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MODELING OF COALESCENCE IN TURBULENT GAS-DROPLET
FLOWS

P. VILLEDIEU ∗ AND O. SIMONIN †

Abstract. The present paper is devoted to the kinetic modeling of coalescence in turbulent
gas-droplet flows. A new approach is proposed for the calculation of the collision probability, that
takes into account the correlations induced by the effect of the gas on the droplet motion. The key

ingredient is to replace the simple distribution function f
(1)
p (t, x,v, r), which is classically used for

the description of a spray at the kinetic level, by the joint distribution function, f
(1)
pg (t, x,v, u, r),

which explicitely depends on the fluctuating gas velocity u at the droplet position.

Notations

τp Response time of a droplet to the drag force
τg Autocorrelation time scale of the turbulence along droplet trajectories
TL Lagrangian integral time scale of the turbulence
ρg Gas density
ρl Liquid density
µg Dynamic viscosity of the gas
kg Turbulent kinetic energy of the gas
σg Turbulence intensity
εg Turbulence dissipation rate
r Droplet radius
v Droplet velocity
u Fluctuating gas velocity seen by a droplet
ug Turbulent velocity field of the gas
Ug Mean velocity field of the gas
E Phase space
S Stokes number

f
(1)
pg , fpg One-particle joint gas-droplet distribution function

f
(2)
pg Two-particle joint gas-droplet distribution function

f
(1)
p , fp One-particle droplet distribution function

pg Eulerian gas pdf
b Collision impact parameter
We Collision Weber number
Re, R Reynolds number
∆ Colliding droplet size ratio

1. Introduction
This paper deals with the statistical modeling of two-phase flows consisting of

droplets immersed in a gas. The numerical simulation of such flow is now currently
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Case of small droplets

Fig. 1.1. Instantaneous droplet velocity field issued from a DNS calculation. (P. Fevrier thesis
dissertation, 2000)

used in a lot of applications such as spray combustion in Diesel or aeronautic engines
[25, 22], performance optimization of solid rocket motors with aluminum particles
inside the propellant [15], prediction of rain drop formation, . . . . The accurate mod-
eling of droplet collision and coalescence is very important because collision may have
a significant impact on the mean droplet size [26] and also on the dispersion and
velocities of the drops [12]. For example, in a combustion chamber, the lifetime of a
droplet depends on the square of its diameter. Therefore size increasing may have a
great influence of the mixing between air and vapor and in turn on the global com-
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Case of large droplets

Fig. 1.2. Instantaneous droplet velocity field issued from a DNS calculation. (P. Fevrier thesis
dissertation, 2000)

bustion rate.

Typically, a drop collision model is divided in two parts: first, a rule to compute
the collision probability and second, a rule to calculate the outcome of the collision.
In this paper we present a review of some existing models for the second point and we
propose a new approach for the first one, in the generic case of homogeneous turbulent
flows. All the commonly used droplet interaction models [26, 30, 15, 29] are based
upon the hypothesis that before a collision, the droplet velocities are uncorrelated
(chaos assumption). Hence the collision probability is calculated exactly in the same
way as for molecules in rarefied gas dynamics. However, in a turbulent gas flow, this
assumption is generally not verified at all, especially for small droplets, whose velocity
is strongly correlated with the gas motion, as it can be observed on figures 1.1 and 1.2
(DNS results from P. Février thesis dissertation, 2000 [11]). This is due to the fact
that small droplets have a very low inertia and follow almost the same trajectories as
gas particles.

The main objective of the present paper is to propose a new approach for the
calculation of the collision probability, which takes into account the correlations in-
duced by the action of the gas on the droplet motion. The key ingredient is to replace
the one-particle distribution function f

(1)
p (t,x,v, r), which is classically used for the

description of the spray at the kinetic level, by the one-particle joint distribution
function, f

(1)
pg (t,x,v,u, r), which explicitely depends on the fluctuating gas velocity

u at the droplet position. This idea was first introduced by Simonin for eulerian
modeling of turbulent granular flows [27]. This new approach can be considered
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as a generalization of the usual framework, in the sense that the standard collision
model can be recovered if gas and droplet velocities are supposed to be uncorrelated:
f (1)

pg (t,x,v,u, r) = f (1)
p (t,x,v, r)pg(t,x,u).

The paper is organized as follows. In section 2, we introduce the general form
of the kinetic equation, based on the joint distribution function, for turbulent gas-
droplet flows. The third section is devoted to the derivation of the collision model.
In the last part, we focus on dilute sprays, for which the mean collision time is large
with respect to the typical time scale of the turbulence. We show that it is possible to
derive a simplified asymptotic model of Smoluchovski type [28], that could be used to
provide reference numerical solutions, which in turn could be compared with results
issued from direct or Monte-Carlo numerical simulations.

2. Statistical modeling of turbulent sprays

2.1. Droplet motion equations. For the sake of simplicity, we shall assume
the following hypotheses on the gas velocity field:

• (i) the average gas velocity Ug is zero;
• (ii) the statistical properties of the turbulent velocity field, ug(t,x), are sta-

tionary, isotropic and spatially homogeneous; in particular the turbulent ki-
netic energy kg and the mean dissipation rate εg are two given constants;

• (iii) there is no influence of the droplets on the gas motion (one-way coupling);
• (iv) for all droplets, their diameter is lower than the Kolmogorov turbulence

length scale ηK , hence the gas velocity at the droplet position is defined
without ambiguity.

For large liquid to gas density ratio (ρl � ρg), the drag force is dominant and the
equation of motion for a droplet writes

⎧⎪⎪⎨
⎪⎪⎩

dx
dt

(t) = v(t)

dv
dt

(t) =
ug(t,x(t)) − v(t)

τp

, (2.1)

where ug(t,x(t)) is the instantaneous gas velocity at the droplet position and τp

stands for the particle response time. In the limit of small Reynolds number (Re =
2ρg|v − u|r

µg
� 1), τp only depends on the particle radius and is given by

τp =
2ρlr

2

9µg
. (2.2)

The major difficulty comes from the turbulent velocity field ug(t,x) being only
known through its statiscal properties. Hence, a model must be used to ”sample” the
gas velocity, ug(t,x(t)) seen by a droplet along its trajectory. In the case of homo-
geneous isotropic flows, by analogy with the work of Pope et al [21] on lagrangian
turbulence modeling, Pozorsky, Minier and Simonin have suggested to use the follow-
ing stochastic differential equation [23, 18, 19]:

du = − u
τg

dt +

√
2σ2

g

τg
dWt (2.3)
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Fig. 2.1. Turbulent time scale ratio (Deutsch et al, 1992)

where Wt = (Wt,1,Wt,2,Wt,3) is the Wiener process on R
3 with < dWt,idWt,j >=

δijdt, σg =
2kg

3
is the turbulence intensity and τg is a positive constant whose physical

meaning is precised hereafter. For simplicity, assume that the initial condition of (2.3)
is a Gaussian random vector; then the solution is a stationary Gaussian Markov
process (known as the Ornstein-Uhlenbeck process) and is completely characterized by
its mean < u(t) >= 0, its variance < u2(t) >= 3σ2

g and its autocorrelation function,
which writes

r(s) =
< u(t + s).u(t) >

3σ2
g

= exp(−s/τg). (2.4)

This last equation shows that the parameter τg =
∫ +∞

0

r(s)ds represents the

time scale during which the values of the gas velocity “seen” by a droplet along its
path remain strongly correlated. We refer to the surveys of Pope [21] or Minier and
Peirano [19] for a deeper insight into the physical relevance of equation (2.3).

In this work, for the sake of simplicity, we shall assume that τg is a constant only
depending on kg and εg, according to the relation:

τg =
4

3C0

kg

εg
, (2.5)

where C0 is a given constant, lying in the range 5.0 - 6.5 [21]. Equation (2.5) corre-
sponds to the assumption that the integral time scale of the turbulence along droplet
and gas particle trajectories are the same. Rigorously, this hypothesis is only justified
in the case of very small droplets for which the crossing trajectory effect is negligible.
For heavy particles, using LES computations (see figure 3), Deutsch et al [9] have
shown that, in absence of gravity, the ratio of T ∗

L = τg to the Lagrangian time scale of
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the gas turbulence TL remains in the range 1.0 - 1.25 and reveals a bell-shaped curve.
One can observe on figure 2.1 that the two asymptotic limits are correctly reproduced
by the numerical results: very small particles follow the gas, hence τg � TL, while
heavy particles tend to remain at rest and to see the eulerian time scale of the turbu-
lence TE which is about 1.08 times greater than the lagrangian one. Improved model,
based on a dependance of τg on the relative velocity |v − u|, have been proposed in
the literature. For details on this subject, we refer the reader to the works of Csanady
[5], Pozorsky et al [23, 18] or to the review paper of Minier and Peirano [19].

Finally, in this paper, we shall assume that droplet motion is governed by the
following set of differential equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx
dt

= v

dv
dt

=
u− v
τp(r)

du = − u
τg

dt +

√
2σ2

g

τg
dWt

(2.6)

where τp and τg are respectively defined by (2.2) and (2.5).

2.2. Joint density equation. Let us now introduce the one-particle joint
density function f

(1)
pg (also denoted by fpg for simplicity’s sake) which is defined as

follows: for any subset Ω = Πx×Πv×Πu×Ir of the phase space E = R
3
x×R

3
v×R

3
u×R

+
r ,

the integral

∫
Πx

∫
Πv

∫
Πu

∫
Ir

fpg(t,x,v,u, r)dxdvdudr

represents the mean number of droplets (in a statistical sense) whose radius lies in
the interval Ir , located in Πx, having their velocity v in the set Πv and “seeing” a
value of the fluctuating gas velocity which belongs to the range Πu.

If, as a first step, droplet collisions are not taken into account, it follows from
system (2.6) and from Kolmogorov theorem that fpg satisfies the following Fokker-
Planck equation:

∂tfpg + divx (vfpg) + divv

(
u − v

τp
fpg

)
− divu

(
u
τg

fpg +
σ2

g

τg
∇ufpg

)
= 0 (2.7)

We note that the effect of the turbulence on the droplet distribution function
is taken into account through the presence of the second order diffusion operator

D(fpg) = −divu

(
u
τg

fpg +
σ2

g

τg
∇ufpg

)
in the l.h.s. of the kinetic equation. In the

usual framework, based on the simple distribution function fp(t,x,v, r), the corre-
sponding equation writes:
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∂tfp + divx (vfp) + divv

(−v
τp

fp

)
+ D(fp) = 0 (2.8)

with D being a second order diffusion operator with respect to the variable v, whose
expression depends on the hypothesis that has been used to model the turbulent
motion of the droplets in the gas. About this problem and related questions, we refer
to the papers of Reeks [24], Clouet and Domelevo [6] or Poupaud and Goudon [13].
Note also that, by using asymptotic analysis, a reduced kinetic equation, of the same
form as (2.8), can be formally derived from (2.7) [7].

When collision effects are accounted for, equation (2.7) becomes:

∂tfpg + divx (vfpg) + divv

(
u− v

τp
fpg

)

−divu

(
u
τg

fpg +
σ2

g

τg
∇ufpg

)
= Qcoll(f (2)

pg ),
(2.9)

where Qcoll is the collision operator, for which an expression will be given in the
next section, and f

(2)
pg is the two-particle joint density function defined as follows: the

integral

∫
Ω

∫
Ω∗

f (2)
pg (t, ξ, ξ∗)dξ∗dξ

represents the averaged number of droplet pairs such that the first droplet lies in Ω
and the second one is in Ω∗.

At this stage, equation (2.9) is not closed. A modeling assumption is needed
to give a relation between f

(2)
pg and f

(1)
pg . This problem will be adressed in the next

section.

3. Collision modeling
In this section, we first present a review of some classical models, coming from

the literature, in order to predict the outcome of a collision and to calculate the
collisional cross section. Then the problem of finding a relation between f

(2)
pg and f

(1)
pg

is addressed and we show, that in the more general framework based on the joint
distribution function, it is possible to derive an approximated closure relation, which
does not implicitely assume that gas and droplet velocities are uncorrelated.

3.1. Collision outcome. Experimental observations with water droplets
[4, 1, 10] have shown that a binary collision may lead either to permanent coalescence
or to temporary coalescence followed by separation and sometimes by the formation of
satellite droplets. Up to now, the existing models to predict the outcome of a collision
are all based on experimental data combined with a simplified theoretical approach.
They make use of three dimensionless parameters:

• the Weber number based on the relative velocity between the colliding droplets:

We =
ρl|v − v∗|r∗

σl
,

• the impact parameter b =
I

r + r∗
,
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• the droplet size ratio ∆ =
r∗
r

,

where we have adopted the convention r∗ = min(r, r∗). The result of a collision is
mainly conditioned by the balance between inertial and capillary forces. For a grazing
or a high speed head on collision, surface tension is not strong enough to permanently
maintain the two droplets together, hence the collision is followed by a separation.
Conversely, for moderate values of the relative velocity and impact parameter, the
collision will lead to permanent coalescence. According to the experiments of Brazier-
Smith et al [4] or Ashgriz and Poo [1], the limits between these different regimes can
be characterized by two empirical functions, denoted by b1(We, ∆) and b2(We, ∆),
and defined as follows:

• if b < b1(We, ∆) or b > b2(We, ∆) the collision results in a temporary coa-
lescence followed by the separation of the two droplets; the first case is called
reflexive separation and the second one stretching separation;

• if b1(We, ∆) < b < b2(We, ∆), the collision results in a permanent coales-
cence.

It is worth mentioning that for low values of ∆ (collision between droplets of very
different sizes) collision almost always results in a permanent coalescence; it means
that b1 → 0 and b2 → 1 when ∆ goes to 0. For the sake of completeness, we recall here
the expressions of b1 and b2 proposed by Brazier-Smith et al in [4]. They correspond
to the simplest and most frequently used model.

⎧⎪⎨
⎪⎩

bBS
1 (We, ∆) = 0

bBS
2 (We, ∆) = Min

(
1,

√
24

5We

(1 + ∆3)11/6

(1 + ∆)∆5/2

[
1 + ∆2 − (1 + ∆3)2/3

]1/2
)

In the experiments performed by Brazier-Smith et al, high speed collisions were
not studied, This is why they did not observe the case of reflexive separation and
found b1 = 0. We refer to [1] and [10] for other expressions of b1 and b2 with a largest
range of application.

The second problem to solve in order to characterize the outcome of a binary
collision is the determination of the post-collisional velocity and radius of the resulting
droplets. According to the experimental results of Estrade et al [10], it appears that a
grazing collision followed by a stretching separation does not significantly modify the
initial droplet velocities. Therefore, if the satellite droplets which may be produced
by the collision are ignored, it can be assumed, with an acceptable accuracy, that:

{
v” = v, r” = r,
v∗” = v∗, r”∗ = r∗,

stretching separation regime. (3.1)

The case of head on collisions leading to a reflexive separation is more complex
because the post-collisional velocities generally differ a lot from the initial ones. If
the production of satellite droplets is ignored again and if the total momentum of the
colliding droplets is supposed to be conserved, the following model may be used:
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a) Case: ∆ = 1 b) Case: ∆ = 0.5

Fig. 3.1. Comparison of Brazier-Smith et al (solid line) and Ashgriz-Poo (dashed line) models
for the calculation of functions b1 and b2

⎧⎪⎪⎨
⎪⎪⎩

v” = v − 2er3
∗

r3 + r3∗
(v − v�).n n, r” = r,

v�” = v� +
2er3

r3 + r3∗
(v − v�).n n, r”∗ = r∗,

reflexive separation regime,

(3.2)
where n denotes the unit vector along the direction of the droplet center line and
e ∈]1/2, 1] denotes the inelasticity parameter of the collision; it is related to the
amount of energy dissipated during the temporary coalescence and can be estimated
from experimental data.

Lastly, in case of permanent coalescence, the post-collisional values of the velocity
and radius of the outcoming droplet are deduced from the conservation of total mass
and momentum:

⎧⎪⎪⎨
⎪⎪⎩

v# =
r3v

r3 + r3∗
+

r3∗v∗
r3 + r3∗

r# = (r3 + r3
∗)

1/3

coalescence regime. (3.3)

3.2. Collisional cross section. For hard spheres in vacuum, the collisional
cross section writes: σ = π(r + r∗)2. In the case of droplets, this expression must be
modified to take into account the effect of the surrounding gas flow. It is replaced by:

σ = πEcoll(r, r∗, |v − v∗|, |v − u|)(r + r∗)2

where Ecoll is called “collision efficiency”. This correcting factor takes into account
the fact that, when a droplet is approaching very close to another one, it does not
follow a straight line trajectory, but instead is deflected due to its interaction with
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Fig. 3.2. Schematic description of a binary droplet collision

the surrounding gas flow, thus it is possible that the smallest droplet circumvent the
largest one and that the collision does not occur.

The determination of the collision efficiency has received the attention of a lot of
researchers, because of its importance for the prediction of rain drop formation (see
for example [14, 8, 2, 3] or the survey of Villedieu [31]). From a theoretical point of
view, the first major contribution is due to Langmuir in [16]. His model relies on the
assumption that one of the two colliding droplets is small enough to have a negligible
influence on the motion of the other one. Thanks to this hypothesis, Langmuir was
able to derive the following expression of the collision efficiency:

Ecoll(r, r∗, |v − v∗|, |v − u|) =
1

1 + R/Rc
E(1)(K) +

(R/Rc)
1 + R/Rc

E(2)(K), (3.4)

with:

rs = min(r, r∗), rl = max(r, r∗), Rc = 60,

R =
ρg|v − u|rl

µg
, K =

2ρlr
2
s |v − v∗|
9µgrl

,
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⎧⎨
⎩

E(1)(K) = 0 K ≤ 1.214,

E(1)(K) = [1 +
3 ln(2K)

4(K − 1.214)
]−2 K > 1.214,

⎧⎨
⎩

E(2)(K) = 0 K ≤ 0.0833,

E(2)(K) =
K2

(K + 1/2)2
K > 0.0833.

The dimensionless parameter K can be seen as the ratio of the stopping distance
of the smallest droplet (assuming that its initial relative velocity is |v − v ∗ |) to the
radius of the other one. R is the Reynolds number related to the flow arround the
largest drop. For small values of R, this flow is of viscous type (Stokes analytical
solution) and for large values, it is of inviscid type (potential analytical solution). As
one would expect, if K is small compared to unity, the collision efficiency goes to zero,
whatever the value of the Reynold number, and conversely, if K is large compared to
unity, the collision efficiency goes to one.

It is worth noticing that, since the velocity of a small droplet is generally close to
the local gas velocity, it is possible to replace the expression of the Reynolds number
given above by the following one:

R =
ρg|v − v∗|rl

µg

The major advantage of this approximation is that the collision efficiency does only
depend, then, on the radii and on the relative velocity of the two colliding droplets.

In a more recent study, Beard and Grover [3] have proposed a new expression for
the collision efficiency, in order to improve the accuracy of Langmuir’s model in the
range of intermediate Reynolds numbers. To compute the velocity field around the
largest drop, instead of using analytical solutions of simplified models as in Langmuir
pioneering work, they used numerical solutions of the full Navier-Stokes equations
corresponding to different values of the Reynolds number, covering the range [0 -
400]. By interpolating the results issued from their calculations, they obtained the
following expression for Ecoll, valid in the range R ∈ [0, 400]:

Ecoll(K, R) =
(

2
π

atan[max(H, 0)]
)2

(3.5)

with:

⎧⎨
⎩

H = 0.1465 + 1.302Z − 0.607Z2 + 0.293Z3

Z = ln(K/K0)
K0 = exp

(−0.1007− 0.358 ln(R) + 0.0261[ln(R)]2
)

Figure 3.3 shows a comparison between the two models. As one would expect, they
give almost the same results for low and large Reynolds numbers. For intermediate
values, according to Beard and Grover calculations, the expression given by Langmuir
tends to slightly underestimate the collision efficiency.
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(a) case R = 0.5 (b) case R = 10
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(c) case R = 50 (d) case R = 200

Fig. 3.3. Comparison between the model proposed by Langmuir with the model proposed by
Beard and Grover for the calculation of the collision efficiency

3.3. Closure assumption
As mentioned above, to get a closed collision model, it is necessary to find a re-

lation between f
(2)
pg and f

(1)
pg . Actually, since two colliding droplets are necessarily lo-

cated at the same space position (droplet radii are assumed to be small compared to all
other length scales), it is sufficient to get a relation between f

(2)
pg (t,x,v,u, r,x,v∗,u∗,

r∗), f
(1)
pg (t,x,v,u, r) and f

(1)
pg (t,x,v∗, u∗, r∗).

Let us introduce the joint probability density functions defined as follows:

p(1)
pg (t,x,v,u, r) =

1
n(t)

f (1)
pg (t,x,v∗,u∗, r∗),

p(2)
pg (t,x,v,u, r,x∗,v∗,u∗, r∗) =

1
n(t)2

f (2)
pg (t,x,v,u, r,x∗,v∗,u∗, r∗),

with n(t) being the total number of droplets at time t. The definition of the condi-
tionnal probability density function yields:

p(2)
pg (t,x,v∗,u∗, r∗,x,v,u, r) = p(1|1)

pg (t,x,v∗,u∗, r∗|x,v,u, r)p(1)
pg (t,x,v,u, r) (3.6)



P. VILLEDIEU AND O. SIMONIN 25

with p
(1|1)
pg (t, ξ∗|ξ)dξ∗ being the probability, for a given pair of droplet, to find the first

one in the range (ξ∗, ξ∗ + dξ∗), given that the second one is in ξ. Hence, using formal
notations, p

(1|1)
pg satisfies:

p(1|1)
pg (t, ξ∗|ξ)dξ∗ = Prob(X1

t ∈ (ξ∗, ξ∗ + dξ∗)|X2
t = ξ) (3.7)

where X1
t and X2

t stand for the first and second droplet position in the phase space at
time t. At this level, it is necessary to make a physical assumption. With the notations
introduced above, the fundamental idea proposed by Simonin and Lavieville in [17]
can be written as follows:

Prob(X1
t ∈ (ξ∗, ξ∗ + dξ∗)|X2

t = ξ) � Prob(X1
t ∈ (ξ∗, ξ∗ + dξ∗)|ug(t,x) = u). (3.8)

From a physical point of view, (3.8) is rather natural. It means that among all the
“information” known about the second droplet, the most important is the value of the
gas velocity “seen” by this droplet because, for two droplets located in the vicinity
of the same point, the knowledge of the gas velocity seen by the second one provides
a good estimate of the gas velocity seen by the first one, which in turn is strongly
related to its own velocity. We refer to [17] for numerical experiments (based on DNS
calculations) to check the validity of this closure hypothesis.

Thus, if x∗ = x, the closure assumption (3.8) and the definition of u1
t formally

yield:

Prob(X1
t ∈ (ξ∗, ξ∗ + dξ∗)|X2

t = ξ)
� Prob(x1

t∈(x,x+dx∗),v1
t∈(v∗,v∗+dv∗), r1

t∈(r∗, r∗+dr∗)|ug(t,x)=u)δu∗−udu∗.
(3.9)

Let us introduce the eulerian gas velocity pdf (see Pope [21]) defined as:

∫
U

pg(t, x,u)du = Prob(ug(t,x) ∈ U).

In case of an isotropic homogeneous turbulent gas flow, as considered in this paper,
one has:

pg(t,x,u) =
1

(2πσg)3/2
exp

(
−|u|2

2σ2
g

)
. (3.10)

If ξ∗ = (x,v∗,u∗, r), using the joint probability instead of the conditional one, (3.9)
finally yields:

Prob(X1
t ∈ (ξ∗, ξ∗ + dξ∗)|X2

t = ξ)

� Prob(x1
t∈(x,x+dx∗),v1

t∈(v∗,v∗+dv∗), r1
t ∈(r∗, r∗+dr∗),u1

t (∈)(u,u+du∗))
pg(t,x,u)

δu∗−u,

(3.11)
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Therefore, coming back to the initial notations, it follows from (3.6), (3.7) and (3.11)
that:

f (2)
pg (t,x,v∗,u∗, r∗,x,v,u, r) � f

(1)
pg (t,x,v∗,u∗, r∗)f

(1)
pg (t,x,v,u, r)

pg(t,x,u)
δu∗−u, (3.12)

which is the fundamental relation needed to close the collision model.

3.4. Expression of the collision operator. All the modeling assumptions
presented in the previous subsections finally lead to the following expression of the
collision operator:

Qcoll(fpg) = −Q−(fpg) + Q+
coal(fpg) + Q+

ref (fpg) (3.13)

with:

Q−(fpg)(t,x,v,u, r) =

∫
R+

∫
R3

∫ π
2

0

∫ 2π

0

B(θ, |v − v∗|, r, r∗)
pg(t,x,u)

fpg(t,x,v,u, r)fpg(t,x,v∗,u, r∗)dφdθdv∗dr∗,

(3.14)

Q+
ref(fpg)(t,x,v,u, r) =

∫
R+

∫
R3

∫ θ1

0

∫ 2π

0

B(θ, |v′ − v′
∗|, r, r∗)

pg(t,x,u)(2e − 1)
fpg(t,x,v′,u, r)fpg(t,x,v′

∗,u, r∗)dφdθdv∗dr∗,

(3.15)

Q+
coal(fpg)(t,x,v,u, r) =

∫ r

0

∫
R3

∫ θ2

θ1

∫ 2π

0

B(θ, |v� − v∗|, r�, r∗),
pg(t,x,u)

×r11

r11�
fpg(t,x,v�,u, r�)fpg(t,x,v∗,u, r∗)dφdθdv∗dr∗,

(3.16)

where
1

2e − 1
is nothing but the jacobian of the mapping (v,v∗) → (v′,v′

∗), v′ and

v′
∗ being the precollisional velocities in case of a reflexive separation. According to

(3.1), they are defined as:

v′ = v − 2e

2e − 1
r3
∗

r3 + r3∗
(v − v�).n n,

v′
� = v� +

2e

2e − 1
r3

r3 + r3∗
(v − v�).n n,

(3.17)

with n being the unit vector directed along the colliding droplet center line. θ is the
angle between n and the relative velocity w′ just before the collision. φ is the angle
between the projection of n and any fixed direction in a plane orthogonal to w′.
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The function B is defined as:

B(θ, |w|, r, r�) = Ecoll(|w|, r, r�)|w|(r + r�)2 cos θ sin θ

r� and v� denote the precollisional radius and velocity, in the case of a permanent
coalescence leading to the formation of a droplet of radius r and velocity v:

v� =
r3v

r3 − r3∗
− r3

∗v∗
r3 − r3∗

r� = (r3 − r3
∗)

1/3

(3.18)

The expression
r11

r11�
is the jacobian of the mapping (r → r�), with r∗ being fixed.

Finally, θ1 and θ2 denote the values of θ, which are delimiting the coalescence regime.
Using the geometrical definition of the impact parameter, it is easy to check that θ1

and θ2 are related to b1 and b2, according to the relation θi = arcsin(bi).

We now conclude this section by few comments on the expression of the collision
operator.

• In the expression of Q(fpg), it is worth noticing that the fluctuating gas
velocity u plays a similar role as the space position x, in the sense that there
is no integration with respect to these two variables. This corresponds to the
fact that colliding droplets are necessarily located at the same position and
are necessarily “seeing” the same turbulent gas velocity. This property may
be used to extend classical Monte-Carlo algorithms, used for the Boltzmann
equation, to the case of model (3.13) [20].

• If gas and particle velocities are supposed to be uncorrelated, the classical
expression of Q−, based on the chaos assumption, may be recovered from
(3.14). In this case, one has:

fpg(t,x,v,u, r) = fp(t,x,v, r)pg(t,x,u).

Substituting this expression in the definition of Q−(fpg) and integrating with
respect to u yield:

Q
−

(fp)(t,x,v, r) =

∫
R+

∫
R3

∫ π
2

0

∫ 2π

0

B(θ, |v − v∗|, r, r∗)fp(t,x,v, r)fp(t,x,v∗, r∗)dφdθdv∗dr∗

which is the usual expression of Q− [25, 30].
• The generalized chaos assumption would correspond to the following closure

relation:

f (2)
pg (t,x,v,u,r,x∗,v∗,u∗, r∗) = f (1)

pg (t,x,v,u, r)f (1)
pg (t,x∗,v∗,u∗, r∗), (3.19)

and the corresponding expression of Q− would be then:

Q−
chaos(fpg)(t,x,v,u, r) =

∫
R+

∫
R3

∫ π
2

0

∫ 2π

0

B(θ, |v − v∗|, r, r∗)

×fpg(t,x,v,u, r)fpg(t,x,v∗,u∗, r∗)dφdθdv∗du∗dr∗.
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By integrating this expression with respect to u and u∗, we recover again the
usual expression of Q

−
(fp) given above.

4. Asymptotic model for dilute sprays
In this section, we consider the case of dilute sprays, in which the mean collision

time is large with respect to the typical time scale of the turbulence. We show that
it is then possible to derive a simplified asymptotic model of Smoluchovski type [28],
that can be used to provide some reference numerical solutions.

4.1. Dimensionless joint density equation. Let us introduce the following
rescaled variables and dimensionless numbers:

u =
u

σg
, ug, =

ug

σg
, v =

v

σg
, r =

r

r0
,

t =
t

τc
, S(r) =

τp

τg
=

2ρpr
2

9µgτg
, K =

τc

τg
,

with r0 being the typical scale of droplet radii, τc the collision time defined as τc =
1

n0r2
0σg

, K the Knudsen number, and S(r) the Stokes number.

For the sake of simplicity, we restrict our attention to the case of spatially homoge-
neous sprays. Hence the x variable will be omitted everywhere. Using the notations
defined above, the rescaled joint pdf equation writes:

∂tfpg + KD(fpg) = Q(fpg) (4.1)

where fpg stands for the dimensionless joint pdf

fpg(t, v, u, r) =
1

n0r0σ6
g

fpg(t, σgv, σgu, r0r),

and D is the second order differential operator defined as

D(f) = divv

(
u− v
S(r)

f

)
− divu (uf + ∇uf) .

4.2. Expression of the asymptotic model. In this section, for the sake
of clarity, we drop all the bars. Let us suppose that K → +∞, then formally, up to
some terms of order 1/K, the joint distribution function must satisfy the equation:

D(fpg) = 0, (4.2)

which means that the droplet “agitation” motion is in equilibrium with the turbulent
gas motion. The only positive solution to equation (4.2), under the constraint

∫
R6

fpg(t, r,v,u)dvdu = n(t, r),
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writes:

fpg(t, r,v,u) = n(t, r)M(v,u, r) (4.3)

with:

M(v,u, r) =

[
(1 + S(r))
2π
√

S(r)

]3

exp
[
(1 + S(r))

2S(r)
(u2 + (1 + S(r))v2 − 2u.v)

]
. (4.4)

The proof of this result can be found in [7]. For completeness, we only indicate
here that uniqueness results from the following entropy estimate:

∫
R6

D(f)(1 + ln(f))dvdu =
∫

R6
4M

(
∇u

√
f

M
.∇u

√
f

M

)
dvdu

+
1 + S

S

[
3
∫

R6
fdvdu −

∫
R6

1 + S

S
|v − u|2fdvdu

]

Integrating equation (4.1) with respect to u and v, it follows:

∂tn =
∫

R6
Q(fpg)dvdu.

Hence, replacing fpg by its expression given by (4.3), we obtain that the droplet density
n(t, r) is solution of the following coagulation equation of Smoluchowsky type:

∂tn = Q̃(n) with Q̃(n) =
∫

R6 Q(nM)dvdu.

We can now stand our main result.
Proposition 4.1.

When K → +∞, if the collision operator is defined by (3.13)- (3.14)-(3.15)-
(3.16), then the solution of the dimensionless kinetic equation (4.1) converges formally
to the following equilibrium solution:

fpg(t, r,v,u) = n(t, r)M(v,u, r),

where M is defined as

M(v,u, r) =

[
(1 + S(r))
2π
√

S(r)

]3

exp
[
(1 + S(r))

2S(r)
(u2 + (1 + S(r))v2 − 2u.v)

]

and n is solution to the coagulation equation

∂n

∂t
= −

∫ +∞

0

J(r, r∗)n(t, r)n(t, r∗)dr∗ +
∫ r

0

J(r�, r∗)
r2

r2�
n(t, r�)n(t, r∗)dr∗
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with:

J(r, r∗) =
√

2π(r + r∗)2G(r, r∗)
∫ +∞

0

ξ3Ecoal (r, r∗, G(r, r∗)σgξ) exp(
−ξ2

2
)dξ,

where G(r, r∗) is defined as:

G(r, r∗) =

√
S(r) + S(r∗)

(1 + S(r))(1 + S(r∗))

and Ecoal is the coalescence efficiency defined as:

Ecoal(r, r∗, w) = Ecoll(r, r∗, w)[b2
2(We, ∆) − b2

1(We, ∆)].

Remarks:
• If, instead of (3.12), the expression of the collision operator is based on the

closure relation (3.19) (generalized chaos assumption), the result of proposi-
tion 4.1 still holds but the expression of G(r, r∗) must be replaced by:

G(r, r∗) =

√
2 + S(r) + S(r∗)

(1 + S(r))(1 + S(r∗)).

• If Ecoal is assumed to be a given constant, it is possible to compare explicitely
the coagulation rates corresponding to the closure assumptions (3.12) and
(3.19). For small droplets, the first one yields:

J(r, r∗) � C(r + r∗)2
√

r2 + r2∗, (4.5)

while hypothesis (3.19) gives:

J(r, r∗) � C′(r + r∗)2, (4.6)

with C and C′ being two constants. As one should expect, the model based
on the chaos assumption leads to the largest collision rate. It is worth noticing
that the expression of the coagulation rate proposed by Williams and Crane
in [32] behaves exactly as (4.5) for small droplets (S � 1 and S∗ � 1).

Proof of proposition 4.1. Formally, it has been shown above that n(t, r) solves the
following equation:

∂n

∂t
(t, r) =

∫
R6

Q(fpg)(t, r,v,u)dvdu, (4.7)

with f�
pg(t, r,v,u) = n(t, r)M(v,u, r), M being defined as (4.4). Using that the

droplet number is preserved by stretching and reflexive separations, equation (4.7)
yields:
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∂tn(t, r) = −
∫

R6

∫
R+

∫
R3

∫ θ2

θ1

∫ 2π

0

B(θ, σg |v − v∗|, r, r∗)
pg(u)

×fpg(t,v,u, r)fpg(t,v∗,u, r∗)dφdθdv∗dr∗dudv

+
∫

R6

∫ r

0

∫
R3

∫ θ2

θ1

∫ 2π

0

B(θ, σg|v� − v∗|, r�, r∗)
pg(u)

r11

r11�
fpg(t,v�,u, r�)

×fpg(t,v∗,u, r∗)dφdθdv∗dr∗dudv,
(4.8)

where:

pg(u) =
1

(2π)3/2
exp

(
−|u|2

2

)
.

After a short calculation, it follows:

∂n

∂t
(t, r) = −

∫ +∞

0

π(r + r∗)2Z(r, r∗)n(t, r)n(t, r∗)dr∗

+
∫ r

0

π(r� + r∗)2Z(r�, r∗)
r2

r2�
n(t, r�)n(t, r∗)dr∗,

(4.9)

where Z is defined as:

Z(r, r∗) =
∫

R9
|v − v∗|Ecoal(r, r∗, σg|v − v∗|)M(v,u, r)M(v∗ ,u, r∗)

pg(u)
dv∗dvdu.

After integration with respect to u, it follows:

Z(r, r∗) = C

∫
R6

|v−v∗|Ecoal(r, r∗, σg|v−v∗|) exp
(−v2

2α2
− v2

∗
2α2∗

+ χχ∗
v.v∗
αα∗

)
dv∗dv,

with the following notations:

C =
(1 − χ2χ2∗)3/2

8π3α3α3∗
,

χ =
1√

1 + S(r),
χ∗ =

1√
1 + S(r∗),

α = (1 − χ2χ2
∗)

1/2χ, α∗ = (1 − χ2χ2
∗)

1/2χ∗.

Finally, integrating with respect to v and v∗, one obtains:
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Z(r, r∗) =

√
2
π

G(r, r∗)
∫ +∞

0

ξ3Ecoal (r, r∗, G(r, r∗)σgξ) exp(
−ξ2

2
)dξ,

with:

G(r, r∗) =

√
S(r) + S(r∗)

(1 + S(r))(1 + S(r∗))
,

which is the expected result. Q.E.D.

5. Conclusion
In this paper, we have presented an original model for droplet coalescence in

homogeneous turbulent sprays, which takes into account the correlations induced by
the effect of the gas on the droplet motion. The key point of our approach consists
of using the joint distribution function, f

(1)
pg (t,x,v,u, r), instead of the simple one,

f
(1)
p (t,x,v, r). In the case of a dilute spray, for which the mean collision time is

large with respect to the typical time scale of the turbulence, we have derived an
asymptotic model, of Smoluchovski type, that could be used to provide reference
numerical solutions, which in turn could be compared with results issued from direct
numerical simulations. This work is currently in progress.
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