vanishes as ε→0.
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