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Abstract: We derive an analog of the Melvin-Morton bound on the power series
expansion of the colored Jones polynomial of algebraically split links and boundary
links. This allows us to produce a simple formula for the trivial connection contribu-
tion to Witten's invariant of rational homology spheres. We show that the rfl* term
in the l/K expansion of the logarithm of this contribution is a finite type invariant
of Ohtsuki order 3« and of at most Garoufalidis order n.

1. Introduction

Let M be a 3-dimensional manifold with an N-component link «£? inside it. We
assign a7-dimensional irreducible representations of 5(7(2) to every component J2}
of JSf. Witten's invariant of M and S£ is given [1] by a path integral over all SU(2)
connections A^ on M:

here SQS is the Chern-Simons action

Scs = \ Trs^Jd3x (A^AP + ^AVAP\ , (1.2)

Traj^Pexp (§g. A^dx** J are traces of holonomies of Ap along S£j taken in ay-
dimensional representations of SU(2) and Tr of Eq. (1.2) is the trace taken in
the fundamental 2-dimensional representation. In most cases instead of the integer
number k we will be using

K = k + 2. (1.3)
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According to quantum field theory, the path integral (1.1) can be calculated in
the limit of k—>oo by the stationary phase approximation. The stationary points of
the phase (1.2) are flat connections. The whole path integral (1.1) is presented as
a sum of contributions of connected components c of the flat connection moduli
space:

Zai,...^(M,i?;*) = Y,Z£L*NW9&;k) . (1.4)
c

Each contribution Z^^N{M9S£\k) is proportional to the classical exponent exp
(27EiJt5cg), Scs being * e Chern-Simons action of the flat connections of component
c. The preexponential factor is generally an asymptotic series in £~*, or equivalently,
in K~\

Suppose that the manifold M is a rational homology sphere (RHS). Then the
trivial connection forms a separate component of the moduli space of flat connec-
tions. Therefore it produces a distinct contribution to Witten's invariant (1.4). This
contribution is known [2-4] to be of the following form:

— ^ T
/d[ord//,(M,Z)]§

(1.5)

here ordif i(M,Z) is the order of integer homology group and we assumed that M
contained no links. We call Sn(M) "perturbative invariants," because, according to
quantum field theory assumptions they should be equal to the sums of (n + 1 )-loop
connected Feynman diagrams, studied, e.g. in papers [5-7] . However caution is
advised, because no direct mathematically rigorous evidence supporting this relation
has been established yet (in fact, the results of [7] may even contradict it).

The only mathematically rigorous definition of the quantum invariant
2aLW^aLN{M9£P\k) is the Reshetikhin-Turaev formula [13]. Its asymptotic properties
at k —• oo have been studied only for a small subclass of 3d manifolds M, so
Eqs. (1.4) and (1.5) are conjectures. Therefore we will use Eqs. (1.1) and (1.4) only
as motivation.

We want to keep our discussion mathematically rigorous. Therefore we define
the invariant Zaiv..,ajv(S3,S£\k) of an TV-component link <£ C S3 not by Eq. (1.1),
but as

= Z(S3;*)exp i ^ t lJj(*j ~ I)) ̂ ,...,«*(^;*), (1.6)

here J^^^i^'.k) is the colored, framing independent Jones polynomial of the link
££ normalized by the condition that it is multiplicative for disconnected links, and
that

3 / | g ) (1.7)

Then we proceed to define Z(tr)(M;£) as the formal power series (1.5). First we
assume by definition that

\ <£; k) = Z^aN(S\ X; k) . (1.8)
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In particular, this means that

k), (1.9)

so that according to Eq. (1.5),

^ ) " = log ( | sin ( I ) ) . (1.10)

We define zi*Ly(XN(M,&;k) for general RHS M by the surgery formulas of [8]
and [10] (Definitions 2.1 and 2.2). We proved in [25] that such a definition is con-
sistent (i.e. invariant under Kirby moves) and thus presents an infinite sequence of
genuine invariants Sn(M) of M. We will still call Z(tr)(M;fc) and its coefficients
Sn(M) "perturbative invariants" in the hope that their relation to the Feynman di-
agrams of [5] and to the trivial connection contribution into the path integral (1.1)
will be established in the future.

In this paper we will study how Z(tr)(A/;£) changes under a rational surgery
on an algebraically split link (i.e. a link with zero linking numbers between its
components) and on a boundary link. We will derive simple surgery formulas for
the invariants Sn(M) and show that they are finite type invariants of Ohtsuki [14]
order 3w and of at most Garoufalidis [15] order n.

In Sect. 2 we review the previous surgery formulas of [8] and [10] as well as
Reshetikhin's formula [9] for the Jones polynomial of a link. In Sect. 3 we derive
the analog of Melvin-Morton bound [11] for the power series expansion of the
colored Jones polynomial of algebraically split links and boundary links. By using
this bound we derive the surgery formulas for the perturbative invariants Sn{M) for
the case of a surgery on these classes of links. The invariants are expressed in terms
of derivatives of the colored Jones polynomial and surgery data. We work out an
explicit expression for S\(M) and demonstrate that it is consistent with J. Hoste's
surgery formula [12] for Casson's invariant Acw if we put [8]

5,(M) = 6ACw. (1.11)

We also show how to convert Sn(M) into integer valued invariants Siint)(M).
In Sect. 4 we extend Ohtsuki and Garoufalidis definitions of finite type invariants

to rational homology spheres. We also define an extra finite type invariant that we
call Ohtsuki'. We use the results of Sect. 3 to demonstrate that the perturbative
invariants Sn(M) are finite type invariants of Ohtsuki order 3n, Ohtsuki'order 2n
and of at most Garoufalidis order n. Finally, in Sect. 5 we speculate about the
relation of our results to Feynman diagram calculations of perturbative invariants of
[5-7] and to Ohtsuki's polynomial invariant [20, 21].

2. Surgery Formulas for Knots and General Links

2.1. General Considerations. Let i f be an TV-component link in S3. We assign
rational surgeries (pJ9 qj) to its components. A rational surgery (/?, q) is presented
by an 5L(2,Z) matrix
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whose coefficients show how to glue meridian and parallel of the solid torus to
meridian and parallel of the knot complement: the meridian of the boundary of the
solid torus is glued to /^(meridian) + ^(parallel) of the knot complement (for more
details see, e.g. [8]). We denote by M = X&(S3) a manifold constructed by perform-
ing all surgeries on the components of S£. The Reshetikhin-Turaev formula [13]
relates Witten's invariants of S3 and M:

Z(M; k) = e'** £ Z ^ ( S 3 , JSf; *) ft U^ • (2.2)
j=\

In this formula the matrices U%q represent the group SL(29X) in the (K — 1)-
dimensional space (of level k affine 5(7(2) characters) [3]:

E E \^-{po? - 2a(2Kn + /#) + s(2Kn + tf)2)} , (2.3 )

here ^(C/(p>?)) is the Rademacher function

^ " 1 2 * ^ ' ^ (2A)

and 5(/?, 9) is the Dedekind sum

The phase <!>& in Eq. (2.2) is the framing correction

t T i r f £ ̂ t / ) - 3 sign(I<tot>)] , (2.6)
4 * b = i J

here L(tot) is an N x N matrix

/,y is a linking matrix of JS? and sign(Z,(tot)) is the difference between the number
of positive and negative eigenvalues of L(tot).

The formula (2.2) reflects the* change in the whole invariant (1.4). In [8] we
explained why its simple modification should reflect the change in the trivial con-
nection contribution. Here we use this modification as a definition of the invariant
Z(tr)(Af;£), while keeping in mind the conjecture that Z(tr)(A/;£) may be related to
the asymptotic properties of Z(M;k).
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Definition 2.1. Suppose that a RHS M is constructed by rational (Pj,qj) surg-
eries on the components of an N-component link ££ C 53 . Then the perturbative
invariant of M is given by the following formula (cf. Eq. (2.2)):

^ / % • (2-8)

[°c,=0]

Here the symbol f*™ [a=0] means that we take only the stationary phase contribu-

tion of the point a = 0 to the whole integral. The matrix U^q is obtained from

by substituting n = 0 instead ofY?n=l in E(l' (2-3) :

. (2.9)

Since the framing independent colored Jones polynomial of S£ is related to
Witten's invariants by the formula (1.6) then the surgery formula (2.8) can be rewrit-
ten as

1 +oo
Z(tr)(M;k) = Z(S3;k)<?**-g f da,-

^ —CX)

[«y=0]

(2.10)
y=i

Another modification of this formula is especially useful for integer surgeries,
i.e. when pj = 1, Ijj = 0. It is obtained by shifting the integration variables

± ( 2 . 1 1 )
3 J Pj

and working with an even part of the shifted Jones polynomial

As a result, Eq. (2.10) transforms into

« ^ ^ f ft A

(2.13)
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Fig. 1. The structure of power series expansions

here

In order to understand how Eq. (2.10) works we consider a simple example of
the stationary phase calculation:

+ OO

I(K)= J
— oo

[a=0]

(2.15)

here the functions f(a) and g(a,K) have a smooth analytic behavior at a = K~l = 0
and /'(O) = 0. We separate the quadratic part of the exponent and then remove
the odd part of the preexponential factor, because it does not contribute to the
integral:

f
— OO

[a=0]

-W-W)g{a,K),

Gev=
l-(G(a,K)

m£0 -

(2.16)

(2.17)

"" . (2.18)
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The non-zero coefficients dm>n are depicted in Fig. 1. The inequality

n ^ -^m (2.19)

(line O in Fig. 1) comes from the fact that the expansion of the exponent f(a)
~~/(0) ~ \fn(^)a2 *n powers of a starts with the qubic term, while the expansion
of g(a,K) has only negative powers of K.

Combining Eqs. (2.16)-(2.18) we find that

g AnK~» . (2.20)
n=0

After being integrated with the gaussian factor e'§/"(0)% the term dmina
2mK~n

contributes to the coefficient Am+n9 so that

(the terms contributing to a given An are connected by dashed lines on Fig. 1).
The bound (2.19) on powers ofK in the power series expansion of Gev guarantees
that only a finite number of terms in that expansion is required to achieve a given
precision in expansion (2.20). This property makes the stationary phase calculation
of the integral (2.15) quite effective. As we will see in Sect. 4, it also determines
the finite type nature of the invariants Sn(M).

2.2. Knot Surgery Formula. Now we come back to the surgery formula (2.10). The
substitution

oij = Kaj (2.22)

puts the factors e^^'^U^^ of the integrand (2.10) in the form (2.15) with

f{at) = f ( %- -f-1») a). It remains only to put the Jones polynomial X... aA,(i?;&)
J ^ \Hj M J J ' '

into a similar form. If S£ has only one component, i.e. if it is a knot JT, then this
is achieved by (the first part of) the Melvin-Morton conjecture, which was proven
by D. Bar-Natan and S. Garoufalidis [16] (for a simple path integral proof see [8]).
Proposition 2.1. Let X be a knot in S3. Then its framing independent colored
Jones polynomial has the following expansion in powers of a and K~x:

(2.23)

or equivalently,

oo oo

'£ E
m=0 »=0

£ dm,n(ina)2m ( l £ ) ,a = £ , dm,n = Dm,n+2m ,
n=0 \ A / ^

;*)= E E dm,n{i%afm (l£) ,dmfi = (2m + \)dmfs. (2.25)
m=0 n=0 \ ^ /

(2.24)
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The dominant part of the expansions (2.23) and (2.24) is related to the
Alexander polynomial of X\

na £ Dn,ln{ina)2n ^nafl dn,0(ina)2n = ™ ( " * - (2.26)

n=o «=o AA(X9eznia)

The Alexander polynomial AA(Jf;e2nia) is normalized in such a way that

AA(vmknot'9e
2nia) = \,
2ma, _ 2ism(na)

here xR (53\Tub Jf;e2nia) is the U(l) Reidemeister-Ray-Singer torsion of the knot
complement 53\Tub X.

The coefficients dm,n lie above the line G in Fig. 1. The formula (2.25) demon-
strates that the function J^(JT;A:) is of the form g(a,K), that is, it has only zero
or negative powers of K in its expansion. Therefore if a RHS M is constructed by
a rational (/?, q) surgery on a knot Jf C S3 then

y ( | p + qloo

x+f daexp [ ^ (£ + ko\ a2] J & ( J T ; *) , (2.28)

(2.29)

The integral is calculated similarly to the one in Eq. (2.15) by integrating the
terms of expansion (2.25) one by one with the gaussian factor. The result can be
expressed in terms of invariants Sn(S3) of Eq. (1.10) if we recall that ord//i(Af,Z) =
\p + ?Ax)| and that dm =dw = 1:

Equation (2.30) implies that for individual perturbative corrections

- 1 ) !

(2.32)
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We checked in [8] that the surgery formula for Si which follows from these
equations, is proportional to Walker's formula [17] for the Casson-Walker invariant
>icw of rational homology spheres. This led us to the relation (1.11).

The coefficients Dm^n of the Taylor expansion of the Jones polynomial of
a knot JT C S3 are known to be Vassiliev (i.e., finite type) invariants of or-
der n. Therefore the coefficients dm,n — Dmjn+2m are Vassiliev invariants of or-
der n + 2m. The coefficients dm>n can be expressed as linear combinations of the
coefficients </w+/,w-2/, / ^ 0. Therefore Jm,n is also Vassiliev invariant of order
m -f- 2n.

The invariants An{M) and Sn{M) of the RHS M = Xx{S3) can be considered
as knot invariants of Jf. Equations (2.31) and (2.32) present Sn(M) as a lin-
ear combination of products of the coefficients dmhni such that in each product
J2i (H,- -h iWi) = fl. As a result, for each product of dmi „,. appearing in the expression
of Sn{M)

£ (m + 2mt) ^ 2 £ (nt + mi) = 2n . (2.33)
i i

Thus we make the following conclusion:

Proposition 2.2. {cf part 1 of Question 3 of [15]). For a rational (/?, q) surgery
on a knot X C S3, the coefficient Sn{xx{S3)\ considered as an invariant of JT,
is a Vassiliev invariant of order {at most) 2n.

Note that for /oo = 0 (which can be always achieved for a knot X C S3 by a
suitable choice of its framing) the dependence of An of q in Eq. (2.31) is polyno-
mial. We will use this in order to extract the coefficients of the Alexander poly-
nomial of JT from the invariants Sn{xjr{S3)) obtained by applying surgeries with
different values of q. Denote by Xjr,(p,q)(S3) ^ e manifold constructed by apply-
ing the (/?, q) surgery to Jf\ Consider the surgeries {p,q + ]C/=i Af/)> A*/ = ̂ =1-
Since

0 for m < n

2mm\ for m = n,

we find that

* , (2.35)
+ 1)! p~nDnf2n for n' = n ,

here we used the fact that dn$ — {2n + l)dn,o = {2n + 1)A*,2*. Similarly, if we sub-
stitute Eq. (2.31) into Eq. (2.32) and apply the alternating sum to both of its sides,
then Eq. (2.34) leads to the following proposition.
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Proposition 2.3. For a knot X C S3 the alternating sum of invariants Sn*, 2 ^ n'
^ n over the surgeries (/?, q + 5Zy=1/f/), fij = ±1 on JT is gwert by the formula

"'

mi,...,
mi +2/H2-I Ynmn~n

(2.36)

Here the coefficients DJt2j of expansion (2.23) are Vassiliev invariants of X of
order 2j.

Equation (2.26) demonstrates that Dj^j is a "special" Vassiliev invariant: it is ex-
pressed in terms of derivatives of the Alexander polynomial ^(JTje 2 7" 0 ) . Therefore
the alternating sum £ ^ . = ± i , ( i ^ w ) ( I X L i ^ ) ^ ( X j r , ( M + E ^ , ^ ) ) i s a l s o a s P e c i a l

Vassiliev invariant of order 2« (cf. part 3 of Question 3 of [15]).
One might use the relation

4 r = \q for ho = 0, p = 1 (2.37)

in order to obtain the alternating sum properties of S\:

for n > 1 ,

( " 8 )

Since 1 — 6Di?2 is proportional to the second derivative of the Alexander polyno-
mial, Eq. (2.38) is consistent with Casson's original formula for Acw of a manifold
produced by a (1,#) surgery on a knot in S3.

2.3. General Link Surgery Formula. It is hard to present the colored Jones polyno-
mial JoLU...,oLN{^\k) of a general link in the form of the integrand of Eq. (2.15). The
closest thing to the Melvin-Morton conjecture for a general link is Reshetikhin's
formula. We proved it in [9] with the help of quantum field theory arguments and
Feynman diagrams. The proof of [9] can be made rigorous if one uses Kontsevich's
integral (see [26] and the Appendix of [25] for details).

Proposition 2.4. Let S£ be an N-component link in S3. Its framing independent
colored Jones polynomial can be expressed as an integral over 3-dimensional
vectors Sj of the fixed length (i.e. over the co-adjoint orbits associated with
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dj-dimensional representations of SU(2) which are assigned to link components):

\st\='i

1 + £ K-'Pm,,(au...,aN)
l,m=O

(2.39)

here Lm(3\9...93ff) and Pmj(3\9...,aM) are homogeneous SO(3)-invariant polyno-
mials of degree m. In particular,

L2(au...,aN)

are the linking numbers of ££.

(2.40)

The analog of the second part of the Melvin-Morton conjecture is the relation [9]
between the polynomials Lm, Pmj and the multicolored Alexander polynomial of
the link S£. Here we define the multicolored Alexander polynomial of a link as the
inverse of the Reidemeister-Ray-Singer torsion of its complement:

2niai

It is simply related to the usual Alexander polynomial of the link (cf. Eq. (2.27)):

AA(&; e2nia) = 2i s in(7ta)^(^ ; elni\...,e2nia) . (2.42)

The following conjecture was proved in [9] with the help of path integral arguments:

Conjecture 2.1. The multicolored Alexander polynomial (2.41) can be expressed
in terms of polynomials Lm and Pmj:

I l <*

+ E Pm,o{alX9...,aNio
m=2

(2.43)

here n is a unit vector, A symmetric 2N x 2iV matrix Myfflv, 1 ^ ij ^ N, fi,v =
1,2 comes from the quadratic form

(2.44)
i,/=l /i,v=l,2

which is extracted from the exponent of Eq. (2.39),

m=2
(2.45)
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after performing a substitution

^ ^ Xj.n = 0. (2.46)

Here x^ are coordinates of the vector xj which is orthogonal to n. M" is a
(N — I) x (N — 1) matrix obtained from Myillv by crossing out two columns and
two rows to which diagonal elements Muy\\ and A/#,22 belong (detAf" does not
depend on the choice of i and j).

The polynomials Lm(a\,...,ajv) appear to be related to Milnor's linking numbers
lj£ljm of the link S£. If the order m Milnor's linking numbers are well defined,
then, based on path integral arguments, we conjectured in [9] that

Lm(au...,aN)= ^ ^ £ / j ^Tr^ .^ ) . . -^ .^ ) , (2.47)

here & = ((71,(72,(73) is a 3d vector of Pauli matrices. In particular,

(2.48)

* ~ ' " " - ^ ~* ^ (2.49)

The proof of the latter relations (2.48) and (2.49) in [9] can be made rigorous by the
use of Kontsevich's integral (see [26] and the Appendix of [25] for details).

In our future calculations we will also need the polynomial

AT

A combination of integrals over ay = Kaj in Eq. (2.10) with the integrals over
directions of vectors Sj in Eq. (2.39) produces the link surgery formula which serves
as the basic definition of perturbative invariants (see [25] and references therein for
details):

Definition 2.2. If a RHS M is constructed by rational (Pj9qj) surgeries on an
N-component link & c S3, then



Trivial Connection Contribution to Witten's Invariant 35

m=3

1+ g K-lPmj(au...,5N)
/,m=0

(2.51)

By switching from integration over ay (Cartan subalgebra) to 3j (the whole
Lie algebra) we managed to put the surgery formula in the recognizable stationary
phase form (2.15). However we paid a heavy price: the invariants Sn(M) are no
longer expressed in terms of derivatives of the original colored Jones polynomial
JoLu...,a.N(&\k), as was the case for Eqs. (2.30), (2.31). Instead we first have to present
the polynomial in the form (2.39) in order to use the coefficients of polynomials
I m , Pmj in actual computation of the integral (2.28). This is a big disadvantage of
Eq. (2.28) since we do not know of any effective way to find the polynomials Lm,
Pmj of a link (most of them are not even unambiguously defined by Eq. (2.39),
see [9] for details). This problem can be circumvented to a certain degree by the
"step-by-step" procedure of [25]. Moreover, as we will see in Sect. 3, for some
special classes of links it is possible to go back from Eq. (2.51) to the formula
similar to Eqs. (2.30), (2.31).

3. Special Links

Now we will concentrate on studying the Jones polynomials and surgery formulas
of some special classes of links.

Definition 3.1. An N-component link 5£ c S3 RHS is an algebraically split link
(ASL) if linking numbers between its components are zero:

lij = 09 l ^ i < j ^ N . (3.1)

A link is a special algebraically split link (SASL) if in addition to (3.1) all
of its triple Milnofs linking numbers are zero:

4 ^ = 0, l^Uhk^N. (3.2)

A link is a boundary link (BL ) if one can choose Seifert surfaces for its
components in such a way that they do not intersect.

Note that all Milnor's linking numbers of a boundary link are zero.
Algebraically split links in relation to Witten's invariant were studied by

H. Murakami and T. Ohtsuki [18-21]. In particular, they showed that any inte-
ger homology sphere can be constructed by integer surgeries (l,#y) on an ASL
in S3. They also proved that any rational homology sphere can be constructed by
rational surgeries (pJ91) on an ASL up to a connected sum of lens spaces. This
means that instead of a desired RHS M we may end up with a connected sum
M#Lp'y\#- - -#LP^\. This suits our purposes since Z(tr)(Af;&) has a simple behavior
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under connected sum:

^\Mi;k)Z^(M2;k)
Mi,k) = z ( S 3 k ) '

while the trivial connection contribution to Witten's invariant of a lens space was
calculated by L. Jeffrey [3]:

3.1. The Jones Polynomial of Special Links. We are going to calculate the expan-
sion of Jaw^N{&\k) in powers of ay (or equivalently, in powers of fly = ay/K) and
A""1 with the help of Reshetikhin's formula (2.39). We expand the exponential of
that formula in powers of polynomials Lm and then integrate over the directions of
vectors fly according to the following formulas:

r d2a
I 4 ^ T ^ ^ + 1 0 (3.5)

L ^ ''' ^2n-l)tls(2n) ' l j

here Sin is a symmetry group of In elements.
For an ASL, Li = 0. As a result, each positive power of K coming from the

expansion of the exponent of Eq. (2.39) carries with it at least three powers of
phases aj. For a SASL, L2 = L3 = 0. Therefore each power of K carries at least four
powers of phases aj. Finally, for a BL all Lm = 0, so the exponential is trivial and
the power series expansion of its Jones polynomial contains only negative powers
of K (apart from the overall pre-factor KN). A "slope index" si(J&?) defined for
special links as

si(J^) = { i for SASL (3.7)

allows us to formulate these results as a universal formula. It is the analog of
Melvin-Morton bound for knots.

Proposition 3.1. The trivial connection contribution to the Jones polynomial of
a special link 5£ c S3 has the following expansion in powers ofK~l and aj = OLj/K:

( N

(3.8)
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while for the "shifted" Jones polynomial defined by Eq. (2.12),

J*^*»{&\k) = E E dmA<*u--,*NKin)2m+nK-n. (3.9)

In these formulas Dm,n, dm,n and dm^n are even homogeneous polynomials of
degree 2m:

DmA*U- . . , « * ) = E rfmdm^r ' ' ' <#" > (3-10)
/n i H— - - -\-niN =tn

dmAal>'->aN)= 2^ «ii,U«Arfll % » (3.H)

mi-l--

/„. J f l i . . . /7x7 ) = > a a* '''a*r * ( 3 1 2 )

The bounding lines for the polynomials dm^n and dm,n in Fig. 1 are O for ASL,
Or for SASL and G for BL. Note that for ASL the polynomials of critical de-
grees d^m^-im, dimy-2m come exclusively from the polynomial £3 of Eq. (2.48), i.e.
from the triple Milnor's linking numbers lj£\ while the critical degree polynomials
for SASL d2m,-m, dim^-m come exclusively from the polynomial L4 of Eq. (2.49),
i.e. from quartic Milnor's linking numbers /»£/.

We will need the polynomials rfi,o, t/2,-1 and ^3,-2 for the surgery formula for
S\(M), therefore we are going to express them explicitly in terms of the polyno-
mials (2.48)-(2.50). The polynomial Jo,i comes from the polynomial P^o in the
preexponential factor of Eq. (2.39):

rfi,o = 3</1,o = - ^ E f t , a 2 . (3.13)

The polynomial d^-\ comes from averaging the linear term in the expansion of the
exponential of the 2-color part of L4,

-2in3K E !$& x Sj) • (at x Sj) (3.14)

over the directions of at and ay.

4 - 1 = 9rf2,_, = 12

The polynomial ^3,-2 comes from averaging the quadratic term of the expansion of
the exponent of Ly.

4 - 2 = 27^,-2 = -12 E (W)2°Wj4 • (3-16)
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The coefficients pjj, l\£* and (/»£*) also appear as derivatives of the Alexander
polynomials of 1-, 2- and 3-component sublinks of S£. To see this, we recall [9] the
procedure of removing a link component from Eq. (2.39). To remove a particular
component J£/ of Z£ we have to substitute

<xi=Kai = l (3.17)

and integrate over the directions of 5J. We do this by expanding the exponential
of Eq. (2.39) in all the monomials of polynomials Lm which depend on at. As a
result of the substitution (3.18), these monomials become of order A""1 or less.
Therefore this procedure preserves the overall structure of Eq. (2.39) and leads di-
rectly to the representation (2.39) of the Jones polynomial of if\j£/. We see that
the coefficients of monomials of Lm9 which are independent of ai9 do not change.
Since Li = 0, the monomials of P2,o which do not contain ai9 are not modified
either.

Suppose that we remove all components of S£ except S£j. Then according to the
Melvin-Morton conjecture (2.26), the Alexander polynomial of 5£j in the standard
normalization (2.27) has the following power series expansion:

O(a*) = 1 + ^ (pj, + ^j + O(z4) ,

(3.18)

here we used the standard variable z for the Alexander polynomial:

z = -2/sin(7ra). (3.19)

If following J. Hoste [12] we denote by <t>\(&) a coefficient in front of z#^+1 in the
power series expansion of the single-colored Alexander polynomial AA(M9 jf\elnia)

is the number of components of J£?), then according to Eq. (3.18),

The relation between the coefficients l}£\ (lyj?) and the derivatives of the
Alexander polynomial of 2- and 3-component sublinks of & were established
by T. Cochran [22]. Here we show how to derive the same relations from
Conjecture 2.1.

Suppose that we remove all components of if, except for J2/ and J2). Since
ly = 0, then according to Eqs. (2.43) and (2.42) the power series expansion of the
single-colored Alexander polynomial starts with the term

g O(a5) = /g>z3 + O(z5) , (3.21)

so that

$ (3.22)



Trivial Connection Contribution to Witten's Invariant 39

Finally for a 3-component sublink <£i U ££j U S?k of ££

AA(M9^i9^j^k;e
2^) = l t o 4 ^ ) V + O(a6) = (/g>)V + O(z6) ,

(3.23)

and

{$)2. (3.24)

A combination of Eqs.(3.13), (3.15), (3.16) with Eqs.(3.20), (3.22), (3.24)
leads to the following relations between the derivatives of the shifted Jones poly-
nomial and the derivatives of the Alexander polynomials of sublinks:

<7i.o = -12 E (<M^,) - ^ ) *, , (3.25)

- , = 12 E </>i(^,^)a?^, (3.26)
is«<ysAf

-2 = -12 E <Ai(^,^,^)a?a^. (3.27)

3.2. A Surgery Formula for Special Links. Proposition 3.1 guarantees that for all
three classes of special links - ASL, SASL and BL - the expansion of the (shifted)
Jones polynomial is similar to that of function (2.17). As a result, we can calculate
the stationary phase contribution of the point ay = 0 to the integral in the surgery
formula

+ 0 0

(3.28)

(3.29)

by substituting the expansion (3.9) and integrating term by term.

Proposition 3.2. Z>f M be a RHS obtained by (pJ9 qj) rational surgeries on com-
ponents of an N-component special (ASL, SASL or BL) link S£ C S3. Then the
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invariants Sn(M) and Sn(S3) are related by the following equation:

(3.30)

m=0 2W m.^m^O y=l >V \Pj
m\-\ \-mN=m

The individual invariants are related by the formula

( 1)""+

\-nmn=n

(3.32)

The case of Si is especially interesting since we demonstrated in [8] that its knot
surgery formula coincides with K. Walker's formula for Casson's invariant >lcw of
RHS if we set Eq. (1.11). It is obvious from Eq. (3.32) that for Si one needs
to know only A\9 which for a general ASL is expressed by Eq. (3.31) in terms
of d\ 0,^2-1 and J3 _2 (note that do \ = do \ = 0, this follows from the condition

h = 1). Thus combining Eqs. (3.25)-(3.27) with Eq. (3.31) we find that

^ j -1-
j=\ -£ + lJJ

If we recall the Dedekind sum identity

s(p,q) + s{q, p) = p2 | ^ + l - ^sign( pq) , (3.34)

then it is not hard to check that for an integer surgery (i.e. when pj• = 1, fa = 0) the
substitution (1.11) transforms Eq. (3.33) into J. Hoste's formula [12] for Casson's
invariant

+ £ qtqjqk4>\{Xu&j,XkY\ . (3.35)
\^i<j<k^N )

This is another confirmation of the general relation (1.11).
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3.3. Integer Valued Invariants. The surgery formulas (3.30)-(3.32) suggest that the
invariants Sn(M) are rational numbers. In fact, we can convert them into integers
by multiplying them by factors that depend only on n and ordH\(M,Z). We are
going to present a rather rough estimate of the necessary factors.

Let M be a RHS constructed by rational (pj,qj) surgeries on an ASL i f in
S3. The framing independent colored Jones polynomial ^ . . ^ ( S 3 , i ? ; £ ) has integer
coefficients in front of the positive and negative powers of e*. We will expand
the polynomial Jai^alN(S3

9^;k) in powers of A' in two steps. First, we introduce
a variable

(3.36)

Since

(3.37)
/i=0

we see that both variables e^ and e~% have integer coefficient expansions in powers
of x. Then a simple relation (3.36) between x and (^) together with Eq. (3.8) imply
the following expansion of the Jones polynomial:

^ « , ( ^ ; * ) = ( f U ) £ E An,n(«i,...,a*)jc'1, (3.38)

here Dm>n(ai,..., aAr) are homogeneous polynomials of degree 2m:

The polynomials

/ *r \
(3.40)

are odd in all their variables. They also have integer values when all the variables
ai , . . . , a# are integer. This means that the polynomials (3.40) can be presented as
sums of products of elementary binomial polynomials of odd degree:

a ( a 2 - l X « 2 - 4 ) - - ( a 2 - m 2 )
(

In other words,

(3.42)
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Here the numbers Mj are the maximum values of the powers my appearing in
Eq. (3.39) for all m ̂  |/i. Since Yl^=\mj — m-> ^en ^ e number of my=t=0 in each
term of Eq. (3.42) is not greater than m. Therefore J2X< -<,N *0(

2mJ + *) = 3 m

and — J T ^ - € Z. Taking into account that the coefficients of the polynomial
ny=i(2m,+l)!

Hj=\((2mj + l)-f^2m,+i(a)) are integer, we conclude that

eZ. (3.43)

The estimate (3.43) does not mean that prime divisors of the denominator of
Dmx"..,mn

 c a n 8° as high as 3m. Indeed, the source of denominators is (2m + 1)!
in Eq. (3.41). Since My ̂  m, we see that prime divisors of the denominator of
Dmu \mH

 2ax ^ess than 2m + 1. Another estimate can be obtained with the help of
the following.

Proposition 3.3. For the coefficients <f^lmN participating in the power series
expansion (3.11), the indices ntj can not be bigger than m + n:

mj^m + n, O^j^N. (3.44)

Recall that n can be negative. In that case the bound (3.44) is stronger than an
obvious relation my ̂  m.

Proposition 3.3 follows easily from Proposition 2.3 of [9], which states that
the power of any vector 8j in a polynomial Lm(3\,...9aN) of Reshetikhin's for-
mula (2.39) is not greater than m — 2. A calculation of the integrals in Eq. (2.39)
leads to the inequality (3.44).

Adapting Proposition 3.36 to the coefficients D^ mn we come to the following
simple corollary:

Corollary 3.1. For the coefficients A^lm, °ftne polynomials Dmn, which parti-
cipate in the expansion (3.38), each index ntj can not be bigger than n — m:

mj ^n-m, I £j £N. (3.45)

Note that my ̂  m and therefore my ̂  | .
A combination of this corollary with Eq. (3.42) leads to the following:

Proposition 3.4. For the coefficients Cml...imN of Eq. (3.42) there is an upper bound
on the maximum value of individual indices

mj ^n-'Emf. (3.46)

Suppose that there exists a coefficient Cfi£..,mAr for which the inequality (3.46) is
not true, say, for mi. Then the highest degree monomial of the corresponding poly-
nomial C(ml..,m^2m,+i(ai)- *'PimN\\(oLN) violates the inequality (3.45). Therefore it
has to be canceled by monomials of other polynomials C^} m, Pim'^+xiu-x) • • • Pim' +i
(OLN) for which apparently m) ^ my, 1 ̂  j ' ^ N and Y^*=lm'j > Y^=\mj- B u t t h e
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index m\ of these monomials again violates the inequality (3.46), so we need to go
to higher values of YljL\mj f°r n e w cancellations. Since Y^=\mj = n» ̂ is process
can not be completed. The contradiction proves the proposition.

The inequality (3.46) indicates that the prime divisors of denominators of the
coefficients of the polynomial in the r.h.s. of Eq. (3.42) can not be bigger than
2(n-£jLi«y) + l.

In order to find the polynomials Dmtn(ct\9...9 a#) of the expansion (3.8) we
substitute the relation (3.36) between x and K into Eq. (3.38). The contributions to
the polynomial Dmjn come from the polynomials £>m,«-/> / ^ 0:

A»,«= £ C/Dw,w_/. (3.47)

The numbers C\ are rational, their denominators come from the denominator (n + 1)!
of Eq. (3.36). It is easy to see that C/ has a common denominator (2/)!. As a result,

- ^mI! (3m)! D^mH € Z . (3.48)

Here [x] is the integer part of x. The polynomials dm,n come from Dmin+2m ' dm,n =
,™\ Therefore

r A i
LeZ. (3.49)

The polynomial Jm)W comes from the polynomials dm+i,n-ih I ̂  0 through the
shift of Eq. (2.12). The coefficient dj^mN comes from the coefficients
^+/',n~mj+/tf> 6 ~ '̂ S>=i (/ = '• ^ e bo^d on powers of the series (3.8) im-
plies that §(m + /) *• 2/ - II, that is, / ^ [|/i -h ̂ m] . Since

(3.50)

we conclude that

] [? | ] 2 ^ > 4 ^ € Z . (3.51)

Since |m ̂  - n in Jm>w because of expansion (3.9), Eq. (3.31) shows that

3 ) ! (9n)! (ord//,(M,Z))2max^>>+max^>Jn G Z . (3.52)

Applying the inequality (3.44) to the coefficients ^t/',?~m^f/i» w h i c h produce the
coefficients d^'J^ of Eq. (3.31), we find that

m + l-nij-lj ^m + 2l-n9 (3.53)

so that

mj + llj ^ / i - / + /y ^ » . (3.54)
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The equality may be achieved if / = lj. Therefore

2max{/y} + max{/wy} = n (3.55)

and

23n(2n)\ (9/i)! (ord^i(M,Z))nJw e Z . (3.56)

The smallest denominator of each coefficient of the sum of Eq. (3.32) divides
m\ H h ntN. Therefore n\ may be selected as their common denominator and

23nn\ (2/i)! (9/i)! {orAHx{M,Z)f{Sn{M) - Sn(S
3)) e Z . (3.57)

After using the expression (1.10) for Sn(S
3) we come to the following conclusion:

Proposition 3.5. The modified invariants simt)(M) of an RHS M are integer:

= 23nn\ (2/i)! (9/i)! (ordHx(M,Z))nSn(M) e Z . (3.58)

We might have been too generous in our choice of the numerical factor
23nn\ (2n)\ (9n)\ in this definition of S J ^ M ) . However the calculations for Seifert
manifolds (see, e.g. [8]) suggest that our choice of the power of ord//i(M,Z) is
minimal.

Recall that the factor (9n)\ in Eq. (3.58) originates from (3/w)! in Eq. (3.43).
We noted there that it was needed to remove the denominators of the polynomi-
als P2my+i(ay) in the r.h.s. of Eq. (3.42), whose prime divisors did not exceed
2(/i — J2jL\mj) + *• The coefficients Ani receive contributions from the polynomials
P2mx+\{oL\)" P2mN+\((*N) for which /i - Y^j=\mj = n'• Therefore the factor (9n)\
in Eq. (3.58) accounts for prime divisors which are not greater than 2n + 1. Thus
we see that

(ord/ZKA/, Z))nSn(M) e Z [1, i,..., ^-i-j-l (3.59)

(cf. similar results for Ohtsuki's invariants [20, 21]).
The estimate (3.59) can be improved slightly if we note that the factor ^ y

comes from the highest degree polynomials Pm+xiciLj) which may appear in the r.h.s.
of Eq. (3.42) for the polynomials Dm,n+m contributing to Sn(M) through An(M).
In other words, the term in the r.h.s. of Eq. (3.42) containing P2n+\ will carry

a factor Cmu^m^mj . A simple power counting indicates that only the highest degree
monomial of the corresponding polynomial

C^kmi)P2m^x{oiX)'''PlmN+x{oiN) (3.60)

does contribute to Sn{M). Therefore we have to follow the transformations of
a2"4"1

only the highest degree monomial nL+\)\ °^ Pin+xi&j)- It moves unchanged from

(n^iO/OA^n+m to (Il̂ Li<Xj)Dm,n+m and transforms into j^+vjl i n s i d e (U!J=\aj)

dm,n-m. A transfer to dm,n-m requires a substitution of aj + -^- instead of fly. The
(a I l )2w+1 in

highest even power term in nn+\y.— *s TfTiny' ^ u s w e s e e ^ a t ^ e n ^S n e s t

divisor of the denominator reduced to 2n and we can make an improved estimate.
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Proposition 3.6. The highest divisor of denominator of [ord H\(M9Z)]nSn(M)
is In:

[ i i ^ l (3.61)

4. Finite Type Invariants

4.1. Definitions Let i f be an AT-component link in a 3-manifold M. We assign
rational surgeries (pj,qj) to all of its components. The new manifold constructed
by performing all these surgeries is denoted as /^(Af).

T. Ohtsuki [14] and S. Garoufalidis [15] gave the following definitions of finite
type invariants of integer homology spheres (ZHS) (we add here an extra type
which we call Ohtsuki'):

Definition 4.1. A topological invariant X of integer homology spheres is a finite
type invariant of at most Ohtsuki {Ohtsuki \ Garoufalidis) order N if for any
N' >N and any N'-component ASL (SASL, BL) If c S3 with surgeries (±1,1)
assigned to its components, the following alternating sum over the surgeries per-
formed on sublinks $£' C S£ (including 5£ itself) is equal to zero:

£ (-!)«*'l(XMS2)) = 09 (4.1)
<e><zse

here #JS?; is the number of components of &'.
The invariant I is of Ohtsuki (Ohtsuki\ Garoufalidis) order N (XeON (O'N,

GN)) if X is of at most order N and not of at most order N — 1.

T. Ohtsuki proved that his classes 0i ,02 were empty, while Casson's invariant
of ZHS was the only representative of his class O3. S. Garoufalidis proved that
Casson's invariant was the only representative of his class G\. He also conjectured
that

Oin+\ = 03«+2 = 0, O3n = Gn . (4.2)

We extend Definition 4.1 of finite type invariants to rational homology spheres
by substituting "arbitrary rational surgeries (Pj,qj)" instead of "surgeries (±1,1)"
in that definition. We also conjecture that

<&+i = 0 . O'2n = Gn. (4.3)

4.2. An Upper Estimate of Finite Type Order. Our first goal is to show that per-
turbative invariants Sn(M) are of finite type.

Proposition 4.1. The invariants Sn(M) of a RHS M are finite type of at most
Ohtsuki order 3H, at most Ohtsuki order In and at most Garoufalidis order n.

Our proof is based on an observation that the difference Sn(M) — Sn(S
3)9 as it comes

from Eqs. (3.32) and (3.31), is sensitive to at most j^(F) su rgeries simultaneously.
The word "simultaneously" means that this difference can be presented as a sum
of terms, each of which can be sensitive to at most 1_a(jy) su r8eries on link com-
ponents of S£.
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Let L be an ̂ -component link in S3 with rational (pj, qj) surgeries assigned to
its components. Let if' C J£? be a sublink of <£ which does not contain a particular
component, say, S£\. Consider a contribution of the term

tf:LmAmi---<ff"> m = m2 + ...+mN (4.4)
from the Jones polynomial of «£?, which does not depend on the phase a\, to the
coefficients A of Eq. (3.30), as it comes from the surgery on the link S£' or on
another link JSf'UJSPi.

Lemma 4.1. The contribution of the term (4.4) to the coefficients A of Eq. (3.9)
is the same for a surgery on <£' or ££' U S£\.

The proof is a direct calculation with Eqs. (2.12) and (3.31). Consider a surgery
on J£". First we have to "remove" the link components of S£\&' from the Jones
polynomial of if. This is achieved by fixing the corresponding colors: ay = OLJ/K =
\/K. In particular, we set

«. =4 . (4-5)
This substitution transforms the term

Am,n) 2m2 m m 2mN (A&\
a0ym2,...,mN

a2 aN y^'°)
\J=i /

of Eq. (3.2) into

( N \
jfN—\ I T7 /• I Am*n) ~2m2 2mf< (Al\

I 1 1 aJ I a 0 , m 2 , . . . , m ^ a 2 " a N ' V*'1)

If a surgery is performed on <£' U ifi then the variable a\ is treated differently.
First we make a part of the shift (2.11) and rescaling of Eq. (2.12) that are related
to a\. They convert the term (4.6) again into the expression (4.7). Then we perform
an integral over a\ in Eq. (3.28) which, according to Eq. (3.31) has no effect at all
because mi=0. This proves the lemma.

Now we count the powers. An even homogeneous polynomial c/m,w(ai,...,a^)
in power series expansion (3.8) is of order 2m, so each of its monomials (3.11)
depends on at most m different colors. Therefore their contribution is sensitive to
at most m surgeries simultaneously. As a result of the shifts (2.11) of Eq. (2.12),
each polynomial dm,n of the power series expansion (3.9) receives the contributions
of the polynomials </m+/,n_2/, / ^ 0. According to Eq. (3.31), a polynomial Jm,w
contributes to Am+n. Therefore a term An in the surgery formula (3.30) receives
the contributions of the polynomials dm+/>n_m_2/, /,m ̂  0. The most surgery sen-
sitive contribution comes from the highest possible value of m + / for a given
n. Because of the power bound on expansion (3.8), it comes from the polyno-
mial d n **) _. Such contribution is sensitive to at most , J* surgeries

simultaneously.
Now it is easy to see that the products A™1 • • • A™n with m\ + 2m2 H h

nmn = n can be presented as sums of terms, each of which is sensitive to at most
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i-sKj$f) surgeries. Therefore if we calculate a sum

47

(4.8)

for an + l)-component link, then each term in Eq. (3.32) will be insensitive
to at least one surgery, so that it will be canceled in the alternating sum. Now it
only remains to check that

1 - si(i?)

This proves Proposition (4.1).

3w for ASL

In for SASL

n for BL

(4.9)

4.3. An Exact Estimate of Ohtsuki Order. It follows from our proof of Propo-
sition 4.1 that the most surgery sensitive contribution to an invariant Sn{x&{M))
comes from the most color-diverse monomials

of the polynomial d „ **) n. In case of ASL (SASL) these monomials have a

clear geometrical origin: according to Eq. (2.39) they come exclusively from triple
(quartic) Milnor's linking numbers. This allows us to make a precise estimate of
Ohtsuki (Ohtsuki') order of Sn(M).

Proposition 4.2. The invariants Sn are of Ohtsuki {Ohtsuki) order 3/i (2n):

sneo3n, (4.11)

We will present the proof for Ohtsuki invariants. The proof for Ohtsuki' invariants
is similar. From now on Z£ in a ASL and si(J£?) = 2/3.

To prove the proposition we need an effective algorithm of computing the link
invariant Sn(&) defined by Eq. (4.8), for the case of #J&? = 3n. Since as we have
observed, the only non-zero contributions to 5rt(JS?,Af) come from triple Milnor's
linking numbers of if, we may use a simplified version of the general link surgery
formula (2.51) combined with Eq. (1.5),

-(.§-'>(!)") ( I f
+00

— OO

[a>=0]

JH- «
exp

3 i
#> 4 • (a, x ak))} . (4.12)
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•123

Fig. 2. The group weight diagram for S\

Fig. 3. A group weight diagram for S2

Among other things we made a substitution

(4.13)

in Eq. (2.51). This approximation is justified for our purposes. It amounts to re-
taining only the contribution of dm^n among all polynomials </m+/,w-2/ contributing
to dm,n.

Taking a logarithm of the integral in Eq. (4.12) is a standard exercise in com-
binatorics of Feynman diagrams, only in this case the combinatorics is applied to
a finite dimensional integral (4.12) rather than to a path integral of quantum field
theory. The difference between the old and new invariants is presented as a sum
over diagrams

Sn(M)-Sn(S3)= (4.14)

Here Dgr/I(if) is a set of connected «-loop diagrams with trivalent vertices (see
Figs. 2 and 3): each vertex represents a non-zero triple Milnor's linking num-
ber l\fc while each edge represents a link component. Since we are interested
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only in the contribution of the most color-diverse monomials (4.10) coming from
the polynomials ^3W,-2/i, we should also require that each component of the link
should be represented at most only once as an edge in any particular diagram.
As a result, each triple Milnor's linking number will also appear at most once,
except for the diagram of Fig. 2, where the same number appears twice. Note
that a set of participating triple linking numbers completely determines the
diagram.

A contribution Adgr of a diagram dgr e Dgrw(«£?) is calculated by expanding the
exponential of the cubic part of the exponent of Eq. (4.12) in participating vertices
(we take linear terms for all diagrams except Fig. 2) and calculating the gaussian
integrals over d33j. Since

( 4 1 5 )

the contribution A<x& of an «-loop diagram is given by the formula

^ = 4 - H L - I M O ^ T X J I n /;n- (4i6)

Here E^ is a set of link components appearing as edges, V&g is a set of triple
linking numbers appearing as vertices (with their multiplicities) and W^ is a group
theoretical weight factor. It is calculated by assigning antisymmetric tensors s^^^
(i.e. Lie algebra structure constants) to every vertex and contracting indices along the
edges. This prescription eliminates 1-particle reducible diagrams, i.e. the diagrams
that can be split in disconnected parts by removing one edge.

Consider now the calculation of Sn(J?) for a 3/z-component ASL JSf. The
(n + 1 )-loop diagrams which contribute to the difference

Sn(x#>(S3))-Sn(S3)9 (4.17)

contain 3« edges and therefore require 3w link components to saturate them. There-
fore of all sublinks &' C & the difference (4.17) is non-zero only for &' = <£.
Then Eq. (4.8) implies that

E w* n #
(4.18)

Now we can prove that Sn € O^n. Indeed, consider an (n -f l)-loop diagram dgr
such that #dgr+0 (it is easy to find an example). Then similarly to [14] draw
a 3w-component ASL in S3 with Borromean-type junction for every vertex of dgr.
Since we kept Borromean junctions to the minimum, then the set Dgrw+1(JSf) of
this link contains only the original diagram dgr. Therefore the sum (4.18) contains
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only one term which is non-zero. This proves that the invariant Sn is not of at most
Ohtsuki order 3/i — 1.

A similar analysis can be carried out to show that Sn € O'ln. The Feynman
diagrams will have 4-valent vertices coming from the quartic Milnor's linking num-
bers /<#.

5. Discussion

So far the only known examples of Vassiliev invariants of links have been the
derivatives of colored Jones polynomials corresponding to various Lie groups. There-
fore one might conjecture that for rational homology spheres the only finite type
invariants will be perturbative invariants Sn. Thus it is possible that the properties
of Sn are universal properties of finite type invariants defined by Definition 4.1.
In particular, one might hope that the relations (4.2), (4.3) which follow so nat-
urally from Fig. 1, are indeed true. Each dashed line in Fig. 1 represents a finite
type invariant (or, rather, a set of invariants of the same order) of RHS. Its order
is equal to the /w-coordinate of the intersection of its dashed line with Ohtsuki,
Ohtsuki'and Garoufalidis boundary lines. The main reason for us to introduce the
type Ohtsuki'was that similarly to O and G, the line O' intersects all dashed lines
at integer points.

Not all Ohtsuki diagrams [14] appear in our sets Dgrn. We require the diagrams
to be closed (no 1-valent vertices) and 1-particle irreducible. If someone could prove
that these conditions do follow from Definition 4.1, then it might be easier to show
that Gn C O$n along the lines suggested in [15].

It is easy to see that our diagrams and their group weight factors W&& coincide
with those appearing in the Feynman diagram calculations of [5,6 and 7]. This is
what one might expect since according to quantum field theory, the invariants Sn

should come from (n + 1 )-loop Feynman diagrams. We present here intuitive argu-
ments on how the Feynman diagrams may transform into the diagrams of Eq. (4.14).

Consider a Feynman diagram, say, the one in Fig. 2, with the edges representing
the (1,1) bilocal form gauge particle propagators Q\y\. The whole expression is
equal to

/rf3xirf3x2Qi,i(xi,X2)Qi,i(jci,x2)Oi,i(xi,jf2). (5.1)

Suppose that we make a rational (pj, qj) surgery on a knot X[. How does the pro-
pagator OI,I(JCI,JC2) change outside the tubular neighborhood, on which the surgery
is performed? Since fiu measures the linking numbers

lk(JT,jr') = §dxx§ dx2Qi9i(xl9x2) (5.2)
X X'

and we know how the linking numbers change under a rational surgery on Jfj,

p ^ o p , \), (5.3)

we may suggest that the propagator Q\9\(x\9X2) acquires an extra piece

Oi,i(xux2) -> Ou(xux2)+^fdyi § dy[Qu(xuyi)Qul(x29y[). (5.4)
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Fig. 4. A Feynman diagram contributing to <j>\

K2

y2

Fig. 5. A Feynman diagram contributing to /1122

As a result, the change in the integral (5.1) is proportional to

(JCifJC2)/ dyx § dy[QxA{x (5.5)

The corresponding diagram is drawn in Fig. 3. It is known [23] to contribute to
the coefficient d\$ of the power series expansion (2.24) of Jxai^i) and to the sec-
ond derivative <j>\(3#\) of the Alexander polynomial of Jf\. These contributions are
exactly cancelled by the ghost loop. Still this relation between the diagram of Fig. 4
and the surgery change in the diagram of Fig. 2 is in line with our expectations that
the latter represents the Casson-Walker invariant, whose surgery formula includes,
among other terms, the derivative </>i(«#i).

Let us perform a second rational surgery on another knot Jfi, such that
lk(Jfi, X{) — 0 since we want to work only with ASL. Then the change in the
integral (5.5) comes from "breaking" the second propagator QI,I(JCI,JC2):

§ dy[QlA(xuyi)Qu(x2,y[)

(5.6)

The corresponding diagram is drawn in Fig. 5. Note that we could not break the
propagators &i,i(xi,.yi)&i,i(x2>>'i) in the expression (5.5) because the result would



52 L. Rozansky

K,

Fig. 6. A Feynman diagram contributing to

be proportional to

§ dyi = lk(Jfi, (5.7)

The diagram of Fig. 5 contributes [9] to the quartic Milnor's linking number
This is what one may expect from Eq. (3.33) in view of relation (3.22).

As we make a third surgery on Jf*3, the change in the integral (5.6) comes from
breaking the last remaining propagator Q\,\(x\,X2):

Jd3x
X\

i)§ dy2Q\,\(x,y2)§ dy3Q\,\(x, y3) (5.8)

The corresponding diagram of Fig. 6 represents [9] a contribution to the triple
Milnor's linking number l\^ (cf. Eqs. (3.24) and (3.33)). Its square corresponds
to the original diagram of Fig. 2, but now each vertex represents a triple Milnor's
linking number rather than a cubic term in the Chern-Simons action (1.2) and each
edge represents a link component instead of a propagator Q\\. Note also that after
three surgeries we ran out of propagators to break. This indicates that the original
Feynman diagram may represent the finite type invariant of Ohtsuki order 3.

This procedure can be applied with similar results to any Feynman diagram
containing no ghost propagators Qo,2. However a complete analysis of all diagrams
and all contributions (including the interiors of tubular neighborhoods) seems to be
much more complicated. Still the careful calculations along these lines may shed
some light on the contradiction between the relation (1.11) and the results of [7].

Consider for a moment integer surgeries on a special link, that is, the surgeries
for which pj> = 1, 1$ = 0. Then it is easy to see that the changes in perturbative
invariants described by Eqs. (3.31) and (3.32) have a polynomial dependence on
the integer numbers qj. The degree of the polynomial for Sn is x_"^y The highest
degree terms come from the coefficients lying on the dashed lines corresponding
to An. These facts may lead to another definition of finite type invariants that would
use alternating sums over surgeries performed with varying values of qj.

Finally we would like to comment on the relation between perturbative invariants
Sn and Ohtsuki's invariants kn introduced in [20 and 21]. We show in [24] that
Ohtsuki's polynomial

n=0
(5.9)
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is proportional to the trivial connection contribution Z( t r)(M;£) if we make a sub-
stitution q = exp(~ I):

^ [ U ) J (510)

The proof follows from the analysis of the surgery formulas which is similar to the
one performed in this paper. The same expansion formulas (3.8) and (3.9) have to
be used in conjunction with finite gaussian sums rather than with gaussian integrals
of Eq. (3.28).
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