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CONTINUOUS GLIMM-TYPE FUNCTIONALS AND SPREADING
OF RAREFACTION WAVES∗

PHILIPPE G. LEFLOCH † AND KONSTANTINA TRIVISA ‡

Abstract. Several Glimm-type functionals for (piecewise smooth) approximate solutions of
nonlinear hyperbolic systems have been introduced in recent years. In this paper, following a work
by Baiti and Bressan on genuinely nonlinear systems we provide a framework to prove that such
functionals can be extended to general functions with bounded variation and we investigate their
lower semi-continuity properties with respect to the strong L1 topology. In particular, our result
applies to the functionals introduced by Iguchi-LeFloch and Liu-Yang for systems with general flux-
functions, as well as the functional introduced by Baiti-LeFloch-Piccoli for nonclassical entropy
solutions. As an illustration of the use of continuous Glimm-type functionals, we also extend a result
by Bressan and Colombo for genuinely nonlinear systems, and establish an estimate on the spreading
of rarefaction waves in solutions of hyperbolic systems with general flux-function.
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1. Introduction
Major progress has been made in recent years on the well-posedness theory for

nonlinear hyperbolic systems in one space variable

∂tu+A(u) ∂xu = 0, u = u(x, t) ∈ R
N , x ∈ R, t > 0. (1.1)

Here, the matrix A(u) is assumed to be strictly hyperbolic, with distinct eigenvalues
λj(u) and left- and right-eigenvectors lj(u) and rj(u), and discontinuous solutions
with small total variation are being considered. The existence theory for (1.1) started
with Glimm’s pioneering work [26], which introduced linear and quadratic functionals
allowing one to control the total variation of solutions of (1.1) in the case of genuinely
nonlinear, conservative systems, which correspond to

A(u) = Df(u), ∇λj(u) · rj(u) �= 0 (1.2)

for some flux-function f : R
N → R

N . The Glimm functionals V(uh(t)) + CQ(uh(t))
(linear) and Q(uh(t)) (quadratic) decrease in time when evaluated on approximate
solutions uh = uh(x, t) constructed by the Glimm scheme.

The well-posedness theory covers the following issues:
• the existence of entropy solutions (Glimm [26], and [18, 22, 40, 36, 8, 45, 7,
31, 43, 6]),
• the uniqueness of these solutions (Bressan and LeFloch [12], and [4, 7]),
• the L1 continuous dependence with respect to initial data (Bressan et al.
[9, 11, 14, 8], LeFloch et al. [38, 29, 28, 35]), Liu and Yang [41, 42]),
• and the regularity of solutions (Glimm and Lax [27], DiPerna [23], Dafermos
[19, 20], and [13]).
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The references above restrict attention to the “entropy solutions” which contain com-
pressive shocks satisfying Lax entropy inequalities. On the other hand, an extension
of these results to “nonclassical” entropy solutions containing undercompressive shock
waves is under development; see [35] and the references cited therein.

A generalization of the Glimm functionals was introduced by Schatzman [46]
for piecewise Lipschitz continuous functions and extended to general functions with
bounded variation (BV) in [2, 10]. In particular, Baiti and Bressan [2] established the
important property that the standard Glimm functionals are lower semi-continuous.
The generalization uses “nonconservative products” corresponding to the multiplica-
tion of a function with bounded variation by a bounded measure. Such products have
been systematically studied by Dal Maso, LeFloch, and Murat [21] (see also [37]), and
have been found useful in many applications [13, 28].

The objective of this paper is two-fold. On one hand, we show that the arguments
in [2] apply to the Glimm-type functionals proposed by Iguchi and LeFloch [31] and
Liu and Yang [43] (for classical entropy solutions and general flux-functions f) and by
Baiti, LeFloch, and Piccoli [5] (for nonclassical entropy solutions) and, therefore, these
functionals can be extended to general functions with bounded variation. In fact, a
general framework for linear and for quadratic functionals is presented in Section 2
below. We then discuss two applications, in Section 3 (classical entropy solutions)
and in Section 4 (nonclassical entropy solutions).

On the other hand, in Section 5, to illustrate how continuous Glimm functionals
can be used and since such estimates are interesting in their own sake, we derive an
estimate on the spreading of rarefaction waves for solutions with bounded variation
of general systems of conservation laws. Our estimate is a “continuous” version of an
estimate on the spreading of rarefaction waves: spreading estimates were established
first for approximate solutions of the Glimm scheme by Glimm and Lax [27], Lax
[33, 34] (genuinely nonlinear systems), and Liu [40] (piecewise genuinely nonlinear
systems). A version of this estimate for general BV solutions of genuinely nonlin-
ear systems was established by Bressan and Colombo [10]. The first works on the
spreading estimate for scalar conservation laws with one inflection point go back to
the pioneering work by Dafermos [19]. See also Jenssen and Sinestrari [32] (scalar
equations) and Ancona and Marson [1] (systems of two conservation laws) for other
important results on flux-functions with a single inflection point.

The spreading estimate controls the decay of solutions for large times. Further
important results on the large-time decay of solutions, especially for systems of two
conservation laws, can be found in Dafermos ([20] and the references therein) and
Trivisa [48]. Note that the results in the present paper remain valid for functions
with large data whenever Glimm-type functionals for functions with large data are
available.

2. A general framework

In this section, we establish general results concerning linear and quadratic func-
tionals defined over sets of functions with bounded variation. The class of functionals
considered here will contain the functionals encountered with the hyperbolic system
(1.1), as we will see in the forthcoming sections. Note however that the hyperbolic
system (1.1) does not appear explicitly in this section.
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2.1. Linear functionals. Given an open and convex subset Ω ⊂ R
N and a

mapping σ : Ω × Ω → R we consider the generalized total variation functional

V(u) :=
∑

x∈J(u)

σ(u(x−), u(x+)), (2.1)

defined for all piecewise constant functions u : R → Ω, where J(u) denotes the set of
discontinuity points of u and u(x±) are the left- and right-hand traces at the point
x. We suppose that σ has the form

σ(u−, u+) := χ(u−, u+) |u+ − u−|, u−, u+ ∈ Ω,

where, for some c∗ > 0, the function χ : Ω × Ω → [c∗,+∞) satisfies the Lipschitz
condition (on the diagonal):

L(χ) := sup
(u−,u+) �=(u,u)

|χ(u−, u+) − χ(u, u)|
|u− − u| + |u+ − u| <∞. (2.2)

When χ ≡ 1, V(u) reduces to the standard total variation functional which is well-
known to be extendible to general functions with bounded variation and to be lower
semi-continuous. This latter property need not hold for general χ, as we will see.

When u : R → Ω is a function with bounded variation, its distributional derivative
ux is a vector-valued measure which can be decomposed into a continuous part and
an atomic part

ux = uc
x + ua

x.

We denote by |ux| and |uc
x| the measures of total variation associated with ux and

uc
x, respectively. Based on this decomposition we now introduce the wave measure
µ(u) associated with the function u,

µ(u) = µ(u)c + µ(u)a,

as follows. The continuous part is defined by

µ(u)c := χ(u, u) |uc
x|, (2.3)

which makes sense since |uc
x| has no atom. The atomic part µ(u)a is concentrated on

the countable set J(u) of jump discontinuities. Specifically, for every x ∈ J(u) we set

µ(u)a({x}) = σ(u(x−), u(x+)), (2.4)

where σ is the mapping prescribed in the definition (2.1).
By construction, the wave measure associated with the function u is non-negative,

has finite total mass, and admits the representation

µ(u) = χ(u, u) |uc
x| +

∑
x∈J(u)

σ(u(x−), u(x+)) δx,

where δx denotes the Dirac mass at the point x.
When restricting attention to functions such that ‖u‖L∞(R) ≤ K for some fixed

K and in view of (2.2), the generalized strength satisfies

c∗ |u+ − u−| ≤ σ(u−, u+) ≤ c∗ |u+ − u−|



216 CONTINUOUS GLIMM FUNCTIONALS AND SPREADING ESTIMATE

where c∗ = sup
{
χ(u, v) / |u|, |v| ≤ K

}
, which implies that (in the sense of measures)

c∗ |ux| ≤ µ(u) ≤ c∗ |ux|. (2.5)

The framework described in this section should be applicable to hyperbolic sys-
tems of conservation laws. It is worth pointing out that the wave front tracking scheme
generates piecewise constant functions to which we will be able to apply the above
setting. On the other hand, in order to handle solutions constructed by the Glimm
scheme, it is necessary to extend the setting to a class of piecewise smooth functions.
This latter standpoint will be discussed at the end of this section.

Theorem 2.1. (Linear functional/piecewise constant functions.) Consider the func-
tional V defined by (2.1) on all piecewise constant functions. Then, V can be extended
to all functions u : R → Ω with bounded variation by setting

V(u) := µ(u)
(
R

)
=

∫
R

χ(u, u) |uc
x| +

∑
x∈J(u)

σ(u(x−), u(x+)), (2.6)

and is equivalent to the usual total variation functional, in the sense that for every
K > 0 there exist positive constants c∗, c∗ such that, for every u satisfying ‖u‖L∞(R) ≤
K,

c∗ TV (u) ≤ V(u) ≤ c∗ TV (u).

When σ satisfies the triangle inequality

σ(u1, u2) + σ(u2, u3) ≥ σ(u1, u3), (2.7)

for all u1, u2, u3 in Ω, the extension (2.6) of the functional V is lower semi-continuous
in the strong L1 topology, that is

V(u) ≤ lim inf
h→0

V(uh) (2.8)

for every sequence of BV functions uh → u in L1(R).
Remark 2.2. If (2.7) is violated for three given states u1, u2, u3 then the functional
V cannot be lower semi-continuous, as follows easily from the example

uh(x) =

⎧⎪⎨⎪⎩
u1, x < −2h,
u2, −h < x < h,

u3, x > 2h.
(2.9)

Here, V(uh) = σ(u1, u2) + σ(u2, u3) while the limit u := limh→0 u
h satisfies V(u) =

σ(u1, u3). This example shows also that, when (2.7) holds and thus Theorem 2.1
applies, the inequality (2.8) may well be a strict inequality. �

Proof of Theorem 2.1. We generalize the arguments of proof introduced by Baiti
and Bressan [2] for the total variation functional associated with genuinely nonlinear,
hyperbolic systems.
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Step 1. We start by showing that, if u : R → Ω is an arbitrary function with bounded
variation then for every constant state u and for every open interval (a, b), we have
the estimate∣∣∣ ∫

(a,b)

χ(u, u)ϕ |ux| −
∫

(a,b)

ϕdµ(u)
∣∣∣ ≤ L(χ) sup

(a,b)

|u− u|
∫

(a,b)

|ϕ||ux|, (2.10)

for every continuous function ϕ : (a, b) → R.
Namely, by (2.2)-(2.4) we can first estimate the continuous part of the measures:∣∣∣ ∫

(a,b)

χ(u, u)ϕ |uc
x| −

∫
(a,b)

ϕdµ(u)c
∣∣∣ ≤ ∫

(a,b)

|χ(u, u) − χ(u, u)| |ϕ| |uc
x|

≤ L(χ) sup
(a,b)

|u− u|
∫

(a,b)

|ϕ| |uc
x|.

Similarly, for the points of discontinuity we can write∣∣∣ ∑
x∈J(u)∩(a,b)

χ(u, u)ϕ(x) |u(x+) − u(x−)|

−
∑

x∈J(u)∩(a,b)

χ(u(x−), u(x+))ϕ(x) |u+(x) − u−(x)|
∣∣∣

≤ 2L(χ) sup
(a,b)

|u− u|
∑

x∈J(u)∩(a,b)

|ϕ(x)| |u(x+) − u(x−)|,

which completes the proof of (2.10).

Step 2. We now claim that when the triangle inequality (2.7) is satisfied, then for
every function u : R → Ω with bounded variation and every interval [a, b]

V(u) ≥ σ(u(a), u(b)).

Indeed, consider a sequence uh of piecewise constant functions that converge to u
pointwise with V(uh) → V(u). By using the triangle inequality inductively on the
number of jumps we obtain

V(uh) =
∑

x∈(a,b)

σ(uh(x−), uh(x+)) ≥ σ(uh(a), uh(b)),

which remains true in the limit h→ 0.

Step 3. We only have to prove the lower semicontinuity property under the assump-
tion that the triangle inequality (2.7) is satisfied. Consider any sequence of functions
uh that has uniformly bounded variation and converges in L1 to some limit u. For
the l.s.c. property we have to compare the wave measures

αh := µ(uh), α := µ(u),

associated with uh and u, respectively. Without loss of generality, we can assume (by
extracting a subsequence still denoted by uh if necessary) that the following properties
hold:

(i) limh→0 V(uh) exists (that is, the whole sequence V(uh) converges),
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(ii) uh(x) → u(x) at every point x ∈ R (by Helly’s theorem),
(iii) and there exists a non-negative, bounded measure β such that |uh

x| ⇀ β in
the weak-star sense of measures.

Note also that, by the standard lower convergence property of the total variation of
measures, we have

|ux| ≤ β, (2.11)

in the sense that |ux|(I) ≤ β(I) for every open interval I. Therefore, by (2.5),

α ≤ c∗ |ux| ≤ c∗ β.

Fix some ε > 0. Since the measure β has finite mass, we can extract finitely
many points x1, x2, . . . , xa where β has a large point mass, so that β({x}) < ε for
every x �= x1, x2, . . . , xa. We can then choose r > 0 sufficiently small and introduce
further points xa+1, xa+2, . . . , xb distinct from the previous xi’s, so that, by setting
In := (xn − r, xn + r) for n = 1, 2, . . . , b

β({x}) < ε for every x �= x1, x2, . . . , xa,

β
(
In \ {xn}

)
< ε/a,( b⋃

n=1

In

)
⊂ [−L,+L], β

(
R \ [−L,L]

)
< ε for some L.

(2.12)

In addition, we require that any point xn belongs to at most two intervals.
To compare αh with α we distinguish between the points of large jump and the

regions of small oscillations.
Consider first an interval In for n ∈ {1, . . . , a} which contain a point xn of large

jump. By (2.11) and (2.12) we see that the mass of the measure α in this interval is
close to its value at the point xn, as is clear from

α(In \ {xn}) ≤ c∗ |ux|(In \ {xn})
≤ c∗ β(In \ {xn}) ≤ c∗ ε/a.

(2.13)

On the other hand, to estimate αh we rely on the triangle inequality (2.7), together
with the convergence property at the endpoints of the interval:

|uh(xn ± r) − u(xn ± r)| ≤ ε/a

for h sufficiently small. Therefore, since σ is Lipschitz continuous (at least), we find

|σ(u(xn−), u(xn+)) − σ(uh(xn − r), uh(xn + r))| ≤ C ε/a (2.14)

for all h sufficiently small. Now, using Step 2 we can squizze waves on the boundary
of the interval In and we find

αh(In) ≥ σ
(
uh(xn − r), uh(xn + r)

)
(2.15)

By combining (2.14) and (2.15) and using that α({xn}) = σ
(
u(xn−), u(xn+)

)
we

obtain

αh(In) ≥ α(In) − Cε/a. (2.16)
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We consider now any interval In (for n = a+ 1, . . . , b) of small oscillation of the
measure β. In this case, the weak convergence of the sequence |uh

x| ⇀ β implies that
there exists h0 such that

|uh
x|(In) < ε

for all sufficiently small h. It is easy to see that the oscillation of both uh and u is
then small on the interval In, since for sufficiently small h and every x, y ∈ In

|uh(x) − uh(y)| ≤ C |uh
x|(In) ≤ C ε,

|u(x) − u(y)| ≤ α(In) ≤ C β(In) < ε.
(2.17)

Therefore, setting un := u(xn) and using the result in Step 1 above we obtain∣∣∣ ∫
In

ϕdα−
∫

In

ϕdαh
∣∣∣

≤
∣∣∣ ∫

In

ϕdα−
∫

In

χ(un, un)ϕ |ux|
∣∣∣ +

∣∣∣ ∫
In

χ(un, un)ϕ |ux| −
∫

In

χ(un, un)ϕ |uh
x|

∣∣∣
+

∣∣∣ ∫
In

χ(un, un)ϕ|uh
x| −

∫
In

ϕdαh
∣∣∣

≤ C ‖u(x) − un‖L∞(In)

∫
In

|ϕ| (|ux| + |uh
x|) +

∫
In

χ(un, un)ϕ
∣∣|ux| − |uh

x|
∣∣,

which, since the test-function ϕ is arbitrary, yields

α(In) ≤ lim inf
h→0

αh(In) + 2C ε β(In). (2.18)

Now, by combining (2.16) and (2.18) we have

V(uh) ≥
∑

n

|αh|(In) ≥
∑

n

|α|(In) − C ε,

which implies that

V(u) ≤ lim inf
h→0

V(uh) + C ε.

Since ε is arbitrary the lower semicontinuity of V is established and the proof of
Theorem 2.1 is completed. �

Instead of defining the functional V for general piecewise constant functions, we
can alternatively introduce a set of admissible functions A, consisting of a set of
piecewise Lipschitz continuous functions u : R → Ω with uniformly bounded total
variation (A will be specified in the applications) and suppose that V(u) is defined
for u ∈ A only, by the formula

V(u) = µ(u)
(
R

)
:=

∫
C(u)

χ(u, u) |ux| +
∑

x∈J(u)

σ(u(x−), u(x+)), (2.19)

where the integral is over the intervals of continuity C(u) of the function u. We impose
on the set A properties that are satisfied by functions generated by the Glimm scheme.
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Recall however that the system (1.1) is not provided at this stage. It is convenient to
impose that

For every u−, u+ ∈ Ω and x0 ∈ R there exists a sequence uh ∈ A

such that uh(x) = u− for x < x0 − h, uh(x) = u+ for x > x0 + h.
(2.20)

This condition guarantees that the set A is sufficiently large to extend the functional
uniquely to general functions. In particular, we see immediately that every piecewise
constant function is the limit of functions in A and, more generally, the following
density property holds:

For every function u with bounded variation there exists a sequence uh ∈ A

such that uh → u in L1 locally.

In the applications, A will be strictly smaller than the set of all piecewise Lipschitz
continuous functions. We observe that, at this stage, the strength σ(u−, u+) has been
prescribed when the Heaviside-like function associated with the pair (u−, u+) belongs
to A, only. In the application, an extension of σ(u−, u+) to arbitrary pairs (u−, u+)
will emerge naturally from the analysis. Theorem 2.1 will then be applied, showing in
particular that, when (the extension of) σ satisfies (the Lipschitz condition (2.2) and)
the triangle inequality (2.7) for all u1, u2, u3, the functional V is lower semi-continuous
in the strong L1 topology.

2.2. Quadratic functionals. The assumptions in Theorem 2.1 are quite
strong and, in the form stated, apply to scalar conservation laws (in both the classical
and the nonclassical contexts) and to special systems of equations for which a non-
increasing linear functional is available. For the application to systems of conservation
laws, we need to consider the class of quadratic functionals given by

Q(u) :=
∑

x,y∈J(u)
x<y

σ(u−(x), u+(x))σ(u−(y), u+(y))Θ
(
u−(x), u+(x);u−(y), u+(y)

)
,(2.21)

defined for piecewise constant functions u : R → Ω. Here, we assume that the
coefficient Θ satisfies

Θ : Ω × Ω → R+ is Lipschitz continuous. (2.22)

The following property is critical to establish the lower semi-continuity of Q. To
any three states ul, um, ur ∈ Ω and reals α < γ we associate the piecewise constant
function

u(x) :=

⎧⎪⎨⎪⎩
ul, x < α,

um, α < x < γ,

ur, x > γ.

For β any real, we also introduce the step function

ũ(x) :=

{
ul, x < β,

ur, x > β.

Then, the property (P) imposes that for all such u, ũ

Q(ũ) ≤ Q(u).



PHILIPPE G. LEFLOCH AND KONSTANTINA TRIVISA 221

Since, clearly Q(u) and Q(ũ) are independent of the location of the waves (determined
by α, β, γ) we can simply set Q(ul, um, ur) := Q(u) and Q(ul, ur) := Q(ũ). We re-
formulate the property in the compact form:

(P): For every three states ul, um, ur we have

Q(ul, ur) ≤ Q(ul, um, ur).

Remark 2.3. By induction on the number of jump discontinuities we immediately
deduce from the property P that, for every piecewise constant function u = u(x) with
jumps at points xl < xm1 < . . . xmN < xr we have that

Q(ul, ur) ≤ Q(ul, um1 , . . . , umN , ur).

Intuitively, the property P says that the functional diminishes when waves within
the interval (a, b) are squizzed to its end points. This property was used by Bressan
and Baiti [2] in their analysis of genuinely nonlinear hyperbolic systems. This condi-
tion is necessary for the functional to be l.s.c. as follows from the example presented
in Remark 2.2. �

We can also consider the functional (2.21) within the framework of piecewise
Lipschitz continuous functions. Let A be a set of admissible functions satisfying the
condition (2.20) introduced earlier for the linear functionals. For u belonging to the
set A we define

Q(u) =
∫∫{

x<y
} θ(u(x), u(x);u(y), u(y)

)
χ(u(x), u(x))χ(u(y), u(y)) |ux(x)| |uy(y)|

+
∑

x,y∈J(u)
x<y

σ(u−(x), u+(x))σ(u−(y), u+(y))Θ(u−(x), u+(x), u−(y), u+(y)).
(2.23)

At this stage σ is known only for those pairs associated with functions in A. Based on
the condition (2.20) every pair (u−, u+) admits at least one approximating sequence
uh satisfying (2.20) and we can set

σ(u−, u+) := inf
uh

∑
x∈J(uh)

σ(uh
−(x), uh

+(x)),

where the infimum is over all approximating sequences. Next, we extend the definition
of the coefficient Θ by setting

σ(u−, u+)σ(ũ−, ũ+)Θ(u−, u+, ũ−, ũ+) = inf
uh,ũh

Q̂(uh, ũh),

where

Q̂(uh, ũh) =
∫∫

x∈(−2h,2h),
y∈(1−2h,1+2h)

θ
(
uh(x), uh(x); ũh(y), ũh(y)

)
χ(uh(x), uh(x))

× χ(ũh(y), ũh(y)) |uh
x(x)| |ũh

y (y)|
+

∑
x∈(−2h,2h)∩J(uh)

y∈(1−2h,1+2h)∩J(ũh )

σ(uh
−(x), uh

+(x))σ(ũh
−(y), ũh

+(y))

× Θ(uh
−(x), uh

+(x), ũh
−(y), ũh

+(y)),
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and the infimum is over all sequences uh, ũh ∈ A satisfying

uh(x) =

{
u−, x < −h,
u+, x > h,

ũh(x) =

{
ũ−, x < 1 − h,

ũ+, x > 1 + h.

Theorem 2.4. Consider the functional Q defined either by (2.21) on all piecewise
constant functions or by (2.23) for functions in some set A of piecewise Lipschitz
continuous functions satisfying (2.20). The functional Q can be extended to the class
of all functions u : R → Ω with bounded variation by setting

Q(u) =
∫∫{

x<y
} a(x, y) |uc

x(x)| |uc
y(y)| +

∑
x,y∈J(u)

x<y

b(x, y),

where

a(x, y) := χ(u(x), u(x))χ(u(y), u(y))Θ(u(x), u(x), u(y), u(y))

b(x, y) := σ(u−(x), u+(x))σ(u−(y), u+(y))Θ(u−(x), u+(x), u−(y), u+(y)).

Moreover, when the property (P) is satisfied, the functional Q is lower semi-continuous
for the L1 topology.

The proof follows a similar line of argument as in the ones in the proof of Theorem
2.1, while taking into consideration the key property (P) and the quadratic character
of the functional Q. We omit the details.

3. Application to classical entropy solutions
In this section, we consider the Glimm-type functionals introduced in [31] to get

uniform total variation bounds for (piecewise smooth) approximate solutions to sys-
tems of conservation laws. Based on the results in the previous section, we show here
that these functionals naturally extend to general functions with bounded variation
and are lower semi-continuous.

Consider the system of nonlinear hyperbolic equations

∂tu+ ∂xf(u) = 0, u = u(x, t) ∈ R
N , (3.1)

where we assume that all values u belong to a small neighborhood of the origin in
R

N and, for each u, the matrix A(u) := Df(u) has real and distinct eigenvalues
λ1(u) < . . . < λN (u) and, therefore, basis of left- and right-eigenvectors lj(u), rj(u),
1 ≤ j ≤ N . We assume that the system is piecewise genuinely nonlinear (PGNL) in
the sense that

If (∇λj · rj)(u) = 0 then (∇(∇λj · rj) · rj)(u) �= 0. (3.2)

Following Oleinik (scalar equations), Wendroff (systems of two equations), and
Liu (general systems) (see [40] for references), we are interested in entropy solutions
to (3.1), satisfying the following entropy criterion: the shock speed is non-increasing
along each wave curve.

The Riemann problem for (3.1) was solved in [40, 31] and wave curves in each
family were constructed. It has been found convenient [31] to introduce a mapping
u �→ pi(u) satisfying

∇pi(u) · ri(u) > 0 (3.3)
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and to parameterize the i-wave curve m �→ ψi(m;u0) issuing from some (left-hand)
state u0 so that

pi

(
ψi(m;u0)

)
= m. (3.4)

By definition, for any m, u0 can be connected to the (right-hand) state ψi(m;u0) by
using an i-wave fan made of a combination of i-shock waves and i-rarefaction fans.

In the following we denote by Si(u0) the set of all states u that can be connected
to u0 by a single shock in the i-family, and by Ri(u0) the set of states that can be
connected to u0 by a single rarefaction. The shock speed is denoted by λi(u0, u).

For u−, u+, we denote by σi(u−, u+) the strength of the i-wave fan in the Riemann
solution associated with the states u− and u+. The total wave strength in the Riemann
solution associated with u−, u+ is defined as

σ(u−, u+) :=
∑

i

|σi(u−, u+)|.

To the total wave strength, we associate the total variation functional V(u)
defined by

V(u) :=
∑

x∈J(u)

σ(u−(x), u+(x)). (3.5)

In addition we can define the i-wave variation functionals Vi(u) by

Vi(u) :=
∑

x∈J(u)

σi(u(x−), u(x+)), i = 1, . . . , N. (3.6)

Obviously we have V(u) =
∑

i Vi(u).
Moreover, we define a quadratic functional Q(u), called the generalized in-

teraction potential, which is based on a weight function Θ, called a generalized
angle, defined as follows. First, we define the generalized angle associated with two
admissible shocks or rarefaction fans, say an i-wave (u−, u+) located on the left-hand
side of a j-wave (u′−, u

′
+), as follows:

Θij(u−, u+;u′−, u
′
+) :=

{
1, i = j and σi(u−, u+)σi(u′−, u

′
+) < 0,

θij(u−, u+;u′−, u′+), in all other cases, (3.7)

where

θij(u−, u+;u′−, u
′
+)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
λj(u′−, u

′
+)−λi(u−, u+)

)−
, u+ ∈ Si(u−), u′+∈Sj(u′−),

1
p+−p−

∫ p+

p−

(
λj(u′−, u

′
+) − λi(ψi(m;u−, u+))

)−
dm, u+∈Ri(u−), u′+ ∈ Sj(u′−),

1
p′
+−p′

−

∫ p′
+

p′
−

(
λj(ψj(n;u′−, u

′
+)) − λi(u−, u+)

)−
dn, u+∈Si(u−), u′+ ∈ Rj(u′−),

1
(p+−p−)(p′

+−p′
−)

∫ p+

p−

∫ p′
+

p′
−

(
λj(ψj(n;u′−, u

′
+)) − λi(ψi(m;u−, u+))

)−
dmdn,

u+ ∈ Ri(u−), u′+ ∈ Rj(u′−),

(3.8)
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and p± = pi(u±) and p′± = pj(u±). Based on (3.7) the quadratic functional is then
defined for functions u made of elementary waves only by the formula

Q(u):=
∑

i-wave at x∈J(u)
j-wave at y∈J(u)

σi(u(x−), u(x+))σj(u(y−), u(y+))

× Θij

(
u(x−), u(x+);u(y−), u(y+)

)
. (3.9)

Note, if the function u(x) is an arbitrary piecewise constant function then the
above definition can be extended by solving a Riemann problem at each jump dis-
continuity x ∈ J(u). To each i-wave fan in the Riemann solution associated with the
data u± := u±(x) we associate its i-wave speed function m �→ Λi(m;u−, u+) (the
variable m is the global parameter introduced when solving the Riemann problem),
which is a Lipschitz continuous and coincides either with the characteristic speed
λi(ψ(m;u−, u+)) or is constant equal to a shock speed. Then we define

Q(u) =
∑
i,j

∑
x,y∈J(u)

x<y

Qij(x, y) (3.10)

with

Qij(x, y):=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
|σi(u(x−), u(x+))| |σi(u(y−), u(y+))|,

i = j and σi(u−, u+)σi(u′−, u′+) < 0,∫∫ (
Λj(n;u(y−), u(y+))−Λi(m;u(x−), u(x+))

)−
dmdn

in all other cases.

(3.11)

We now present the generalization of the formulas (3.8) and (3.9) to general
functions with bounded variation. Let u : R �→ R

N be a function with bounded
variation. The vector-valued measure du

dx can be decomposed into continuous part uc
x

and an atomic part, the latter being supported on the countable set J(u) of jump
discontinuities. For i = 1, . . . , N we define the nonconservative product [21][∇pi(u) · ux

]
=: νi

as a signed measure as follows. If B ⊂ J(u) is a Borel set

νi(B) :=
∫

B

∇pi(u) · uc
x.

The atomic part is the measure whose mass at x is the strength of the i-th wave in
the solution of the Riemann problem with data u−(x) and u+(x):

νi

({
x
})

= σi(u−(x), u+(x)).

These definitions lead us to the representation formula

νi(B) =
∫

B

∇pi(u)
(du
dx

)c

+
∑

x∈J(u)

σi(u(x−), u(x+)). (3.12)

Call ν±i the positive and negative parts of the signed measure respectively, which
are non-negative measures such that

νi = ν+
i − ν−i

|νi| = ν+
i + ν−i .

(3.13)
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It is important to notice that this decomposition is not associated with a “shock/rare-
faction” decomposition of a solution (consider, for instance, a Riemann solution) as is
the case for genuinely nonlinear systems. This decomposition is needed to distinguish
between waves of the same and of different direction, which are handled differently in
light of (3.11). The total strength of waves and i-wave strength in u are given
by

Vi(u) := |νi|
(
R

)
=

∫
R

∣∣∣∇pi(u) · uc
x

∣∣∣ +
∑

x∈J(u)

∣∣σi(u(x−), u(x+))
∣∣,

V(u) :=
N∑

i=1

Vi(u).

(3.14)

On the other hand, the generalized interaction potential for u is given by

Q(u) =
∑
i,j

Qc
ij

({
x < y

})
+

∑
i,j

∑
x,y∈J(u)

x<y

Qij(x, y), (3.15)

where the jump part was defined earlier and the continuous part is given by

Qc
ij :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|νc

i,x| |νc
j,y|

(
λj(y) − λi(x)

)−
, if i �= j,(

νc
i,x

)+ (
νc

i,y

)− +
(
νc

i,x

)− (
νc

i,y

)+

+
((
νc

i,x

)+ (
νc

i,y

)+ +
(
νc

i,x

)− (
νc

i,y

)−)(
λj(y) − λi(x)

)−
, if i = j,

where νi,x := ∇pi(u) · uc
x(x), etc.

We summarize our results for nonlinear hyperbolic systems (3.1), which follow
immediately from the framework established in Section 2. We have introduced earlier
in this section the function σ and Θ which allowed us to define functional V and Q
of the form (2.1) and (2.21), respectively. Most importantly we observe that the key
assumption (P) is satisfied by the functionals Q and V + CQ (for sufficiently large
C > 0) in [31], as this property follows immediately from the key interaction estimates
therein. On the other hand, we take here the admissible set to be the set of functions
obtained by combining shock and rarefaction waves together. It has been checked
in [40, 31] that an arbitrary jump can always be decomposed using such admissible
functions only (for instance by solving a Riemann problem); thus the property (2.20)
hold. We conclude that:
Theorem 3.1. Under the assumption and with the notation introduced in this section,
the functionals V and Q can be extended to general functions with bounded variation.
In addition, Q and V+CQ are lower semi-continuous for the L1 topology. In partic-
ular, if uh = uh(x, t) is a sequence of solutions satisfying the tame variation condition
[12] (for instance solutions constructed by the Glimm scheme) and converging to some
limit u = u(x, t) we have

Q(u(t)) ≤ Q(u(0)),
V(u(t)) + CQ(u(t)) ≤ V(u(0)) + CQ(u(0)), t ≥ 0.

(3.16)

The proof is immediate by applying Theorems 2.1 and 2.4.
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4. Application to nonclassical entropy solutions
The framework in Section 2 can also be applied to the “nonclassical” functional

introduced in [5]. We refer to [35] for a review on nonclassical entropy solutions and
we are content here with describing some implications of Theorem 2.1 in this context.

Consider the scalar conservation law

∂tu+ ∂xf(u) = 0, u = u(x, t) ∈ R, (4.1)

when the flux f : R → R is assumed to be a concave-convex function satisfying, by
definition,

u f ′′(u) > 0 (u �= 0),
lim

|u|→∞
f ′(u) = +∞.

We associate with f the functions ϕ�, ϕ−� : R → R defined by

f ′(ϕ�(u)
)

=
f(u) − f

(
ϕ�(u)

)
u− ϕ�(u)

, u �= 0,

and ϕ−� = (ϕ�)−1.
We consider the Cauchy problem in the class of nonclassical entropy solutions. A

Lipschitz continuous, kinetic function ϕ� : R → R is prescribed such that

ϕ−�(u) < ϕ�(u) ≤ ϕ�(u), u > 0,

ϕ�(u) ≤ ϕ�(u) < ϕ−�(u), u < 0,

ϕ� is monotone decreasing,

and ϕ� satisfies the strict contraction property:

0 <
ϕ� ◦ ϕ�(u)

u
< 1, u �= 0.

The so-called nonclassical Riemann solver is determined from this kinetic function.
(See [35], Chap. 2.) A solution contains one or two waves, one of them at most
being a rarefaction wave. In contrast with the classical Oleinik-Kruzkov’s theory,
a nonclassical solution may contain undercompressive shocks –which, precisely, are
determined by the kinetic function.

Under some assumptions on the kinetic function ([35], Chap. VIII), a general-
ized total variation functional V(u), can be defined as follows. If u : R �→ R is a
piecewise constant function, then

V(u) :=
∑

x

σ(u(x−), u(x+)),

where, as usual, the summation is over all points of discontinuity of u. The gen-
eralized strength σ(u−, u+) is defined as follows, in order to handle nonclassical
solutions,

σ(u−, u+) :=

⎧⎪⎨⎪⎩
|u+ − u−|, u−u+ ≥ 0,
|u− − (1 −K(u−))u+|, u−u+ ≤ 0, |u+| ≤

∣∣ϕ�(u−)
∣∣,

|u− + ϕ�(u−) − (2 −K(u−))ϕ�(u−)
∣∣, u+ = ϕ�(u−),

(4.2)
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where K is a Lipschitz continuous function satisfying some restrictions presented in
[35]. Here, ϕ� is the companion function associated with the kinetic function by

f(u) − f
(
ϕ�(u)

)
u− ϕ�(u)

=
f(u) − f

(
ϕ�(u)

)
u− ϕ�(u)

, u �= 0.

It is shown in [35] that the wave front tracking approximations uh = uh(x, t),
based on the nonclassical Riemann solver determined by the kinetic function ϕ�, are
well defined globally in time and satisfy

V(uh(t)) ≤ V(uh(s)), 0 ≤ s ≤ t. (4.3)

More precisely, Baiti, LeFloch, and Piccoli [5] prove that the triangle inequality

σ(ul, um) + σ(um, ur) ≥ σ(ul, ur) (4.4)

holds for any three constant states ul, um, ur.
In view of these results, a direct application of Theorem 2.1 yields:

Theorem 4.1. Under the assumption and with the notation introduced in this section,
the functional V can be extended to general functions with bounded variation and is
lower semi-continuous for the L1 topology. In particular, if uh = uh(x, t) is a sequence
of approximate solutions constructed in [12] and converging to some limit u = u(x, t)
we have

V(u(t)) ≤ V(u(0)), t ≥ 0. (4.5)

5. Spreading of rarefaction waves

5.1. Scalar conservation laws. Consider the equation

∂tu+ ∂xf(u) = 0, (5.1)

where f : R → R is a smooth mapping which need not be convex nor concave. We are
interested in an entropy solution of (5.1), u : R × R+ → R which satisfies Oleinik’s
entropy condition: for a shock joining u− and u+ the condition

f(u0) − f(u−)
u0 − u−

≥ f(u+) − f(u−)
u+ − u−

≥ f(u+) − f(u0)
u+ − u0

must hold for every u0 between u− and u+. Solutions under consideration have
bounded variation and therefore admit left- and right-hand traces at discontinuity
points.

In the spirit of Glimm and Lax [27], we let χ1 = χ1(t) and χ2 = χ2(t) be two
characteristic lines associated with (5.1) and we denote by D(t) the width of the strip
bounded by them, that is D(t) := χ2(t) − χ1(t). Then, we have the basic identity

d

dt
D(t) =

d

dt
χ2(t) − d

dt
χ1(t) = f ′(u−(χ2(t), t)) − f ′(u+(χ1(t), t)). (5.2)

For the sake of comparison, we first recall Lax’s argument in the case where the flux
f has no inflection points; see [33, 34]. Integrating (5.2) with respect to t, and taking
into consideration that u is constant along characteristics we get

D(T ) = D(0) + T
(
f ′(u−(χ2(t), t)) − f ′(u+(χ1(t), t))

)
, t ∈ (0, T ]. (5.3)
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Let us divide an arbitrary interval I0 on the x-axis into subintervals [ξj−1, ξj ], j =
1, . . . , n on which x �→ f ′(u(x, 0)) is non-decreasing for j odd, and non-increasing
for j even. (One should assume, first, that there exist a finite number of changes of
monotonicity and, then, let the number of changes of monotonicity tend to infinity.)

We denote by t �→ ξj(t) the characteristic issuing from ξj at time 0; by convention,
this characteristic continues as a shock if it runs into a shock. Set also I(t) :=
[ξ0(t), ξn(t)]. Note that for all t, the function x �→ f ′(u(x, t)) is non-decreasing in
[ξj−1(t), ξj(t)] for j odd, and non-increasing for j even. The entropy condition implies
that f ′(u) decreases across shocks, therefore, the “positive variation” (associated with
the increasing regions) of f ′(u(x, t)) in the interval I(t) is exactly∑

j odd

f ′(u−j (t)) − f ′(u+
j−1(t)),

where u+
j−1(t) denotes the value of u on the right edge of ξj−1(t), u−j (t) the value of u

on the left edge of ξj(t). Denote now by χj−1(t), χj(t) characteristics starting inside
(ξj−1, ξj) which intersect ξj−1(t) respectively ξj(t) at t = T . Now, uj(t) is the constant
value of the solution u on χj(t), thereforeDj(T ) = Dj(0)+T

(
f ′(u−j (t))−f ′(u+

j−1(t))
)
,

so that after summing over all j odd∑
j

Dj(T ) =
∑

j

Dj(0) + T
∑

j

(
f ′(uj(t)) − f ′(uj−1(t))

)
.

The intervals [χj−1(t), χj(t)] are disjoint and lie in I(t), therefore the sum of their
lengths can not exceed the length meas(I(t)). Hence, the total positive variation of
f ′(u(T )) over I(T ) satisfies TV +

I(T )(f
′(u(T ))) ≤ meas(I(T ))/T , and so we arrive at

(for every interval I and time t > 0)

TV +
I (f ′(u(t))) ≤ meas(I)

t
. (5.4)

Remark 5.1. The generalized characteristics associated with nonconvex conservation
laws are not straight lines due to the presence of contact discontinuities and centers
of rarefaction waves above the initial line t = 0. See the discussion in Dafermos
[19] and Jenssen and Sinestrari [32] on the regularity and decay of solution to scalar
conservation laws with a flux having one inflection point. See also the works by Cheng
[17] and Hoff [30].

Assume next that the flux f of the conservation laws (5.1) has a finite, but
arbitrarily large, number of inflection points. Our estimates will be independent of the
number of inflection points and, so, it will be straightforward to let it tend to infinity.
If we compute, as before, the distance between two characteristics χj−i(t), χj(t) we
find

d

dt
Dj(t) = f ′(u−(χj(t), t)) − f ′(u+(χj−1(t), t))

=
∑

x∈(χj−i(t),χj(t))

(f ′(u+(x, t)) − f ′(u−(x, t))) =: Mj(t).

The term Mj(t) measures the amount of rarefaction waves. When the flux is non-
convex, Mj(t) need not be constant, but we can write

Mj(T ) −Mj(t) = O(1) |TV(u(T )) − TV(u(t))|
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and, therefore,

d

dt
Dj(t) = f ′(u−j (t)) − f ′(u+

j−1(t)) = Mj(T ) − C |TV(u(T )) − TV(u(t))|. (5.5)

If one has

Mj(T ) ≥ 2C |TV(u(T )) − TV(u(t))|

then, by (5.5),

d

dt
Dj(t) ≥ Mj(T )

2
,

which, in turn, yields

Mj(T ) ≤ 2
Dj(T )
T

. (5.6)

The alternative scenario is that

Mj(T ) ≤ 2C |TV(u(T )) − TV(u(t))|. (5.7)

Combining (5.6) and (5.7) we have

Mj(T ) ≤ 2
Dj(T )
T

+ 2C
∣∣∣ ∑

t

(TV(u(t+)) − TV(u(t−))
∣∣∣.

Repeating the above procedure in a finite number of disjoint open intervals Ij =
(aj , bj) in a given interval I we obtain

m∑
j=1

Mj(T ) ≤ C
∑

j

bj − aj

T
+ C (TV(u(0)) − TV(u(T ))).

If we denote by ρt the measure of rarefaction waves in u(t) defined by

ρt(I) :=
∫

I

(f ′(u(t))x)c+ +
∑
x∈I

[f ′(u(x, t))]+,

where (f ′(u(t))x)c+ represents the positive part of the absolutely continuous measure
f ′(u(t)x)c, we then have established:

Theorem 5.2. Consider a scalar conservation law in one space dimension and solu-
tions with range included in a given compact set. Then, there exists a constant C such
that for every entropy solution with bounded variation and for every interval I ⊂ R

the following estimate holds for all 0 ≤ s < t

ρt(I) ≤ C
meas(I)
t− s

+ C (TV(u(s)) − TV(u(t))). (5.8)

Proof. Without loss of generality we set s = 0. The discussion before the statement of
the theorem shows the following. Let uh → u be a sequence of approximate solutions
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(given the Glimm scheme, say); then, relying on the lower semi-continuity property
of the variation functional we get

ρT (I)≤ lim inf
h→0

(
ρ+

h,t(I) + C TV (uh(t))
)
− C TV (u(t))

≤ C lim inf
h→0

(meas(I)
t

+ TV (uh(0))
)
− C TV (u(t))

≤ C
(meas(I)

t
+ TV (u(0)) − TV (u(t))

)
.

�
Remark 5.3. The estimate in Theorem 5.2 was first established by Cheng [17] by a
different method of proof. It was applied recently by Lellis and Riviere [39] to derive
new regularity results for one-dimensional conservation laws.

5.2. Systems of conservation laws. Consider now a system of N conserva-
tion laws in one space dimension that is strictly hyperbolic and piecewise genuinely
nonlinear in the sense of [31]. We will establish an estimate on the spreading of the
rarefaction waves in solutions to such a system. Heuristically, the rarefaction waves
in any i-family within an interval [s, t] are of three types:

1. Waves already present at time s and which have propagated up to time t:
these waves had enough time to decay and their total strength is of the order
of

O(1)
meas(I)
t− s

,

on any interval I ⊂ R.
2. Waves generated by interactions which took place during the time interval

[s, t]: the strength of these waves can be estimated by the decrease in the
interaction potential

O(1)
(
Q(s) − Q(t)

)
.

3. Waves cancelled during the time interval [s, t], whose total strength is bounded
by the change in total variation

O(1) |V(s) − V(t)|.
For every time t we define the measure of i-rarefaction in u(t) by

ρi
t(I) :=

∫
I

(λi(u(T )x)c+ +
∑
x∈I

[λi(u(x, T ))]+, I ⊂ R,

i.e. the sum of the positive parts of the absolutely continuous measure (λi(u(t)x)c

and the jumps [λi(u(x, t))], respectively. The main result of this section is as follows:

Theorem 5.4. Consider any system of N conservation laws in one space dimen-
sion (3.1) that is strictly hyperbolic and piecewise genuinely nonlinear, and restrict
attention to entropy solutions with range in a given, small neighborhood of a constant
state. Then, there exists a constant C such that, for every solution u with tame vari-
ation [12] (obtained by Glimm’s random choice scheme, for instance), the following
estimate holds:

ρi
t(I) ≤ C

meas(I)
t− s

+ C (Q(s) − Q(t)) + |V(s) − V(t)| (5.9)
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for every interval I ⊂ R and all times 0 ≤ s < t.

Proof. The proof will follow closely the presentation given by Bressan and Colombo
[10]. The original ideas are due to Glimm and Lax [27], Lax [33, 34] (for genuinely
nonlinear systems), and Liu [40] (for general systems).

Step 1. Let χ1(·) and χ2(·) be two (generalized) i-characteristics t → χ1(t), t →
χ2(t) passing through the points a = χ1(T ) and b = χ2(T ) at time t = T, and
consider the interval I(t) = [χ1(t), χ2(t)] for any t ∈ [0, T ]. A weak solution of (3.1) is
associated with the notion of a generalized characteristic, which is a Lipschitz curve
with special properties, allowing to think of waves as objects having a global identity
(see [27, 20, 40]).

Here, we consider a BV solution obtained as limit of solutions uh that satisfy
Bressan-LeFloch’s tame variation condition, for instance solutions constructed by the
random choice method of Glimm or by the wave front tracking algorithm. In the
framework of front tracking algorithm the notion of generalized characteristic resem-
bles the one presented in [20, 10] and is in the spirit of Filippov’s theory [25]. In
the context of Glimm’s scheme one needs adopt the notion of a generalized charac-
teristic introduced by Liu [40], which relies on the nonlinear superposition of wave
patterns following the wave tracing method. In that sense, generalized characteristics
are curves that move along the i-waves in the approximate solution. One realizes im-
mediately that these curves fail to be Lipschitz continuous (in the case of rarefaction
waves in the approximate solution, the characteristics move either always on the right
edge of the wave or always along the left edge of the rarefaction wave). In this setting
we think of generalized characteristics as piecewise Lipschitz continuous curves that
jump to the right or left at times determined by the approximating scheme, according
to the rule (iv) presented in Theorem 9.1 of Liu [40].

Let

D(t) := χ2(t) − χ1(t)

be the distance between these two characteristics at time t. Call kα the family of the
wave located at the point xa and [λi(u(xα))] the jump of the i-characteristic speed at
this point, that is

[λi(u(xα))] = λi(u+(xα)) − λi(u−(xα)).

Now, differentiating D(t) with respect to t we have

Ḋ(t)= χ̇2(t) − χ̇1(t) = λi(u(χ2(t), t)) − λi(u(χ1(t), t))

=
∑

xα∈I(t)

λi(u+(xα)) − λi(u−(xα)) (5.10)

and, therefore, for almost every time t

Ḋ(t) = M(t) + O(1)K(t), (5.11)

where

M(t) :=
∑

kα=i,xa∈I(t)

[λi(u(xα))], K(t) :=
∑

kα �=i,xa∈I(t)

|[λi(u(xα))]|

denote the total amount of the (signed) elementary i-waves of u(t, ·) contained in the
interval I(t) and the total strength of the kα-waves, with kα �= i, contained in I(t).
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In order to control the total strength of waves of families kα �= i contained in I(t),
we follow a similar line of arguments to the one in [10]. We introduce a piecewise Lip-
schitz continuous Φ having a finite number of discontinuities at points of interaction.
At those points, the change in Φ(·) can be controlled by the change in the interaction
potential Q(·),

Φ(τ+) − Φ(τ−) = C
(
Q(u(τ−)) − Q(u(τ+))

)
. (5.12)

Roughly speaking, Φ(t) represents the cumulative strength of the waves which do not
approach the interval I(t). Thanks to the strict hyperbolicity of the system it can be
shown [10] that Φ is non-decreasing outside the interaction times. Furthermore,

K(t) ≤ Φ̇(t)D(t)
A

. (5.13)

Step 2. Next, we provide an estimate for M(t). We remark that since (general-
ized) characteristics of the same family do not cross, any change in M(·) is due to
interactions and cancellations of elementary waves within the interval [χ1(t), χ2(t)].
We introduce now the following notation, given any quantity G = G(·), we denote
∆G(τ) = G(τ+) −G(τ−). Then, at a given time t = τ,

∆M(τ) = O(1)∆Q(τ) + O(1) |∆V(τ)|,
which implies that

M(T ) −M(t) = O(1)
∑

τ

(∆Q(τ) + |∆V(τ)|), (5.14)

where the summation is over all the interaction times in [0, T ] within [χ1(·), χ2(·)].
Taking into consideration the estimates (5.13) and (5.14), the relation (5.11) gives

Ḋ(t) + CΦ̇(t)D(t) ≥M(T ) − C
∑

τ

(|∆Q(τ)| + |∆V(τ)|) a.e. in t. (5.15)

Since Φ is uniformly bounded and decreases at interaction times (5.12), we deduce
that TV(Φ(t)) is also uniformly bounded, which yields∫ T

0

Φ̇(t)dt ≤ L, (5.16)

with L being a uniform constant.
Now, if we assume that

M(T ) ≥ 2C
∑

τ

(|∆Q(τ)| + |∆V(τ)|),

then (5.14) gives

Ḋ(T ) + C Φ̇(t)D(t) ≥ M(T )
2

. (5.17)

Taking into consideration that Φ is, almost everywhere, not decreasing, (5.16) yields
that

d

dt

(
exp

{∫ t

0

C Φ̇(s)ds
}
D(t)

)
≥ exp

{ ∫ t

0

CΦ̇(s)ds
} M(T )

2
≥ M(T )

2
. (5.18)
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Now taking into account (5.16) and noticing that D(0) ≥ 0, (5.18) yields that

D(T ) ≥ e−CL M(T )
2

T,

which implies that

M(T ) ≤ 2e−CL D(T )
T

+ 2C
∑

τ

(|∆Q(τ)| + |∆V(τ)|). (5.19)

If, on the other hand,

M(T ) < 2C
∑

τ

(|∆Q(τ)| + |∆V(τ)|),

the estimate (5.19) still holds true.
Repeating the above procedure for any finite number of disjoint intervals of the

form Iq = [Aq, Bq) we get

k∑
q=1

Mq(T ) ≤ C
(Dq(T )

T
+ Q(u(0)) − Q(u(T )) + |V(u(0)) − V(u(T ))|

)
(5.20)

for some constant C > 0.

Step 3. We consider a partition of a line segment (a, b) on the upper-half plane, in
several open intervals Iq = (aq, bq), q = 1, . . . , k that are bound to satisfy the following
rules:

1. Each rarefaction wave in u(T, ·) contained in the line segment (a, b) falls inside
in one of the intervals Iq .

2. No shock generated at the initial line falls inside the intervals Iq.
The measure ρi

T of positive i-waves in u(T, ·) satisfies

ρi
T ((a, b)) =

∑
q

Mq(T ) + O(1)
(
Q(u(0)) − Q(u(T )) + |V(u(0) − V(u(T ))|

)
.

We should remark here that the only negative i-waves contained in the union of the
intervals Iq are those created from the interactions within (0, T ] and can be estimated
by the decrease in the interaction potential and the amount of waves canceled within
this interval. Therefore,

ρi
T ((a, b)) ≤ C

(b − a

T
+ (Q(u(0)) − Q(u(T ))) + |V(u(0) − V(u(T ))|

)
.

Moreover, as stated in Theorem 3.1 for the i-wave strengths, one can check that
that the measure of rarefaction satisfies the following estimate, for every finite union
of open intervals I = I1 ∪ · · · ∪ Im,

ρi(I) + CQ(u) ≤ lim inf
h→0

(
ρi,h(I) + CQ(uh)

)
as well as

ρi(I) + C (Q(u) + C0V(u)) ≤ lim inf
h→0

(
ρi,h(I) + C (Q(uh) + C0V(uh)))

)
.
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Step 4. Consider now a sequence of approximate solutions uh satisfying the tame
variation condition (for instance, solutions constructed Glimm’s scheme). Using the
lower semi-continuity property of the interaction potential Q, and of V +CQ (recall
that V itself is not lower semi-continuous), which both are decreasing in time (by
Iguchi and LeFloch’s theorem [31]), we obtain

ρi
T ((a, b)) ≤ lim inf

h→0

(
ρi,h

T ((a, b)) + C (V(uh(T )) + C0Q(uh(T )))
)

− C (V(u(T )) + C0Q(u(T )))

≤ lim inf
h→0

(
C′ b− a

T
+ C′ (V(uh(0)) + C0Q(uh(0))) − C (V(uh(T ))

+ C0 Q(uh(T ))) + C′ (V(uh(T )) + C0Q(uh(T )))
)
− C (V(u) + C0Q(u))

≤ C′ b− a

T
+ C′ (V(u(0)) + C0Q(u(0))) − (C − C′) (V(u(T )) + C0Q(u(T )))

− C (V(u(T )) + C0Q(u(T )))

= C′ b− a

T
+ C′ (V(u(0)) + C0Q(u(0))) − C′ (V(u(T )) + C0Q(u(T ))),

provided we arrange the constants so that C > C′. This completes the proof of
Theorem 5.4. �
Remark 5.5. In the context of genuinely nonlinear systems a recent work by Bressan
and Yang [15] provides a sharp decay estimate for positive nonlinear waves, which has
found application in the study of convergence rate of vanishing viscosity approxima-
tions [16].
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