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Abstract: Coherent states are introduced and their properties are discussed for
simple quantum compact groups AuBuCi and £>/. The multiplicative form of the
canonical element for the quantum double is used to introduce the holomorphic
coordinates on a general quantum dressing orbit. The coherent state is interpreted as
a holomorphic function on this orbit with values in the carrier Hubert space of an
irreducible representation of the corresponding quantized enveloping algebra. Using
Gauss decomposition, the commutation relations for the holomorphic coordinates on
the dressing orbit are derived explicitly and given in a compact /^-matrix formu-
lation (generalizing this way the ^-deformed Grassmann and flag manifolds). The
antiholomoφhic realization of the irreducible representations of a compact quantum
group (the analogue of the Borel-Weil construction) is described using the concept
of coherent state. The relation between representation theory and non-commutative
differential geometry is suggested.

1. Introduction

It is difficult to overestimate the importance of the concept of coherent states in
theoretical and mathematical physics. They found various applications in quantum
optics, quantum field theory, quantum statistical mechanics and other branches of
physics as well as in some purely mathematical problems [21, 34]. The last-named
include Lie group representations, special functions, automorphic functions, repro-
ducing kernels, etc. In the Lie group representation theory there is a remarkable
relation between the geometry on the coadjoint orbits and the irreducible repre-
sentations, which is reflected by the method of orbits (geometric quantization) due
to Kirillov, Kostant and Souriau [53]. On the other hand the concept of coherent
states leads naturally to Berezin's quantization scheme [5]. The important sources of
both methods are induced representations and the Borel-Weil theory. The intrinsic
relationship between the geometric and Berezin quantization has been established.
There are many papers devoted to this subject (e.g. [32, 37] and many others).
Recently the coherent states were used to construct examples of non-commutative
manifolds [14].
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The first papers [1, 44], which can be viewed as those generalizing coherent
states to quantum groups appeared even before the formal birth of quantum groups
[11]. A number of papers followed subsequently ([17] and many others). Neverthe-
less no definition seems to be completely satisfactory. The coherent states are intro-
duced mainly for the simplest quantum groups (^-deformations of the Heisenberg-
Weyl, su(2) and su(l, 1) algebras) in a rather straightforward way which does not
suggest a proper generalization to the more general case. Moreover, these states are
assumed to be elements of the representation space for an irreducible representation
of the corresponding quantized enveloping algebra and they do not reflect the whole
underlying Hopf algebra structure.

Recently the representation theory for the algebras of quantum functions on
compact groups was studied in great detail. It is worth emphasizing too that these
results were obtained with the help of the method of orbits [49, 45, 46]. This lead
finally to a quite general definition of the coherent state given by Soibelman [48]
related to generalized Pontryagin duals of simple compact groups. So this is in some
sense the case dual to the one we wish to consider in the present paper.

According to the general philosophy of non-commutative geometry it would
be more natural to view the coherent state as a function on an appropriate
^-homogeneous space of the corresponding quantum group (dual to the quantized
enveloping algebra) with values in the representation space. We hope that such a
more sophisticated generalization of the coherent states method to the case of quan-
tum groups could be of interest not only for the representation theory but also for
potential applications of quantum groups in physics. Many important ingredients
needed for this generalization are already prepared. First of all the representation
theory of quantum groups [15, 30, 40] and the method of induced representations
are well developed [33]. The deformations of manifolds playing an important role
in the Lie group representation theory (such as Schubert cells, flag and Grassmann
manifolds) are also known [23, 25, 52, 3, 47, 50] through different approaches.
Further there is the notion of the quantum dressing transformation [36] which is the
substituent for the coadjoint action from the classical case. It is important already
for classical groups [41], has interesting applications in physics [4] and is closely
related to the notions of generalized Pontryagin dual and the Iwasawa decomposi-
tion [29]. Finally there is also a proper definition of the quantum momentum map
[28]. One of the expected results of the coherent state approach for quantum groups
would be to put all these ingredients together in a natural way. The second expected
result would be a variant of the ^-generalization of the Borel-Weil theory which
follows more closely the classical Borel-Weil construction than the one described
in [7] for the case of Uq(n) (another approach is presented also in [3]). Finally as
in the classical case it is natural to achieve a link between the representation theory
and the non-commutative differential geometry on quantum groups [55]. We hope
to meet these goals in the present paper.

The present paper extends some ideas from the papers [19, 50], but now the
leading idea is a proper definition of the coherent state for quantum groups, using
the rich structure contained in the quantum double [11, 35].

The paper is organized as follows. Section 2 contains a very brief account of
the classical theory. Section 3 has a preliminary character: some basic notions of
the quantum group theory are recalled. Section 4 adapts to our purposes some well
known results from the representation theory of quantum groups. Section 5 which
contains the definition of coherent state for the compact quantum group and discusses
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its basic properties is one of the more important parts of the paper. Here we would
like to mention that, similarly to the classical case, we can start in the definition (5.1)
of the coherent state Γ from any Hopf algebra and any state in the carrier Hubert
space Jtf* of some irreducible representation τ whenever (5.1) does make sense. Nev-
ertheless the restriction to the quantized universal enveloping %(l) for f compact
and the choice of the lowest (or equivalently the highest) weight state eχ are the most
relevant for the rest of the paper. This section also contains a definition of the (quan-
tum) isotropy subgroup KQ C K (K is the spectrum of the Hopf algebra <stfq(K) dual
to the <%(!)) of eχ. Our coherent state can be then naturally viewed as a function on
the ^-homogeneous space K0\K with values in the representation space Jtfχ for the
lowest weight representation τχ of *%(i) corresponding to the lowest weight λ. Sec-
tion 6 contains a detailed description of the canonical element p (universal Λ-matrix)
of the quantum double (particularly inspired by [13]) which makes possible a more
explicit expression for the coherent state Γ and a definition of holomorphic coor-
dinates on a general quantum dressing orbit. Explicit commutation relations for the
holomorphic coordinates in the i?-matrix formulation are derived in Sect. 7. They
present a compact generalization of the definition relations for the quantized flag
manifold. Section 8 describes the antiholomorphic realization of the irreducible repre-
sentation τχ which is very close to the classical Borel-Weil theory. The presentation
of Sect. 8 can also be, if wished, reinterpreted as a non-commutative version of the
Berezin quantization. Finally in Sect. 9 we make an attempt to relate the represen-
tation theory to the non-commutative differential geometry, which as we hope could
be helpful for understanding the non-commutative version of the method of orbits.

Let us make here a few comments on some points not included in the paper.
The discussion of Sects. 8 and 9 is done using the local coordinates on an

appropriate cell of the dressing orbit. There is no doubt that a globalization using
the quantum Weyl elements is possible. As in the classical case it should lead to
a "quantization condition" for the quantum dressing orbit and to an interpretation
of the elements of 2tfχ as antiholomorphic sections of an appropriate quantum line
bundle [8, 51].

There is also no doubt that Sect. 9 could be formulated purely in terms of
the holomorphic coordinates z and their conjugates z*. However, this requires an
explicit description of the restriction of the bicovariant differential calculus on the
quantum group K to the quantum homogeneous space KQ\K. An introduction of the
partial derivatives dz* with respect to the antiholomorphic coordinates would make
it possible to interpret the formula (9.15) expressed only through coordinates z* and
partial derivatives dz* as a natural Fock space representation of %(l).

It is also natural to think about limiting cases of our construction. The limit
q —• 1 gives of course the classical scheme recalled in Sect. 2. Nevertheless as in
the classical case [43, 5] there is a second type of limit leading to the classical
dressing orbits with their natural Poisson structure. This kind of limit is achieved
by using the sequence of irreducible representations corresponding to the sequence
of lowest weights nλ. A rescaling of q —> q1^ and a subsequent limit n —• oo gives
the desired result.

2. The Classical Scheme

Let us start by recalling the classical situation [34]. Denote by G a simple and
simply connected complex Lie group and by K C G its compact form. Let 3Γλ be
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an irreducible unitary representation of K in Jf^ corresponding to a lowest weight
λ. 3~λ extends unambiguously as a holomorphic representation of G in J f̂ . Let
eχ e fflχ be the normalized weight vector and set

The vector-valued function Γ is a coherent state in the sense of Perelomov. Denote
further by Ko C K respectively P o C G the isotropy subgroups of the point <Ceχ G
Ψ(J^χ). This means that there exists a character χ of Po> unitary on K$ C Po, such
that

\ λ9 for \/keP0.

Thus we have the following transformation property of Γ:

Γ(kg) = χ(k~ι )Γ{g\ Vk eP^MgeG.

The mapping

/ ^ W H (Γ( ),u) e C°°(K)

is injective and so one embeds in this way fflχ into the vector space of χ-equivariant
functions on K. Here we adopt the physical convention according to which the
inner product is linear in the second argument and conjugate linear in the first one.
Furthermore, we recall that by a χ-equivariant function / on K it is meant that
f(kg) = χ{k)f{g\ V£ £ Ko, Vg e K. Sending (g,k) e K x Ko to k~λg e K we get
a principal ^-bundle K —> K0\K and using the 1-dimensional representation χ one
associates to it a line bundle over the base space XoV^ = Po\0. Hence χ-equivariant
functions on K are identified with sections in this line bundle. Set

The function wχ is χ-equivariant and coincides with (Γ,eχ) on K and thus determines
a trivialization of the line bundle over the cell given by wχ(g) + Q. The Gauss
decomposition provides a standard way to choose holomorphic coordinates {zj} on
this cell. For a given u G Jtifχ, the function y\ιu := w^ι(Γ, u) defined on the cell
(which is an open subset in K0\K with a complement of zero measure) can be
viewed also as a ZVinvariant function defined on the pre-image of the cell under
the projection G —> Po\G:

Φu(9) = {{3Γλ{g-χ)eλ,eλ)r\3rλ{g-χ)eλ,u) .

Thus one finds that the vectors u from fflχ are represented by polynomials φu in the
variables {zj} and so the representation SΓλ acts in the space of antiholomorphic
functions living on the cell.

Finally we also recall that every operator B e Lin(Jf^) is represented by its
symbol σ(B) G Ca(Ko\K) (here the superscript "α" means real analytic) or, this is
the same, by a real analytic Xo -invariant function on K,

σ(B):={g~{Γ(g),BΓ(g))}.

The mapping B ι—> σ(B) is injective [21, 43].
The aim of the present paper is to demonstrate that this scheme applies also for

quantum groups.
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3. Preliminaries, Notation

Let us recall some basic notions related to the duality and the dressing transfor-
mation for quantum groups [19]. All deformed (twisted) algebras are considered
over the ring C[[h]] of formal power series in the formal deformation parameter
h. We set also q — e~~h. As far as *-algebras are considered we require h* = h.
An important role plays the duality between the quantum groups Kq and ANq fol-
lowing from the Iwasawa decomposition G = K AN. The deformed enveloping
algebra %(l) is the *-Hoρf algebra dual to srfq{K). sίq(AN) is identical to %(l)
as a *-algebra and opposite as a coalgebra. Observe that necessarily the antipode of
srfq(AN) is the inverse of the antipode of %(t). We note further that stfq(G) is the
same Hopf algebra as stfq(K) but the compact form is equipped in addition with the
*-involution. We shall also denote by %(Q) the Hopf algebra %(l) when having
forgotten about the *-operation. We denote by Γ, U and A the vector corepresenta-
tions for stfq(G),stfq(K) and stfq(AN\ respectively. This means that X — T resp. U
resp. A is an N X N matrix (N is the same in all three cases) with entries from the
corresponding algebra and AX = X®X, ε(X) =1 and S(X)X = XS(X) = I. More-
over, the entries of X generate the algebra according to the well known rules. We
have used the adjective "vector" (corepresentation) also in the case of s/q(AN)
as this corepresentation is closely related to the vector corepresentations of s$q(K)
and <stfq(G) via the quantum Iwasawa decomposition [19]. While the matrix U is
unitary-like, the matrix A is upper triangular and the diagonal elements are self-
adjoint (Λ*i — An). The *-algebras srfq(K) and stfq(AN) are defined by the relations
[38]:

RUXU2 = U2UXR, U* = U~ι ,

RAιA2 = A2AλR, A\RΓλA2 = A2R-λA\ , (3.1)

and for the £/, Q and D\ series also by

CU'C'1 = U~\ CA'C'1 = A~ι .

In all expressions, (X*)ij := (XβT R is the standard i?-matrix [16, 38], and C is
given in [38]. The relations (3.1) (as well as the duality) can be found in [38]
expressed in terms of matrices L ± with the explicit transcription A — S(L+) and
Λ* =L~. Since, as mentioned, A is upper triangular and S(A) — A~ι, we have
S(Λii)Au = ΛuS(Au) — 1 (or, in terms of L ± , L^L^ =L^L^ = 1). Furthermore,
the pairing between s/g(AN) and sdq(K) is given by [38, 19]

{Aι;U2)=R2l\ (A*ι;U2)=Rϊ2

ι .

Let us introduce the canonical element

P = Σ * * ® as e stfq(AN) (g) stq(K) ,

with {xs} and {as} being mutually dual bases. Its basic properties are (S is the
antipode, A is the comultiplication)

p* =p~ι = (id ®S)p9

(A (g) id)p = P23P13, (id ® Δ)p = pnpn (3.2)



226 B. Jurco, P. Stovίcek

Remark. The canonical element p is given by an infinite series and, strictly speak-
ing, it is not a proper element of s#q(AN) 0 <srfq(K). One way of treating p is to
embed stfq{AN) 0 stfq(K) into Lm(s/q(K)) and then p corresponds to the identity
(though the multiplication in stfq(AN) 0 srfq(K) has nothing to do with composi-
tion of linear mappings) [19]. We use p below to define the dressing transforma-
tion (relation (3.3)). But, in principle, one can use directly (3.5) instead of (3.3).
Another occurrence of p in this paper is in expressions (τ 0 id)p, with τ being
a finite dimensional representation of ^q{AN). But in this case for an explicitly
constructed basis of stfq(AN) = %(ϊ) the infinite series truncates. The construction
of this basis was given in papers devoted to the universal i?-matrix to which p is
closely related [20, 25]. In fact, making use of these results we give in Sect. 6 an
explicit formula for p (Proposition 6.2).

Using p one defines the dressing transformation as a coaction

St: ^ q ( A N ) - > s/q(AN) 0 sίq(K) :u^ p(u® l)p~ι . (3.3)

We emphasize that the identification of the algebras %(l) and jtfq(AN) plays in
this situation the role of the classical momentum mapping. We also note that in the
literature one often identifies the dressing transformation with the quantum adjoint
action,

adxw = Σ> 0 ) w&c ( 2 ) , with Ax = ]Γ> ( 1 ) ®*(2), (3.4)

where x,u G %(l) and the coproduct A and the antipode S are taken in %(l)
(rather than in s/q(AN)). However these two notions are closely related since (u G
s/q(AN) = %(i))

(id ®(x, ))&u = iidxu. (3.5)

The coaction 01 defined by (3.3) fulfills the usual axioms: (id 0 A) o ̂  = {β <g>
id) o ̂ , (id 0 ε) o 01 = id. Because of the formula (3.4), 01 can be viewed as the
Hopf algebra analogue of the adjoint representation of a Lie group on its Lie algebra.
Finally we note that the dressing transformation can be calculated explicitly on the
elements of the matrix A* A,

&(Λ*Λ) = U*Λ*ΛU , (3.6)

provided on the RHS one identifies s#q(AN) with ss/q(AN) 0 1 and similarly for
slq{K) (cf. [19], Proposition 4.2).

4. The "Vacuum" Functional

According to the results of Rosso and Lusztig [30, 40], to every lowest weight λ
from the weight lattice there is related a unique irreducible *-representation τχ of
<%(ϊ) acting in Jf^, d i m J ^ < oo, and correspondingly a unitary corepresentation
of s/q(K)9 Fλ = (τλ 0 id)p G Lin(Jfλ) 0 sίq{K) (i.e., (id 0 z l ) ^ = ̂ ^ i ( i d ®
ε)3Γλ = I and ( i d ® £ ) ^ = (^λT = C ^ ) " 1 ) . There is some danger of formally
working with p but we focus, as mentioned, only on finite-dimensional represen-
tations of %(t) determined by the lowest weight λ; particularly, the elements qH

(H in Cartan subalgebra) are sent by the lowest weight to Q~hλ(H) (as q = e~h). In
what follows, eχ stands again for the normalized weight vector.

Let us define the "vacuum" functional ( ) on ̂ ( ϊ ) ,

(x):=(eλ,τλ(x)eλ)€<C[[h]]. (4.1)
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Proposition 4.1. It holds

(x) = (x9wλ)9 where wλ := (eλ9P
λeλ) e s/q{K) . (4.2)

This means that ( ) if viewed as an element from s/q(K), the dual space to <%(!),
is equal to wχ.

Proof One can verify (4.2) easily using the identity

(id <8> (x, ) )p = x, JC G <%(ϊ) = jaζ^W) . D

Let us note at this place that, likewise in the classical case,

Proposition 4.2. It holds

wλι+χ2 = wλιwλ2 = wχ2wλ] , (4.3)

and so it is enough to determine \vχ only for the fundamental weights λ = ωy.
Furthermore (ε is the counit),

Swλ = w*λ9 ε(wλ)=l. (4.4)

Proof To see (4.3) it suffices to observe that ^χι+χ2 can be identified with the
cyclic submodule M in Jf;q 0 fflχ2 corresponding to the cyclic vector eχλ 0 eχ2 with
respect to the representation {τχλ 0 τχ2) o A (A is the coproduct in %(t)). Since

— 23 13

we have

= W^2W;q . D

Using the identification ^%(!) = s$q{AN) one can also describe the "vacuum"
functional in the following way. It holds

τλ(Λ)eλ = Aλeh where Aλ := diag(/L(Λϊ)) . (4.5)

Remark. A can be expressed explicitly in terms of the generators of %(l) and
its diagonal is then given in terms of Cartan elements; see also the relation (5.26)
below). Thus Ax is a diagonal matrix fulfilling the 7L4^^-equation and possibly also
CA\C~λ =AJX. Besides, the relation (3.1) enables one to define a normal ordering
on stfq(AN) by requiring the elements of the matrix A* to stand to the left and those
of the matrix A to stand to the right. It doesn't matter that this ordering prescription
is not quite unambiguous since the subalgebras generated by the entries of A* and
A, respectively, intersect in the Cartan elements. We have

(1) = 1, (Λ*) = (Λ)=Aλ9 (4.6)

and

(*/i •••***> = (*H> - " f a * ) > ( 4 7 )
provided the product x^ -Xjk is normally ordered. Clearly it holds also: if xZl xιk

is normally ordered then the same is true for x*k- — x^ - Either from this property
and (4.7) or from the fact that %χ is a *-representation and the Definition (4.1) we
get

<**> = (x) (4.8)
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5. The Quantum Coherent State

The following definition is very analogous to the classical case and is crucial for
the rest of the paper.

Definition 5.1. The quantum coherent state is the element Γ e 34?χ<g> s q

defined by
Γ := {Zrλy\eλ 0 1) = (τλ <g> S)p (eλ <g> 1). (5.1)

Γ should be interpreted as a quantum function on K with values in Jfχ. Thus one
can relate to every vector u 6 3tfχ a quantum function on K,

u H+ (Γ,u) := ((eλ,( )u) <g> ιά)3Γλ e stq{K) . (5.2)

Furthermore, the operators in fflχ can be again represented by their symbols:

σ : Lin(3fλ) -> s/q(K): B ^ (Γ,BΓ) . (5.3a)

More formally, we should write (B 0 id)Γ instead of BΓ. We have extended the
inner product from 2tfχ to 2tfχ (8) s/q(K), with values lying in s/q(K), by

(x®a,y(g)b} := (x, 7)α*Z?.

Proposition 5.2. 77ẑ  mapping σ is injective.

Proof. The proof goes through as in the classical case [21, 43]. Let us sketch it.
σ(B) = 0 means that

Applying A:-times the comultiplication to the LHS, pairing with the elements
Xr ® . <g> X~ and using the fact that ex is the lowest weight vector and that
(^ r^^we obtain

(τλ(X+)...τλ(X+)eλ,Beλ)=0.

Since the vectors τλ(X^) -τλ(X^)eλ span Jί?λ, it follows that Beλ = 0. Apply-
ing instead the comultiplication (k -f-1 )-times one finds that the same argument
is valid also provided B is replaced in $~λBS{$~λ) e Lin(J^) 0 <stfq{K) and so
BS($~λ)eχ= Q The same reasoning as above gives B = 0. D

The symbol σ can be extended naturally as a mapping from %(t)= <stfq(AN) to
s$q(K) by writing σ(u) instead of σ(τχ(u)), i.e.

σ(u) := (Γ,τλ(u)Γ), or equivalently, σ = (( ) 0 id) o ̂  . (5.3b)

Lemma 5.3. It holds true that

A oσ = ( σ ( g ) i d ) o ^ , (5.4)

ε o ( j = ( . ) , (5.5)

σ(jc*) = σ(jc)*, Vx G ΦA(I) = s/q{AN) . (5.6)
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Proof. The relation (5.4) follows immediately from (5.3b) and from the property
(id ® Δ)St = (β 0 id)^. Concerning (5.5), we have

The equality (5.6) follows from (5.3b) and (4.8). D

Now we proceed to the definition of the isotropy subgroup as a *-Hopf algebra
srfq{K§) with the vector representation UQ and the projection ("restriction morphism")
po : s4q(K) -• s/q{K^\ po(U) = Uo. We require

as a mapping from &tq(AN) to C[[A]] 0 ^/q(K0) = s/q(Ko)9 i.e.

Po(σ(Y)) = (7) 1, for V7 € .^(yίtf) = «A(Ϊ). (5.8)

Let ((/)} be the two-sided ideal in jtfq(K) generated by the elements of the set

/ : = { σ ( 7 ) - ( F ) l ; Y e %(t)} . (5.9)

Lemma 5.4. {(/)) is a two-sided coideal in s/q(K), {{/))* = ((</)), ε vanishes
on UJ)) and 1

Proof. By Definition (5.3b) and by virtue of (5.4) we have

zl(σ(7)-(7)1) = (σ(g>id)^(7)- ( 7 ) 1 0 1

= ((σ - < )1) <8> id)^(7) + 1 ® (σ(7) - (7)1)

Hence ^ itself is already a two-sided coideal. ((</))* = ((,/)) is true owing to
(5.6) and (4.8). The counit vanishes on ((«/")) because of (5.5). Once this is known,

since ε( l )= 1. D

Definition 5.5. We define the ̂ -Hopf algebra &/q(Ko) (the quantum stabilizer) by

:= stq(K)l{IJ)) . (5.10)

Denote by p$ : s$q{K) —> s/q(Ko) the corresponding *-Hopf algebra morphism and
set

Uo:=po(U). (5.11)

The *-Hopf algebra <%(ϊo) is defined as the subalgebra in %(l) annihilating ((/))
(Ann = annihilator),

%(t0) := Ann({{/))) = {u & %(l); {u,a) = 0 for all a e {</»} . (5.12)
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Clearly, Uo fulfills

RU01U02 = U02U01R, Uζ = U^1 , (5.13)

and for 2?/,C/,Z>/ also
ΓUtΓ~ι — TJ~X (*> 14Λ

Notice that according to (3.6) and (4.6),

σ(Λ*Λ) = U~lA\U . (5.15)

By the requirement (5.7), and since (A*Λ) = A2

λ, Uo should fulfill, too,

U0~
lA2U0=A2. (5.16)

The condition (5.16) is formally the same as in the classical case. In fact, it
amounts in annulation of some entries of the matrix U when taking the projec-
tion po(U) = Uo. Observe also that one can replace, in (5.16), A2

λ by Ax since this
matrix is diagonal and (AλJi)

2 ^{Aλjj)
2 iff AλJi+ AXJJ.

Let us now explain, quite informally, what characterization of %(ϊo) we wish to
derive. There should exist a subset Πo of the set of simple roots Π so that ̂ ( fo)
is generated by all Cartan elements Hi and only by those elements X^ for which
OLi G i70. On the dual level we have an injection %(ϊo) ̂ > <%(!)• An element X
from %(t) belongs to %(l0) if and only if

holds for every Y e %{l) and f9g e rfq{K\ Letting / = g = 1 we have (cf. (3.5))

(aάxY) = (X,σ(Y)}=ε(X)(Y) . (5.17)

Let us substitute the elements Hi andX* forX in (5.17). Using τχ(Hi)eχ = λ{Hi)eχ
and τχ(X~)eχ — 0 we find that (5.17) is true for all Cartan elements Hi and only
for those elements X* which fulfill

(YXt+) = (τλ(Y*)eλ,τλ(X+)eλ) = 0 , V7 G %(t).

Putting 7* =X£ - -X£ we conclude that the expected condition on /70 reads:

eλ = 0. (5.18)

Accept (5.18) for the definition of the subset Πo C Π. Furthermore, let the sym-
bol %o stand for the *-Hopf subalgebra in %(t) generated by all Cartan elements
Hi and by those elements xf1 for which αz G ΠQ. Take into account the fact that
β is a coideal as well as the well-known rules for comultiplication in <%(l), and
observe that according to the above discussion and the Definition (5.12) it is true
that

* A O C « Λ ( I O ) . (5.19)

Denote by ((</)) the two-sided ideal in srfq(K) generated by the elements of the
set

/ := {(AλU - UAχ)ij\ 1 ^ ij ^ dimension of U} . (5.20)

The equality (5.16) means that po(β) — {0} and hence

and A n n ( ( ( / ) ) ) D A n n ( ( ( / ) ) ) . (5.21)
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Lemma 5.6. {{/)) is a two-sided coideal in stfq(K), ((</))* = ((</)), £ vanishes
on ((/}) and H {(/)).

Proof. We still use the notation: (E 0F),y := ̂ 2kEjk ®Fkj Clearly, if D is a diag-
onal matrix with entries from <C[[A]] , then ED&F = E®DF. Since ΔU = U<g> U,
we have

- UAλ) ®U + U®(AλU - UAλ) .

The rest follows from the facts that U* = t/" 1 and e(C/) = I. D

Moreover, since the pairing of <%(ϊ) with U gives the vector representation and
from the well-known rules for comultiplication in %(l) one easily finds that

« A o c A n n ( ( ( / ) » (5-22)

Proposition 5.7. It holds true that

Am(((J))) = %0. (5.23)

Corollary 5.8. It holds true that

%o, (5.24)

i.e. the *-Hopf algebra <%(ϊo) is generated by all Car tan elements Hj and by those
elements X^ for which αz G 770. O« /Ae 0/Aer hand, the *-Hopf algebra jtfq(K0)
is generated by the entries of the matrix U$ and is determined by the relations
(5.13), (5.14) and by AU0 := Uo 0 Uo.

Proof The proof follows from (5.21), (5.19) and (5.23). D

To prove Proposition 5.7 we shall need the quantum Poincare-Birkhoff-Witt
(PBW) theorem. It was proved by Jimbo for sl(2) [15], by Rosso for sl(/i) [39] and
by Lusztig in the general case [31] (but see also [24, 26, 6]). An exhaustive survey
is presented in [10]. Set / := rank g and let d := \A+\ be the number of positive
roots. The Chevalley generators of %(t) are chosen as usual: H\,...,Hι,X^9...,xf-.
There exists a braid group action on %(ϊ) which we do not recall explicitly but
just note that it is generated by / automorphisms Tt related to the simple roots
OLi e Π (in addition to the above papers the reader can consult also [30, 20, 25]).
Let wo = SixSi2 sid be a reduced decomposition of the longest element in the Weyl
group (Si — the reflection corresponding to OQ G i7f). It is known that every positive
root occurs exactly once in the following set:

βι : = α/,, βi -= Si2(di2),..., βd'.= shsh sid_λ(θLid).

One defines

Xβv

 : = ^h Ti2 ' ' ' Tiv_λ(Xiv )

We do not need the explicit formulas for X^, but the following facts are impor-

tant: if β = X^ Aiaz is a root then, classically, Xj]~ is expressed in ̂ ( ϊ ) as a multiple

commutator of those "simple root vectors" Xf for which k{ > 0; in <%(ϊ) similar
formulas are valid but with deformed commutators (of the type [x, y]q = xy ~ q yx).
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Note that the symbols Xp now make sense in both the classical and the deformed

cases. Denote by τυ the "vector" representation of %(l) given by pairing with U9

τv(x) := (x9 U) ,

and let τfass be its classical counterpart. Then an entry of τv{Xf) vanishes if and

only if the same entry vanishes for zfass(Xp) and

all entries of τυ(Xf) - τf*\Xf) belong to h<C[[h]] . (5.25)

Furthermore, using the canonical isomorphism ί)* ~ ί) C %(t) for the dual of the
Cartan algebra, one can show the equality

(5.26)

Consequently,

[τv(X±),Aλ] = 0 iff[< l a s s(X±),< l a s s(A)]=0 iB(λ,β)=O ittX±e®h0.

(5.27)

Returning back to the PBW theorem we recall its content: the following elements
form the PBW basis in %(t) over C[[Λ]]:

(x^r • • • {XΪJ'H? • • HS<{XIΨ • • • (x+f = (χ-yH\x+y,

with (r, s, t) e ΈΊ+ι+d. Hence every element / € %(l) can be expressed unambigu-
ously as a sum

/ - Σ cr,s,t(f)(X-)rHs(X+)', (5.28)
r,s,t

with cr,sj(f) G (C[[A]] depending linearly on / . The sum (5.28) is, in principle,
infinite, but one requires that for each n 6 N, only finitely many coefficients cnsj(f)
have a non-zero factor image in C[[A]]/AW(C[[A]]. Let {εi,...,ε^} be the standard
basis in Έd

+. We define the functionals

ψ+ : %{ϊ) -> C[[A]]; ψf(f) := c δ ? o,,(/) ? i = l,...,rf . (5.29)

Set
Df := (^ + (g) id) o J : <%(ϊ) -> <C[[λ]] 0 <%(ϊ) = <%(ί). (5.30)

The PBW basis makes it possible to define also the derivatives df = dx+ by

Clearly,
(5.32)

One can proceed analogously to define Dj~,dJ and D^d^ for the elements Xj~ and
Hk, respectively.

Proof of Proposition 5.7. We have to show that Ann(((</)))/<%0 = 0. It is sufficient
to show that

Ann«(/~ »)/^o C h(Ano(({j)))/%o) , (5-33)
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since then, by induction, Ann(((/)))/%0 c hn(Ann(((/)))/%0), for all / I G N .
To this end, we shall assume that, contrary to (5.33), there exists an element / ' G
Arni(((/)))/<%0 which does not belong to A(Ann(((/)))/ΦAo)

 T n e element / ;

is then the factor image of an element / G Ann((( ί/))) of the form (5.28) such
that at least one coefficient cr,$,*(/) *s invertible in C[[A]] (but, on the other hand,
the number of these coefficients is finite). Among all these coefficients choose one
for which \r\ + |.y| + \t\ is maximal. We can assume that crtStt(f) = 1. To get a
contradiction it will be enough to show that whenever tj > 0, then Xt G ̂ 0 , and
similarly for the indices sz.

At this point we need the operators Z)t. Since Axm(({β))) is a coalgebra we

haveD;(Ann(((/))))cAnn(((/))) , σ = + , - , 0 . Set

g := (D-nD0Y(D+y-ε'f G Ann(((/)))

(here (D~y(D°)s(D+y stands for the composition of linear mappings). Owing to
(5.32) and maximality of \r\ -f \s\ + \t\, we have

g = r\s\t\X+ + Σ.c'jX} + Σc"Xβ~ + Σ 4 " ^ + θ',
j*i J k

where c'pc'j,c'l' e C[[A]] and g' e h%(t).
Now we can use the fact that all Cartan generators H\,...,Hι belong to

Ann(((<5/))) and apply to the element g the adjoint action χ\-^qHxq~H, where
H = J2k ζkHk is a general Cartan element. Since then

we deduce that

This means that [τυ(X£\Aχ\ = h[g",Aχ], for some g" G %(i), and hence, by virtue

of (5.25) and (5.26), all entries of the matrix [τ^ lass(X+),τ^ lass(2)] belong to

AC[[A]]. But as the last matrix is complex it must be zero and consequently

Xt £%o, as required. D

From the equality (5.18) it follows immediately that there exists a character χ
on <%(ϊo) such that

τλ(X)eλ = χ(X)eλ9 for X G %(t0) (5.34)

Pairing both sides with eχ one finds that χ( ) is the restriction of the "vacuum"
functional ( ). Considering χ as an element from <$tfq(Ko) we deduce that

X = P o ( m ) a n d Aχ = χ ® χ . (5.35)

Moreover, using (5.35), (4.4) and the relation m o (S <g) id) o A — ε we have

Sχ = χ* = Γλ (5.36)

Let us further introduce the Hopf algebra *%(po) a s m e Hopf subalgebra of
*%(9) generated by all Hi.Xf and by those X+ for which αz G 770. Let stq(Po) be
the Hopf algebra generated by entries of the block-lower-triangular matrix TQ (of
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the same dimension as Γ) whose structure of blocks is determined by the set /7o
It is the same as for the classical subgroup Po c G formed by block-lower-triangular
matrices. The matrix TQ is required to satisfy the RTQTQ-equation, in case B — C — D
the orthogonality condition and det^ Γo = 1. Again, there is an algebra morphism

p0 : sίq(G) -> s/q(Po), po(T) := To .

There is a natural non-degenerate pairing between the Hopf algebras <%(po)
^q(Po) given by

(7, To) := (7, T), V7 G ΦA(p0) C %(Q) .

Observe that all statements (5.34)-(5.36), apart from χ* = χ~ι, can be made also
for PQ instead of Ko.

Let us now check the equivariance property. The relations (5.4), (5.8) and (5.3b)
imply

Proposition 5.9. It holds true that

(po (g> id) A σ(7) = 1 <g> σ(7), V7 G %(t). (5.37)

is means that every symbol σ(Y) e s$q(K) is left Ko-invariant, i.e. σ(Y) G

Before considering the equivariance of the coherent state itself, let us state a
lemma necessary for performing the localization of stfq(Ko\K) by allowing wχ to
be invertible.

Lemma 5.10. The element wχ is neither a right nor left divisor of zero in

fWλ = 0 (resp. Wλf = 0)=>f = 0, V/ G s

Proof Since it holds that (x,fg) = (Ax,g® / ) , VJC G s/q(AN% Vf,g G sίq(K) (as
the comultiplication in srfq{AN) is opposite with respect to %(l)) and AΛ =
A A* = P(A* ®Λ*), with P=the permutation operator, we have

(Λ r Λ*Λj+ι • Λj+tJgf"1' = {Λ\--- Λ*Λj+ι • • • Λj+k,gf-'J

x(Λΐ--.Λ*Λj+ι---Λj+k,f ) * - ' ' ,

where the superscript tj stands for transposition in the zth factor of the tensor product.
According to Proposition 4.1 and using (4.7), (4.6) we find that

{A\ Λ*jΛj+ι Λj+k,wλ)=(Λ\ - - AjAJ+ι Λj+k)=Aλι ΆλjAλ{j+x) Άλ{j+k)

is invertible. Thus the relation fwχ = 0 (resp. wχf — 0) implies that (Λ* Λj
Λj+\ - Aj+k, f) = 0, V/, k = 0,1,2,... (insert 1 into the first argument if j = k = 0).
Since the entries of the matrices A* •• AjAj+\ •• Aj+k, j\k — 0,1,2,..., span
srfq(AN) and the pairing between srfq(AN) and srfq(K) is non-degenerate, we con-
clude that / = 0, as required. D
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Proposition 5.11. It holds true that

(po <8> id) Δ(Γ,u)=χ® (Γ, u) . (5.38)

Particularly, putting u — eχ, we have

Oo ® id) Δwλ = χ®wλ. (5.39)

So the quantum function w^~ι(Γ,u) is left Ko-invariant and belongs to some com-
pletion of the algebra s/q(Ko\K) obtained by allowing wχ to be invertible.

Proof First note that (5.34) can be rewritten dually as

( i d <8> p o ) ^ -(eλ®l) = eλ®χ.

Hence, using the unitarity of 2Γλ and χ, we have for any u G Jf7 ,̂

It follows that

(po® id) Δ{Γ,u) = ((eh(.)u)®po®iά)3rι

λ

23Γι

λ3

D

6. Canonical Element for the Double

The complex structure on the quantized homogeneous space K0\K is introduced the
same way as in the classical case. Namely, the subalgebra of jtfq(K§\K) consisting
of holomorphic functions coincides with stfq(P0\G). Let us make this statement
more precise. Recall once more that / G s/q(K0\K) means that / G s$q(K) and
(po (8) id)Δf =l®f and, similarly, / G s4q(P<\G) iff / G stq(G) = stfq{κ) and

(p0 (8) id)Δf = 1 (g) / . Furthermore, in addition to the *-algebra morphism po :
sύq{K) -> ^q(K0) and the algebra morphism p0 : stfq(G) = srfq{K) -> s/q(Po) there
exists also the algebra morphism p\ : jtfq(Po) —> jtfq(Ko) given by p\(T0) = UQ. It
clearly holds true that po = p\ ° p0. This implies

j*q(Po\G) C ̂ q(K0\K) (subalgebra)

and we identify stfq(P^β) with the subalgebra of holomorphic functions ^
We claim that for every u G Jtifχ, {u,Γ) (w*λ)~λ is a holomorphic quantum

function. This implies that one can represent vectors from fflχ by antiholomorphic
functions,

u^ψu:=wλ-
ι(Γ,u). (6.1)

To verify this statement let us first rewrite w*λ since in stfq(G\ though identical to
s/q(K) as an algebra, we have no *-involution to our disposal. But since ?Γλ is
unitary (as a corepresentation of s/q(K)) we have
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and consequently

But now the P0-mvariance is quite obvious since A{^λ)~x =
with P = the permutation operator, and, in the same way as in the proof of
Proposition 5.11, it holds true that

and hence

Moreover, the mapping (6.1) is injective as one can show using the same rea-
soning as in the case of the symbol (Sect. 5). It is desirable to introduce quantum
(non-commutative) local holomorphic coordinates zy on KQ\K and consequently to
express \j/u = ψu(

zj) as a polynomial in zj. To this end we shall employ the Gauss
decomposition.

Denote by b± c g the Borel subalgebras and by ί) = b + Π b_ the Cartan subal-
gebra. It is known [11] that the Hopf algebras %(b+) and %(b-)opΔ are mutually
dual and that the dual quantum double for <%(b+) can be identified as an algebra
with *%(9)Θ<%(!)). To have this identification also for the coalgebras one has to
twist, as shown in [36], the comultiplication in %(Q) ® %(fy) using the element

with {H®} being any orthonormal basis in ί). This means that there exists a coalgebra
isomorphism

twists

where the twisted comultiplication is given by

Λtwist(* ® 3̂ ) := x(l)®Ro(y(l)®x(2))Rol ® y{2),

with the usual notation Ax = x ( 1 ) (g)x(2), Ay = j ( 1 ) 0 y^2\ According to the termi-
nology we have adopted here the dual quantum double means twisted multiplication
while the quantum double means twisted comultiplication.

On the dual level one should consider the corresponding algebras of quantum
functions s/q(B-) <S> ^q(B+) and jίq{G)^t9ήsίmjιίq{A). A stands for the Abelian
subgroup in G with the Lie algebra ί). The vector corepresentations L ( ± ) and J of the
quantum groups (B±)q and Aq, respectively, fulfill the corresponding &Ώf-equations
and possibly also the deformed orthogonality condition. For a proper choice of the
set Π of simple roots, L^ is upper/lower triangular and J is diagonal.

Let us describe the dual form of the homomorphism ή. The symbol τv still des-
ignates the irreducible representation of <%(g) corresponding to the vector corepre-
sentation T of sfq(G), T = (τυ (8) id)p.

Proposition 6.1. The non-degenerate pairing between the coalgebra
%(J)) and the algebra s/q(G)<^twist,s!/q(A) fulfills the condition
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for Vx G ΦA(g), Vy G %(ί))9 V/i,/2 G sfq(β\ VguOi e s/q(A), if and only if the
twisted multiplication in <stfq(G) 0 s#q(A) is defined by

TλJ2 = J2Tλάi?Lg(R). (6.2)

There exists an ίnjectiυe algebra homomorphism

η : s/q(G) ® */q(A) -> stfq(B_) <g> a^(£+)
twist-

unambiguously defined by

(x®y,η(f®9)) -= (*Kx®y),f®9)> (6.3)

/or Vx G %(b-)9 \/y G <%(b+), V/ G J ^ ( G ) , Vg G ̂ ( ^ ) . ΛJ UΛ/W^ on the gen-
erators are given by

η(T ® I) = L(-} (g)L(+), η(l®J) = ( d i a g L ^ ^ " 1 ΘdiagL ( + ) (6.4)

V — V /(
)ιj -— Z^k^ik j

Proof. Concerning the twisted multiplication it is enough to show that

{x 0 y,(l ® Jj+ι Jy +O (Γi Tj ® 1))
1 '' -Jj+k), (6.5)

for Vx G ̂ ( g ) , Vy G %Q))9 and y,A: = 0,1,2,.... In the second arguments on both
sides, the symbol 0 stands for the tensor product of algebras while the tensor product
of the vector spaces enumerated 1,... ,j: + k is indicated by the leg notation. Using
(6.2) one can evaluate the LHS of (6.5) as

Π diagflWM Tj)(y,Jj+ι - "Jj+k) Π

Using the pairing between %(Q) and s#q(G), %(ί)) and stfq(A\ and the facts that
AT = T (g) Γ, ΔJ = J (8> J, we find that the RHS of (6.5) equals

(Ro, Ti Tj ® Jy + 1 J/+it)(jc, Ή • Tj){y,Jj+ι

Since for V// G f), (//, Γ) = (if,J) = τ^if) and zl/f = H ® 1 + 1 0 # , we have

±\ . Jj+k) = exp

The equality (6.5) now follows from

diagtf = exp (-h

To verify the action of η on the generators we should describe ή more closely.
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It holds

y\\Jv: 0 l ) == JL 0 e ' , fjyl 0 Ji.j )== Jvj 0 e ' ,

S\) = Hi®\-\®Hu ή(l 0Hi) = Hi®l + l®Hi . (6.6)

Furthermore, if the elements x\9... ,xj belong to the set of generators of %(b-) and
yι,...,yj belong to the set of generators of %(b+) then

ή ( x ι '•'Xj®y\ - y k ) = ή(x\ ® l ) 'ή(xj® 1 ) ^ ( 1 ® yi)--ή(l® y k ) , ( 6 . 7 )

where the RHS should be evaluated using the standard multiplication in a tensor
product of algebras.

Let us first consider η(T 0 1). We have to show that

(JC 0 j , L ( " } 0 L ( + ) ) = (ή(x 0 y), T 0 1) , (6.8)

for Vx G <%(b_), V;; G <%(b+). The LHS equals (JC,L(->)(>>,Z,(+)). Using the explicit
expression for ή (6.6), (6.7) and the fact that the pairing with 1 acts as the counit
(and ε(Hi) = 0) we find that the RHS of (6.8) equals

But now the embeddings %(b±) C %(Q) mean that {x,T} = (x,^ (~ }), (y,T) =
{y,H+)), and the equality (6.8) follows.

Concerning η(l 0 7), we have to show that

(JC 0 j ; ,(diagL ( - ) Γ I 0diagL ( + ) ) = (ή(x ®y),l®J), (6.9)

for Vx G <%(b_), Vj G <%(b+). The LHS equals (x,(diag^- ))-1)(j;,diagZ ( + )}. No-
tice that (xi xj, άiagL^) = 0 whenever x\,... ,xj belong to the set of generators
of %(b-) and at least one of them belongs to {Xf,...,Xj~}. An analogous state-
ment is valid for (y\ j>£,diagZ/+)). Moreover, (xi Xj y\ yk, 1) = 0 whenever
xs G {X^~,...,Xj~} or yt G {X^9...9Xj^} for at least one s or ί. Consequently, it
is sufficient to verify the equality (6.9) for x = HSι HSj, y — Hh Ήtk. But now
the result follows from the explicit form of ή (6.6), (6.7) and from the relations

(Htι - -.H^idmgL^Γ1) = (-l)mτυ(Hh) ..τυ(Hlm),

(Hh Hlm9 diag^+>> = τv(HH ) . τ y ( ^ w ) ,

a n d (Hlχ Hlm,J}= τ υ ( H l χ ) • • • τυ(Hlm) . D

Remarks. In what follows, we shall identify T with η(T 0 1) whenever convenient.
The range of η doesn't cover the algebra stfq(β-)® srfq(B+) completely but, on the
other hand, stfq(B-)® srfq{B+) can be regarded as some kind of completion of
eβ^(^ !)®twist e ί ^ ( ^ ) T° s e e w n a t ^ m ( ^ °^ completion one has to invert η. This
means to decompose T as

T = Γ (_ )DΓ ( + ) ,

where Γ(±) is upper/lower triangular with units on the diagonal and D is diagonal.
This is possible provided one allows some elements of srfq(G) (the ^r-minors of T)
to be invertible. Then η~ι is given by
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So one has to incorporate the square roots of the entries of the diagonal matrices
DJ~ι and JD, too. Let us just note that from the relation (6.2) one can derive easily
that

diag(A) Γ(_)i diag(Λ) = J2 Γ(_)i J2 ,

diag(^)"1 Γ(+)i dmg(R) = J2

λT{+)X J2 ,

DιJ2=J2Dι .

This just described structure has turned out to be very helpful in construction of
the universal i?-matrix Ru G %(Q) 0 %(§) [20, 27]. As explained in the paragraph
preceding the proof of Proposition 5.7, by fixing a reduced decomposition of the
maximal Weyl element one orders the set Δ+ of positive roots as (βi ,...,/?</), d —
\Δ+\. To each root βj there are related elements E(j) := X^ G %(b+) and F(j) :=

Xj G %(b-) so that the elements

E(d)n" Έ(l)mH^1 - - H?1 , (6.10)

rii, rrii G 2ζ+, form a basis in ^ ( b + ) . The vectors Hi can be replaced by any ele-
ments forming a basis in f). A similar assertion is valid also for ^ ( b _ ) . In the
nondefoπned case, i.e., specializing h to 0, the elements E(j) and F(j) become
the root vectors X^ G n + and X-β G n_, respectively. We recall that the universal
^-matrix, originally derived in [20, 27], can be also written in the form [22]

Ru — Qxpqd(μdF(d) (g) E(d)) exp^(μi F(l) 0 E(l))Qxp(κ) , (6.11)

where exp^ are the ^-deformed exponential functions, μ, are some coefficients de-

pending on the parameter h and K is some element from <%(ϊ)) (8) "%(ί))
Equipped with this knowledge we are able to reveal the structure of the canonical

element for the double srfq(AN) 0 stfq(K). We make use of the fact that srfq(AN) ^
%(Q)opA is a factor algebra of %(b-)opΔ ^ist^h(K)opΔ and stq{K) ~ %($)* is
a subalgebra in %(b+)op' 0%(b^)opA. The canonical element β in

) 0 ^ (g) ^ ( b + ) 0 ^ ) 0 (^(b + ) 0 / 7 > 0 %(b-)opΔ) (6.12)
twist ^

can be decomposed as follows [12]:

Here {ej}, {ek}, {/7} and {fk} stand for bases in the corresponding factors, {ej}
and {fJ} are dual and the same is assumed about {ek} and {/&}, the dot in the
third member of equalities (6.13) indicates multiplication in the double and R is
obtained from R by reversing the order of multiplication (R and R are defined by
the last equality in (6.13)). To express p we shall use again bases of the type (6.10).
In our notation the elements F(j), E(j), E(j) and F(j) belong in this order to the
individual factors in (6.12) (the tildes here have been used just to distinguish E(j)
from E(j) etc.). Factorizing off the redundant Cartan elements we obtain finally
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Proposition 6.2. The canonical element for the quantum double srfq(AN) 0 stfq(K)
has the form

p = expqd(μdF(d)®E(d))>'.expqί(μιF(l)®E(l)) exp(κ )

xexVqι(μλE(l)®F(l)) exVqd(μd£(d)®F(d)). (6.14)

To proceed further in this analysis we note that the maximal Weyl element can
be chosen so that there exists p G Έ+, p ^ d, such that the vectors X-βι9...,X-βd,
H\,...9Hι, Xβί9...9Xβp form a basis of po Then Xβp+ι9...9Xβd form a basis of a
nilpotent subalgebra no and g = p 0 θ no (remark: in the generic case 770 = 0 and
hence p = O,po = ί>- and rto = n + ) . This means that all elements F(j) belong to
%(Vo) while E(j) belongs to %(po) only for j = l,...,/>. Consequently,

= 0, for 7 = 1,...,</,

= 0, for y = l , . . . , p . (6.15)

Corollary 6.3. Γ cα« £e written as a product,

T = Λ(_)Z, (6.16)

where

Λ(_) = (τ, 0 id)expg,(/irfF(rf) ® 2?(rf)) exP(?i(μi ^

Z = (τ, 0 id) exp^ + i (μ p + ι E(p + 1) ® F ( p + 1)) e*pqd(frE(d) 0 F(d)).

matrix A(-) is block lower triangular, Z is block upper triangular and the
blocks on the diagonal of Z are unit matrices.

Remark. The splitting into the blocks is determined by decomposition of go =
"complexification of ϊo" into the direct sum of simple subalgebras and an Abelian
subalgebra and it will be described more explicitly in the next section. In the generic
case of ΠQ = 0, g0 = ί) and the matrices Λ(_) and Z are simply lower and upper
triangular.

Notice that the entries of Z are expressed as polynomials in d — p = dimcί-Po^)
noncommutative variables F(p + 1),...,F(d) and can be considered as local holo-
morphic coordinates on the orbit. Next we are going to derive explicit commutation
relations for them.

Recalling the Definition (5.1) of the coherent state Γ and using the relations
(6.14), (6.15), we obtain

^ (μp+ι τλ(E(p + l))®F(p + 1)) (eλ 0 w*λ) , (6.17)

since
w\ = {{eχ9τλ{ )eλ) ® id)p~ι = exp(({eλ,τλ(. )eλ) 0 id)K) .

Thus we find again that, for every u e J^χ, φu given by (6.1) is an antiholomorphic
quantum function and should be expressible in the variables z*.
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7. Quantum Holomorphic Coordinates on a General Dressing Orbit

We start from the decomposition T — Λ(-)Z. The symbol p0 still stands for the
"restriction" morphism s/q(G) —> jrfq(Po). First we shall verify that the entries of Z
are left P0-invariant quantum functions. We have

(p0 ® id) AT = (pQ® id)ΔΛ{-) (p0

At the same time,

(p0® id) AT = po(T)®T = (po(T) Θ>

Since the decomposition into a product of block lower triangular and block upper
triangular matrices, the latter having unit diagonal blocks, is unambiguous we find
by comparing that

(£0<g>id)JZ = I<g>Z. (7.1)

To derive commutation relations for the matrix elements of Z one can again
employ the Gauss decomposition. This time we have in mind the injective morphism
η (Proposition 6.1) and the identification T = η(T 0 1). We are going to enumerate
the matrix elements in the vector representation by weights. This is possible since
for all four principal series A,B,C,D, the weights of the vector representations are
simple. Every weight belongs either to the Weyl group orbit of the corresponding
fundamental weight or is zero (only for the series B). We shall use the standard
ordering on the set of weights: σ > v iff σφv and σ — v = J^mz α/, with mi £
Έ+ (0 £ Z+). Set

-To = φ Έ+oa (7.2)
α, e i7 0

for ΠQ — 0 we have #"o = {0} by definition. We shall write simply L = (Lσv) in-
stead of lS+\ Thus Lσv = 0 whenever σ < v (pay attention, the ordering on weights
is reversed in comparison with the standard enumeration of weights and weight vec-
tors in the vector representation). Further we introduce a matrix A by

Aσv = Lσv, if σ - v G # o ,

= 0, otherwise . (7.3)

Comparing (6.4) and (6.16) we obtain

Z = A~ιL. (7.4)

Next we recall a useful property of the 7?-matrix. Namely, Rστ,μv + 0 implies
σ — μ = v — τ, σ ^ μ , τ ^ v , and one of the following three possibilities happens:

(i) σ = μ, τ = v,
(ii) σ — v < τ = μ,

(iii) σ = — τ < μ = — v.

We continue by deriving some auxiliary relations. The first one is

Lemma 7.1. // holds
ΔA=A®A, in stfq(B+), (7.5)

and consequently
RAXA2 =A2AλR. (7.6)
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Proof. In the equality
ΔLσv =

ξ

the nonzero summands should fulfill σ ^ ξ ^ v. To obtain (7.5) it is enough to
notice that then σ — v G #"o implies σ — ξ, ζ — v G # o

The relation (7.6) is the same as

{Y,RA{A2 -A2AXR) = 0, for all Y G %(b )+ .

The last equality can be deduced from the following facts. This relation is valid
provided A is replaced by L. Clearly (X*,A) = 0 whenever GCΪ^ΠQ and so

(YιX?Y29A) = 0, for α/φ77O and any YUY2 e * A ( b + ) .

Finally,

(Hi9A) = (Hi9L), f o r a l l / ,

(^ + , ^ ) = (^ + ,Z), provided αf G 770 . D

By annulating some entries of the 7?-matrix we define another matrix Q = Q\2,

Qστ,μv = Rστ,μv , pΓOVlded ΐ - V = / i - ( l G f o ,

= 0, otherwise. (7.7)

Lemma 7.2. It holds
QLιA2=A2LιQ (7.8)

and
QAιA2=A2AιQ. (7.9)

Proof. To show (7.8) assume in the equality

ξη ξη

that τ — v e #"o The nonzero summands on both sides should fulfill τ ^ η ^ v,
whence τ — η, η — v G # o Thus we obtain

ΣQστ,ξηLξμAηv = ^Aτη Lσξ Qξη,μv . (7.10)
ξη ξη

It remains to verify validity of (7.10) also for τ —v ^ # o Again, the nonzero
summands on both sides of (7.10) should satisfy τ — η, η — v G # o But ^ o is
additive and so this can never happen.

Let us show (7.9). Assume in (7.10) that μ ^ σ. The nonzero summands on the
LHS should fulfill ξ — σ e # o a n d ζ ^ μ ^ σ whence ξ — μ G ΨQ. Analogously
for the RHS we have μ - ξ e i^o and μ ^ σ ^ ξ whence σ - ξ G 7Γ0. Thus we
obtain in this case

Z_j ίJστ,ξηAξμAηV = /_^AτηAσξ{Jξη^μV . (7.11)

ξη ξη

Next assume in (7.10) that σ — μ G # o The nonzero summands on the LHS should
fulfill ξ — σ G #"o whence, owing to the additivity, ξ — μ G # o Analogously for
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the RHS we have μ — ξ e #"o and hence σ — ξ e ΨQ. Also in this case we arrive
at (7.11). It remains to verify (7.11) for σ > μ but σ — μ ^ #Ό Now the nonzero
summands on the LHS of (7.11) should fulfill ξ — σ, ξ — μ e W§. But this can
never happen since then μ < σ ^ ξ and σ — μ would belong to # o Analogously
on the RHS, it never happens that, at the same time, μ — ξ and σ — ξ belong to

τsr0. •
The final relation we shall need is

Lemma 7.3. It holds
A~lZlA2 = Q-lZlQ. (7.12)

Proof. One can verify (7.12) by using in (7.8) the substitution L = AZ and the
equality (7.9),

A2AιZιQ = QAλA1A1T
λZλA1 = A1AxQA^λZλA1 . D

Now we are able to state the desired commutation relation.

Proposition 7.4. The matrix Z obeys the equality

RQnZ\QnZ2 = QnXZ2Q2XZxR . (7.13)

Proof. To prove (7.13) use the substitution L = AZ in the T^LL-equation,

RAλA2{A~ιZλA2)Z2 =A2Aι(AγιZ2Aι)ZιR ,

and apply (7.6) and (7.12),

A2AxRQ-2

xZλQnZ2 =A2AιQ~ιZ2Q2lZιR . D

This result should be completed by the relations following from the ^-deformed
orthogonality condition.

Proposition 7.5. For the series B, C and D, the matrix Z fulfills also

δjk = Σ(Z2C2QZ&-ι C2"' )*;,„ . (7.14)

s

Proof. Since CVC~X =L~\ CA'C'1 =A~\ we have

C(AZyC~ι = Z~ιA~ι = Z-ιCAfC-1 . (7.15)
Furthermore, multiplying (7.12) by C2~

ι from the left and by C2 from the right one
obtains

A2Zx(Ά2y
x = Q~lZιQ, where Q = C~ιQC2 .

Using this relation one can derive for the matrix elements

Consequently,

In view of (7.15) we have arrived at the sought relations. D
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In the generic case (770 = 0) the dressing orbit is nothing but the flag manifold.
In this case Qn = Qi\ — diagi? and Z is an upper triangular matrix with units on
the diagonal. The relation (7.13) can be simplified since diagi? commutes with R,

RZιάmg(R)Z2 = Z2diag(R)ZιR . (7.16)

For the series A, i.e., K = SUq(N) we have

RjKst = δjsδkt + (q- q^-^δjtδks ,

QjKst = qδjkδjsδkt ,

and the relation (7.16) can be rewritten for the individual matrix entries as

qδk*zjszkt - q^ZtoZj, = (qs^k~^ - q ^ ^ q ^ z ^ . (7.17)

The relations (7.17) are already known [52, 3]. Originally they were obtained by
expressing the entries Zβ by means of the ^-minors (j < k),

l ' τ ι j

But this derivation seems to be rather tedious and doesn't suggest the compact form
(7.16).

8. Representation Acting in a Space of Antiholomorphic Functions

Let us denote by Ήχ the algebra of quantum holomorphic functions living on the
cell. This means that ^χ is generated by the entries of Z fulfilling (7.13) and in
case B — C — D also relations following from the deformed orthogonality condition.
# | stands for the algebra of antiholomorphic functions determined by the adjoint
relations. We know that every vector u G fflχ is represented by an element ψu =
ψu(z*) from Ήχ (cf. (6.1)), the mapping u \-> ψu is linear and injective and the
lowest weight vector is sent to the unit. Denote by Jtχ C #J the image of Jf7 .̂ We
wish to transcribe the representation τχ as acting in Jiχ> but without introducing a
special symbol for this new realization. We recall that both s/q(K) and jtfq(Ko\K)
become left ^(ϊ)-modules provided one relates to every element Y G <%(ϊ) the
left-invariant map ξy on Kq,

ξγ f = (id®(Y, ))Δf, fes/q(K). (8.1)

Then Ήχ becomes a left <%(ϊ)-module with respect to the action

(Y,f) Ĥ  wjx ξγ (wλf) . (8.2)

Proposition 8.1. Jίχ is the cyclic %h(t)-submodule in ̂ | with the cyclic vector 1,
i.e.,

τλ(Y)φ = w~ι ξγ - (wλψ), for V7 G %(l), Vψ e Jlλ . (8.3)
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Proof. The proof is done by the following chain of equalities,

wλτλ(Y)ψu = (Γ9τλ(Y)u) = ((eλ,τλ( - )τλ(Y)u) ® id)p

= ((eλ,τλ( )u)®id ® {Y, ))Pi2Pi3

= (id®(Y,.))A((eλ,τλ( )u)®id)p

= ξr (wλΨ)

In the third equality we have used the identity

Remark. With the same success we could use for the mapping J4?χ —• ^J , instead
of (6.1), the prescription M H ̂  := (Γ,u)w^1. This would lead to an equivalent
representation τ'λ acting in a cyclic submodule Jί\, again with the cyclic vector 1,
according to the formula

τ'λ(Y)ψ = (ξγ . (IAWA)K- 1 .

Finally we are going to show that the reproducing kernel can be introduced also
in the quantum case and the scalar product in ̂ c a n be expressed with its help.
Let η designate the Haar measure on s$q{K). We have the orthogonality relations
[54]

where

y =

Letting u\ = u2 = ex in (8.4) we get

(u, υ) = cλ η( (eλ, 2Γλu) * (eλ, 3~λυ)) , (8.5 )

where cλ = Mλ/{eλ,τχ(y~x)eλ). Consequently,

(u, v) = cλ η(ψ*w*λwχψv). (8.6)

Set now
(8.7)

and define the reproducing kernel as

K(ζ*,z) := (Ψ(ζ), ψ[z)) € * ί Θ <<Sχ . (8.8)

Here (* stands for the generators in ̂ \ and z for those in Ήχ .
It holds

(u,v) = cλη(Mz*)*K(z*,zrlΨv(z*)) (8-9)

It is enough to notice that K(z*,z) G ̂ \ Ήχ is equal to (wjw^)"1,

K(z\z) = wTx (eh3r\3rλyxeλ){wl)-1 = w j 1 ^)" 1

Furthermore, substituting *F(Q for u in (8.9) we obtain

ΨttΊ = ̂ z ( I ( ( V ) ^ * , z Γ V ( z * ) ) , for every tfr € tfj . (8.10)
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9. Representations and Non-Commutative Differential Geometry

We shall use the summation rule through this section. All indices are running from
1 to N9 N being the dimension of the vector representation. With some abuse of
notation we shall no longer distinguish between the element I e % ( ί ) and the
corresponding left-invariant mapping ξx (8.1). We keep only the to indicate the
action of %(l) on stfq(K). The following notions and facts concerning the differential
calculus on srfq(K) will be useful [55, 18, 9]. Let us denote as Mψi the following
family of quantum functions on K:

Mijki = S (I

Let also
fijki = S (Ltz)iS(L^)

be a family of elements of <%(ϊ). We shall denote by <? the free left module over
stfq(K) with generators denoted by Ω^ . Let us introduce the right multiplication, the
right coaction δR and the left coaction δι of stfq(K) on <f by

bΩkι,

δdaijΩij) = Aaijil®ΩiJ),

for ay, b e stfq{K). Then the triple ($,δR,δL) is an ^(AΓ)-bicovariant bimodule in
the sense of [55]. If we introduce quantum functionals χ^ G <%(ϊ) by

Hi = tij - LTmS{L+

mj), (9.1)

then the mapping d: jtfq(K) —> $

da = Ωijχij -a, ae ^q{K) (9.2)

defines a bicovariant first-order differential calculus on stfq(K), which extends
uniquely to the exterior differential calculus on stfq(K). The linear space mvS
spanned by Ωi/s is the space of left invariant one-forms. Let us denote as mv?£ the
dual linear space of left-invariant vector fields spanned by Xi/s. The linear space
inv̂ " is closed under the ̂ -commutator

[X,Y]q = adxY

and the comultiplication on χ^ reads

ΔXij = Xij ® 1 + Oφi 0 Xki,

OiJkι = L7kS(φ . (9.3)

In the following we shall use the Cartan calculus on quantum groups developed
in [42, 2], where the inner derivation iξ and the Lie derivative ££ξ of a general
7z-form along a general vector field ξ have been introduced. Let us mention that
the linear space of left-invariant vector fields mvί% can be used to freely generate
an ^(^)-bicovariant bimodule 9£ of general vector fields on srfq(K) [2]. The right
coaction of stfq{K) then coincides on mv^ with the right dressing action ^ (3.3).
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Here we shall give a short account of the results contained in [42]. We shall
need only the specifications of these in the case of left-invariant vector fields λmΘC
and we shall restrict ourselves to this case. This will save us also from introducing
more cumbersome notations and from a considerable extension of the paper. The
interested reader is referred to the above-mentioned papers [42, 2] for the more
general case. The space of all forms over stfq(K) will be denoted as SA and the
space of p-ϊorms as δAp. A general p-foτm α G $>Ap can be written with the help
of the left-invariant one-forms Ωy as

a = ΩhjιA AΩίpjpah..,pjι...jp. (9.4)

The differential d is extended to the whole δΛ as in the classical case by the graded
Leibniz rule [55]. Let us employ the short-hand notation δR(Ωij) = Ωψ ® aψ G
$ ® stfq(K) for the result of application of the right coaction SR to the left-invariant
one form Ωij. Then the right and left coactions SR, δι are extended to the whole
δΛ by (we assume α is of the form (9.4))

δΛ 0 J^(A:)

MJl */>.//> ι\'"lp>J\'"Jp l\J\ Ipjp l\ "lp,J\'"JpVΛ. . Λ ί J ί 1 ) ^ . ,..., β ^ . . f l ί 2 ) ^

α ^ aΫv -iPJr jP

 0 β'Vi Λ * * Λ Ω^pah "iP,j\'"jP

and by linearity.
Now the Lie derivative ££χv. of a form oc E δA along a left-invariant vector field

X Ginv <̂  can be introduced as

J&ζr : ̂ Λ -> ̂ Λ : α ̂  (id 0 (X, >)ίΛα . (9.5)

As in the classical case, the Lie derivative preserves the degree of a form.
The inner derivation xXmn α of a form α G <f with respect to a left-invariant vector

field χw/7 G i n v ^ is defined on the general /7-form α recursively as

Ωhh A Λ Ωipjpah...ipJv..jp .-> (Xmn&jJQM Λ Λ Ωipjpah...ipjr..jp

H-iyiOmnoptMktijJΩu A (\χopΩi2J2 A . . Λ β , v > i i Wi y> (9 6 )

and is extended by linearity to an inner derivation i^α of a general form α G ̂  with
respect to a general left-invariant vector field X e mv 9C. With these definitions the
Cartan identity from the classical case remains unchanged

&X = iχd + dXχ, XGinv^ (9.7)

For any quantum function a G srfq(K) let us introduce the left-invariant one-form

\d») = ΩiMj,a) (9.8)
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as well as the right invariant form

θa

R = d^SiμW) = θfaMSiaW) = Q^Ό^U^a) . (9.9)

Let X Ginv ^> then we have for its symbol σ(X),

σ(X) = ixθ™λ. (9.10)

This equality is a consequence of a chain of simple identities

σ(X) = (X,wfViΠ5(wf>) = (xxθf)w(PS{wψ) = ixθ% .

Applying the differential d to the equality (9.10), making use of the Cartan identity
(9.7) and using the fact that

for X left-invariant and ω right-invariant we obtain immediately

dσ(X) =-ixdθψ . (9.11)

Let Y e 3C be now another left-invariant vector field. We have

- xγiχd&"R' = σ{[Y,X\), (9.12)

which follows from an application of lγ to the equality (9.11):

-\γ\χdΘw

R

λ = iγdσ(X) = Y σ(X) = σ(AάγX).

The third equality in the above chain is a direct consequence of the definition of
the inner derivation adopted above.

Here we would like to note the following. Let us assume the image σ ( ^ ( ϊ ) c
£/q(Ko\K) under symbol mapping σ equipped with a new product *, which respects
the algebra structure of %(k)

σ(X) * σ(Y) = σ(XY) for I j G %(k\

which is just the Berezin quantization prescription for the symbols in the classical
case. Then from (5.4) it follows immediately that the mapping σ is a quantum
momentum map in the sense of [30] and we can rewrite (9.12) in the form

f = σ(7 ( 1 ) ) * σ(X) * σ(S(7 ( 2 ))) . (9.13)

Using the expression of the right invariant one-form Θ^λ with the help of the
left invariant one-forms Ωzy following from (9.9) we obtain an alternative defini-
tion of the isotropy subgroup KQ. Instead of (5.7) we may equivalently require the
invariance of <9^; with respect to the left coaction of Ko,

(po 0 id)<5Lβ^ = 1 ® Θw

R

λ e ^q(K0) 0 δ . (9.14)

Let us denote for convenience by f̂ G fflχ (8) srfq(Ko\K) the unnormalized coher-
ent state & = T(w\γλ and let the expressions d& G 2tfχ <g> δ and dΓ G 2tfλ®£
have the obvious meaning of differentiating with respect to the second factor in
^λ ® ^q{K). Let us also introduce a new one-form Θw? = Θ^λ - dwλ(wλ)~ι G δ.
Like in the classical case the one-forms Θψ and ΘWλ can be expressed through the
coherent states Γ and 2£ as

Θ? = (dΓ\Γ)
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and

respectively.

Now we are prepared to give a formula for the action of the elements χ^ in the

irreducible *-representation τχ of %(t), which directly generalizes the geometric

quantization prescription for the action of generators of U(ϊ) in the irreducible

representation of K corresponding to a minimal weight λ. Starting from formula

(8.3) and using (9.3) we have for φ £ Mχ,

τλ(Xij)Ψ = Wχ\Xij ' ™λ)Φ + w~\θijkι wλ)χkι φ ,

which can be finally rewritten making use of the following identities:

toy Wλ)wϊι = \χιjdwλw^x = σ(χij) - iXιjΘ
Wλ

in the form

\ Φ + w-\a(XiJ) - xχijΘ^)wλφ . (9.15)
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