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NEARLY LIPSCHITZEAN DIVERGENCE FREE TRANSPORT
PROPAGATES NEITHER CONTINUITY NOR BV REGULARITY∗

FERRUCCIO COLOMBINI † , TAO LUO ‡ , AND JEFFREY RAUCH §

Abstract. We give examples of divergence free vector fields

a(x, y) ∈ ∩1≤p<∞W 1,p(R2) .

For such fields the Cauchy problem for the linear transport equation

∂u

∂t
+ a1(x, y)

∂u

∂x
+ a2(x, y)

∂u

∂y
= 0 , div a :=

∂a1

∂x
+

∂a2

∂y
= 0 , (0.1)

has unique bounded solutions for u0 ∈ L∞(R2). The first example has nonuniqueness in the Cauchy
problem for the ordinary differential equation defining characteristics. In addition, there are smooth
initial data u0 ∈ C∞

0 (R2) so that the unique bounded solution is not continuous on any neighborhood
of the origin.

The second example is a field of similar regularity and initial data in W 1,1 ⊂ BV so that for no
t > 0 is it true that u(t, ·) is of bounded variation.

1. Introduction
Suppose that a ∈ (L∞ ∩W 1,1)(Rd) is a bounded divergence free vector field on d

dimensional Euclidean space. For arbitrary bounded initial data u0 ∈ L∞(Rd) there
is a unique solution u ∈ L∞([0,∞[×Rd) of the initial value problem

∂tu + a · ∇u = 0 , u(0, ·) = u0(·),
(see e.g. [13]). In the planar case which we discuss the weaker hypothesis a ∈ L∞(R2)
yields the same conclusion [10, 6]. In general dimension, a sequence of papers ([13, 14],
[6], [7], [8], [3]) end with Ambrosio’s recent proof of uniqueness when a is of bounded
variation. For d > 2 (and d = 2 in the nonautonomous case) there are examples of
nonuniqueness for nearly BV fields ([1], [9], [11, 12]).

If a ∈ W 1,∞(Rd) = Lip(Rd), then the transport propagates all Hölder regularity
in the following sense. For 0 < α < 1, Wα,∞)(Rd) is the set of uniformly Hölder
continuous functions. If α ∈ [0, 1] and u0 := u|{t=0} ∈ Wα,∞(Rd), then for all T > 0,
the solution u is also Hölder, u ∈ Wα,∞([0, T ]× Rd).

A formal interpolation between propagation of W 0,∞(R2) when a ∈
W 0,∞(R2) and propagation of W 1,∞(R2) when a ∈ W 1,∞(R2) suggests that if
a ∈ Wα,∞(R2) and u0 ∈ Wα,∞(R2) then the solution belongs to Wα,∞. Noth-
ing of the sort is true. In section 2, we present an example of a field in all the Hölder
spaces and an initial datum which is smooth and of compact support so that the
solution is not continuous on any neighborhood of the origin. In section 3, we present
an example with u0 ∈ W 1,1 ⊂ BV for which u(t) /∈ BV for t > 0.

The fields have the property that the characteristics, defined by solving the ordi-
nary differential equations

dx

dt
= a1(x(t), y(t)) ,

dy

dt
= a2(x(t), y(t)) , (1.1)
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Fig. 2.1. Positive octant phase portrait

have nonunique solutions. The divergence free hypothesis shows that the flow pre-
serves volumes. Nonuniqueness is an extreme form of length distortion, an interval of
length zero is distorted to an interval of finite length. This is consistent with volume
preservation. The length distortion explains the lack of propagation of regularity.
Formally, if Φt is the flow generated by a then one thinks of the solution as the com-
position u0(Φ−t(x)). In order for this to propagate Hölder regularity one needs Φ−t

to be Lipschitzean. This is guaranteed when a is Lipschitzean.
In the one dimensional case, d = 1, length distortion and volume distortion

are equivalent and are often controlled by one sided inequalities on the derivative
∂a(t, x)/∂x. There is an extensive literature going back at least to Oleinik’s unique-
ness proof [15] showing that compression is good for uniqueness while rarefaction is
good for existence while bad for uniqueness ([4], [5], [16], [17]). In the Oleinik proof the
entropy condition controls the possible stretching of lengths. Our examples preserve
area while stretching lengths unboundedly.

2. C∞ propagates to discontinuous
A simple explicit Cα field exhibiting nonuniqueness of characteristics and there-

fore infinite length distortion is the following.

Example. In the positive quadrant {x > 0 and y > 0} consider the divergence free
double shear

−yα ∂x − xα ∂y . (2.1)

Characteristics satisfy

dx

dt
= −yα ,

dy

dt
= −xα ,

d

dt

(
x1+α − y1+α

)
= 0 .

The phase portrait is sketched in Figure 1.
The line x = y is invariant. The solution with initial value (x(0), y(0)) = (b, b)

with b > 0 is given by

x(t) = y(t) =
(
b1−α − (1 − α) t

) 1
1−α

.
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This curve reaches the origin at the time

t∗(b) :=
b1−α

1 − α
.

Through the point (t∗(b), 0, 0) pass this backward characteristic and also the charac-
teristic x = y = 0. If these backward paths hit t = 0 at points where u0 takes distinct
values, the requirement that u be constant on characteristics yields incompatible val-
ues. This is the heart of the following construction.

In the next definition note that s(log s)2 is strictly increasing for 0 < s < e−2 and
converges to zero as s decreases to 0.

Definition. Suppose that 0 ≤ f ∈ C(R) vanishes for s ≤ 0, is nondecreasing and
uniformly bounded, and for 0 < s ≤ e−2/2

f(s) = s (log s)2 .

Define the bounded divergence free field

a1(x, y) ∂x + a2(x, y) ∂y := −f(y) ∂x − f(x) ∂y . (2.2)

Then a belongs to all the Hölder spaces Cα(R2) with 0 < α < 1 , to W 1,p(R2) for all
1 ≤ p < ∞, and even more ∇a ∈ BMO(R2).

Theorem 1. Suppose a(x, y) is the vector field (2.2). Suppose that u0 ∈ C∞
0 (R2)

vanishes when both x and y are nonpositive, and is strictly positive when x and y are
strictly positive and small. Then for any relatively open subset ω ⊂ [0,∞[×R2 with
(0, 0, 0) ∈ ω, the unique solution u ∈ L∞([0,∞[×R2) of the transport equation with
these initial data is not continuous on ω.

Proof. Supposing that u is a solution which is continuous on a neighborhood of the
origin in [0,∞[×R2 we derive a contradiction.

The characteristic beginning at (b, b) with 0 < b ≤ e−2/2 is equal to (x(t), x(t))
where

dx

dt
= −x (log x)2 , x(0) = b .

Then

d

dt

1
log x

=
−1

(log x)2
1
x

dx

dt
= 1 .

Thus

1
log x(t)

= t +
1

log b
, log x(t) =

log b

t log b + 1
.

The path arrives at the origin at the finite time

t∗(b) :=
−1
log b

.
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The method of characteristics in the form of the next lemma is needed. The proof
is standard.
Lemma 2. Suppose that γ(t) = (t, x(t)) with x : [0, c] → R2 is an integral curve of
∂t +a1∂x +a2∂y with the property that a is uniformly Lipschitzean on a neighborhood
of x([0, c]). If u is a continuous solution of (0.1) on a neighborhood of γ([0, c]), then
u is constant on γ([0, c]).
This lemma is applied to the characteristic beginning at (b, b) near the origin in the
positive quadrant. The characteristic arrives at the origin at the small time t∗(b).
The Lemma with c = t∗(b) − ε implies that

u
(
t∗(b) − ε , x(t∗(b) − ε) , x(t∗(b) − ε)

)
= u0(b, b) .

Passing to the limit ε → 0 using the continuity of u yields for b small

u(t∗(b), 0, 0) = u0(b, b) > 0 . (2.3)

On the other hand, the field a vanishes in the quadrant where both x and y
are negative. The Lemma implies that u is independent of time in that quadrant
and therefore that u(t, x, y) vanishes when both x and y are negative. Since u is
continuous near the origin it follows that for t small

u(t, 0, 0) = 0 .

For b small this contradicts the conclusion (2.3) and the proof is complete. �
Remark: The solution u is continuous at the point (0, 0, 0) with u(0, 0, 0) = 0. In
fact, the values of u in a small neighborhood of (0, 0, 0) are determined by the values
of u0 on a small neighborhood of (0, 0). By continuity of u0 these values differ little
from 0.

3. Bounded variation is not propagated
We give a simple example for which BV regularity is not propagated. Suppose

that g(s) ∈ C0
0 (R) with

g(s) = −s log |s| + s

on a neighborhood of s = 0. Then near the origin g′ = − log |s|. Define the divergence
free bounded field

b := g(y) ∂x .

The flow of this field and its inverse are shears given explicitly by

Φt(x, y) = (x + tg(y), y) , Φ−t(x, y) = (x − tg(y), y) .

The solution of the associated linear transport equation with initial value u0 is given
by

u(t, x, y) = u0(Φ−t(x, y)) = u0(x − tg(y), y) .

Then

∂yu = −tg′(y)
∂u0(x − tg(y), y)

∂x
+

∂u0(x − tg(y), y)
∂y

. (3.1)
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For u0 ∈ W 1,1,

∥∥∥∥∂u0(x − tg(y), y)
∂x

∥∥∥∥
L1(R2

x,y)

and
∥∥∥∥∂u0(x − tg(y), y)

∂y

∥∥∥∥
L1(R2

x,y)

are independent of t. The strategy for small y is to take advantage of the large factor
tg′(y) ∼ t | log |y| | in the first summand.

Theorem 3. Let r :=
√

x2 + y2 and suppose that u0(x, y) ∈ (L∞ ∩ W 1,1)(R2)
satisfies u0(x, y) = cos

(
r−1(log r)−2

)
on a neighborhood of (0, 0). Then for all t > 0

the unique bounded solution of the initial value problem

ut + g(y)ux = 0 , u(0, x, y) = u0(x, y)

satisfies u(t, ·) /∈ BV (R2
x,y).

Proof. Near the origin

∂u0

∂r
∼ 1

r2 (log r)2

is just barely L1. Since

∂u0

∂x
=

∂u0

∂r

∂r

∂x

and the second factor is bounded away from zero when the argument of (x, y) is
bounded away from ±π/2 it follows that ∂xu0 is also borderline L1.

Fix t > 0 and introduce the change of coordinates

(x, y) := (x − tg(y), y) ,

with associated polar coordinates (r, θ). This change preserves area and y = y.
The expression (3.1) is valid in y 	= 0. Therefore if u(t, ·) belongs to BV (R2

x,y) it
follows that

∫ ∞

−∞

∫ ∞

−∞

∣∣∂yu(t, x, y)
∣∣ dx dy < ∞ .

The second summand in (3.1) belongs to L1(R2
x,y) for all t with norm independent of

t. To complete the proof it suffices to show that for φ ∈]0, π/2[ and 0 < ε << 1

∞ =
∫ φ

0

∫ ε

0

∣∣∣ log |y| 1
r2 (log r)2

∣∣∣ r dr dθ ,

since the L1 norm of the first summand in (3.1) is at least as large as a positive
multiple of the right hand side.

On the circle of radius r in the (x, y) plane one has |y| ≤ r, so | log |y| | ≥ | log |r| |.
Therefore the integrand is bounded below by 1

r log r which is not integrable. �
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