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Abstract: In this paper we unify and extend many of the known results on the
dimension of deterministic and random Cantor-like sets in IR", and apply these re-
sults to study some problems in dynamical systems. In particular, we verify the
Eckmann-Ruelle Conjecture for equilibrium measures for Holder continuous con-
formal expanding maps and conformal Axiom A# (topologically hyperbolic) home-
omorphims. We also construct a Holder continuous Axiom A# homeomorphism
of positive topological entropy for which the unique measure of maximal entropy
is ergodic and has different upper and lower pointwise dimensions almost every-
where. This example shows that the non-conformal Holder continuous version of
the Eckmann-Ruelle Conjecture is false.

The Cantor-like sets we consider are defined by geometric constructions of dif-
ferent types. The vast majority of geometric constructions studied in the literature
are generated by a finite collection of p maps which are either contractions or sim-
ilarities and are modeled by the full shift on p symbols (or at most a subshift of
finite type). In this paper we consider much more general classes of geometric con-
structions: the placement of the basic sets at each step of the construction can be
arbitrary, and they need not be disjoint. Moreover, our constructions are modeled
by arbitrary symbolic dynamical systems. The importance of this is to reveal the
close and nontrivial relations between the statistical mechanics (and especially the
absence of phase transitions) of the symbolic dynamical system underlying the geo-
metric construction and the dimension of its limit set. This has not been previously
observed since no phase transitions can occur for subshifts of finite type.

We also consider nonstationary constructions, random constructions (determined
by an arbitrary ergodic stationary distribution), and combinations of the above.

Introduction

In this paper we unify and extend many of the known results on the dimension of
deterministic and random Cantor-like sets in IR". These sets are defined by geometric
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constructions of different types. The vast majority of geometric constructions studied
in the literature are generated by a finite collection of p maps which are either
contractions or similarities and are modeled by the full shift on p symbols. In this
paper we consider much more general classes of geometric constructions: their basic
sets may have complicated geometry and topology and the placement of the basic
sets may be fairly arbitrary. Moreover, basic sets on a given step of the construction
may intersect each other. We also allow geometric constructions modeled by an
arbitrary symbolic dynamical system.

Our inspiration for studying these classes of geometric constructions comes
from the theory of hyperbolic dynamical systems. For instance, Smale-Williams
solenoids are limit sets for geometric constructions which we consider. Moreover,
using Markov partitions, any locally maximal hyperbolic set can be viewed as the
limit set for some geometric construction. We will also apply our results on geo-
metric constructions to study a Holder continuous version of the Eckmann-Ruelle
conjecture (see Sect. 6). A detailed announcement of this paper appeared in [PW1].

A prototype for our analysis is a geometric construction which defines a Cantor-
like set of the form

oo

F= n u Λh...in9
n=\{U- in)

where the basic sets on the nth step of the construction, Air..in, 4 = 1,...,p,
are closed, disjoint, and Alr..lnJ C Air..in, for j = l,...,p. We assume that the
diam(Air..in) —> 0 as n —> oo and we emphasize that the placement of the sets Aiv..ίn

can be arbitrary as long as they satisfy the above conditions. See Fig. 1.

Fig. 1. Simple Geometric Construction
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About 50 years ago, Moran [Mo] computed the Hausdorff dimension of limit
sets of geometric constructions in IRW given by p basic sets Aiv..in satisfying

(1) each basic set is the closure of its interior,
(2) at each level the basic sets do not overlap (their interiors are disjoint),
(3) a basic set Air..inj is geometrically similar to the basic set Λ ,.../n f° r every

j and n,
(4) diam(zl/1...//7y) = λjάiam(Δi]...ifj), where 0 < λj < 1 for j = l,...,p are the

ratio coefficients.

These constructions are called Moran constructions. Moran discovered the for-
mula s = dim//F, where s is the unique root of the equation

Σ 4 = i. (i)

and dim//F is the Hausdorff dimension of the limit set F. He also showed that
the ^--dimensional Hausdorff measure of the limit set is finite and strictly
positive.

Moran's major idea was to construct an optimal cover of the limit set (Moran
cover) which is determined by the ratio coefficients. Our main insight into the
Moran approach is that many of the strict conditions in the definition of Moran
construction are not required to build the Moran cover. For example, the geometric
similarity of basic sets may be greatly weakened. Furthermore, although Moran only
considered constructions modeled by the full shift, his approach can be generalized
to constructions modeled by arbitrary symbolic dynamical systems. Our approach
allows us to extend the original Moran idea to much broader classes of geometric
constructions.

In particular, we introduce the Moran-like constructions defined as follows. Let
(Q,σ) be a symbolic dynamical system where Q C Σ* is a compact shift invariant
subset. We allow basic sets Δίv..in with ^-tuples ί\ - - in which are admissible with
respect to Q such that

Bir..ίn CΔh..,n cBlλ...in9

where # Z l . w

 a n c * ^u-in

 a r e closed balls having radii rir..ι and riv..in respectively,
(2) int^..,., Hint £ / ;..,, = 0 if (z'i 4) Φ (z'ί,. ..,i'n), "

(3) riv.,n - d Π ; = 1 V a n d Ύ« ~i* = C^%ι λh> w h e r e 0 < λ, < 1, / = l,...,/>
and C\, C2 are positive constants.

We stress that the topology and geometry of basic sets may be quite compli-
cated. For example, they may not be connected and their boundaries may be fractal.
In particular the basic sets at level n of the construction need not be geometri-
cally similar to the basic sets at level n— \. Furthermore the basic sets at a given
level may intersect. This class of constructions includes Moran geometric
constructions.

One of our main results establishes the coincidence of the Hausdorff dimension
and the box dimension of the limit sets of these Moran-like constructions, along
with explicit formulas for the dimensions) (see Theorems 1,3 and 5). We also
provide conditions for strict positivity and boundedness of the Hausdorff measure of
the limit set (see Theorems 2 and 5).
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One very particular case is when a geometric construction is effected by a finite
collection of similarity maps (affine contractions) h\,...,hp such that

Δh...in =hh O . . . O A / B ( J ) ,

where A denotes a ball in 1RW (see Sect. 4). Such a construction is called a similarity
construction since its limit set F is self similar, i.e., F — U^i^/CO More generally,
a geometric construction can be generated by a finite collection of contraction maps.
These special constructions are particular cases of Moran geometric constructions.
They have been the main objects of study in dimension theory for many years.

We will use two methods to obtain a lower bound for the Hausdorff dimension
of a set: the uniform and non-uniform mass distribution principles. See Appendix 2.
The uniform mass distribution principle requires the existence of a measure m for
which

m(B(x9r)) ^Crs , (2)

where B(x,r) is the ball of radius r centered at the point x e F and C is a constant.
Then s produces a lower bound for dim//F, the Hausdorff dimension of F. We
stress that (2) must hold for all x G F and the constant C must be independent
of x and r. The non-uniform mass distribution principle requires that (2) hold for
m-almost every i G f with C = C(x) a measurable function. Again, s provides
a lower bound for the Hausdorff dimension of the limit set. If the uniform mass
distribution principle holds, one can obtain refined information about the ^-Hausdorff
measure of F. Although uniform mass distribution is stronger than the non-uniform
version, we will establish it for a broad class of geometric constructions.

One can not expect to obtain any refined estimates for the Hausdorff and box
dimensions of the limit set F of a construction with arbitrary shape and spacing of
the basic sets. We control the geometry of the construction by either restricting the
shapes or sizes of the basic sets, the spacing of the basics sets, or both. If one has
strong control over the sizes of the basic sets, then the spacing can be fairly arbitrary,
and vice-versa. In this paper we introduce a new approach to studying geometric
constructions having complicated geometry. Our approach is based on the notions of
regularity and boundedness of the construction. Regular and bounded constructions
are those which admit Moran covers, i.e., where the control over the geometry is
effected in the spirit of the Moran approach by generalized ratio coefficients that
encode the information about both the shape and spacing of the basic sets (Example
3 in Sect. 5 illustrates the role of spacing). For some constructions these coefficients
are determined by the largest inscribed balls and smallest circumscribed balls for the
basic sets. However, we construct an example where these numbers are completely
independent of these balls (see Sect. 5, Example 8). We will compute the generalized
ratio coefficients for all previously studied classes of geometric constructions as well
as several new ones.

In [Ba], Barreira carried out an extensive analysis of the notion of regularity and
formulated a general criterion for a geometric construction to be regular. He also
constructed examples which illustrate that even a slight weakening of our regularity
condition may cause a failure of our results.

One new class of geometric constructions that we introduce is asymptotic geo-
metric constructions where the ratio coefficients depend on steps of the construction
and admit a good asymptotic behavior. We apply our techniques to study asymp-
totic constructions and show that the non-uniform mass distribution principle can be
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used to estimate the Hausdorff dimension of the limit set. For asymptotic construc-
tions, one can not expect the uniform mass distribution principle to hold. Hence the
Hausdorff measure is usually zero or infinite, even in simple examples (see Sect. 5,
Example 4). In order to obtain more information about the Hausdorff measure one
can use a gauge function (see Appendix 4). In Sect. 5, we present a family of sim-
ple asymptotic geometric constructions which admit infinitely many gauge functions
depending on the rate of convergence of ratio coefficients. This illustrates that the
asymptotic category of constructions is quite rich in that there exists a large variety
of different limit sets exhibiting many different structural properties.

We apply our study of asymptotic constructions to analyze random Moron
geometric constructions. These constructions are essentially Moran construction with
ratio coefficients chosen randomly from an arbitrary ergodic stationary process. We
also consider random one-dimensional constructions. In the literature, random con-
structions are usually considered as a distinct class of geometric constructions. We
stress that our approach completely unifies the analysis of many disparate types of
geometric constructions.

For the Moran-like geometric constructions which we introduce, the crucial ob-
servation is the existence of a measure m on the set F such that the Hausdorff
dimension of F is equal to the Hausdorff dimension of m. This measure is the push
forward of the equilibrium measure μ for the function φ(ω) — sΊogΛ,/,, where x is
associated with a sequence ω = (z'1/2 •) and s is the unique root of the equation

P(sφ) = 0, (3)

where P is the thermodynamic pressure (see Appendix 3). For the Moran con-
structions, s is the Hausdorff dimension of the limit set as well as its box dimen-
sion. We show that this is true for general symbolic Moran-like constructions (see
Proposition 3 and Theorem 5).

Equation (3) was discovered by Bowen [Bo2] and seems to be universal: all
known equations previously used to compute the Hausdorff dimension (for example
Eq. (1)) coincide with or are particular cases of (3).

For the general symbolic geometric constructions the measure μ is an equilib-
rium measure and m admits the non-uniform mass distribution principle. There is
a crucial difference between Gibbs measures and equilibrium measures in Statisti-
cal Physics (see [R] and Appendix 3; see also Sect. 1, Remark 1). These notions
coincide for subshifts of finite type, but need not coincide for general symbolic
systems. We show that if μ is a Gibbs measure, then the Hausdorff dimension of
the limit set, s, can be studied using the uniform mass distribution principle, and
the s-dimensional Hausdorff measure is positive and finite (see Theorems 2 and 4).
If μ is an equilibrium measure, then a non-uniform mass distribution principle can
be applied to the measure m (see Theorem 1).

Theorem 5 establishes the coincidence of the Hausdorff dimension and the box
dimension of a measure and is similar in spirit to some results of Ledrappier and
Young [LY]. It supports a general belief that the coincidence of the Hausdorff
dimension and box dimension of a set is a rare phenomenon and requires rigid
geometric constructions like some of those considered in this paper. In Sect. 5, we
provide an example of a simple geometric construction in the plane with basic sets
being rectangles for which the Hausdorff dimension dim//F, the lower box dimen-
sion dimgF, and the upper box dimension dimBF, are distinct. The construction
uses different ratio coefficients in different directions and combines both vertical and
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horizontal stacking of rectangles to effect the noncoincidence of the dimensions. In
[PoW], the authors found that number theoretic properties of the ratio coefficients,
related to Pisot numbers, is another mechanism to cause noncoincidence of dimen-
sions. Another example which illustrates the non-coincidence of the Hausdorff and
box dimensions was constructed in [Me].

The coincidence of the Hausdorff dimension and box dimension of a measure
is more common. There is a general criterion proved by Young [Y] that guarantees
the coincidence. Namely, let m be a Borel measure on F such that for m-almost
every x e F the limit

r->0 log V

exists. The limit dm{x) is called the poίntwise dimension at x. In this case m is
called exact dimensional If the limit does not exist, one can consider the lower
and upper limits dLm{x),dm{x) to obtain the lower and upper poίntwίse dimensions
at x. If for m-almost every x

, , x def

dm(x) = const = s

then the Hausdorff dimension of m, dim//m, and the lower and upper box dimensions
of m, dhnBm and άimBm, coincide and have the common value s.

This statement poses the problem of whether a given measure m is exact dimen-
sional and moreover whether dm(x) = const almost everywhere.

To give some insight into this problem consider a measure supported on the
limit set of a Moran-like geometric construction. It is not difficult to show that the
limit

l i m \ogm(An(x))
n->oo logdiam(zln(x))

exists almost everywhere, where An(x) is the basic set at step n containing x. In
Sect. 6 we develop a new technique to show that for any measure supported on
the limit set of a Moran-like geometric construction, the above symbolic pointwise
dimension coincides with the pointwise dimension of m (see Sect. 6.4). This result
has only been known in a simple particular case when the construction is effected
by similarity maps.

For measures invariant under dynamical systems the problem is more subtle. In
[C], Cutler constructed an example of a continuous map that preserves an ergodic
exact dimensional measure m with dm(x) essentially non-constant. In Sect. 6.4, we
present a much simpler version of the construction of such a map that uses a special
simple geometric construction. In addition, we show that such a map can be arranged
to be Holder continuous and topologically hyperbolic (i.e. satisfying the Axiom A#

property, see [AJ]).
If the map is smooth and m is exact dimensional and ergodic, then dm(x) — const

almost everywhere (since dm(x) is invariant under the map and measurable). Ledrap-
pier and Misiurewicz [LM] constructed a one-dimensional smooth map preserving
an ergodic measure that is not exact dimensional. Eckmann and Ruelle conjectured
that an ergodic measure invariant under a C2-diffeomorphism with non-zero Lya-
punov exponents is exact dimensional (and, hence, dm(x) — const, see [ER]). This
is now one of the most challenging, still open problems in the interface between di-
mension theory and dynamical systems. In [Y], Young obtained the positive solution
for the Eckmann-Ruelle conjecture in the two-dimensional case. In [L], Ledrappier
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proved the conjecture for Bowen-Ruelle-Sinai measures and in [PY], Pesin and
Yue extended this result to some measures including Gibbs measures for Axiom A
diffeomorphisms.

In Sect. 6, we obtain the positive solution of the conjecture for Gibbs measures
for conformal Holder continuous expanding maps and conformal Axiom A# home-
omorphisms. On the other hand, we construct a Holder continuous topologically
hyperbolic homeomorphism of positive topological entropy for which the unique
measure of maximal entropy is ergodic and has different upper and lower point-
wise dimensions almost everywhere (see Theorem 9). In other words, the Holder
continuous version of the Eckmann-Ruelle Conjecture fails.

Edgar and Mauldin [EM] computed the Hausdorίf dimension for Markov con-
structions generated by a finite collection of similarity maps. Stella [St] obtained
estimates for the Hausdorff and box dimensions of limit sets for Moran-like con-
structions with non-overlapping basic sets modeled by subshifts of finite type, which
is our Corollary 1. Afraimovich and Shereshevsky [AS] found a lower estimate
for the Hausdorff dimension of some simple geometric constructions. Similar
types of simple geometric constructions, given by two-dimensional self-affine
maps related to graphs of functions, were considered by Bedford and Urbanski in
[BU]. Shereshevsky [S] also considered some one-dimensional Markov geometric
constructions. We are aware of no author who considered any type of geometric
construction based on a symbolic system more general than a subshift of finite
type.

Various geometric constructions with randomly chosen ratio coefficients have
been considered by Falconer [F2], Graf [G], Kahane [K], Graf, Mauldin and
Williams [GMW], and Mauldin and Williams [MW2]. These authors studied random
geometric constructions whose basic sets are geometrically similar. These construc-
tions are modeled by branching processes that correspond to the full shift on p
symbols with pn ratio coefficients at step n chosen randomly, essentially indepen-
dently and with the same distribution on (0,1). They also assume independence
conditions over n. In this paper, we consider branching processes that are associated
with arbitrary compact shift-invariant subsets. We generate the ratio coefficients by
choosing p random numbers on the interval (a,b) where 0 < a ^ b < 1. We do
not require that ratio coefficients be independent nor be identically distributed.

1. Geometric Constructions

We define geometric constructions of Cantor-like subsets of 1RJ by using a symbolic
description in the space of all one-sided infinite sequences (i\i2 * •) on p symbols.
We denote this space by Σ+ and endow it with its usual topology (see Appendix 3).

A symbolic construction is defined by

a) a compact set Q c Σ+ invariant under the shift σ (i.e., σ(Q) = Q) such that
σ\Q is topologically transitive

b) a family of compact sets* called basic sets {Δίχ...ίn} c IRJ for ijr = 1,2,..., p
and H G N where the ^-tuples (i\ - in) are admissible with respect to Q (i.e.,
there exists ω = (i[,i2, •) G Q such that i[ = i\,i'2 = 12,...,i'n = in) and these sets
satisfy

lim max diam(J/,.../„) = 0 . (4)
n—>oo (/1 •••/„)
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For any admissible sequence (i\ /«+i) G {1,..., p}n, we require that

The limit set F for this construction is defined by

^ = n u Δiv-k-
admissible

The limit set F is compact. We stress that we make no assumption on the topology
and geometry of the basic sets {Δiv..in} other than they are compact subsets of
Euclidean space. In particular, they need not be connected and their boundaries may
be fractal. We also stress that the placement of the basic sets is completely arbitrary
and basic sets on the same level may intersect.

There is a particular but important case when the basic sets on the same level
are disjoint, i.e.,

4 v . . / , n 4 ;...«ί = 0 if 0Ί / » ) * ( ί ί , . . . , O ( 5 )

Condition (5) is known as the strong separation condition. If it holds then F is a
generalized Cantor set, i.e., it is a perfect, nowhere dense, and totally disconnected
set. We also consider a weaker version of condition 5 known as the separation
condition where

Δ i v . . i n C \ Δ i [ . . . i , f λ F = % i f ( i i ι B ) Φ ( ί i • " ' » ) • (5')

We define a coding map χ : Q —>• F by associating to a given point ω =
(i\ii •) £ Q, the point x = f]^ Δiy..ik. This map is a continuous surjection.

Consider the symbolic dynamical system (β, σ), where QcΣ+. Given a
/?-tuple α = (αi , . . . ,α p ) such that 0 < αz < 1, there exists a uniquely defined num-
ber sα such that P(sa log aiλ) = 0, where P denotes the topological pressure (see
Appendix 3). Let μα denote an equilibrium measure for the function (/i,/2> ) l~>

sa log α/j on Q, and let raα be the push forward measure on F under the coding map
X

1. Lower Estimates for the Hausdorff Dimension. Since we allow arbitrary spacing
and shape of the basic sets, one can not expect, in general, to obtain any refined
estimates for the Hausdorff and box dimensions of the limit set F (see Sect. 5,
Example 8). To obtain refined estimates, one needs to control the geometry of the
construction by either controlling the spacing, sizes or shapes of the basic sets. If one
has strong control over the sizes of the basic sets, then the spacing can be fairly
arbitrary, and vice-versa. One well known method to control the geometry is to
effect the construction using similarity maps (see Sect. 4). This class of construction
is very restrictive since one has strong control over both the spacing of the basic
sets and their sizes in all directions.

We will present a general method to control the geometry of the construction and
extend the Moran approach from the full shift to a general symbolic system. This
requires the non-uniform mass distribution principle (instead of the uniform one).
We will estimate the dimensions for a large class of constructions called regular
constructions which include many constructions where one has only moderate control
over the spacing and/or the sizes of the basic sets.
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In a regular construction, control over the geometry is given by numbers
y\,...,yp such that one can approximate the basic sets Δir..in by balls of radius
Π"=i yij We believe that one can compute the numbers y\,...,yp and construct the
balls using detailed information about shape and spacing of the basic sets. In some
cases these balls coincide with the largest balls that can be inscribed in the basic
sets. However, Example 8 of Sect. 5 illustrates that the optimal numbers y\,...,yp

may be completely independent of the radius of the largest inscribed balls. We will
compute the numbers y\,...,yp for all previously studied classes of geometric con-
structions as well as several new ones, and we will produce refined estimates for
the Hausdorff dimension from below.

Let Z C Q. Given 0 < r < 1 and a vector of numbers y = (y\,...,yp),
0 < y} < \J = 1,...,/?, we first define a special cover Hrz = H r >z(y) of the
set Z. For any ω G Z, let n(ω) denote the unique positive integer such that
yM 7/2 yt > r and γ^ y/2 yin(ω)+] S r- It is easy to see that n(ω) —>• oo as
r —* 0 uniformly in ω. Fix ω £ Z and consider the cylinder set C/,.../n(ω). We have
ω G C/,...//7{ω), and if ω' G C ί r.. ί / ; ( ω ) ΠZ and n(ω') ̂  n(ω), then

c / 1.., ί ( ω / ) n z c c / l . . , ; ( ω ) n z .

Let C(ω) be the largest cylinder set containing ω with the property that C(ω) =

Ch...in{ωΠ) for some ω" G C(ω) and Ch...in{ωl) Π Z C C(ω) ΓΊ Z for any ω' G C(ω) Π Z.

The sets C(ω) Π Z corresponding to different ω G Z either coincide or are dis-

joint. We call these sets Q , j = l,...,Nr. There exist points ω7 GZ such that

Cr — Ciλ ...in{ω y These sets form a cover of Z. Let A/ = χ ( Q ). These sets form

a cover of the set χ(Z) which we call the Moran cover. In the case that Z = Q we

denote the above cover by Ur = Ur(γ).
Consider the open Euclidean ball B(x,r) of radius r centered at a point x. Let

N(x,r) denote the number of sets Δ^ that have non-empty intersection with B(x,r).
We call a vector, y, 1-estimating if N(x, r) ^ M, where M is a constant independent
of x and r. We call this constant M the Moran multiplicity factor. We call a
symbolic construction regular if it admits an 1-estimating vector. If y = (y\,...,yp)
is an 1-estimating vector for a regular symbolic construction, then any vector y =
(yl9...,yp) for which 7/ ̂  yi9i = 1,...,/? is also 1-estimating. It is easy to see that
Sy :§ s?,. On the other hand a vector y = ( 7 ^ . . . , y ) for which yz is sufficiently
close to 1 for some / is not 1-estimating.

Below we will provide several examples of regular constructions although there
are many constructions which are not regular. For example, if the Hausdorff dimen-
sion of the limit set is zero, then the corresponding construction is not regular. Let
F\,Fι be two limit sets for two symbolic constructions on the line: the first con-
struction is defined on the interval [0,1] and the second one on the interval [2,3].
It is easy to see that if dim//Fi = 0 and dim#F2 > 0 then the set F\ U F2 is the
limit set for a construction which is not regular but whose limit set has positive
Hausdorff dimension.

In Sect. 3 we study the regularity of a large class of one-dimensional geometric
constructions. One can see that a one dimensional geometric construction is regular
if the basic sets are disjoint (see (5)) and satisfy

logdiam(4/l/2...|Jsup sup ——— ^ constant.
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This condition provides strong control over the ratio coefficients and requires them to
be uniformly bounded away from zero. It is easy to show that if the ratio coefficients
go to zero uniformly in n, then the Hausdorff dimension of the limit set is zero.

Barreira [Ba] has shown that the above assumption is almost optimal. He ex-
hibited a one dimensional simple geometric construction with ratio coefficients not
uniformly bounded away from zero such that: (1) the construction is not regular,
(2) the limit set F satisfies the following strong homogeneity property:

άimH(F Π B(x, r)) = constant > 0

for all x e F and r > 0.
If one considers a geometric construction in the plane with limit set F = F\ x F2,

where F\ and F2 are limit sets for one-dimensional geometric constructions and
dim// F\ = 0, then the construction is not regular. We believe that a geometric con-
struction is regular if the projection of the basic sets at step n onto every line satisfies
the above uniformity condition uniformly over the direction of the projection.

Although the coding map for a regular symbolic geometric construction need
not be injective, one can verify that the cardinality of each fibre ( χ " 1 ^ ) , * G F) is
uniformly bounded by the Moran multiplicity factor M.

Theorem 1. Let F be the limit set for a regular symbolic construction. Then
sy ^ dim///7 for any l-estίmating vector y. Hence, sup ϊy ^ άirriffF, where the
supremum is taken over all l-estίmating vectors y. Moreover, there exists a
probability measure ξ such that sup sy ^ dim// ξ, where dim// ξ is defined as
mfu{dimHU,ξ(U) = 1}.

We stress that we did not require the strong separation condition (5). A more
delicate question in dimension theory is whether the Hausdorff measure of the limit
set is positive. The answer is presumably negative for a general symbolic geometric
construction. For a regular construction, the positivity of the Hausdorff measure may
depend on whether the equilibrium measure μy is a Gibbs measure. If this measure
is Gibbs, then my satisfies the uniform mass distribution principle and we have our
most refined estimates. If the construction is modeled by a subshift of finite type
(i.e., Q = Σ\, where A is an irreducible transfer matrix) or a sophic system (a
finite factor of a subshift of finite type), then the measure μy is Gibbs. We denote
by τw//(f,F) the ί-dimensional Hausdorff measure of F (see Appendix 1).

Theorem 2. Let F be the limit set of a regular symbolic construction. Assume that
there exists an l-estimating vector y such that the measure μy on Q is a Gibbs
measure. Then

1) the measure my satisfies the uniform mass distribution principle,
2) 0 < ntH(sy,F), moreover, my(Z) ^ Cmn{sy,Z) for any Z C F where C > 0

is a constant,
3) sγ ^ dm(x) for every xeF.

The second statement in Theorem 2 is nontrivial only when sy = άimHF. Oth-
erwise, niH{sy,F) = 00. If sy < s — dim//F, then the ^-Hausdorff measure may be
zero or infinite.

2. Upper Estimates for the upper box Dimension. In order to obtain upper estimates
for the upper box dimension, we require that the diameters of the basic sets decrease
exponentially.
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More precisely, we say that a vector λ — (λu...,λp), 0 < Xt < 1 is a
u-estimatίng vector for a construction if

diam(4v../π) ^ fy

where C > 0 is a constant. The symbolic construction is called bounded if there

exists a u-estimating vector λ. It is easy to see that if λ = (λ\,...,λp) is a u-

estimating vector for a bounded construction, then any vector λ = (λ\,...,λp) for

which λi ^ λi9 ί — 1,..., p is a u-estimating vector and ̂  ^ sj.
We now wish to estimate the upper box dimension of the limit set F for a sym-

bolic geometric construction. We need not assume that the construction is regular,
but only bounded.

Theorem 3. Let F be the limit set for a bounded symbolic construction. Then

(1) dim^i7 ^ si for any u-estimating vector λ. Hence, dimgF ^ inf sχ9 where
the infinum is taken over all u-estimating vectors λ,

(2) dm>(x) ^ sχ for any u-estimating vector λ and mχ-almost every x G F.

In the case when the measure μχ is a Gibbs measure, we can establish finite-
ness of the ^-Hausdorff measure and obtain a stronger statement about the upper
pointwise dimensions.

Theorem 4. Let F be the limit set for a bounded symbolic construction. Assume
that there exists a u-estimating vector λ such that the measure μχ on Q is a Gibbs
measure. Then

(1) niH(s/,F) < oo, moreover mn{sx,Z) ^ Cm;(Z) for any Z CF where
C > 0 ti a constant,

(2) dm/{x) S sλ for every x e F.

The next statement provides an upper estimate for the number sχ.

Proposition 1. Let F be the limit set for a bounded symbolic construction and λ
a u-estimating vector.

(1) We have

s ύ Kσ\Q)

where λmΆX = maxζ=ι{λk}9 and h(σ\Q) denotes the topological entropy. Equality
occurs if λi — λ for i — 1,...,/?.

(2) See [Fu]. // λt = λ for i = 1,..., p, then

S) = άimπF = άimRF = dim#F = —
-log/t

(3) If h(σ\Q) = 0, then sλ = άimHF = dim 5F = dίin5F = 0.

The following theorem is an immediate consequence of Theorems 1-4.
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Theorem 5. Let F be the limit set for a regular and bounded symbolic construc-
tion. Then for any l-estimating vector y and any u-estίmatίng vector λ we have

(1) sy S dim//F :g άiπ\BF ^ dim#F ^ sχ, where sy and sχ are the unique roots
of the equations P(sy log}'/,) = 0 and P(s; logΛ,,) = 0, respectively,

(2) if y, = λx for / = 1,...,/? then

s = sy = s;_ = dim//F = άϊmBF = dim#F .

Moreover, m = my = m;., and if the measure μ; = μy is Gibbs, then m//(s, *) is

equivalent to m and d_m(x) — dm(x) = s for every i G F .

In general, the lower and upper pointwise dimensions d_m (x) and dm.(x) (as well

as d_m (x) and dni/(x)) do not coincide almost everywhere (see Sect. 6.2 and 6.3).

3. Markov construction. We will consider two important special cases of symbolic
constructions specified by a subshift of finite type or the full shift. Let A denote a
p x p transfer matrix with entries A(i,j) = 0 or 1 and let Σ^ consist of admissi-
ble sequences (/μ'2 •) with respect to A (i.e., A(ij,ίj+\) = 1 for j = 1,2 •). The
construction is called Markov if Q = Zjj". In the case when the set Q = Σ'+ the
construction is called simple.

Consider a subshift of finite type (Σ^,σ). Given p numbers 0 < oc\,...,ap < 1,
we define a (p x p) diagonal matrix Mt(oc) = diag(α^,.. .,α^). Let p(B) denote the
spectral radius of the matrix B.

Proposition 2. The equation P{s log OL1{ ) = 0 is equivalent to the equation
p(A*Ms(ot)) = 1, where A* denotes the transpose of the matrix A.

We will assume that the transfer matrix A is irreducible. Then the shift map
σ : Σj" —> Σ^ is topologically transitive.

The following corollaries are immediate consequences of Theorem 5 and
Proposition 2.

Corollary 1. Let F be the limit set for a Markov regular and bounded construc-
tion. Then for any l-estimating vector y and any u-estimating vector λ we have

Sy g dimHF ^ dimgF <Ξ dim#F g sA ,

where sγ and s-A are the unique roots of the equations

p(A*Ms{y)) = 1, p(A*Ms(λ)) = 1

respectively.

Corollary 2. Let F be the limit set for a simple regular and bounded construction.
Then for any l-estimating vector y and any u-estimating vector λ we have

(1) Sy ^ dim//F g dim^F ^ dim^F rg s;, where sy and s; are the unique roots
of the equations

i=l i=\

respectively.



Dimension of Deterministic and Random Cantor Sets 117

(2) The Gibbs measures μy and μ; on Σ^ satisfy

μy(Qr-ϋ = ft yϊ, and μ;.(Q, •••/„) = ft K\,
7 = 1 7 = 1

where C/,...z /; w a cylinder set.

Remarks.

(1) It follows from the expansiveness of the shift map that for any general symbolic
system and any continuous function, there exists an equilibrium measure correspond-
ing to this function. However, in general, this measure need not be a Gibbs measure.
It is well known that if a symbolic system has the specification property [KH], then
any equilibrium measure is Gibbs and is unique provided the function is Holder con-
tinuous [R]. Thus, Theorem 5 provides refined estimates for the Hausdorff and box
dimensions as well as the Hausdorff measure for a symbolic geometric construction
modeled by a symbolic system which satisfies the specification property.

Subshifts of finite type and their finite factors (sophic systems) are known to
satisfy the specification property [R, We]. The only other examples we know are
beta-shifts [BM] for special values of β.

If the topological entropy of σ\Q is zero, then by Proposition 1, the Hausdorff
dimension and box dimension coincide and are zero. In this case the measure μ; is
a measure of maximal entropy and is not a Gibbs measure.

We believe that one can find a symbolic system with positive topological entropy
and can build a 7-regular and /-bounded symbolic construction such that the two
measures μΊ and μχ are not Gibbs. Moreover, μ; will not be equivalent to the
S)-Hausdorff measure. There is an interesting question of whether one can build a
regular (or bounded) symbolic construction admitting two 1-estimating vectors 71,72
(two u-estimating vectors λ\>λ-ι) such that μΊx is Gibbs and μΊl is not (μ;, is a
Gibbs measure and μ/2 is not).

One can also obtain an appropriate version of Theorem 5 under this weaker
hypothesis.
(2) In the Markov constructions above, we assumed that the transfer matrix A was
transitive. For an arbitrary transfer matrix A, one can decompose the set Σ^ into
two shift-invariant subsets: the wandering set Q\ and the non-wandering set Q2.
The latter can be further partitioned into finitely many shift-invariant subsets of the
form Σ\, where each matrix A\ is transitive and corresponds to a class of equivalent
recurrent states [AJ]. The limit set F contains disjoint sets Fj = χ(Σ^). Each set
Fj is the limit set for a Markov construction defined by the transitive matrix Aι

and hence admits lower and upper estimates for the Hausdorff and box dimensions
stated in Corollary 1. In [MW1], the authors discuss the effect of the wandering set
Q\ on the dimension of the limit set F in special cases.

(3) Consider the full shift σ on p symbols with the standard metric dβ, β > 1. Let
μ be a σ-invariant ergodic measure, and let r — β~n. Since the ball centered at ω
with radius r, B(ω, r), is a cylinder set, we have by a theorem of Brin and Katok
[BK] that for μ almost every ω,

,_r)) = logμ(B(ωJ-")) ^ hμ(σ)

logr nlogβ log β
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hence

hμ(σ)

log,?
= dμ(ω) = dμ(ω) = dim//μ = άhnBμ =

where hμ(σ) denotes the Kolmogorov-Sinai entropy of the shift map. It is evi-
dent that the common value depends on β, which is not surprising since the two
metrics dβι and dβ2 are not equivalent for β\+β2 Now consider the Moran sim-
ple construction with parameters λ = (λ\,...,λp). Since μA is Gibbs we have that
hμ/(σ) + sf logλω ιdμ λ = 0, which gives

hμλ(σ) = hμ;(σ)

Jlogλhdμλ log/?

if

β = exp(-f\ogλi]dμ;) . (6)

Thus the Hausdorff dimension of μχ calculated with respect to the two metrics
dβ and χ*p (p is the Euclidean metric on IR^ and χ*p(ωi,ω2) = p(χ(ω\),χ(ω2))
coincide. The two metrics χ*p and dβ with β satisfying (6) are not equivalent if
not all the λt coincide. To see this, notice that χ : F —> Σ'+ is onto. We have with
respect to the metric p,

and with respect to the metric dβ

ΣP - l o g β - l o g β >

where h(σ) denotes the topological entropy of σ. It is easy to see that hμ;(σ) = h(σ)
if and only if λ\ = λ2 = = λp — λ.
(4) Let F be the limit set for a symbolic geometric construction and m a measure
on F. We define Ka = {x e F \ dm(x) = dm(x) = dm(x) = α} and /(α) = dim^(^α).

log Γ m(B(x,r)q dm(x)

We also define HPm(q) = limr_^o — —^7 » assuming that the limit exists
[HP]. The function /(α) is known as the multίfractal spectrum of F and the function
HPm(q) is known as the Hentschel-Procaccia spectrum for dimension q. These two
functions play a prominent role in the description of the multifractal structure of
the limit set. In some special cases, these functions form a Legendre transform pair
[CLP, CM, Lo, OSY, PW2].

It follows from Statement 2 of Theorem 5 that if the construction is Moran
and μχ is the Gibbs measure for the function s\ogλh, then /(α) is a ^-function
(/(°0 — s if α = s and 0 otherwise) and HPm;(q) = sq. These functions form a
degenerate Legendre transform pair. The most general results concerning the multi-
fractal formalism for Moran symbolic geometric constructions (with arbitrary Gibbs
measures) are obtained by the authors in [PW2].
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2. Examples of Symbolic Constructions

Here we consider several classes of symbolic constructions with restrictions on the
shapes of basic sets or restrictions on the gaps between basic sets.

1. Moran-like constructions. In this section we introduce a new class of symbolic
geometric constructions with basic sets Δiv..in satisfying the following conditions:

(!)
Bir.,n C Air.,n C Bir..in ,

where Bir..in and Bir..in are closed balls having radii £/,.../„ and riχ...in respectively,
(2) int£;r..Z/; Πint^/...z, = 0 if (i\ /„)#= (i[9...,i

f

n),"where intR denotes the
interior of the set R.

(3) rir..in = C Ί Π J = Λ a n d ?U-in = C2ΓΊ;=i K w h e r e 0 < λ, < 1, / = 1,...,/?
and Ci,C2 are positive constants.

This class of constructions includes Moran geometric constructions. Although
basic sets of these constructions are essentially balls, their topology and geometry
may be quite complicated (for example, they may not be connected and their bound-
ary may be fractal). In particular the basic sets at level n of the construction need
not be geometrically similar to the basic sets at level n — 1. Moreover, the basic
sets at step n of the construction may intersect.

Proposition 3. Let F be the limit set for the construction defined above. Then

(1) the construction is regular and bounded with l-estimatίng vector and
u-estimating vector equal to λ = (λ\,...,λp),

(2) s = sχ = άimHF = dim^F = dim^F. Moreover, if the measure μχ on Q is
Gibbs, then m^is, *) is equivalent to mχ, 0 < mn{s,F) < oo, and s = d_m,(x) =
dM/(x) for every x € F.

The first statement of Proposition 3 is obvious, and the second statement follows
from Theorem 5.

2. Constructions with rectangles. We now consider geometric constructions where
the basic sets are (multi-dimensional) rectangles. More precisely, we call a symbolic
construction a construction with rectangles if there exist 2p numbers λi7 λu i —
l,...,p, 0 < λj ^ λt < 1 such that the basic set Δiv..ln C IRJ is a rectangle (the
direct product of intervals, called sides, lying on n orthogonal lines) with the largest
side equal to Q f ] " j λ^, and the smallest side equal to QΠj^iA;' w n e r e Ci a n d
C2 are positive constants.

Proposition 4. Let F be the limit set for a symbolic construction with rectangles
satisfying the strong separation condition (5). Then

(1) the construction is regular and bounded with l-estimating vector λ = (λl}...,

λp) and u-estimating vector I = (λ\9..., λp),

(2) sχ :§ dim//F ^ dim 5F ^ dirn#F ^ s-j. Moreover, if the measures μχ and

μ- on Q are Gibbs, then sχ ^ d_m (x) and dm-(x) ^ s- for every X E F .
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The first statment is obvious and the second statement follows from Theorems
1-4. In Sect. 5, Example 6, we will exhibit a simple construction with rectangles
for which dim//F < dim gF < dim5F.

In [Me], McMullen studied a special example of a geometric construction in
the plane with rectangles. Given positive integers m and n,rn ^ n, he considers
the partition of the unit square into rectangles of size ^ x \. One chooses any r,
1 ^ r ^ m n of these rectangles and colors them. One then linearly contracts the
unit square by a factor of ^ x ~ and inserts a copy of this set into each of the
original colored rectangles. One keeps going and obtains a limit set F. This is
not a similarity construction since one does not insert a copy of this set into all
of the original rectangles, just the shaded ones. McMullen proves that dim^F =

dirngF = dim#F and finds explicit formulas for the box dimension and the Hausdorff
dimension which use information about the initial configuration. It follows from his
results that for most initial configurations, dim//F < dirngF.

The vectors y = (\,\) and λ = (^, ^ ) are 1-estimating and u-estimating vectors
respectively. Proposition 4 is applicable to this example and gives the following
estimate:

l o β r ^ A- Z7 ^ A- Γ7 ^ l o § Γ

— s dim//F s dim^F s — .
— log n — log m

It follows from McMullen's formulas that for most initial configurations, each of
the three inequalities may be strict.

In [PoW], the authors studied another type of simple geometric construction
with rectangles in the plane. Their construction is the similarity construction with
two rectangles, each of size λ\ x λ2, λ\ ^ λ2, whose boundaries are aligned with
the coordinate axes. The vectors y = (λ\,λ\) and λ = (λ2,λ2) are 1-estimating and
u-estimating vectors respectively. Proposition 4 is applicable to this example and
gives the following estimate:

log 2 .
— — ^ dim//F ^ dim 5F ^ dim^F ^

clef

The authors proved that: 1) dim 5F — dim^F = dim^F, 2) for "almost all" initial

configurations with λ2 ^ | , dim//F = dim^F = _ ^ ; , 3) for "almost all" initial

configurations with λ2 > j , dim^F = _ l o

M

; and for a set of λ2 of positive measure,
l o g ( Ί±L)

dim//F = dim^F = _1 Q

/ 1

; , 4) if λ2 is the reciprical of a Pisot number, then the

Hausdorff dimension is strictly less than _ l o

λ l ; . Hence the Hausdorff dimension
of the limit set may depend on delicate number theoretic properties of the ratio
coefficients.

3. Constructions with exponentially large gaps. We now consider constructions
where we have strong control over the gaps, but no control over the shape and the
size of the basic sets. We call a symbolic construction a construction with expo-
nentially large gaps if there exists a number 0 < β < 1 such that the (Euclidean)
distance between any two basic sets Δiv..ln and Δjr..jn is exponentially bounded
away from 0, i.e.,

where C > 0 is a constant.
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Proposition 5. Let F be the limit set for a symbolic construction with exponen-
tially large gaps. Then

(1) the construction is regular with l-estimatίng vector y — (β,...,β).
( 2 ) sy S dimHF.

Statement 1 is obvious and the proof of Statement 2 follows immediately from
Theorem 1.

4. One-dimensional constructions. We now consider one-dimensional symbolic con-
structions. We assume that each basic set Λiy..in is an interval satisfying

(1)

liy-i,,

where /,,...,„ and /,•,...,•„ are closed intervals of length /,-,..., (i and //,..,„ respec-
tively,

(2) int/^.^nint/,,...,., = 0 if (/!•••/„) + (/;,. ..,?„),

(3) /,,...„ = C i Π " = i 4 a n d k-i. = CiUU^P w h e r e 0 < A, ^ I,- < 1,
i = \9...,p and C\,C2 are positive constants.

Proposition 6. Let F be the limit set for a one-dimensional symbolic construction
defined above. Then

(1) the construction is regular with l-estimatίng vector λ = (λu...,λp) and

bounded with u-estimating vector λ — ( λ \ , . . . , λ p ) ,

( 2 ) sχ ^ dimHF g dim^F ^ ώmBF ^ sj9

(3) if λt = λi = λi, then s = sχ — άimHF = dim 5F = dim^F. Moreover, if the
measure μχ on Q is Gibbs, then mπ(s, ) is equivalent to mχ, 0 < mn{s,F) < oo,
and s — d_m{x) — dm/(x) for every x € F.

The proof of Statement 1 is obvious and Statements 2 and 3 follow immediately
from Theorems 1-5.

3. Asymptotic and Random Symbolic Constructions

3.1. We now consider more general types of geometric constructions where the basic
sets are asymptotically balls. These constructions may not be regular, but are regular
on each subset of an increasing sequence of subsets which exhaust the limit set up
to a set of measure zero. More precisely we say that a vector γ is a conditionally
1-estimating vector for a symbolic construction if there exists a sequence of subsets
{Qι},l= 1,2,... such that

(1) Qι C β/+i and | J / Q\ — Q up to a set of μ7-measure zero,
(2) there exist / such that μy(Qι) > 0,
(3) for every / = 1,2,... and ε > 0 there exists M(/,ε) such that for all ω £ Q\

and r > 0,

N(x9r) S M(/,ε)r~ ε , (7)
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where x = χ(ω) and N(x,r) denotes the number of sets in the Moran cover of the
set Qι (constructed in Sect. 1) that have nonempty intersection with B(x,r) Π χ(β/)

We call a symbolic construction conditionally regular if it admits a conditionally
1-estimating vector.

One can generalize Theorem 1 to obtain the following result.

Theorem 6. Let F be the limit set for a conditionally regular symbolic construc-
tion. Then sy ^ dim///7, where y is a conditionally l-estimatίng vector.

We begin with an asymptotic version of symbolic constructions. We will show
that these constructions are conditionally regular.

1. Moran-like asymptotic constructions. A Moran-like asymptotic symbolic con-
struction is a symbolic construction with basic sets Air..in satisfying the following
conditions:

(1)

where B_iχ...in and Bir..in are closed balls having radii rir..in and riχ...in respectively,
(2) m\Biv..in nint/?,•/...,•/ = 0 if (ί\ in)*(i[,...9i'n),"where MR denotes the

interior of the set R,
(3) there exist two sequences of numbers

λu n = λt exp(α n ), \ „ = λi exp(α/; „)

such that r_iv..in = CiΠy=iA/y,7 and rh...in = C2\Xι

j=ι~λiJj, where 0 < λt < 1, / =
l,...,/7 and C\,C2 are positive constants,

(4) for μ;i-almost every ω G β (where λ = (λ\,...,λp))9

I n i n
- V a: , —> 0 and - Y] aι 1• —> 0 as n —> oo .

Proposition 7. Let F be the limit set for a Moran-like asymptotic symbolic con-
struction. Then the construction is conditionally regular with the conditionally
l-estimating vector equal to λ = (λ\,...,λp). Hence sχ ^ άm\HF.

Condition (4) in the definition of asymptotic symbolic construction is quite weak;
one can obtain more information about the Hausdorff and box dimensions of the
limit set if the construction satisfies the following uniform version of (4):

(4a)
1 n

sup - 5Z «/ 7 —• 0 as n —* oo ,
n '

(4b)

sup - Σ aij j ~^ 0 as « -^ oo
(i\~'in)

nj=\
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Proposition 8. Let F be the limit set for an Moran-like asymptotic symbolic con-
struction. Assume that the construction satisfies condition (4b). Then s = s-λ —
dim//F = dirn^F =

Unlike the symbolic construction, the limit set for an asymptotic symbolic con-
struction may have zero Hausdorff measure (even in the case when the construction
satisfies the strong asymptotic conditions (al) and (a2) and the measure μχ is Gibbs,
see Sect. 5, Example 4 and compare with Statement 2 of Proposition 3).

2. Asymptotic one-dimensional symbolic construction. We now consider an asymp-
totic one-dimensional symbolic construction. This is a one-dimensional geometric
construction satisfying Conditions 1 and 2 in the definition of Moran-like asymptotic
symbolic constructions and the following conditions:

(3') there exist two sequences of numbers

k n = h exp(β/; n), \ n = ~h exρ(ά,, n)

such that

d ft 4 , ύ diam(4.../B) ύ C2f[\j ,
7=1 7=1

w h e r e 0 < λt ^ h < U i — !>•••>P a n d Q , C 2 > 0 are posi t ive constants ,
( 4 ' ) for /^-a lmost every ω e Q ( w h e r e λ = ( λ l 9 . . . 9 λ p ) ) 9

1 n

- Σ &i j —* 0 as n —> ex) .
nJ=\

and for μ j-a lmost every ω G Q ( w h e r e λ — ( λ \ 9 . . . 9 ~ λ p ) ) 9

a s n

Proposition 9. Let F be the limit set for an asymptotic one-dimensional symbolic
construction. Then the construction is conditionally regular with the conditionally
l-estίmatίng vector λ = (λl9...9λp). Hence sχ ^ ά\mHF.

As in Proposition 8, one can obtain more information about the Hausdorff and
box dimensions of the limit set if the construction satisfies the uniform conditions
(4a) and (4b).

Proposition 10. Let F be the limit set for an asymptotic one-dimensional symbolic

construction. Assume that the construction satisfies condition (4b). Then s^ ^

dim///7 ^ dimgF g dim^F ^ sj.

3. Random symbolic construction. We now consider a random version of the sym-
bolic construction. In this case the sizes of the basic sets are chosen randomly with
respect to some stationary ergodic distribution. We will use an ergodic theorem in
[BFKO] to reduce the study of these constructions to the asymptotic Moran con-
structions.
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A random symbolic construction is defined by

(1) a stochastic vector process (A, g> v) with A = {λ = (λin,λ^n), i = 1,..., p

and n G N}, where 0 < a ^ λj• n ^ λjtfι ^ β < 1, 5 is the σ-algebra of Borel
sets in Λ, and v is an arbitrary stationary, shift-invariant ergodic Borel probability
measure on A,

(2) a compact set Q C Σ+ invariant under the shift (i.e., σ(Q) = Q) such that

σ\Q is topologically transitive,
(3) for v-almost every λ G A, a family of sets {zίZl...ίn(X)} C IR" for ίj =

1,2,..., /?, where the rc-tuple (/1 zπ) is admissible with respect to Q which satisfy

£. |..,jί)c4v.,l(ί)cfilV..i,W,

where #Zl...;/;(Λ) and 5/,...z Λ(2) are closed balls having radii

r,....,n(I) = C, Π A,-,/!), r,,...,^!) = Ci ft %,y (X),
i=l 7=1

( 4 ) i n t / 3 / i . . . ί . | ( X ) n i n t δ / ; . . . ί , ( ί ) = 0 i f ( i , •••/„) + ( / ' „ . . . , / ; ) .

For every λ G A, the limit set
oo

F(X)=n u /̂,-/.(λ)
« = 1 O I ' I I )

admissible

is a perfect, nowhere dense, totally disconnected set.
The following lemma describes the limiting behavior of the numbers λhn,λ^n in

the random symbolic construction:

Lemma 1. Let F be the limit set specified by a random symbolic geometric con-
struction. Then there are numbers Az,A/,0 < λt ^ λi < 1,/ = 1,...,/? such that for
v—almost every λ G A the following limits exist:

(I) for μχ-almost every sequence (i\i2 •) G Q{λ),

(2) for μj-almost every sequence (i\iι •) G Q(λ),

^),α,,7 = log(^), A = (λu...,λp),I =

The next statement immediately follows from Lemma 1 and Propositions 7
and 9.

Proposition 11. Lei F be the limit set specified by a random symbolic construction.
Assume that either the construction is one-dimensional or λt = λi for i = 1,...,/?.
Then for v-almost every λ G A,

sχ ^ dim//F(/l).
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4. Generating Maps and Codings

One particular but important case of a geometric construction is when the sets Ah...ίn

are given by
Δh...ίn =hh ohho...ohin(A)9 (8)

where h\,...9hp : A —> A are contraction maps, i.e., d(hi(x),hi(y)) ^ Ljd(x,y) with
Li < 1 and x, y G A (a ball in IR"), where d denotes Euclidean distance. Most of the
results in the literature in dimension theory require that the process be described in
this way. We stress that this is a very special case and that the following situations
can (and do) occur:

(7) The construction can not be described by any continuous maps, i.e., there
are no continuous maps satisfying (8). This can occur if the boundary of a set A\v..in

is fractal. In the one-dimensional case the maps hj always exist and are continuous,
so the above mentioned pathology does not occur. In this case the maps are well
defined by

hj(dΔh...in) = dAh...inj

for any admissible sequence (ί\ -inj), where dΔlv..hiJ denotes the boundary of the
set Aiv..inj.

(2) There are continuous maps satisfying (8) that are not Lipschitz. One ob-
struction is that the boundary of a set Alr..ln can be a continuous but not Lipschitz
image of dA. In the one-dimensional case, this obstruction cannot occur. However,
one can construct a one-dimensional example where the process is defined by contin-
uous but not Lipschitz maps. Namely, there exists a simple geometric construction
on [0,1] with p — 2, λx = λ\ = λ\, λ2 = ~λ2 = h, 0 < λ\ < λ2 < 1 and the loca-
tions of the intervals Aiλ...in are such that the map h\ is not Lipschitz. Choose basic
sets such that

OC .

(3) There are Lipschitz maps satisfying (8) but these maps are not contrac-
tions. To see this, choose intervals Δ\,A2 and maps h\,h2 such that An = h\(A\),
Δ2\ = h\(Δ2) and d(A\,A2) « d(A\\,A2\). Then the map h\ is not a contraction.

(4) There are contraction maps satisfying (8) whose inverse maps are not
Lipschitz. The Lipschitz constants for the inverse maps depend on the gaps between
the sets Aiχ...in. To see this, choose intervals Δiχ...ln such that

Then the inverse of the map h\ is not Lipschitz.
(5) There are contraction maps satisfying (8) whose inverse maps are Lipschitz

but the maps are not similarities (i.e., d(hi(x),hi(y)) =Ltd{x,y) for all x £ A).

As we saw in case (4) the Lipschitz constants for the inverse maps may depend
on the gaps between the sets Δiv..in. For this reason, even if the process can be
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described using contraction maps with Lipschitz inverses, they may be of no use in
estimating the Hausdorff dimension of the limit set.

Let F be the limit set specified by a symbolic construction. Assume that the
construction satisfies the separation condition (5'). In this case the coding map χ
is injective. Define the map G : F —•> F by G(x) = p α o X~ι(x) It is easy to see
that G is a continuous endomorphism such that the set G~ι(x), x G F consists of
finitely many points. If μ is a σ-invariant measure on Q then its push forward
measure m = χ*μ is G-invariant and has the same ergodic properties as μ. If the
construction is given by finitely many contraction maps hk then the map G can be
described as

G(x) = h~\x) ifxeAk.

A very interesting question is to find criteria for a set F to be the limit set
of a geometric construction such that the induced map G : F —> F is expanding
(see Appendix 5). One may at first believe that the induced maps G for geometric
constructions having exponentially large gaps are expanding, but this is easily seen
to be false.

5. More Examples

1) Sίerpiήskί Gaskets

a) It is well known that the Hausdorff dimension of the Sierpiήski gasket

(Fig. 2a) coincides with the box dimension and is ^2. This immediately follows

from Corollary 2 and Proposition 3 since λ\ = Λ.2 = A3 = \ and p = 3.
b) Suppose that in the construction of the Sierpiήski gasket we forbid all config-

urations whose codings contain a 1 followed by a 2 (Fig. 2b). The spectral radius of

(\ i 0 is ^ 2 . Hence by Proposition 1 and Corollary 1, άimHF = l°gi

ι^f) «

1.38848!
c) A simple construction of the Sierpiήski gasket with λf = ^ for i = 1,2,3

is illustrated in Fig. 2c). The sets Λiv..in are asymptotically congruent to the cor-
responding triangles in the usual constructions and possess wiggly boundaries that
become asymptotically straight. As long as the approximation is sufficiently fast
and uniform, such that the construction satisfies the hypotheses of Proposition 8,

V v
Fig. 2a-c. Sierpiήski Gaskets
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then the Hausdorff dimension of the limit set is ^^. One can even choose the sets

Air..in in the construction to have fractal boundaries.

2) General Smale-Williams solenoid. Let P be a solid torus embedded in IR3. We
represent points on P by means of coordinates (0, r,s), where 0 G Sι the unit circle,
— 1 :g r,s ^ 1 such that r2 + s2 ^ 1. The point x with coordinates (θ,r,s) belongs
to the plane orthogonal to the core of the torus through the point 0 G Sι having
position (r,s) relative to the standard frame (e\,e2). We define a mapping f : P —* P
by

f(θ,r9s) = (20, λ\ r + ε cos 0, λ2s + ε sin 0) ,

where p > 0 is an integer, ε is a small positive constant and 0 < λ\,λ2 < 1. The
image f(P) is contained in P and wraps twice around P. See Fig. 3a). The set
A = (XfL\fn(P) is called a solenoid. See [Sh] for more details and nice pictures.

Let DQ be the section of P determined by the plane perpendicular to the core
at 0. The set AQ — A ΠDQ is the Cantor-like set obtained by the simple geometric
construction with λt = λ\ and λ{ — λ2 for / = 1,2. See Fig. 3b. Since the basic sets
in the construction of AQ are rectangles, it follows from Proposition 4 that

Iog2 Iog2

log(χ^) log(£)

Applying Marstrand's theorem [Fl], we obtain

' • l 0 g 2 - ^ d i m ^ .

A very simple argument [Fl] shows that άimHA ^ 1 + l o

l o gJ\.

If λι=λ2 = λ, we have that άimHAθ = ^ f y and άimHA = ^ ^ + 1, which

is the result obtained by Falconer [Fl].

3) Geometric construction with rectangles in the plane. The following simple ex-
ample illustrates the fact that the regularity of the construction depends not only on

Fig. 3. Smale-Williams Solenoid a),b)
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the sizes and shapes of the basic sets but also may depend on their spacing. Con-
sider the two similarity constructions where all the basic sets at step n are congruent
rectangles with width Λ/2 and length λ . The rectangles are stacked horizontally in
the first construction and vertically in the second construction. The limit sets of
both constructions are one-dimensional Cantor sets. The first has Hausdorff dimen-
sion l o g 2 _ and the second has Hausdorff dimension °?2.. The first construction is

— log / ~ 1 0 § L

regular with 1-estimating vector y = (λ, λ). The vector (λ, λ) is not 1-estimating for
the second construction but is 1-estimating for the first construction.

4) A simple asymptotic construction. This example shows that the second statement
of Proposition 3 may fail for an asymptotic construction, i.e., the measure of the
limit set may be zero.

Let p — 2 and suppose λ^n — λn = λoxp(an) for / = 1,2. There exists a geo-
metric construction on the line with disjoint basic sets Δiv..in satisfying

y=i

where An = Σ/Ui a>k- Let F be the limit set. For fixed n, the sets {Alr..in} give a
cover of F with

l V . . / J J = 2nλns exp(sAn) = exp(sAn),

where s — χ®
g\ . There is now a trichotomy:

(1) if ΣΐkLi ak < °°? m e n one can easily show that the geometric process sat-

isfies conditions al) and a2), and by Proposition 8, s — ά\mHF = dim^F = ^ h

(2) if Σ ^ i ak = °°» m e n o n e c a n show that JΠH(S,F) = oo,
(3) if ΣZi ak = -oo, then mH(s,F) = 0.

The sequence {^} satisfies the condition in the definition of asymptotic con-
struction if and only if \An —• 0. For example, choose an = \ in case (2) and
an = — i in case (3). One can show that s is still the Hausdorff dimension of the
limit set F. The mass distribution principle does not hold in case (3) since otherwise
we would have mn{s,F) > 0.

We now construct gauge functions for certain sequences {α^}, where ΣS=i ak
= -oo. Let An = Σ/Ui ak W e s e e k a function h{t) such that 0 < 2nh{λn Qxτp(An)) <
oc. We will find h(t) in the form h(t) = f exp(φ(t)). Then we would have —oo <
sAn + φ(λn exp(Λ)) < oo. Define t = λn exp(An). Since limw^oo ^ = 0, then t x
λn, and hence we can set φ(t) = —sA\og,.

If an - -\ then An = O(-log/i) and φ(t) = l o g ( g | ) . If an = - ^ then

An = O(-log(log/i)) and φ(t) = log(log(gί)). More generally, if an = ~^φ~n,

where log^ n denotes the /-fold composition of log?z, then An — O(— log ( / + 1 )«)
and hence φ(t) = l o g ( ' + 1 ) ( ^ - ) . We can thus obtain gauge functions with arbi-
trarily many logs from this basic construction. For these different sequences, the
coefficients λn = λ cxp(an) converge to λ, but of course with different speeds, and
hence, require different gauge functions.
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5) Random version of Example 4. The following example is a special case of
random constructions that was pointed out to the authors by Peres. We consider
the construction in Example 4 where the numbers {an} are independent and identi-
cally distributed random variables on the interval oo<a^anf^b< log(A) hav-
ing mean 0. If we define the random variable An = Σl=ι aki then the law of the
iterated logarithm implies that l iminf^ = — oc. The law of large numbers shows
that ~ —• 0. It immediately follows from a simple calculation as in Example 4 that

s = άimHF = ^ and mH(s,F) = 0.

6) Simple geometric construction with rectangles having limit set F for which
dim//F < dirtigF < dim#F. We describe a simple construction with rectangles in
]R2 with p = 2, λx = λ2 = A, I i = A2 = A, 0 < A < A < \ such that the limit set
F satisifes

log 2

- log A'
diϊΏBF = γ

log 2

-log A'

log 2

- l o g l

where y e (l,α) is an arbitrary number and α = -^4 > 1.

Let no = 0 and for k = 0,1,2,..., let nk+\ = [ocnk] and βk = 2{y~a)nu+]. In order
to describe the nth step of the construction we use the basic types of spacings:
vertical stacking (a) and horizontal staking (B). See Fig. 4.

(1) We start with two horizontally stacked rectangles. During steps n^ < n ^
«3£+i we use (b).

(2) We begin with 2n3k+] rectangles. Choose βk percent of these rectangles arbi-
trarily and paint them blue; paint the others green. During steps ^3^+1 < n ^ n^+i,
we use (b) in all blue rectangles and use (a) in all green rectangles.

(3) During steps n^+2 < n = n3k+3, we use (a) in all blue rectangles and use
(b) in all green rectangles.

(4) Repaint all 2n3k+3 rectangles white; repeat steps 1 to 4.

The collection of rectangles at the nth step contains 2n rectangles each with

vertical and horizontal sides of size λn x λ (the size in the vertical direction is λn

Fig. 4. a vertical stacking, b horizontal stacking
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and the size in the horizontal direction is λ ). Any two subrectangles on step n + 1
that are contained in the same rectangle at step n are stacked either horizontally or
vertically and the distance between them is ^λn. The projections of any two distinct
rectangles at step n onto the two coordinate axes either coincide or are disjoint.

Let us note that one can effect this geometric construction by a sequence of
affine maps {hUn} such that each basic set Δir..in = hiun o o hinin([0,1]) and the
induced map G on the limit set F is expanding (see Appendix 5).

We now calculate the Hausdorίf dimension and the lower and upper box dimen-
sions of the limit set F.

a) Calculation of Upper and Lower Box Dimensions. Choose ε > 0. There exists

a unique integer n > 0 such that λ < ε ^ λ . There are three possible cases and
we explicitly compute Nε(F) in each case. Denote by

Λn — n

- log λ

Case 1. We have n^ rg n < n^k+x In this case N(ε) = 2n and hence

log 2
An =

- log A

Case 2. We have n3M ^ n < n3k+2- In this case Nε(F) = iVε

blue(F) + Λffeen(F),
where Nε

blue(F) and N^iF) are the numbers of ε-balls in the optimal cover that
have non-empty intersection with respectively blue and green rectangles at step n.
It follows that

One can see that for sufficiently large k (for which βk S \) we have

]\f (F) < 2(2^~<x^n2lk+ι2!χn3lk+]Jί~n~n3k+2 + 2n3k+ι) = 2(2'}>n3k+[2n~n3k+2 -\-

a n d

jy ίj7\ > _/2(y-α)«3/t+i2α"3A:+i+>ί-«3*+2 _|_ 2̂ 3̂ +1 \ _ _ / 2 ^ 3 A + | 2"~" 3 A + 2 +

(1) Suppose n — n3k+\' Then

log 2
lim An —

n-+oc - log χ

(2) Suppose n — n3k+2 — 1. Then

l i m A n = y l Q g 2 i
—oc log λ — log λ

(3) Suppose n3k+\ < n < n3k+2- We wish to show that

y l o s 2 y log 2
- log λ - α log /I
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It is enough to establish that

This is an easy calculus exercise.

Case 3. We have n^k+2 ̂  n < ^3^+3. In this case

Nε(F) = N™UG(F) + N f e e n ( F ) = βk2
nu+2 + (1 - βk)2n .

It is easy to see that for sufficiently large k (for which βk ^ ^) we have that

N (F) < 2(2^~α^3A+12α/ί3A+1 -f 2n) = 2(2W + 2yn3k+])

and

N (F) > _(2(Λ/'~α)"3*+12αΠ3λ+1 + 2") = —(2" + 2yn3k+])

(1) Suppose « = «3yc+2 Then

log 2
lim An —

(2) Suppose n = n3k+3 — 1. Then

hm An =hm An = .
/7-+00 _ log χ

(3) Suppose «3£+2 < n < ^3^+3. We wish to show that

— log /

It is certainly enough to establish that

2n -\- 2yfϊ3k+] > 2n

This is obvious.

log 2It follows that dim»F > o g -. Combining this with Proposition 4, we conclude that
~~ - log λ °

dmιBF = - ^ I . It also follows that dim^F ^ y^ξj- Since limAn3k+ι = γ-^j,

we conclude that dim^F = y 1°^;
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b) Calculation of Hausdorff Dimension. Given ε > 0, choose k > 0 such that
χn3k+ι <- g Consider the covering of F consisting of green rectangles for n — n^+x
and blue rectangles for n — n^k+i-

Consider a green rectangle Δiv..χn . By construction, the intersection A =

Δir..in Π F is contained in 2n3k+2~n3k+ι small green rectangles corresponding to
n n3k+2 x / 3 ^ 2 . sincen — nu+2. These rectangles are vertically aligned and have size λ

nik+i g r een rectangles in the construction
-r«3*+2 _ -r[ocn3k+\]+2

^ \λn'k+\ the (1 - βk)2n

of F are each contained in a green square of size λn3k+ι.

Now consider a blue rectangle zJ/,...z . By our construction, the intersection

5 = Δiχ...in OF is contained in 2n3k+3~n3k+2 small blue rectangles corresponding to

n = n^k+3 They are vertically aligned and have size λmk+3 x I M +\ Since 1 3 A + 3 ^
| Γ M + 2 , the βk2

n3k+ι2n3k+2~n3k+[ = ft2Λw+2 blue rectangles in the construction of F are
each contained in a blue square of size 2Λ3*+2.

The collection of green and blue squares comprises a covering © = {(//} of F
such that

Σ (άmmUiY = (1 - βk)2n3k+i(V2λn3k+ι )s + βk2
n3k+2(V2λn3k+2Y > 1 > 0

if $ = _0^ 2

; . This implies that dim//F ^ o g 2~. On the other hand, by Proposition 4,

we know that άimHF ^ ^ 2

; , hence dim//F = _l0^ 2^ ; , ^ ; .

7J Example where diameters of inscribed balls in basic sets is not an l-estimating
vector. Let 71,72? 73?Λ, be any numbers in (0,1) and let A(yt) denote a simple ge-
ometric construction on the interval [0,1] x {i - 2 } , i — 1,2,3 with 2n basic sets
of size 7" at step /i. We wish to use these three one-dimensional constructions to
define a simple geometric construction in the square [0,1] x [—1,1]. Since the 2n

intervals at step n in each of the one-dimensional constructions are clearly ordered,
we may refer to the zth subinterval at step n, 1 ^ 1 ^ 2n of these constructions.
Consider the 2n polygons in [0,1] x [-1,1] having six vertices which consist of the
two endpoints of the /th subinterval at step n for all three constructions. We define
the 2n basic sets of our construction at step n by intersecting these 2n polygons with
the rectangle [0,1] x [-λ\λn]. See Fig. 5.

Fig. 5.
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It is easy to see that the limit set F of this construction coincides with the limit
set of the construction ̂ (72 )• Hence dim///7 = _ ^ and does not depend on 71,73
or λ. If we choose 72 < 71 = 73 < λ and 72 < λy\ or 72 < Λ73, then the inscribed
and circumscribed balls of the basic sets at step n have radii C\yn

λ and C2Λ/7, where
C\ and C2 are positive constants that are independent of n. Thus these balls cannot
be used to determine the Hausdorff dimension of the limit set.

6. Pointwise Dimension of Measures Concentrated on Cantor-like Sets
and the Continuous Version of the Eckmann-Ruelle Conjecture

6.1. We consider a class of symbolic geometric constructions modeled by a sym-
bolic dynamical system (Q, σ) having compact basic sets Λir..in and satisfying the
following conditions:

(1)

where 0 < λt < 1 for / = 1,...,p, C\, C2 are positive constants, and D{r) denotes
a ball of radius r.

This class of constructions includes Moran geometric constructions with disjoint
basic sets. Although basic sets of these constructions are essentially balls, their
topology and geometry may be quite complicated (for example, they may not be
connected and their boundaries may be fractal).

Let F be the limit set for the symbolic geometric construction defined above. We
formulate a powerful criterion that allows one to estimate the lower and upper point-
wise dimensions with respect to a Borel probability measure v on F. Given x e F
and n > 0, consider the unique set Δix...in — An(x) that contains the point x. Denote

_. . log v(An(x))
d(x) = lim mf log dιamAn(x)

d(x) - hm sup
lo

Theorem 7. Let F be the limit set for the symbolic geometric construction defined
above. Then for any probability measure v supported on F

(1) dv(x) S d(x)for allxGF,
(2) d(x) ^ dv(x) for v-almost all x e F,

(3) If d_{x) — d(x) = d(x) for v-almost every x e F, then

dv(x) = dv(x) = d{x)

for v-almost every x G F.

Remark. Consider a symbolic geometric construction with basic sets satisfying only
Condition 1 above (thus we do not require that the basic sets are disjoint). In this
case the coding map need not be injective. Let F' denote the set of points x G F
such that χ~ι(x) consists of only one point, i.e., where the coding map is injective.
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By replacing the set F by the set F' in the proof of Theorem 7 one can show
that Statements 1 and 2 hold for all point x G F'. For an application to multifractal
analysis see [PW2].

The next statement is an immediate corollary of Theorem 7.

Corollary 3. Let F be the limit set for a symbolic geometric construction defined

above. Assume that there is a Borel measure v on F such that d_{x) = d(x) = s
for v-almost every x G F. Then s ^ dim///7.

Using Theorem 7 and the Birkhoff Ergodic Theorem we now show that for the
above symbolic constructions, the pointwise dimension of any measure v which is
supported on the limit set F exists and is constant almost everywhere, provided the
pull back of v under the coding map is a Gibbs measure. We can assume that the
potential log φ for v satisfies P(log φ) — 0, for if log φ is any potential for v, let
log ^ = log φ-P{log φ).

Since the basic sets of the construction are disjoint, the coding map χ is one-
to-one and we can consider the induced map G — χ o σ o χ~ι on the limit set F.

It immediately follows from (21) and the description of the geometric construc-
tion that there exist positive constants C\, C2 such that

c ΠLi Φ(σω) < log v(Mχ)) < c ΠLi ft(g*β>)
1 Π : = 1 4 =logdiam(4,(*)) - 2 Π L i 4 '

Applying the Birkhoff Ergodic Theorem to the functions x —> log(φ(x)) and x —>

log λil9 where χ(x) — {i\i2 •)> yields the existence of a positive number dv such

that for v-almost every x G F,

d(x) = lim = dv .
n-+oo log aιam(Δn(x))

Applying Theorem 7 we obtain the following result.

Theorem 8. Let F be the limit set for the symbolic geometric construction defined
above. Then for any measure v on the limit set F such that the pullback measure
χ*(v) is a Gibbs measure, there exists a positive constant dγ such that dv(x) = dv

for v-almost every x G F .

6.2. In [ER], Eckmann and Ruelle conjectured that any hyperbolic measure (i.e.,
ergodic and having non-zero Lyapunov exponents almost everywhere) for a C 1 + α -
diffeomorphism of a compact Riemannian manifold is exact dimensional, i.e. its
pointwise dimension exists almost everywhere. The following theorem is a verifica-
tion of the Eckmann-Ruelle Conjecture for equilibrium measures for Holder continu-
ous conformal expanding maps and conformal Axiom A# (topologically hyperbolic)
homeomorphims.

Theorem 9.
(1) Let g be a Holder continuous conformal expanding map of a compact

metric space X {see Appendix 5). Then any equilibrium measure corresponding to
a Holder continuous function on X is exact dimensional

(2) Let g be a Holder continuous homeomorphism of a compact metric spac

X satisfying Axiom A# {see Appendix 6). Assume that g is also conformal {see
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Condition (22) in Appendix 6). Then any equilibrium measure corresponding to a
Holder continuous function on X is exact dimensional

The proof of this theorem is quite similar to the proof of Theorem 8 that is based
on the fact that basic sets form a Markov partition for the induced map. The only
difference is that the elements of the Markov partition for an expanding map (or
topologically hyperbolic maps) are not necessarily disjoint and may intersect along
their boundaries. However, the measure of the union of boundaries is zero with
respect to any equilibrium measure for the expanding (or topologically hyperbolic
maps). See Appendices 5 and 6 for more information on the Markov partitions.

The requirement that the map g in Theorem 9 is conformal, is crucial. We present
examples that illustrate the non-existence of pointwise dimension for the measure
of maximal entropy of a non-conformal Holder continuous expanding map and a
Holder continuous homeomorphism satisfying Axiom A#. We start with the simple
geometric construction presented in Example 6 and let F be the corresponding limit
set. Note that for this construction

def log 2 _ def log 2
SΞΞSλ= — 7 , S = S =

- log λ λ - log λ

Here the functions φ(ω) = sχlog λiχ and φ(ω) = sjlog λiχ coincide and are constant
(= log 2). This implies that the Gibbs measures corresponding to these functions

also coincide. Hence, mλ — niχ = m; moreover m is the measure of maximal entropy
for the full shift σ (see Appendix 3).

Clearly, for our construction, the coding map χ is injective and hence we can
consider the map G : F —>• F defined by G — χ o σ o χ~ι. The map G is a Holder
continuous endomorphism (but is not injective). The map G is also expanding (see
Appendix 5). Obviously, m is an invariant measure for G of maximal entropy.
We describe its lower and upper pointwise dimensions. Namely, we show that for
m-almost every x G F,

, . , log 2 log 2
dm(x) = s= — -, dm(x) = s =- log λ - log λ

The fact that dim//F = ^ immediately implies that d_m(x) rg ^ for m-almost ev-
ery x G F. Otherwise there would exist a set A of positive m-measure with
d_m(x) ^ s + ε for any x e A. The non-uniform mass distribution principle would
then imply that dim//F ^ dimπA ^ s_ + ε. Statement 2 in Theorem 4 immediately
implies that djx) = ^ .

In order to prove the corresponding result for dm(x), consider rk — λ M+1 and
denote A^x) the unique cylinder set Air..n3k+ι that contains x G F . It is easy to
see that B(x,rk) Γ)F c Ak(x) Γ)F. Since the measure μ is Gibbs the inequalities (9)
imply that for all x G F,

m(B(x9rk)ΠF) ^ m(Ak(x)Γ)F) ^ DιT3k+λ = Dxrj ,

where D\ > 0 and hence,

- log m(B(x9rk)ΠF) _
dm(x) ^ hmsup ^ s .

k^oo log rk

We now apply Statement 2 of Proposition 4.
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6.3. As we have mentioned the map G : F —> F constructed above is a Holder
continuous endomorphism but not an injective map. Consider further the set F =
F x F endowed with the metric

and the coding map χ : Σp —> F defined by χ(x,^) = ( *-1*0*1 •)> where Σ^
denotes the space of two-sided sequences ( i-\ki\ •),/, = 1 /? and χ(x) =

(-• i-2i-i), χ(y) = (ioh-•)- Set G = χ o σ o χ ~ 1 . It is easy to see that G is a
Holder continuous homeomorphism and that for any (x, y) G F ,

where πi,π2 are the projections, π\(x,y) = x and π2(x,y) = y. One can also see
that G satisfies Axiom A# in the sense of Alekseyev and Jacobson [AJ], i.e., the
map is topologίcally hyperbolic.

Consider the push forward measure m of the measure μ on Σ+ defined by

By virtue of Corollary 2, μ is invariant under σ and hence m is invariant under G.
It is easy to see that m = m x m. It follows that for m-almost every (x,y),

It is not difficult to check that m is the measure of maximal entropy for G. Thus
we have proved the following statement.

Theorem 10. There exists a Holder continuous Axiom A# homeomorphism G
of a compact subset in IR2 with positive topological entropy that possesses the
unique measure m of maximal entropy for which d_m(x)^dm(x) for m-almost all
x. Moreover, G is Holder continuously conjugate to the full shift.

As we mentioned, this does not hold for smooth maps [L, PY].

6.4. We will construct an asymptotic Markov geometric construction on [0,1] for
which the induced map G on the limit set F is expanding and possesses an ergodic
invariant measure with positive entropy whose pointwise dimension exists almost
everywhere, and is not constant. Our approach is a simpler version than of [C].

Let p = 3 with ratio coefficients λ^m i — 1,2,3 and n — 1,2,3,... given by

α if n is even

β if n is odd ,

y, if n is even

δ, if n is odd ,

where 0 < α ί§ /? < | , 0 < 7 ^ <5 < | and ocδ^yβ. Consider the transitive matrix
A given by

A =

We require the following lemma.
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Lemma 5. Let {λ^n}, i = l,...,p, n = 1,2,... be sequences of numbers satisfying:
0 < λijn < 1, and for any n,

Σ Kn = λ < \ .

Then there exists a sequence of affine maps {/*/,„} and a geometric construction
on [0,1] modeled by a given symbolic dynamical system (β, σ) such that

(1) each basic set Λir..in — hiun o • o hinin([0,1]);
(2) Δh...in Π Δjv..jn = 0 if (h - in)HJ\ ' 'jn)\
(3) the induced map G — χo σ o χ~ι on the limit set F is expanding.

Proof For each n = 1,2,..., define h^n{x) — λhnx + a^n and choose a^n such that

at each step n, the sets A/,w([0,1]) are at least j - apart. The result follows. D

We apply Lemma 5 to the above sequence of ratio coefficients and the matrix
A to obtain a geometric construction on [0,1] modeled by the transitive subshift of
finite type Σ^. It is obvious that the following limit exists:

. 3 def 1 « ί | l o g ( M if i = 1,3
log // = lim - > log λi• k — \ i

8 n^ntx ' \\\og{tώ), i f / - 2 ,

and thus the construction is a one-dimensional asymptotic construction.
Let μ be a Gibbs measure on Σ\, corresponding to a Holder continuous function,

and v — χ*μ.
Consider the sets

A = {x e F : χ " 1 ^ ) = (hh -') € Σ$ with ix = 1 or 3}

and

5 = { x G F : χ- ! (x) = {ί\i2 •) G Γ+ with ^ = 2} .

These sets are disjoint and comprise Σ\. They are not invariant under G. Since μ
is a Gibbs measure and the sets stf and J* are open, we have that v(jrf) > 0 and

> 0. One can check that for every x G s/,

log diam(Λn(*)) 1
hm = - log(7jβ),

n^oo n 2

and for every x e B,

log dia.m(An(x)) 1
lim — — — ^ = - log(ocδ).

«—>oo n 2

Since %(Zlw(x)) is a cylinder set, the Shannon-McMillan-Breiman Theorem implies
that for v-almost every x e F,

lim = hμ(σ) > 0 .
n—>oo γi
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Thus, by Theorem 7, we have

_ U fsr\

d_v(x) = dv(x) = dv(x) =
lim^c

2hμ(σ)
= — for almost every x G A

log(yβ)
and

hμ(σ)
dv(x) = dv(x) = dv(x) =

= —-—— for almost every x G B .
log(α<5)

Repeating the construction in Sect. 6.3, one can prove the following statement.

Theorem 11. There exists a Holder continuous Axiom A# homeomorphίsm G that
possesses an invariant ergodic measure v for which the pointwise dimension exists
almost everywhere but is not essentially constant.

7. Proofs

Proof of Theorem 2. Let y be a strongly 1-estimating vector. Given r,0 < r < 1,
consider the Moran cover Ur = Ur(y) of the set Q which consists of cylinder sets
C{J) = Cir.Mωj)J = 1,...,7V. Let Δh...ln{Xj) = χ(Ch...in(ωj)\ where Xj = χ ( ω y ) .

By the definition of a Gibbs measure (see Appendix 3) there exist positive
constants D\ and D2 such that for j = 1,... ,7V,

my(Δh...in{x))

where m7 is the push forward of the Gibbs measure μγ corresponding to the function
φ(ixi2 •• ) = Sy log yH on Q. Since the vector y is strongly 1-estimating, by (9), we
have

N(x,r) N(x,r) n(Xj)

m y { B ( x 9 r ) ) S Σ m y ( Δ ^ ) ^ Σ ^ Π y%
i ^ i

( , ) f/

^ U Σ Π ?'; ^ L^^ry^ <; L5r^ , (io)
7 = 1 ) f c = l

where ^4,^5 > 0 are constants. Hence the measure my satisfies the uniform mass dis-
tribution principle. This proves statement (1). Moreover, (10) implies that
Sy ύ dmXx) f° r ^ v e i Ύ x GF. It follows that Sγ ^ άimHF and mH(sy,F) > 0.

We now prove that my(Z) ^ rnH(s,Z) for any Borel subset ZdF. Given

δ > 0, there exists ε > 0 and a covering U = {U{k)} of Z by open sets U{k) with



Dimension of Deterministic and Random Cantor Sets 139

diam£/ ( A : ) ^ ε satisfying

Σ (diam U{k))s S mH(s,Z) + δ .

By (10) it follows that

my(Z) S Σ rny(U(k))^L5 Σ ( d i a m U{k))s ^ L5mH(s,Z) + L5δ .

Since δ is chosen arbitrarily this implies that my(Z) ^ mn{s,Z). D

0/ Proposition 2. We begin with the following general lemma:

Lemma 6. Let A = (A(i,j)) be a transitive (p x p) matrix of 0s and Is, and
consider the subshift of finite type defined by A. Let f : Σ~\ —• IR be a continuous
function that depends only on the first coordinate. Let F denote the (p x p)
diagonal matrix d iagθ / ( 1 ) , ef{2\..., ef{p)). Then P^(log / ( ω ) ) = P^(log f\ωλ)) =
log r, where r denotes the spectral radius of the (p x p) matrix AT, where A*
denotes the transpose of A.

Proof In the proof, we exploit the fact that the exponential of the pressure is
the maximal eigenvalue of the transfer operator. Let ψ : I ) -> R be a continuous
function. Then the transfer operator

{Lfφ)(x)*=Σ exp(f(kx))φ(kx)A(k,xι) = Σ ^p(f(k
k k

where x = (x\X2 •)• The eigenvalue equation for Lf is

Σ exp(f(k))h(k)A(k,j) = ηh(j).

According to [PP, p. 24 (note normalization of the transfer operator)], the largest
eigenvalue of Lf is η = exp(/ )(/)). Hence exp(P(/)) is the spectral radius of the
matrix A*F. D

Proposition 2 follows by applying Lemma 6 to the function f(ω) = f(ω\) =
t log α ω i . D

Proof of Theorem 4. By the definition of a Gibbs measure, there exist constants
Di,Z>2 > 0 such that for any basic set Λlr..in,

D^ψ^SD2. (11)
1 1 \1*=1 \

Fix 0 < r < 1. For each x E F, choose a point ω = (z 1 z2 •) £ Q such that χ(ω) = x.
Define 1 ^ in(ω) ^ p such that λiλλi2 λin{ω) > r and λl{λl2 λin(ω)λin{ω)+] ^ r. It
follows that Alr..ln{ω)+ι = z(C/,...//;(ω)+1) c B(x,2C2r), where B(x,r) denotes the ball
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of radius r around the point x. Hence, for all x G F,

()
mλ(B(x,2C2r)) ^ mλ(Ah..,n{ω)+ι) ^ A Π Ά{ ^ Urs' ,

k=\

where L\ > 0 is a constant. It follows by (11) that for all x G F,

log m;(B(x,r))
dm;(x) = l imsup B / Λ l ; ; S sλ .

r_+o log r

We now prove that mH(s, ) ^ const m X-). Let Z c F be a closed subset. Given
<5 > 0, there exists ε > 0 such that for any covering U = { t / ^ } of Z by open sets
[/<*> with diam i/^> ^ ε, we have

mff(s,Z) ^ E (diam C/(Λ))S + δ .

There exists a covering U of Z by basic sets A^ = Δiv..in{k) satisfying diamzl^ ^ ε
and

Since λ is a u-estimating vector, it follows from (2) that

n(k)

Π ^
y=i

mλ(Aik)) + δ S C2D2rnλ(Z) +

Since δ is chosen arbitrarily this implies the desired result.

Proof of Theorem 1. Given numbers 0 < λ\,λ2,...,λp < 1, let μχ be an equilib-
rium measure on Q corresponding to the function sχ log λiχ. By definition,

hμ.χσ\Q) + s}J\ogλhdμλ = 0, (12)
Q

where hμ(σ\Q) = h is the Kolmogorov-Sinai entropy. Let us first assume that μχ is
ergodic. For fixed ε > 0, it follows from the Shannon-McMillan-Breiman theorem
that for μ;-almost every ω G Q one can find N\(ω) > 0 such that for any n ^
Nι(ω),

exp(-(A + e)n) ^ μ^C,,.../,^)) g exp(-(Λ - ε)«), (13)

where C,,...,^^) is the cylinder set containing ω. It follows from the Birkhoff Ergodic
Theorem that for μ -almost every ω € Q there exists N2(ω) such that for any « Ξΐ

- log ft λ\•• - ε ^ ί / log λhdμλ ύ - log ft ^ + e (14)
« 7 =i e n j = ]
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Combining (12),(13), and (14) we have that for μ -almost every ω G Q and n
sufficiently large,

ft ^+α ^ ft λl exp(-2ε«) ^ μλ(Clr.,niω)) ^ ft § exp(2β«) ^ ft ^Γ* '
7 = 1 7=1 7 = 1 7 = 1

where α = m m Π o l £ i < < > 0 ^his implies that for μ;-almost every ω E Q and

any rc ^ max{J/Vi(ω),J/V2(ω)},

Π ^ * ^ ^C'i-'.(ω)) ^ Π ^ Γ <15)
7=1 7 = 1

If μχ is not ergodic, then (15) is still valid which can be shown by decomposing
μ into its ergodic components.

Given / > 0 denote Qι = {ω G Q : N\(ω) ^ / and 7Y2(ω) ^ /}. It is easy to
see that Qι c β/+i and g = U/=iδ/ (modO). Thus there exists /o > 0 such that
μ(Qι) > 0 if / ^ /<>. Let * G χ(β/),/ ^ /0,0 < r < 1.

Repeating the arguments in the proof of Theorem 2 with g replaced by Q\ and
applying (15) to the numbers y\9...9yp and measure μy, one obtains that my(B(x,r)Π
χ(Qι)) ^ Krs~a, where K = AΓ(/) > 0 is a constant and * G χ ' H δ / ) ) i s anY point.
This implies that for any / > 0 and x G χ~ι(Qι),

m m f

r-,0 log r

It follows that for all sufficiently large / G N, dim// g/ ^ 5y — α. This implies that
^ ^r — α. Since α can be arbitrarily small, this gives the desired result.

Proof of Theorem 3. Fix 0 < r < 1. For any ω = (z*i z*2 -') € Q, define the unique
n(ω) such that Λ , Λ'2 ' ' Λ'n(£0) > r a n ( l ^1^2 ' ' ' ^«(ω)+i = r ^ ^s e a s Y t 0 s e e m a t

n(ω) —•> oo as r —>• 0 uniformly in ω. Fix / > 0 for which μ XQi) > 0, where Qι are
the sets constructed in the proof of Theorem 1. One can now choose r — r{l) > 0
sufficiently small such that n(ω) becomes large enough to satisfy (15) for any
co € Qi Repeating the arguments in the proof of Theorem 4 with Q replaced by
Qι, and applying (15) to the numbers (λ\,...,λp) and the measure μχ, one can show
that for any x G χ(Qι) and any r > 0 sufficiently small,

mλ(B(x,r)) ^ Krs'+* ,

where K = K(l) > 0 is a constant. This implies that dm/(x) ^ sχ + α and hence,

dm,(x) ύ sχ + α for any x G F. This completes the proof of statement (2).

We now show that dim^F ^ 51/. The arguments in this proof are essentially due
to Bowen and were pointed out to us by Ledrappier.

It is sufficient to prove that JP(dimjgF log λiχ) ^ 0, since the map t —• P{t log A/,)
is a decreasing function [Bol].

Given δ > 0, it follows from the definition of dirngF (see Appendix 1) that
there exists ε > 0 such that Nε(F) ^ ε^-dimβF Consider the Moran cover {C(j)}
= {Qu..jn(ω J , 7 = 1,...,Nε(F). Note that this cover need not be optimal, i.e., Nε(F)
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^ Nε(F). There clearly exists A = A(ε) > 0 such that for j = l,...,Nε(F),

P n(ωj)

7 ^ Π 4 ^ ε,
^ £ = 1

and hence

C, log Q ) ^ «(©,) ^ C2 log (*λ ,
where C\ — :—* , . and C2 = 1—,* t Λ. This implies that n(ω,) can take on at most

Q log(7) - C\ l o g ( | ) possible values.

We now think of having Nε(F) balls and C2 l o g ( f ) - C i log(^) baskets.

Then for Nε(F) ^ C2 log (7) — Q log (\), there exists a basket containing at least

^yi balls. This implies that there exists a positive integer α with
C2log(f)-C,

C\ log (\) ^ α ̂  C2 log (7) such that for ε sufficiently small,

Nε(F)
#{coj such that n(a)j) = α} ^

C2log(f)-C1log(M

" C2log(f)-C1log(i) ~ C3logφ -

Let φ(ω) = (dim^F — 2δ) log λil9 where ω = (/iz2 •)• Then

n n

(Snφ)(ω) = Σ Φ(σkω) — (dim^F — 2δ) log Y[ λik ,
k=\ k=\

and hence exp(Snφ)(ω) — (ΠA=I ^4) d i m β F ~ 2 ^ It follows that

Pα((dΐΐn> ~ 25) log Ah) Ξf i log ^ ωGinf Γ f\ λh^

admissible

i n c o v e r i n g { z l ( J ' }

> ^dinTβF-2^1 j /

Hence P((dίm 5F - 2δ) log Λ,-,) = limα^oo Pα((dmί 5F - 2(5) log λh) = 0. D

Proof of Proposition 1. Let μ; denote an equilibrium measure for sχ log A/,. It
immediately follows from the variational principle that

_ hμ.{σ\G) < Kσ\Q)
- / log λhdμλ - log max 4 '

The case of equality is obvious.

\ϊ λi — λ for / = 1,...,/?, then this immediately implies that si = _^J This

proves the desired results. D
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Proof of Proposition 7.

1) The first inequality in (4) implies that for any ε > 0 and μ;-almost every ω G Q,
λ = (Λi,...,/lp), there exists /V3(ω) =/V3(ω,ε) such that for any n ^ /V3(ω),

1 A
n /=1

< ε.

The inequality (16) is equivalent to

n n n

Π λh exρ(-εw) ^ Π λijj = Π % exp(ε^z).

(16)

(17)

It is sufficient to consider only the case when μA is ergodic with respect to σ. Then
for μ;Γalmost every ω = (z'1/2 •) G Q, the following limit exists:

lim ]Γ log 4 = / log λωιdμλ(ω) = a<0.
n^oo j = ι Q

This implies that for any ε > 0 and μ;-almost every ω G Q there exists N^{ω) =
yV4(ω,ε) such that for any n ^ N4(ω),

- Σ log h -
n i=7=1

< ε. (18)

Given / > 0 denote

Qi = {ω e Q : Ni(ω) ^ / , / = 1,2,3,4} ,

where N\(ω),N2(ω) are the two functions constructed in the proof of Theorem 1
(see (15)). It is easy to see that Qι c QM and Q = \J™γ Qι mod(O). Thus there
exists /0 > 0 such that μ XQi) > 0 if / ^ /0.

Consider ω = (zμ'2 •) ̂  (?/> ̂  = 0̂ a n ( i 0 < r < 1. Let /?(ω) denote the unique
positive integer such that λi]λh λlφ)) > r and λhλh λln{ω)+ι ^ r. Obviously,
n(ω) ^ 0 0 as r —> 0 uniformly in ω. Hence we can assume r = r(l) is so small
that ft(ω) ̂  max{/Y3(ω),yY4(ω)}. Applying (18) to n = n(ω) we have

n(ω) S
log r

(α + ε)

Consider the cylinder set Clv..ln(ω). We have that ω G C
ω' G C/,.../n(w) Π Qι and «( ^ «(ω) then ίv..in(ω)

(19)

and if

Let C(ω) be the largest cylinder set containing ω with the property that for every
ωf G C(ω) Π β/ we have C/,.../^, Π β / C C(ω) Π β/ and there exists ώ G C(ω)
such that C(ω) = Clr..in(ώy It is easy to see that the sets C(ω)Γ\Qι correspond-
ing to different ω G Qι either coincide or are disjoint. We denote these sets
by C(/),y = 1,...,/V. There exist points ω7 such that C ( y ) = Civ..in(ω y For any
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j = l,...,iV we have

n(coj) n(a)j)

/-' π 4' ^ w(c">) ^ z Π ^ •

Consider a point x = χ(ω) E F with ω E g/. We estimate the number N(x,r) of
sets C ( y ) that intersect the set B(x,r)Πχ~ι(Qι) for sufficiently small r. It follows
from (17) and (18) that

vol (B(x,r

max! ^-^^ vol (£(*, r + ^

mini

where Ci,C2,C3,Z? are positive constants. This implies that the construction is con-
ditionally regular.

3) The proof follows from 2). D

The proof of Proposition 8 is a slight modification of the proof of Proposition 7.

Proof of Proposition 3. Obviously Moran-like constructions are bounded. The reg-
ularity of these constructions immediately follows from Condition 3 since the num-
ber of disjoint balls of a given radius r which intersect a given ball of radius
constant x r, is uniformly bounded, independently of r.

The second statement follows from Theorem 5. D

Proof of Lemma 1. We will prove Statement (1). The proof of Statement (2) is
similar. Applying the Birkhoff Ergodic Theorem for the stationary ergodic process
to the functions / ( I ) = (log λlΛ,...,log λpl) and J{λ) = (log I u , . . . , l o g JpΛ) we
obtain

1 n

- Σ log λik -> log λt
n k=\

for v almost every λ, where we define log λt as the limiting value. We need to
show that for μ almost every ω = (i\i2 •) E Q,

We break up the sum

U ,Λ l

N \#{ik=j} h
l<k<N
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We wish to show that for μ-almost every ω, each of the above terms in parenthe-
ses tends to zero as N tends to infinity. This immediately follows from the following
generalization of the Birkhoff Ergodic Theorem for return times to a set.

Theorem [BFKO]. Let (X, 23, v, T) and (Y,&,μ,S) be two mixing measure theoretic
dynamical systems. Let A C Y be of positive measure, μ(A) > 0. For every y G Y
let Ay denote the return time sequence {n G M | Sny G A}. Then for μ-almost every
y£Y andfor feLι(X),

keAv

for v-almost every x £ X.

We apply this theorem for T the ergodic stationary process in the defini-
tion of random symbolic geometric construction, S — σ : Q —> Q the shift map
with invariant Gibbs measure μ, and A = C}• — {ω G Q \ ω\ =j}. Clearly, the set
{1 ^ k ^ N, h =j} = {1 S kύ N, σkω G Cj}. D

Proof of Theorem 7. Given x G F let ω = (z'1/2 •) € Q be the unique point
such that x — χ(ω). Fix r > 0 and choose nr(ω) such that CiΠl'i^ λik < r and

^ Γ K ' i ^ 1 K ^ r. Since ω G Cili2...in, where n = nr(ω) we have Aili2...in C B(x,r),
where Δhl2...in = χ(Chi2...in). This implies

logv(B(x,r)) < log v(zl/μ2...//;(x))

log r ~ log r

Since this inequality holds for all ω G Q with χ(ω) = x we obtain

logvQg(x,r)) < log v(Δlχi2...in(x))

log r = log r

We also have

r ^ C2 Π 4 = C2Π kτ~ ^ -^diamAlιi2..,n ^ C3άmmAhh..,n ,

where n — nr(ω) and C3 > 0 is a constant.
It follows that

log v(fi(x,r)) log v(z1/l/2...z )
^ hmsup ——

log v(fi(x,r))
dv(x) = limsup , ^ hmsup

logr
msup , ^ hmsup
r-o logr r_^o logdiamzJίV2...//;(ω)

log

We now prove the second estimate in Statement 1. Given k G N, define Fc,α =
{x eF : v(An(x)) ^ C(diamzlw(x))α for all n ^ 0}. If v(Fc,a) > 0, then by the
general density theorem [Fe], v-almost every point in Fc,α is a point of density. Fix
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a set FQOL having positive measure and let x be a point of density. It follows that
there exists R = R(x) such that if r ^ R then v(B(x,r)) ^ 2v(5(i,r)n JF c,α)

Consider the set A = χ~x(Fc,u). For r < R(x) consider the Moran cover U^AW
of Fςα This cover consists of M disjoint cylinder sets C^ — C/,...^ )9 where

cύj e A and M is the Moran multiplicity factor. Moreover, Π/t=i kk S r, and

B(x,r)ΠFk C Ujli (^ΠFjfc), where Δ^ = χ ( C ) . If follows that

v(£(x,r)) ^ 2v(5(x,r)ΠFCα) ^ 2 ^ v ( J ω ) g 2C]Γ diam(zlO ))α g 2MCrα .
7 = 1 7 = 1

Hence dv(x) ^ α. On the other hand, it is clear that d_(x) ̂  α for every x £ Fc,α.
It follows that d_(x) ̂  d_v(x) for almost every x G F c x The result follows since

Uc/,
The last statement is a direct consequence of the preceding statements. D
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Appendices

Appendix 1. Hausdorff Dimension and Box Dimension

Let U C IRΛ The diameter of U is defined as diam(£/) = sup{|x - y\ : x j G U}.
If {£//} is a countable collection of sets of diameter at most δ that cover Z, i.e.,
Z c [ji Ut with 0 < \Ui\ ^ δ for each i, we say that {[//} is a (5-cover of Z.

Suppose that Z c IR" and s ^ 0. For any s > 0 we define

mH(s,Z) = lim inf < Σ diam ([//)* : {C/J is a (5-cover of Z > .
<5->0{£/,} |̂  i J

We call mH(s,Z) the s-dίmensίonal Hausdorff measure of Z. There exists a
unique critical value of s at which mn{s,Z) jumps from oo to 0. This critical value
is called the Hausdorff dimension of Z and is written dimHZ. If s = dimHZ, then
mπ(s,Z) may be 0, oo, or finite. Hence dim//Z = supfs : mπ{s,Z) = oo} = inf{s :
mH(s,Z) = 0}.

Let Ns(Z) denote the minimum number of sets of diameter precisely δ needed
to cover the set Z. We define the lower and upper box dimensions of Z by

A. _ Γ . AogNδ{Z) log Nδ(Z)
dim DZ = hm inf : — and dim^Z = hm sup : — .

B δ^o log(i) ,V logφ
It is easy to see that dim// Z ^ dim^Z ^ άimBZ.



Dimension of Deterministic and Random Cantor Sets 147

Appendix 2. Two Methods of Obtaining Lower Bounds for άimuF

Uniform Mass Distribution Principle [Fr]. Let μ be a probability measure sup-
ported on of Z C IR" and suppose that for some s there are numbers c > 0, and
δ > 0 such that μ(U) ^ c diam (U)s for all sets U C Z with dmm(U)s ^ δ. Then
mH{s,Z) ^ μ(Z)/c and s ^ dimHZ.

Non-Uniform Mass Distribution Principle. Let μ be a probability measure sup-
ported on Z c IRΛ We define the Hausdorίf dimension of the measure μ, dim//μ =
inf{dim//£/, μ(U) = 1}, and the lower and upper pointwise dimensions of μ,
J (Ύ\ _ i™ inf log μ(B(x,ε)) J ~j / \ _ i log μ(B(x,ε))

tiμ\χ) — iiminrε^o — ^ i l — ana aAx) l i m s u P — j i —

Proposition. If d_μ(x) ^ d ^ 0 for a.e. x £ Z, ί/zβw dim//μ ^ J, α r̂f hence dim//Z

The uniform mass distribution principle implies the non-uniform mass
distribution principle. In fact, dL

μ(x) ^ d implies that for any α > 0, μ(B(x,r)) ^

Appendix 3. Thermodynamic Formalism

Good references for this material are [Bol] and [PP]. Given a transitive p x p
transfer matrix A of 0s and Is, consider the one-sided subshift of finite type (ΐ^~, σ)
with σ : Σ\ —> I1^ the shift map. The set Σ\ consists of all admissible words, i.e.,
a word x = (x\,X2,...) £ {1,...,p}^ is admissible if aXιtXι+ι = 1 for all i £ N. The
space Σ\ has a natural family of metrics defined by d(x, y) = J ^ ^ j 7/ , where

jβ is any number satisfying β > \. The set Σj" is compact with respect to the
topology induced by d and the shift map σ : ΣJ" —>• Z^ is a homeomorphism. We
l e t ^ = { l , . . . ,^Γ .

More generally, we consider a general symbolic system, i.e., a compact subset
Q C Σp that is σ-invariant, i.e., σ(Q) = Q.

Let C°(2), C α (2) denote the spaces of continuous and α-Hόlder continuous
functions on Q. We define a mapping P : C°(β) -^ R by

P(φ) =

where Snφ(x) = Σ"=o φ(σιx). We call P(φ) the topological pressure of φ.
The following result is a variational characterization of pressure that is valid for

all topological dynamical systems. Let Wl(Q) denote the space of all shift-invariant
Borel probability measures on Q.

Variational Principle. Let φ £ C°(β). Then

P(φ)= sup lhμ(σ) + fφdμ) .
μe®KQ) V Q
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Measures that realize the variational principle for topological pressure play cru-
cial roles in the thermodynamical formalism.

Definition. A Borel probability measure μ = μφ on Q is called an equilibrium
measure for the potential φ if

P(φ) = hμ(σ)+Jφdμ. (20)

Since the shift map on a general symbolic system is expansive, the supremum
in the variational principle is attained by some measure [W]. This measure need not
be unique.

Another important class of measures are Gibbs measures:

Definition. Let φ e C°(Q). A Borel probability measure μ = μψ on Q is called a
Gibbs measure for the potential φ if there exist constants D\9L>2 > 0 such that

< μ{y:y,χ,,i 0 , . r « l } D i

exp(-n/>(φ) + Hid φ(σ"x))

for all x = (x\X2 - -) £ Σ^ and n ^ 0.

For subshifts of finite type, Gibbs measures exist for any Holder continuous
potential φ, are unique, and coincide with the equilibrium measure for φ. Little is
known about the existence of Gibbs measures for general symbolic systems.

The main tool used in constructing and studying Gibbs measures for subshifts of
finite type is the (linear bounded) transfer operator Lf : Ca(Σ^) —> Ca(Σ^) defined
by

(Lfφ)(x) = Σ exp(f(y))φ(y) = Σ
ι k

along with its dual operator Ly : M(Σ^) —> M(Σ^), where M(Σ^) denotes the space

of Borel measures on Σ^. The following theorem of Ruelle constructs Gibbs mea-

sures using the operator Lf.

Proposition [PP]. Let (Σ^,σ) be a mixing subshift of finite type. There exists
a number λ = exp(P(φ)), h e C°(Γ},IR) with h > 0 and v e M(Σ%) for which
Lfh = λh,Lyv = Iv, and v(h) = 1. Then μ = hv is a σ-invariant probability mea-
sure on Σ^ and is a Gibbs measure for φ.

In this paper we deal exclusively with a special class of potentials that depend
only on the first coordinate, i.e., φ(x) — φ(x\). In this case, the measures v and μ
are Markov and can be described explicitly: the eigenfunction h — h(x\) satisfies

) = λh(j),
i

and the measure v is defined on cylinder sets by

v[i0,...,ini = P(M...P(in.l,in)P(in) where P(iJ) = λnU)
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and Pp = p with Σ p(i) = 1. Finally, the Gibbs measure μ is defined by
dμ = h(x\ )dv.

The Gibbs measure μ is unique provided the potential / is Holder continuous.

Proposition [PPJ. Given numbers λj, ί = \,...,p, define the function

φ : Σ+ •-> Σ\ by φ(x) = φ(xux2,...) = logΛ'XI •

Then φ is Holder continuous with respect to the standard metric. Furthermore,
there exists a unique s ^ 0 such that P(sφ) = 0.

Appendix 4. Gauge Functions

One can generalize the definition of Hausdorff measure to give more refined infor-
mation about a set whose Hausdorff measure at the dimension is zero.

Suppose h{t) is a continuous increasing function defined on (0,β) with ε > 0
such that h{t) —> 0 as t —• 0. Using the notation in Appendix 1, we define

mh

H{Z) = f lim inf j ^ A(diam(^ )) {^} is a <5-cover of Z}\ .
δ-+0{U,} I i J

We call mh

H{Z) the s-dίmensίonal Hausdorff measure of Z with respect to the
gauge function h. Clearly letting hit) — ts gives the ^-dimensional Hausdorίf measure
defined in Appendix 1.

Appendix 5. Expanding Maps

A continuous map g : X —»X of a compact metric space X is expanding if g is a
local homeomorphism and there exist constants F ^ E > 1 and r$ > 0 such that

B{g{x\Er) C </(5(*,r)) C B{g{x\Fr)

for every x G X and 0 < r < r0.
Without loss of generality we may assume that for any x G l , the map g re-

stricted to the ball 5(x,ro) is a homeomorphism.
We recall that a Markov partition for an expanding map g is a finite cover of

X by elements (called rectangles) {R\,...,RP} such that:

(1) each rectangle Ri is the closure of its interior int./?/;
(2) intRi Π inti?7 = 0 unless / = j ;
(3) each giRi) is a union of rectangles Rj.

The Markov partition generates a symbolic model of the map g by a subshift of
finite type (2Γj",σ) where 4̂ = (α^) is the transfer matrix of the Markov partition,
i.e., ay = 1 if intRj Π g~ιiintRj)ή:$ and a^ = 0 otherwise. This gives a coding
map χ : Σ^ -^ X such that

χ ( ω ) = Π 9~\Ria\ ω = (z1/2. ) ,
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and the following diagram

X -^ X

is commutative. Under the coding map the cylinder sets Ciχ...in G Σ^ correspond to
the basic sets in X generated by the Markov partition

Rh...ίn =Rhng-ιRί2Π- 'Πg-nRin .

The map χ is Holder continuous and injective on the set of points whose trajectories
never hit the boundary of any element of the Markov partition. The pullback by χ
of any Holder continuous function on X is a Holder continuous function on Σ^.

There is a special Markov partition for an expanding map such that the rectangle
containing a given point in X is almost a ball ([PW2]).

We say that a continuous expanding map g on a compact metric space X is con-
formal if there exist a continuous function a(x) with \a{x)\ > 1 on X and positive
constants C\, C2, and ro such that for any 0 < r ^ ro, any two points x,y eX,
and any integer n ^ 0 we have: if p(gk(x),gk(y)) S 0̂ for all & = 0,1,...«, then

ft ft ~ι
ft k / W Γ 1 ^ p(gn(χlgn(y)) S c2 ft Hgk(χ))\

£=0 /fc=0

Appendix 6. Axiom A# Homeomorphisms

Let (X,p) be a compact metric space with metric p and f : X —> X a homeomor-
phism. Given x E X and ε > 0, we define the local stable and unstable sets at x
by

- {y e X : p ( r ( x ) , r ( j θ ) S β for all π ^ 0} ,

S ε for all ^ 2 ^ 0 } .

Following Bowen [Bol] and Alekseyev and Jakobson [AJ], we say that / is an
Axiom A# homeomorphίsm if there exist constants 0 < λ < 1 and ε > 0 such that

(a) for each x G l ,

P(f\y\f\z)) ^ λnp(y,z) for all y9z G fΓ(5)(x) and 71 ^ 0 ,

P(f~n(y\f~n{?)) ^ ^ P ( ^ ^ ) for all y,z G ^Fω(x) and w ^ 0

(b) there exists δ > 0 such that for all x j G l with p(x,y) < δ the intersection

^ε (*) Π PΓε (̂ y) consists of a single point which we denote by [JC, j/];
(c) the map

[ , •] {(x,y)eX xX : p(x,y) < δ} ^X

is continuous.
We recall some facts about Axiom A# homeomorphisms (see [Bowl], [AY]).

A point x G X is called non-wandering if for each neighborhood U of x there ex-
ists n ^ 0 such that /"(£/) Π C/Φ0. We denote by Ω(/) the set of non-wandering
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points of / . This set is /-invariant, closed, and is the closure of the set of peri-
odic points of / . It also admits a decomposition into a finite number of disjoint
closed /-invariant sets (called basic sets), Ω(f) — A\ U U Λn, such that f\At is
topologically transitive.

We call a non-empty set R a rectangle if diami? ^ δ, R is the closure of its
interior, and [x, y] G R whenever x,y e R. For each x e R we write W^s\x,R) =
W^s\x)C\R and W^u\x,R) = W^u\x)C\R. Let i be a closed /-invariant set. A
finite cover {R\,...,Rp} of A by a rectangles is called a Markov partition if

(1) Λ, Π ^ C dRi ΓΊ 3Λy for zφy;
(2) for each x e int Rt Π /"Hint i?7) we have

D W^u\f{x\Rj\ f(W<s\x9Ri)) C W{s\f(x\Rj).

The Markov partition {R\,...,Rp} generates a symbolic model of the map / by
a subshift of finite type (Γ^,σ). Namely, we define the p x p transfer matrix
A = (ay) by setting ai} = 1 if int/?z Π/~1(int7?y)Φ0 and β^ = 0 otherwise. Then
Γ^ is the set of two-sided sequences ω ~ (in)n<EΈ which are admissible with respect
to A, i.e., alnin+] — 1 for all n G TL\ σ is the shift. For each ω = (/„) G Σ^ and n ^ 0
we set

oo

Z(ω)= Π /""(«,.).
n—~ oo

One can show that χ(ω) consists of a single point. Thus, we obtain a coding map
χ : ΣA —> A which is continuous and onto. Moreover, the following diagram

l
X -U X

is commutative.
There is a special Markov partition for an Axiom A# homomorphism on a basic

set A such that the rectangle containing a given point x in A is almost a ball (see
[Wl]).

An Axiom A -homeomorphism is called conformal if

the maps f\W^u\x) and f~l\W^(x) are conformal and expanding . (22)
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