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Abstract: The fundamental solution E(t,s,x, y) of time dependent Schrόdinger equa-
tions idu/dt = -(l/2)Δι/+ V(t,x)u is studied. It is shown that

• E(t,s,x, y) is smooth and bounded for tή=s if the potential is sub-quadratic in the
sense that V(t,x) = o(\x\2) at infinity;

• in one dimension, if V(t,x) — V(x) is time independent and super-quadratic in the
sense that V(x) ^ C(l + Jc|)2+ε at infinity, C > 0 and ε > 0, then E(t,s,x,y) is
nowhere C1.

The result is explained in terms of the limiting behavior as the energy tends to
infinity of the corresponding classical particle.

1. Introduction

We consider the time dependent Schrόdinger equation with a real potential V(t,x):

idu/dt = -(l/2)Δu + V(t,x)u, (t,x) <Ξ R1 x Rm . (1.1)

The equation generates a unique unitary propagator {U(t,s) : —oo < t,s < 00} in
L2(Rm) under the conditions to be imposed below and u(t,x) = (U(t,s)φ)(x) repre-
sents a unique solution of (1.1) which satisfies the initial condition u(s,x) = φ(x) G
L2(Rm). Standard arguments show U(t,s) is a two parameter family of strongly
continuous unitary operators satisfying the semi-group properties: U(t,t) = 1 and
U(t,s)U(s,r) = U(t,r). We denote by E(t,s,x,y) the distribution kernel of U(t,s):
E — E(t,s,x,y) is the fundamental solution of Eq. (1.1), or FDS for short. In this
paper, we show that

1. E(t9s,x,y) is smooth and bounded with respect to (x9y) for any tή=s, provided
V is "sub-quadratic" in the sense that for all |α| = 2, lim^i^oo |δ£F(f,jt)| = 0

uniformly with respect to t G R1;
2. in one dimension, if V(t,x) — V(x) is time independent and "super-quadratic" in

the sense that V(x) ^ C(l + |^|)2+ε at infinity, C > 0 and ε > 0, then E(t,s9x,y)
is nowhere C1.



606 K. Yajima

To state our main theorems more precisely, we introduce some notation. Let
dj = d/dxj, DJ = -idj, j = 1,...,m, d = (5 l 9..., dm), D = (A, - . ,Dm), and for the
multi-index α = (α1 ?...,αm), ΣP = D? ••£%, 3« = d? - 3£ . |α = αi + + αw.
For a function F9 dF(x) denotes the gradient vector and d2F(x) denotes the Hessian
matrix. For σ G R, JSff(Rm) is the Bessel space

jSff(Rw) = {/ G y"(Rm) : (1 - Δ)σ/2/ G L^R1")}

and JS?£loc(Rw) is its localization. We say/is nowhere in J^σ

loc(Rm) if φ/φ ^ff(Rm)

for any φ G C0°°(Rm). Note that C^(Rm) C JSfftR1") for all σ < 1. Finally the pair
of functions (x(t9s9y9k)9p(t9s9y9k)) always denotes the solution of Hamilton's equa-
tions corresponding to (1.1):

dx/dt = p(t), (x(s,s,y9k) = y,

dp/dt = -(dxV)(t,x(t))9 \p(s9s9y9k) = k. ( ' >

Theorem 1.1. Assume that V(t9x) is C°° with respect to x G Rm and d*V(t,x} is
Cσ with respect to ( t 9 x ) for all α, where σ = 0,1,... . Suppose that

lim sup|δjK(ί,jc)| = 0, if |α| = 2, and \%V(t9x)\ ^ C«, for all α| ^ 3 .

(1.3)

is C°° with respect to (x9y) and all derivatives d%dyE(t9s9x9y)
are Cσ+1 with respect to (t,s,x, y) for tή=s. Moreover, for every T > 0, there
exists a constant CT > 0 such that the following statements are satisfied. Write
Ωτ = {(t9s9x9y) G R2 x R2m : 0 < t - s\ ̂  T9 \x\2 + \y\2 ^ C2

T}.

1. For (t9s9x9y) G Ωτ, there exists a unique k G Rm such that x = x(t9s9y9k\ The
function S(t,s,x,y) defined on ΩT by

S(t,s,x,y) = f{(l/2)p(τ,S,y,k)2 - V(τ,x(τ,s,y,k))}dτ (1.4)
S

is smooth with respect to (x9y) and all derivatives d%dyS(t9s9x9y) are Cσ+1

with respect to (t,s,x,y). If α + β\ ^2, the following estimates are satisfied:

\dt

xdfy{S(t,s,x,y)-(x-y^l(^t-s))}\ g CaβT\t - s . (1.5)

2. /« ί2^, E(t9s9x9y) may be written in the form

E(t9s9x9y) = (2πi(t - s)Γml2a(t,sΛy)eiS(t>s>x^ , (1.6)

where a(t9s9x9y) satisfies, for all α and β, the estimates

\SPxdtya(t9s9x9y)\ £ Caβτ . (1.7)

3. There exists a constant T(V) such that, for T ^ T(V), Cτ may be set equal
to zero.

In the next theorem, we assume that V(t9x) = V(x) is independent of t. Then
E(t9s9x9y) depends only on (t — s9x9y) and we write E(t9x9y) = ̂ ,0,̂ ,̂ ).
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Theorem 1.2. Let m—\ and V E C3(R!) be real valued. Assume further that
outside a compact interval K the following two conditions are met:

1. V"(x) > 0 andxV'(x) ^ 2cV(x) > 0 for some c > 1;
2. For j = 1,2,3, VU\x) = O(\/x)V^'l\x) as \x\ -> oo.

Then, as a function of(t,x,y\ E(t,x,y) is nowhere in ^/^(R3). In particular, it

is nowhere C1.

Several remarks are in order.

Remark 1. We should supplement Theorem 1.2 by the following two statements:

1. For almost all y £ R1 (resp. x G R1), E(t,x,y) is nowhere in ^/^(R2) with
respect to (t,x) (resp. (t,y)).

2. If V(x) is C°° and satisfies V(x) ^ C|jc|2c for large |jc|, in addition to the

conditions of Theorem 1.2, then for any Φ E C0°(R3), the Fourier transform ΦE

of ΦE decays at infinity as follows: \ΦE(τ,ξ,η)\ ^ C(l + |τ| + \ξ\2 + |^/|2)~1/2c.
The proof of Theorem 1.2 shows that — l/2c is the best possible decay rate.

We shall give a proof of this remark.

Remark 2. When T is small, i.e. T ^ T(V\ Theorem 1.1 is well-known (see Fu-
jiwara [6], and also Yajima [18] for an extension to the case where magnetic fields
are present). Moreover, the results in [6] (and [18]) are proven for small T > 0
under an assumption weaker than (1.3), viz, \d*V(t,x~)\ ^ Cα for |α| ^ 2. For these
potentials, however, E(t,s,x,y) is in general not smooth for larger values of \t — s
When V(x) = *2/2, Mehler's formula [13] shows that

v ' '" (2π/sinOm/2 '

from which one sees explicitly that E is smooth when tή=nπ, n E Z, but is singular
when t = nπ. This "recurrence of singularities" takes places for a wide range of
perturbations of x2/2 (cf. Zelditch [21] and Kapitanski-Rodnianski-Yajima [9]).

Remark 3. Zelditch's paper mentioned above also shows that if V(t,x) is bounded
with all ^-derivatives, then FDS is smooth with respect to ( c, y) when tή=s, — oo < t,
s < oo, and can be written in the form

E(t9s9x9y) = (2πi(t - s)Γm/2ei(x~yΐ/2(t~s}a(t,s,x,y) (1.9)

with a(t,s, , ) E C°° as above. The proof that E is smooth has been extended by
Craig, Kappeler and Strauss [4] to the sub-linear potentials, |3JF(jc)| rg
Cα(l -f I*!)1"'*'"8 for all α, ε > 0, but they do not construct the structure formula
like (1.6) or (1.9). The smoothness of the FDS can also be studied by investigating
the smoothing property of the propagator U(t,s). In this direction, we mention the
works of Ozawa [14] and Yamazaki [20] and the references therein. After submis-
sion of this paper, we learned that Kapitanski-Rodnianski [8] have demonstrated the
smoothness of E(t9s9x9y) for a slightly different class of sub-quadratic potentials.
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Remark 4. The FDS of (1.1) can be very singular. If H = -d2/dx2 is the Dirichlet
Laplacian on the interval [0,π], which may be thought of as an extreme super-

quadratic case, then, the FDS E is given by E(t,x,y) — (2/π)]Γ^1e~~ιm sinnxsinny,
which is nowhere locally integrable. Indeed, this is a direct consequence of the proof
of Theorem 1.2 given below. Thus it is somewhat surprising that, for this H, the
propagator of (1.1) still has a rather strong smoothing property,

2π

^ cΊM|L2([0fπ])

(cf. Zygmund [22]). Note however that the solution is much smoother in the whole
space (cf. e.g. Yajima [19]) in the sense

1/4\

\\u(t,.)\\4

LOO(R}dt) ^ c|M|L2(R) .
/

For every (s, y), E(t,s,x, y) is a solution of (1.1) with initial condition E(s,s,x, y)
— δ(x — y), Dirac's measure at the point x = y, and Theorems 1 and 2 may be con-
sidered, partly, as statements on the propagation of singularities for E(t,s,x,y). Thus
one may be tempted to think that the statements are consequences of Hόrmander's
celebrated theorem on propagation of singularities (cf. [7,16]), viz, the wave
front set WF(u) of the solution of the partial differential equation Q(x,D)u =
Σiαi^αW^0^ = ° with real Principal symbol Qn(x,ξ) = Σ|α|=«flα(*Kα is con-
tained in the characteristic set {(x, ξ) : Qn(x, ξ) = 0} and is invariant under the
Hamiltonian flow generated by the principal symbol. Note, however, that the prin-
cipal symbol of the Schrόdinger Eq. (1.1) is ξ2/2 and the characteristic set is
{(t,x,τ,ξ) :t,τ G R,JC <G Rm,ξ = Q G Rm}, (τ,ξ) being the conjugate variables of
(t,x). Hence, each point (t,x,τ,Q) is a stationary point of the Hamiltonian flow
of the principal symbol ξ2/2 and Hόrmander's theorem unfortunately provides little
information about the propagation of singularities for solutions of (1.1). (In this
connection, see Craig, Kappelar and Strauss [4] and Kapitanski and Safarov [10].)

This situation has been analyzed further by Lascar [12] and Sakurai [15]. They
introduced the notion of the quasi-homogeneous wave front set WFa(u) and showed
how the set propagates for solutions of quasi-homogeneous (pseudo- Differential
equations. Their theory, when applied to (1.1), shows that WFa(u) is contained
in {(t,x, τ, ξ) : τ — ζ2/2} and is invariant under the Hamilton flow generated by the
principal symbol ξ2/2 on each plane t — constant. This implies that E(t,s,x, y), as
a function of (t,x\ is singular everywhere on the plane t = s for every fixed (s,y),
however, it still does not tell us whether or not the singularity propagates in the
forward or backward direction of time t.

Our results may be best "understood" if we believe in the following "conjecture":
The singularities of the solution (defined in terms of a suitably modified notion of
the wave front set) of the evolution equation ίdu/dt = P(t,x,D)u with real symbol
P(t,x,ξ) propagate along the limit set, as the energy tends to infinity, of the
trajectories of (t,x(t\τ(t\ p(t)) of the Hamilton equations, not for the principal,
but for the full symbol:

dx/dt = dP/dp, dp/dt = -dP/dx, dτ/dt = -dP/dt . (1.10)

In other words, the singularities propagate along trajectories with infinite energy.
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Let us "explain" our theorems from this point of view in one dimension when
V(t,x} = V(x) does not depend on t and V(x) —> oo as \x\ —> oo, so that all trajec-
tories of (1.2) are periodic functions of t.

When V(x) = Jc2/2, the period of the trajectories is independent of energy and
is always equal to 2π. If t φ nπ, therefore, for any two points jc, y G Rm no solutions
of (1.2) with x(Q) = y and very large \p(0)\ approach x at time t. Hence the FDS
is everywhere smooth when tή=nπ. On the other hand, if t is an integer times
half the period, i.e. t = nπ, all trajectories leaving y at time 0 reach (— \}ny at
time nπ with momentum (—1)" times the initial one. Hence, for any (nπ,x,y\
there is a sequence of trajectories (t,Xk(t\τk(t\ pk(t)\ with fixed initial position
**(0) = y* and a sequence of time ,̂ k — 1,2,..., such that ^ —> wπ, **(ίϋ —» *
and τfa) —> oo, as A: —> oo. Thus E(t,x, y) is singular everywhere when ί = nπ,
n = 0,±1,..., as we see explicitly from Mehler's formula (1.8) above. Since the
smooth perturbation of x2/2 becomes negligible in the high energy limit of the
Hamiltonian flow, this argument also explains the recurrence of singularity results
of [9] and [21].

When V(x) is subquadratic, the period of the trajectories diverges to infinity
as energy increases to infinity. Hence, the trajectories with jc(0) = y and initial
momentum /?(0), |XO)| —* oo, will have gone instantaneously to infinity and will
never come back to any point of configuration space. These trajectories produce
no singularities anywhere and E(t,x, y) is smooth everywhere. If V(x) is super-
quadratic, on the other hand, the period of the trajectories decreases to 0 as the
energy grows to oo. Hence, for any two spatial points x,y and any time t, there
are trajectories with arbitrarily high energy that leave y at time zero and reach x at
time t. Such trajectories create the singularity of the FDS at (t,x, y) and E(t,x, y)
is nowhere smooth. Though this heuristic argument is, of course, not a proof of the
above theorems, it gives a clear explanation why the drastic change of smoothness of
FDS takes place as the potential V(x) changes from sub-quadratic to super-quadratic
at infinity. Indeed, the proof of Theorem 1.1 that we shall present in Sect. 2 is based
on this semi-classical picture.

We now describe the plan of the paper, introduce some additional notation and
then outline the proofs of Theorem 1.1 and Theorem 1.2. In Sect. 2, we prove that
E(t,s,x, y} is everywhere smooth with respect to (x,y) if V(t,x) is sub-quadratic.
The proof is based on two facts, the first, that Theorem 1.1 holds for small time
\t — s\ 5Ξ T(V) and, hence, the propagator U(t,s) is continuous from the Schwartz
space ^(Rm) onto itself for all t,s G R (this is due to Fujiwara [6]); the second,
that for \t — s ^ Γ, T being arbitrarily large, the Hamiltonian flow of (1.2) has a
generating function S(t,s,x9y) outside a bounded set {(x,y) : x\2 + \y\2 ^ C?} and
it satisfies the estimate

\\%S(t,S,X9y)-(t-srl\\ ^ I0-"\t-s\-1

as indicated in statement (1). This is a consequence of the sub-quadratic behavior
of the potential. The major part of the proof is devoted to the construction of the
generating function and to the study of its properties. For arbitrary 0 < t — s ^ Γ,
we divide s = tQ < t\ < - - < tN = t such that tj - tj-\ ^ T(V\ j = l,...9N,
and write U(t,s) — U(tN,tN-\) - - t/(ίι,ίo). We may suppose by induction that
E(tN-\,tQ,x,y) satisfies the statements of Theorem 1.1 and write
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where £(1) is smooth with compact support with respect to (x,y) and a(tN-\9s,x,y)
is smooth and is supported in the set {(jc,y); \x\2 -f \y\2 ^ Cj.}. (Here we have
absorbed the factor (2πi(t — s))~m/2 into a and we will continue to do so in what
follows.) Using the short time result, we write

E(t,s,x9y) =

Since E^l\tN-ι9s9x9y) is Co°(R2m) with respect to (x9y)9 the fact that U(t9tN-\)
is a continuous operator in ^(Rm) implies that £ι(f,,s,Jt,;y) G «5^(R? x R™). To
analyze E2(t9s9x9y) we apply the method of stationary phase using the fact that

is non-singular, which yields the desired properties of E(t9s9x9y). Thus the proof of
Theorem 1.1 more or less follows the semi-classical picture outlined in the preceding
"explanation" of the theorems.

In Sect. 3, we prove that E(t,x,y) is nowhere in Jϋ£ylo^(R3) when V(t,x) = V(x)
is super-quadratic and the spatial dimension m = 1. In contrast to the proof of
Theorem 1.1, the proof here is indirect in the sense that it heavily relies upon
the spectral theory of the operator H = —(l/2)d2/dx2 + V(x}. By the definition of
Bessel space, it suffices, by the Riemann-Lebesgue theorem, to show that for non-
negative p, Φ, Ψ <E Co^R1),

$E(t,x,y)p(t)Φ(y)Ψ(x)eί(tλ+yξ-χη}dtdxdy = (p(λ - H)Φ(y)eίy ' ξ, Ψ(x)eix ' η),
R3

(1.11)

does not go to zero faster than C(\λ\ + \ξ\ + \η\)~l/2c as \λ\ + \ξ\ + \η\ -> oo. Here
p is the Fourier transform of p,

00

p(λ)= / e~itλp(t)dt,
— oo

and ( , ) in (1.11) is the inner product in L2(Rl). We set ξ = η = ±V2λ in (1.11)
and let λ —> oo along the eigenvalues λn of H. Since V is super-quadratic, the one
dimensional operator H has only eigenvalues λn tending to oo and the spacing of

neighboring eigenvalues increases algebraically as follows: \λn — λn±\\ ^ Cλ]l2~λl2c'.
Hence, modulo O(λ~N), only the projection to the «th eigenfunction un(x) contributes
to (1.11),

where N is arbitrary large. But, on every compact interval, un(x) asymptotically
approaches a plane wave as n —> oo, un(x) ~ Re{QMeίλ/^^}, Cχn being a com-

plex constant satisfying the lower bound |QJ ^ C/l^1/4c. Thus, we have |(1.11)| ^

Cλnl/2c and E(t,x,y) is nowhere in JS?jly^(R3). In particular, it is nowhere in C1.
In what follows various constants whose specific values are not important will

be denoted by the same character C. These constants may differ from place to place.
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2. Sub-Quadratic Potentials - Proof of Theorem 1.1

In this section, we always assume that V(t,x) is subquadratic, viz, that the condition
(1.3) is satisfied. Let V'(t,x) denote the vector dxV(t,x)9 V"(t,x) the matrix (%V(t,x)
and set M = supίjc ||Fx/(ί,Λ:)||. For 0 < δ < 1, L$ denotes the smallest number such
that

sup \\V(J\t,x)\\ ^ δ\x\2-J, for |*| ^ Lδ, j = 0, 1,2 , (2.1)
/eR

where || || should be understood as the absolute value, the Euclidean norm of a
vector, and the matrix norm of a linear operator in Rm, for j — 0, 1,2 respectively.
Set

Mjj= sup ||F(%*)||. (2.2)

In what follows, when there is no confusion, we shall often suppress the explicit
dependence of various quantities on the independent variables or parameters.

We begin by studying the trajectories of the Hamilton flow, (x(t,s, y,k\ p(t,s,
y,k)\ corresponding to (1.1), viz, the solutions of (1.2). Standard arguments in
ordinary differential equations (see e.g. Coddington-Levinson [3]) show that

• for fixed (t,s), (x(t,s,y,k), p(t,s,y,k)) is C°° with respect to (y,k\
• the derivatives of (x(t,s9 y,k), p(t,s,y,k)) with respect to (y,k) are Cσ+1 with

respect to the all variables (t,s, y,k\

Furthermore x(t) =x(t,s,y,k) satisfies the integral equation

x(t) = y + k(t-s)~ f(t - τ)V'(τ,x(τ))dτ . (2.3)

Lemma 2.1. Let N = max(l,2M,2sup,GR |F(ί,0)|). Then, for any (y,k) G R m x R m

and (t,s) G R x R,

(1 + \x(t,s9y9k)\2 + \p(t^y^\2) ^ e2N^(l + \y\2 + \k\2) . (2.4)

Proof. Write F(t) = (1+ x(t)\2 + |XO|2)1/2 and denote by the ^-derivative.
From the Schwarz inequality, and the fact that (x(t), p(t)) satisfies Eq. (1.2), we
have

By the mean value theorem, \V'(t,x)\ ^ IK^O)! +M|jt|, which implies

(d/dt)F(t)2 £ 2F(0(|XO|2 + 2|F/(ί,0)|2 + 2M2jc(0|2)1/2 ^ 2NF(t)2 .

The estimate (2.4) now follows by quadrature. D

Notatίonal remark. In the following we will use 10~10 as a generically small con-
stant. This notation has an advantage of indicating the number of estimates needed
to arrive at our final result. Thus the estimates in the first stage are proportional to
10~10, the estimates in the second stage are proportional to 10~9, etc.
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Lemma 2.2. Let T > 0 and C\ > 0. Then, there exists C2 > 0 such that the
following estimates are satisfied for \y\ g C\9 \t — s\ rg Γ, and \k\ ̂  C2:

(2.5)

\p(t9s9y9k)-k\ ^ 10-10|*|. (2.6)

Proof. We prove (2.5) for the case 5 = 0 ^ ί ^ 5 + Γ only. The proofs for the
general case, and for p(t,s,y,k\ are similar. Define f(t) by

f(t)=-ϊ(t-s)V'(s9y + sk)ds9
o

and let 0 < δ < 1. We split the interval [0,ί] into two parts, I\ = {0 ^ s ^ t :
\y + sk\ ^ A?} and /2 = {0 ^ s ^ / : |>> + sk\ ^ Z$}. It follows, by the definition
of Lδ, that I V'(s, y + sk)\ ^ δ\y + sk\ for j G /i and that | Vf(s, y + ̂ )| ^ Mι?<5 for
s G /2. Since the measure of /2 does not exceed 2Ls/\k\9

5|/|2 |*|. (2.7)

We denote g(t) = x(t) — y — tk and write, via the mean value theorem, the integral
Eq. (2.3) in the form

0(0 - /(O - /(' - *) i/r;W + fe + β^)Xβ) g(s)ds . (2.8)
o lo J

Using the estimate HK'^, ...)|| ^ M and applying GronwalΓs inequality, we obtain

^ (2.9)

Inserting (2.7) into (2.9) yields, for 0 ^ f g Γ, |j;| ^ Ci, and |t| ^ C2,

ι} + \tk\(TeMT* δ} . (2.10)

Thus, choosing δ > 0 sufficiently small and C2 large enough, we arrive at the
estimate (2.5). D

Corollary 2.3. Let T > 0. TTzew, ί/zere e rate a constant C?> such that, for any
R ^ 1, the following estimate holds for (t9s,y,k) satisfying \t — s\ ^ Γ and y2 +
(t-s)2k2 ^R2:

\x(t,s9y9k)-y-(t-s)k\ ^ C3R. (2.11)
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Proof. We assume s = Q^t^s + T and use the same notation as in the proof
of the previous lemma. Using the bound |F'(f,jt)| rg C(l + .x|), we estimate

o

and insert the latter estimate into (2.9). The result is

If we take C3 = 2V2CT2eMT\ this clearly produces (2.11) for R ^ 1. D

The following lemma, which is the key lemma of this section, demonstrates that,
in the sub-quadratic potential field, the variations along a trajectory remain almost
constant for a finite interval of time, if the trajectory starts either with a large initial
momentum, k, or from a point, y, far away from the center of the potential. The
proof will exhibit why this happens: if \y\ is large while \k\ remains small, the
trajectory remains in the region where ||F"(f,Jt)|| is small; if \k\ is large, on the
other hand, though the trajectory can enter the region where ||F"(i,.x;)|| is large,
the sojourn time in that region is short because the velocity is high and because
re-entrance to the region is forbidden, due to the long period of the trajectory.

We now state the lemma and give a formal proof. We use the notation
dyx(t,s, y,k), etc. to represent the differential of the map of y — > x(t,s,y,k), etc.

Lemma 2.4. Let T > 0. Then, there is a constant R ^ 0 such that the following
estimates hold for (t,s,y,k) satisfying \t — s\ ^ T and \y\2 + \k\2 ^ R2:

\\dyx(t9s9y,k)-l\\ ^ 10-10. (2.12)

\\dkx(t9s9y9k)-(t-s)\\ ^ KΓ1 0 |ί-s|. (2.13)

\\dyp(t9s9y9k)\\ + \\dkp(t9s9y9k)-l\\ ^ 1(Γ10 . (2.14)

Here 1 (resp. (t — s1)) on the left-hand sides stands for the m x m identity matrix
(resp. (t — s) times the identity matrix).

Proof. We only prove (2.12) for s = 0 and 0 ^ t ^ T. Proofs for other cases
are similar. By differentiating (2.3) with respect to y9 we have an equation for the
matrix- valued function dyx(t),

dyx(t) =l-f(t- s)V"(s,x(s))dyx(s)ds . (2.15)
o

Since ||(ί — s)V"(s,x)\\ 5Ξ TM9 GronwalΓs inequality implies

which, when applied to (2.15), in turn produces the estimate

\\3yX(t) - 1|| g Te^Ti\\V"(S,x(S))\\ds . (2.16)
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Given Γ, we set δ = lO~w(T2eMτ2)~l/2. We let C2 be the constant in Lemma 2.2
corresponding to C\ = L$, where L$ is defined by (2.1). By replacing €2 by a larger
constant if necessary, we may assume €2 > 4 IQ10!^1 (2L$ + 1). We show that
(2.12) is satisfied if we take R == eNT(l + C2 +Lδ), where TV is the constant of
Lemma 2.1.

We decompose the interval [0, T] into two subsets

h = {0 ^ t ^ T : |jc(0| ^ Lδ}9 h = {0 ^ t £ T : \χ(t)\ ^ Lδ} .

Since \\V"(s,x(s))\\ ^ δ for s e /i, by definition,

TeMT2$\\V"(s,x(s})\\ds ^ T2eMτ2δ = l(Γ10/2 ,
/I

and (2.12) follows if 72 = 0. Suppose, therefore, that 72φ0 and |jc(f0)| ^ £<5 for
some to G [0, Γ]. We have |/?(£o)| ^ C2; otherwise by Lemma 2.1,

R2 + 1 ^ |Λf + \y\2 + 1 ̂  e2JVΓ(l + \p(t0)\2 + x(tϋ)\2)

which is a contradiction. It follows, by virtue of Lemma 2.2, that

-(t- t0)p(tϋ)\ ^ 10-10(1 + \(t - t0)p(tϋ)\)

and, if T ̂  \t - t0\ ^ 2(2Lδ + 1)/C2, then \x(t)\ ^ (1 - 10-10)|ί - t0\\p(t0)\ -
\x(to)\ — 10~10 > LS. This implies that the measure of /2 does not exceed 2(2L$ +
1)/C2, and

Te*7* f\\V"(s,x(s))\\ds ^ TeMτ2M\I2\ ^ W~l°/2,
h

which concludes the proof of the lemma. D

The following estimations of the higher derivatives of x(t,s, y,k) and p(t,s,y,k)
are well known ([5], Proposition 1.4).

Lemma 2.5. For |α + β\ ^2 there exists a constant Caβ such that for all (t,s,x, y),

\d«dβ

kx(t,s,y,k)\ ^ Cxβ\t-s\2+M , (2.17)

(2.18)

We now set x(t,s, y,k) — x(t,s, y, (t — s)~lk) (cf. [5]) and consider the two
parameter family of mappings Γ(t,s) in Rm x Rw given by

Γ(t,s}(y,k) = (y,x(t,s,y,k)\ (y,k) e Rm x Rm . (2.19)

Lemma 2.4 and Lemma 2.5 imply that all the derivatives of the mapping Γ(t,s)(y,k)
are bounded uniformly for 0 < \t — s\ ^ T and that the differential at (y, &), which
we denote by J(t,s,y,k), satisfies, for all \y\2 + \k\2 ^ R2 and 0 < \t - s\ ^ Γ,

\\J(t,s9y,k)-A\\ ^ 10-10, A= ( J Π , (2.20)
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where 1 stands for the m x m identity matrix and R is T 4- 1 times the constant R
appeared in Lemma 2.4. The matrix A is non-singular and \/2 ^ \\A\\ = \\A~l\\ ^
Λ/3 as a linear operator on Rm x Rm.

The following lemma shows that such maps Γ(t,s) are diffeomorphisms on the
exterior of a ball, and estimates the size of the image. We denote

B^R = {z G R' : |z| ^ #}, £^* = {z G R^ : |z ^ /?},

etc. We remark that, when Γ > 0 is small, (2.20) holds with 7? = 0 because the
right-hand side of (2.16) clearly converges to zero as T — » 0 (cf. Fujiwara [5]).

Lemma 2.6. Let A be an £ x £ non-singular matrix, F : R^ — > R^ Z?e C°° with
|<9αF(z)| ^ Cα,/or |α| ^ 1, αrcd feί R ^ 0. Suppose that the differential dF(z) of
F(z) satisfies

\\dF(z)-A\\<(π\\A-l\\Γl, f o r z e f i ^ . (2.21)

&ί C4 = 56(l+πμ|||μr1||), C5=2(μ||+(π|μr1 | |)-1)

-Az\. Then:

1. The map F is a diffeomorphism from B^R to its image.
2. The image, F(B^R), contains the exterior of the ball B^(
3. When \z ^ maxίόXΊμr1!!,^}, F(z) satisfies \F(z)\ ^ izl/^μ-1!!). In parti-

cular, we have an upper bound of the image of the exterior of balls,

Proof. The inequality (2.21) implies \\A~ldF(z) - 1|| < π"1. Hence, dF(z) is non-
singular and F is locally diffeomorphic on B^R. Denote K = (π^"1!!)"1. If {γ(s) :
0 ^ s ^ l } i s a rectifiable curve in B^R of length ||7|| connecting two points z,w G
5^/?, we have

1

(2.22)
o

where equality holds only if | |y| | = 0. Connecting z and w in B^R by a half circle
with these points at the ends, we deduce from (2.22) that

\F(z) - F(w) - A(z - w)\ ^ κπ\z-w\ = \\A'l\\~l\z - w\ ,

where again equality holds only when z — w. Hence F is one to one on B^R and
F is diίfeomorphic there. This proves the first statement.

Taking the line segment connecting z and ZQ = Rz/\z as y(s) in (2.22), we
deduce

\F(z)-Az\ ^ |F(zo)-Λzo|-hκ;|z-zo| ^ K + Kz\ . (2.23)

It follows that if Izl

|F(z)| ^ \\A'l\\'l\z -K-κ

which proves the third statement.
To prove the second statement, we modify F(z) as follows and apply Hadamard's

global inverse mapping theorem. Take 0GCo°(R) such that 0 ̂  φ(t) ^ 1, φ(t)=l
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for |f | ^ 1, φ(t) = 0 for \t\ g 1/2, and \φ'(t)\ ^ 21/10. For 0 < δ < 3/2 we de-
fine, FS(Z) by

( F(z\ \z\ ̂  3R/δ ,

Fδ(z) = I 0(5|z|/3Λ)F(z) + (1 - φ(δ\z\/3R))Az, 3R/2δ g |z| ^ 3J?/<5 ,

Uz, |z| ^ 3R/2δ.

The map F^(z) is obviously C°° and satisfies |5αF^(z)| ^ Cα£. A short computation
shows that, for 3R/2δ ^ \z\ ̂  3R/δ,

\\dFό(z)-A\\ ^ (δ/3R)\φ'(δ\z\/3R)\\F(z)-Az\ + K .

Since \φ'\ ^ 21/10, the inequality (2.23) now implies the estimate

\\dFδ(z)-A\\ ^ (2lδ/30R)(K + κ(3R/δ)) + κ = (2l/30R)Kδ + (31/10)/c ,

which is g (1 - lO-10)!]^-^-1 provided δ ^ (R/lSK)κ. Thus, if we set δ =
mm(l9(R/l$K)K), F$(z) is a global diffeomorphism of Rm which is identical with
F(z) on B^3R/δ. It follows that

- Rm \Fδ(B*3R/δ) .

Since (2.23) implies that, for z| ^ 3Λ/ί,

|F(z)| g \Az\+K + κ\z\ £ (\\A\\ + κ)(3R/δ)+K

£ max(2^(|μ||+/c) + ̂ ,56(l+π|μ-1|||μ||)^) g C4K + C5R ,

statement (2) now follows. D

In the remainder of this section, we fix T > 0 arbitrarily large, and then,
take R > 1 in such a way that (2.20) is satisfied for all (t,s,y,k) satisfying
\y\2 + |£|2 ^ R2 and Q < \t - s\ ^ T. WQ apply Lemma 2.6 to the triplet (A,F,R)
consisting of the nonsingular matrix A = (* }) the map F = Γ(t,s) and this constant

R. Recall that \/2 ^ ||̂ || = \\A~l\\ ^ \/3. We let C3 be the constant in Corollary
2.3 and set, as in the previous lemma,

= 56(1 + πμ|||μr1||χ< βoo), c5

C5, and RQ - {6x/3(C3 + 1) + T}R .

The constant K(t,s}, which is the K of the previous lemma for this triplet A, Γ(t,s)
and R, satisfies, by virtue of Corollary 2.3,

K(t9s) = sup \x(t,s,y,k) -y-(t- s)k\ ^ C3R ,

and hence max{6K(t,s)\\A~l\\yR} ^ RQ. Thus, Lemma 2.6 implies the first part and
the relation (2.24) of the following lemma.

Lemma 2.7. Let R ^ 1 and RQ be as above. Then, for 0 < \t — s ^ T, the map
Γ(t,s) is dίffeomorphic from B^R to its image. Moreover, if r ^ RQ,

6r C Γ(t9s)(B*r) C B ̂ rβ^ , (2.24)

and the inverse image in Rm x Rm of(x,y) G Γ(t,s)(B^r) is unique.
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Proof. We have only to prove the last statement. But, this is obvious because of
the following two facts: firstly, Corollary 2.3 and (2.24) imply, for r ^ RQ,

Γ(t,s)(B<^R) Π Γ(t9s)(B*r) C ^(c3+3)* Π£^o/2χ/2 = 0 ,

and secondly, Γ(t,s) is diffeomorphic on B^R. D

We set CT = CβRo and write, as in Theorem 1.1,

Ωτ = {(t,s,x,y)eR2m+2 : \t - s\ £ T9 \x\2 -f \y\2 ^ C2} .

Lemma 2.7 and the definition of Γ(t,s) imply that, for any (t,s,x, y) G ΩT, there
is a unique k = k(t,s,x, y) G Rm such that x = x(t,s,y,k), and this k satisfies y2 -f
(t-s}2k2 ^ Rl\ and hence, y2 + k2 ^ R2. Setting k = k(t9s,x,y), we define the
function S(t9s,x,y) on ΩT by

S(t,s,x,y) = }(P(τ,s,y,k)2/2 - V(τ,x(τ,s,y,k)))dτ . (2.25)
S

It is well known (cf. e.g. [2]) that S = S(t,s,x,y) is a generating function of the
Hamilton flow defined by (1.2),

(dxS)(t9s9x(t9s9y9k)9y) = p(t9s9y9k) , (2.26)

(dyS)(t9s9x(t9s9y9k)9y) = -k , (2.27)

and S satisfies the Hamilton-Jacobi equation corresponding to (1.1),

dtS -f (dxS)2/2 + V(t9x) = 0, dsS - (SyS)2/2 - V(s, y) = 0 .

The latter property, however, will not be used explicitly in this paper.

Lemma 2.8. On the domain ΩT, S(t9s,x9y) is C°° with respect to x and y. All

derivatives d%dyS(t9s9x,y) are Cσ+1 with respect to (t9s9x9y) and satisfy the fol-
lowing estimates'.

sup \\Fxtfy{S(t9s9x9y)-(x-yYI2(t-s)}\\ £ lQ-*\t - s\~l

 9 (2.28)
|α+]5|=2

\^yS(t9s9x9y)\ ^ Cφ |α + β\ ̂  3 . (2.29)

Proof. The smoothness property of S(t,s,x, y) follows from the definition (2.25)
and the corresponding properties of (x(t9s,y9k)9p(t9s9y9k)) stated in the second
paragraph of this section. Differentiation of (2.26) with respect to k gives for x =
x(t9s9y9k)9

%S(t9s9x,y) = (dkp)(t9s9y9k) (dkxΓl(t,s,y9k)9 y2 + k2 ^ R2 , (2.30)

where (dfcx)~l is the inverse matrix of (S^x). The relation (2.14), \\(Skp)(t9s9y9h)
-\\\ ^ 1(Γ10, and the estimate \\(dkx)-l(t9s9y9k)-(t-s)-l\\ ^ I0-9\t-s~l

9

which follows readily from (2.13), then yield the estimate (2.28) for the case |α| =2.
Other cases of (2.28) may be proved similarly by differentiating (2.27) by k and y
and by applying Lemma 2.4. Estimates (2.29) may be proved by further differenti-
ating the expressions thus obtained, say (2.30), and then applying Lemma 2.5. We
omit the details. D
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Because of the remark preceding Lemma 2.6, when 0 < t — s\ ^ T(V\ Γ(t,s)
is a global diffeomorphism of Rm x Rm and S(t,s,x,y) is defined for all (x,y) G
Rm x Rm. It is easy to see (cf. [5]) that (2.26)-(2.29) hold for all ( x 9 y ) <Ξ R2m

when 0 < f - s g
o

Proof of Theorem 1.1. We prove the differentiability properties of d*dp

yE(t,s,x,y)
with respect to (t,s,x, y) at the end and proceed ignoring this issue for the mo-
ment. Fujiwara's theorem [6] shows that Theorem 1.1 holds with Cτ = 0 when
T — T(V) is sufficiently small. We fix such T(V) and assume, without loss of gen-
erality, that (2.28) is satisfied for all x,y e Rm when 0 < \t - s\ ^ T(V). We here-
after assume T > T(V) and divide s = to < t\ < - < t^ — s + T in such a way
that Γ(F)/2 ^ \tj - tj-\\ ^ 3Γ(F)/4, j =l,...,N. By the induction argument and
Fujiwara's short time result mentioned above, it suffices to show that Theorem 1.1
holds for E(t,s,x, y) when t runs over tj-\ ^ t ^ tj under the assumption that Theo-
rem 1.1 is true for E(t,s,x,y) when s ^ t ^ tj-\9j ^ 2. We set r = f, _ι - Γ(K)/4.
Then Γ(F)/4 ^ / - r g Γ(F) for ί7_ι ^ f g /), and E(t,r,x,y) satisfies the short
time results with the smooth bounded amplitude function a(t,r,x, y).

Recall that Cτ = C6Ro. Take a C°° function Φ(x9y) such that Φ(x,y) = 0 for
x2 + / ^ (3CΓ/2)2 and Φ(jc, j) = 1 for jc2 + / ^ (2CΓ)

2, and decompose

^(r,^^,^) = (1 - Φ(x,y))E(r,s9x9y) + Φ

^^V^^^ + ̂ V,^^). (2.31)

Denote by V^j\r,s\ j = 1,2, the integral operator with the kernel E(J'\r9s,x,y). We
have, of course, U(r9s) = V(λ\r,s) + F(2)(r,5 ) and, because U(t9s) = U(t9r)U(r9s)9

U(t,s) - U(t,r)(V<l\r9s)+ V2\r,s)) . (2.32)

Recall that U(t9s) is a family of continuous operators in ^(Rw) which is strongly
continuous in the parameters (t,s) (we abbreviate such a family as a C° -family in
the sequel). The function E^l\r9s9x9y) is CQ° with respect to ( x 9 y ) and continuous
with respect to (r9s9x9y) by the induction hypothesis. Hence, V^l\r9s) is a C°-
family of continuous operators from ^x(Rm) to ^(Rm). Thus t/(ί,r)F(1)(r,^) also
constitutes a C°-family of continuous operators from &"(Rm) to y(Rm). Thus, by
the Schwartz kernel theorem, the operator has the integral kernel E\(t9s9x9y) =
(U(t,r)V(λ\r,s}δy,δx) which belongs to ^(Rm xRm) with respect to ( x 9 y ) and
the derivatives with respect to ( x 9 y ) are continuous with respect to (t9s9x9y), where
δ denotes Dirac's measure. Clearly the function E\ may be written in the form
required by Theorem 1.1 on the domain Ωτ, and we have only to deal with the
integral kernel of U(t,r)V(2\r,s).

By the induction hypothesis and the short time result, the integral kernel
E2(t9s9x9y) in question can be written in the form of an oscillatory integral

E2(t,s9x9y) = /^^ΓΛZ>+^J z^»Φ(z, yXί,r,^,zXr,j,z, y)dz . (2.33)
Rm

Write φ(x9z9 y) = S(t, r9x9z) + S(r9s9z9 y) and A(x9z9 y) = Φ(z9 y)a(t9 r9x9z)a(r,s9z9 y).
The phase function φ(x,z,y) is defined on {(x,z, y) : y2 +z2 ^ Cj.} and Lemma
2.8 implies

~ g CΦ9 |α| + \β\ + |y| ^ 2 , (2.34)
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and

\\%φ(x,z9y)-(t-rΓl-(r-sΓl\\ ^ l<Γ8(|f - r\~l + r-s\~l). (2.35)

The amplitude function A(x9z9y) is smooth with respect to x and y and the deriva-
tives are continuous with respect to (t9s9x9z9y) satisfying

\d"xdl>ydlA(x,z9y)\ ^ CΦ9 for all (α,j8,y) . (2.36)

We first prove that E2(t9s9x9 y) is a smooth function of (jt, y) by using integration
by parts.

Lemma 2.9. E2(t9s9x9y) is C°° with respect to (x9y) G Rm x Rm and the deriva-
tives with respect to ( x 9 y ) are continuous with respect to (t,s,x,y).

Proof. We let K be a compact set and prove the lemma for (x, y) G K. We apply
Lemma 2.6 to the triplet consisting of the nonsingular matrix (t — r)"1 + (r — s)~l

9

the map z — > dzφ(x9z9y)9 and the constant R = Cτ Because of (2.35), the third
statement of Lemma 2.6 yields a lower bound for \dzφ(x9z9y)\ for ( x 9 y ) G K,

\dzφ(x9z9y)\ £ Cι,κ\z\9 z\ ^ C^κ . (2.37)

On the other hand (2.34) gives the upper bound,

\dxφ(x^y)\ + \dyφ(x^y)\ + \dzφ(x^y)\ ^ C(l + |z|), (x9y)eK. (2.38)

Define a first order differential operator L by

L = (l + \dzφ\2Γ\l - i(Szφ) dz) . (2.39)

The function e"^ is an eigenfunction of L on the support of A, Le'^ = eiφ, and
integration by parts in the oscillatory integral (2.33) a la Asada-Fujiwara [1] yields

E2(t,s,x,y) = S(Lf^XΛ^Ά(x,z,y)dz = {<&**>» . (tLfA(x,z,y)dz , (2.40)

where 1L is the formal transpose of L. The lower bound (2.37) and the upper bounds
(2.34) and (2.38) of the derivatives of φ(x9z9y)9 and the bounds (2.36) on the
derivatives of A produce the upper bound for (x, y) G K,

Hence, differentiating (2.40) by (x9y) under the integral sign, we conclude that

E2(t9s9x9y) is C°° with respect to ( x 9 y ) and d^d^E2(t,s,x,y) are continuous with
respect to (t9s9x9y). ϋ

Next we prove that on Ωτ, the derivatives d^dp

ya2(t,s,x,y) of the function a2

defined by

a2(t9s9x9y) = e-ίS^s^E2(t,s^y\ (t9s9x9y) G Ωτ , (2.41)

are uniformly bounded. We apply the method of stationary phase as presented in
Lemma 3.2 of Asada-Fujiwara [1]. Note that we only have to show (2.41) for
x2 + y2 ^ C|, where

C7 - 2θV2C2

6Cτ ,

since we already know that on Ωτ, a2 is smooth with respect to (x9y) with deriva-
tives which are continuous with respect to all the variables.
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Lemma 2.10. For any (x,y) with x2 + y2 ^ C2, there exists a unique point z =
z(x,y) of stationary phase for the map z — > φ(x,z,y\

dzφ(x,z,y) = 0, (2.42)

such that z2 -f y2 ^ CT Moreover, z(x,y) satisfies z(x,y)2 + y2 ^> (2Cr)
2, and

φ(x9z(x9y)9y) = S(t,s9x,y) , (2.43)

\%d$z(x,y)\ ^ Cφ for all |α| + |j8| ^ 1 . (2.44)

Proof. Recalling Lemma 2.7, we write x in the form x =x(t,s,y,k) for a unique
jfc € Rm. We have, by virtue of (2.26) and (2.27),

(dzS)(t^x,z}\z=x(r,s^k} = -p(r9s,y,k) , (2.45)

(dzS)(r,s,z9y)\z==x(tfS9y9k) = p(r9s9y9k) . (2.46)

This shows that z = x(r,s, y,k)(= z(x9 y)) satisfies Eq. (2.42). We show that z(;c, y)2

+ y2 ^ (2Cτ)2. The first inclusion relation of Lemma 2.7 and x2 + .y2 ^ C2 imply

/ + (t - s)2k2 ^ (C7/C6)
2 = (20v/2CΓ)

2 .

Hence / + (r - s)2k2 ^ 5~2(y2 + (ί - ^)2F) ^ (4V5CΓ)2, which in turn implies,
by the second inclusion of Lemma 2.7, that z(x9 y)2 + y2 =x(r,s, y,k)2 + jv2 ^
(2Cj)2. We show next that the point of stationary phase is unique on the support
of A(x9z9y). Suppose that z0 = x(r,s, y,kf) is another point of stationary phase such
that z\ + y2 ^ C\. Then, (2.26) and (2.27) imply that x = x(t,s,y,kf). But, such a
k is unique and we conclude that the stationary point is unique in z2 + y2 ^ C\.
By definition of S(t,s,x,y\

S(t,r,x,x(r,s,y,k)) + S(r,s,x(r,s,y,k\y) = S(t9s9x(t9s9y9k)9y) ,

which implies (2.43). The estimate (2.44) can be obtained as follows. We differenti-
ate Eq. (2.42) repeatedly after replacing z = z(x,y) and solve the resulting equation

for d*dyz(x, y). Then, with the help of the induction argument, the non-singularity
(2.35) of 32(/>(jt,z,y) and the bounds (2.34) on the derivatives of dzφ(x9z9y)9 we
obtain the desired estimates. We omit the routine details. D

We take w e C0°°(Rm) such that w(z) = 1 for |z| ^ CΓ/4 and w(z) = 0 for
\z\ ^ CΓ/2, and split the integral (2.40),

E2(t9s9x9y) =E2,ι(t,s,x,y)

= feΨ^yϊw^ - z(jc, y))A(x9z9 y)dz

z, y)dz .

For x2 + y2 ^ C2, Lemma 2.10 and definition of w(z) implies that the sup-
port of w(z—z(x,y)) is contained in the ^2+z2 ^ (3Cr/2)2. Thus the integral
E2tι(t9s9x9y) may be computed and estimated in entirely the same way as in the
proof of Lemma 3.2 of [1], and one concludes easily that e~~iSE2,\ satisfies the
desired properties. We do not repeat the arguments here.
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To analyze e~lSE2,2 we write, using the notation z0 = z(x9 y),

t9s9x9 y) = /^(*>^-</>(^oj>))(1 _ w(z _ ZO))A(X,Z, y)dz . (2.47)

This will be treated below via integration by parts following basically the same line
presented in [1]. Because the phase and the amplitude functions are defined and
estimated only on the exterior of a compact set, however, we need two estimates,
presented in the following lemma, which replace the key estimates, (3.13) and (3.47)
of [1], used in the corresponding part of the argument.

Lemma 2.11. Let (x9z,y) satisfy x2 + y2 *> C2 and y2 + z2 ^ C\. Then

\(dzφ)(x,z,y)\ ^ G\z-z(x9y)\/2 , (2.48)

where G = (t — r)"1 + (r — s)~l

9 and

\dί

xd^(φ(x9z9y)-φ(x9z(x9y\y))\ g CΛβ(\ + \z -z(x9y)\)9 |α + 0| ^ 1 . (2.49)

Proof. To prove (2.48), we connect z and z(x9y) by a curve y(τ), 0 ^ τ ^ 1,
of length ^ π\z—z(x9y)\ which satisfies y2 + y(τ)2 ^ C2 so that φ(x,y(τ\y) is
well defined. Since z(x,y) is a point of stationary phase, (dzφ)(x,z(x,y\y) = 0, it
follows that

(dzφ)(x9z9y) = (dzφ)(x9z9y) - (dzφ)(x9z(x9y)9y)

\x,y(τ\y) - G)y(τ)dτ + G(z - z(x,y}} . (2.50)
o

Relation (2.35) now readily implies (2.48), as well as the upper bound

\(dzφ)(x9z9y)\ g 3G\z-z(x9y)\/2 . (2.51)

We prove (2.49). Let \y\ ̂  2CT. Then, for any (jc,z) G R2m, (x9z,y) is in the
domain of definition of φ(x9z,y)9 and

Φ(x9z9y)-φ(x9z(x9y)9y) = f(dzφ)(x9τz + (1- γ)z(x9y)9 y)dτ (z - z(x9y)) . (2.52)
o

Differentiate (2.52) and apply (2.34), (2.44) and (2.51). Estimate (2.49) follows.
Next let \y\ ̂  2CT. We set Qf = {y = (yl9...9ym): ±yj ^ 0}, j = 1,. ..9m and

cover Rw by these sets. When y G Ω^9 we telescope the difference φ(x,z,y) —
φ(x,z(x,y\y) as follows:

φ(x9z9 y) - φ(x9z(x9 y\ y) = (φ(x9z, y) - φ(x9z9 y ±

+(φ(x9z9 y ± 2Cτej) - φ(x9z(x9 y ± 2Cτejl y ±

+(φ(x9z(x9 y ± 2Cτej\ y ± 2Cτej) - φ(x9z(x9 y\ y)) = h + h + h ,

where ej is the jih unit vector. Note that for y G Ωf and ±τ ^ 0, we clearly have

C2

T ^ z2 -h y2 ^ z2 + (y ± τej)2 and z2 + (y ± 2CTej)2 ^ (2CΓ)
2. Hence, /i and
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/3 are uniformly bounded with uniformly bounded derivatives with respect to (jc, y)9

as can be easily seen from the expressions

±σ

/i = - / (dy.φ)(x9z9 y + τβj)dτ ,
o

and
±σ

h = / {(dzφ)(x, z(x, y + τe/ ), j + τβj }dyjz(x, y + τβ7 )
o

+(dyjφ)(x,z(x, y + τey), 7 + τey )}dτ .

Applying to h the estimate already proven for the case \y\ ̂  2CT, we obtain

But, as z(x,y) has uniformly bounded derivatives, this immediately implies (2.49)
for /2. The proof follows by combining the above estimates. D

Completion of the Proof of Theorem LI. We are now ready to show that the
function e~iS^ttStXty^E2^(t9s9x9y) is smooth and bounded with respect to (x,y) and
that the derivatives are bounded and continuous with respect to (t,s,x, y). Note, by
virtue of (2.48) of the previous lemma,

\dzφ(x9y9z)\ ^ C\z-z(x,y)\ ^ CCT/4 , (2.53)

on the support of 1 — w(z — z(x,y)). This means that we can use the same operator
L denned by (2.39) to perform integration by parts in (2.47), which gives

x((l - W(z-z(x,y}}}A(X,z,y))dz . (2.54)

Here, the lower bound (2.53) and the upper bound for the derivatives of A(x9z, jμ),
z(x,y) and dzφ(x,z,y) show that

|(δ^)CZ/(l - w(z-z(x,y»)A(x9z9y)\ ^ CΛβ(l + \z-z(x9y)\Γ'

Hence differentiating (2.54) with respect to (x,y) under the integral sign and using
the estimates (2.49), we see that e~iS(ttStXί^E292(t9s9x9y) is bounded with bounded
(x, y} derivatives which are jointly continuous with respect to (t,s,x, y).

To complete the proof, we show finally that the derivatives EΛβ = d*dyE(t,s,x, y)
are Cσ+1 with respect to (t,s,x,y), provided that, for all α, d*V(t,x) are Cσ with
respect to (ί,;c). For this we show that E(t,s,x,y) satisfies the following equations
in the sense of distributions:

idtE(t9s9x9y) = -(l/2)ΔxE(t9s9x9y) + V(t9x)E(t9s9x9y) , (2.55)

idsE(t9s9x9y) = (l/2)ΔyE(t9s9x9y) - V(s9y)E(t9s9x9y) . (2.56)

Once these equations are established, the Cσ+1 property of EΛβ follows immediately.

Indeed, by differentiating (2.55) and (2.56) by d*dy and applying the previous result
that Euβ is jointly continuous, we deduce easily that dtE^ and dsEΛβ are both jointly
continuous with respect to (t,s9x,y). Further differentiation of (2.55) and (2.56)
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by (t,s,x, y), and a standard induction argument now lead to the conclusion that

,x,y) is Cσ+1. To prove (2.55), it suffices to show that

f (ίdt -\- (1/2)ΔJC — V(t,x))φ(t,x)\l/(s,y) E(t,s,x,y)dydxdtds = 0 ,

for φ(t,x),φ(s,y) G C£°(Rm+1). But this follows immediately because the integral
is absolutely convergent and, for every fixed s £ R1,

u(t,x;s)= fE(t,s,x9y)ιl/(s,y)dy

is a solution of (1.1) by the definition of E(t,s,x,y). The second Eq. (2.56) fol-
lows from the first (2.55) and the identity E(t,s,x, y) = E(s,t,y,xY, which follows
in turn from the identity U(s,t) = U(t,s)*, where the former * denotes the com-
plex conjugate and the latter * the conjugate operator. This completes the proof of
Theorem 1.1. D

3. Super-Quadratic Potentials - Proof of Theorem 1.2

In this section, we prove Theorem 1.2. We assume the spatial dimension m—\ and
V(x) satisfies the condition of Theorem 1.2. Under this condition it is well known
that the operator H = -(\/2)d2/dx2 + V(x) is essentially selfadjoint on C^R1)
and its closure, which we denote by the same symbol, has purely discrete spec-
trum λ\ < λi < —> oo. We let u\(x\U2(x\... be the associated real normalized
eigenfunctions.

We begin with the study of the asymptotic behavior of solutions of the eigen-
function equation

» + V(x)u(x) = λu(x) (3.1)

in the interval Ωχ = {x : V(x) ^ A/2}, as the parameter λ —> oo. We set

S(x) = f^/2(λ-V(s))ds9 a(x) = (2(λ - F(x)))'14 ,
o

and make the well known change of variables (cf. Titchmarsh [17], p. 119): c
y = S(x) and u(x) = a(x)w(y). This transforms the eigen-Eq. (3.1) into

It follows that w satisfies the integral equation:

y
w(y) = w(0) cos y + w;(0) sin y - / sin(^ - z)F(z, λ)w(z)dz (3.2)

o

where, of course, V(y,λ) stands for the function inside {• •},

V"(χ) 5Vf(x)2

v(y'λ} = %(λ-v(xw
 + 32μ-κ(,))3' y = s(x)

We write Cλ = (w(0) - zV(0)) so that w(0)cos y + w/(0)sin-y =
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Lemma 3.1. There exists a constant C > 0 independent ofλ^λ$ and x e Ωχ
such that

~^2 . (3.3)

Proof. Let (x0,JCι) C Ω^\K. We assume without loss of generality that 0 < XQ <
xι and V'(x) ^ 0 on the interval. Since V ^ CV(x) ^ C(λ - V(x)\ we have,
uniformly with respect to XQ and x\, that

S(χ\) c *ι *ι CV'ίrΛ C

* s (3 4)

It follows by applying GronwalΓs inequality to (3.2) that \w\ ^ C|Q|, and inserting
this inequality into (3.2) and using (3.4) again, we obtain (3.3). D

We have S(x) = V2Ϊx + O(λ~1/2) and a(x) = (2λ)~l/Λ(l + O(λ~1)) uniformly
on any compact set /. Hence, as λ — > oo, we have

u(x) = (22)-14(Re {Cλe
i2} + O(Cλλ~l2n x^I. (3.5)

We now assume that the solution u belongs to L2(R1) and find a lower bound
of \Cχ\ for large λ. In what follows ( , ) denotes the inner product on

Lemma 3.2. Let a real function u EZ^R1) satisfy (3.1) and suppose \\u\\ = 1.
7%e/ι, ίλm> exwto α constant C > 0 swcΛ fλέtf |Q| ^ Cλ(c~l)/4c for λ ^ A0.

We denote M = infxeK( V(x) + ( l/2)xV'(x)). Let A = (l/2)(x D+D x)
be the generator of the spatial dilation eltAu(x) = et/2u(etx\ By a simple computation
we have

i[H,A] = 2H -(2V + xV),

where [H,A] — HA — AH is the commutator. Since u(x) is C5 and exponentially
decreasing as x — > ±00 with its derivatives, integration by parts shows that

([H,A]u9u) = (Au9Hu) - (Hu9Au) = λ{(Au,u) - (u9Au)} = 0

and we obtain the virial identity,

λ = (Hu,u) = ((V + (1/2 > - F>,ι/) .

For large λ$ we have K C Ωχ for λ ^ AQ. Hence, by the assumption 2cV(x) ^
jcK'(jc) on ̂ c,

1 ^ M + /(F(jc) + (1/2 )x F7^))!
/:c

^ M+ $(\+c)V(x)\u(x)\2dx ^
Ωί

It follows that for large λ ^ AO>
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On the other hand (3.3) implies u(x) = a(x)(Re{Cλe
iS^} + O(\Cλ\λ~l/2)) on Ωλ

and

Ω, Ω;

(3.7)

where \Ωχ\ is the measure of Ωχ. On the other hand, the assumptions imply V(x) ^
C\x 2c outside a compact set and we have \Ωχ\ ^ Cλl/2c. It follows by combining
(3.6) with (3.7) that \Cλ\ ^ C\Ωλ\-l/2λ1/4 ^ Cfλ^c~^c as desired. D

We now show that the spacing of the neighboring eigenvalues λn+\ — λn is
algebraically increasing with λn as n -> oo. From the assumption on V we de-
duce that, outside a compact interval K, V(x) is increasing with respect to \x\ and
C\x 2c ^ V(x) g C" jc|2ί/ for some d ^ c outside a compact set. It follows for large
λn, that the equation V(x) — λn has two roots X'n < 0 < Xrt. It is well known (cf.
Titchmarsh [17], p. 151) that

-Xj{2(λn - V(x))}ll2dx = n + 1 + O (- } . (3.8)
πx, L \nj

Lemma 3.3. There exists a constant C > 0 such that for large n, we have

'2c . (3.9)

Proof. Without loss of generality, we may assume min V(x) = 0. For large n,
we have Xn < Xn+l, X'n > X^+λ and C λ]J2d ^ Xn -X'n ^ Cλl

n

/2c. Subtracting (3.8)
from both sides of the corresponding equation for n + 1, we obtain

π I Q [ _ I __ f(f2(λ — V ( x ) ) t ' — i2(λ V ( x ) ) r ' ι d x
\nj xι

ί X'n X»+l\

+ / + / {2(λn+l - V(x))}l/2dx =/, +/2 +/3 .
\ Y' Y IV*M+1 Λn /

Obviously, 0 ^ /7 ^ 2π for large n. Estimating /i from below, we have

Xn Ίf 1 — 2 \ ( 1 — 1 \\Y — Y'
j r ^VΛ«+1 An) // > w+^ ΛW/I^/I ^^

•* 1 I Γ Λ X Λ T ^ X N. -v •» 1 /Λ . r ^ y - f l - ^ ^ X X N ~ » 1 / 0 WΛ /

(3.10)
It follows that λn+l - λn ^ 2π^2λn+l\Xn -X^\~l ^ Cλ^λ^1'24 and

0 ^ 1 - λn/λn+l ^ Cλ-^2λ-l/2d -f 0, n -> oo .

(Incidentally this estimate yields the upper bound ln+ι — !„ ^ CA« ~ .) On the
other hand, if Ύ'n < 0 < Ύn are the two roots of V(x) = λn/2, we have

= {2(λn - F(*))} /2 xV'(x)
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Estimating the second integral by using xV'(x) ^ 2cV(x) ^ cλn and \x\ g Cλ}J2c ',
we bound the right hand side by

Yn ~ Yj , Cλ _ Y , x V'(x)dx Yn - Ύ'n
+

cλn

This yields the estimate I\ ^ C(λn+\ — λn)λl/2c~1^. We estimate /2 and h in a sim-
ilar fashion. By using xV'(x) ^ 2cV(x) ^ 2c/lw and |jc ^ C/ί̂  ^ C"4/2c which
are valid on the region of integration, we see that

Xn XV'(X) ~ An

 J

Xn

2y/2C,,
< C (λ — λ U1//2c~1//2

with the constant Cn —> 0 as n —» oo. We may estimate /2 in entirely the same way
and arrive at

π + 0 ί _ j = /j + /2 + /3 ^

which clearly implies λn+\ — λn ^ Cλ]j2~l^2c. This completes the proof of the
lemma since λn/λn~\ —> 1 as « —> oo. D

Proof of Theorem 1.2. It suffices to show that for any non-negative and not
identically vanishing CQ° functions φ, Φ and Ψ,

fE(t,x,y)φ(t)Φ(x)Ψ(y)ei(tλ+x ' ξ~y ' η}dtdxdy (3.11)
R3

is bounded from below in modulus by a constant times (λ + \ξ\ + |^|)~^2c

? along
a sequence (λn9ξn,ηn) such that λΛ + \ξn + |^«| —^ oo, « —>• oo. We write Φ^(Λ ) =

and ^(jc)= y(^)e" ' η. By the definition of E(t9x,y), (3.11) may be
written as ^

j (e-«(H-i)φ6 ψη)dt = (φ(λ _ H^ ψη} ; (3 12)

where φ is the Fourier transform of φ:

^ 0

φ(λ) = f e-ίtλφ(t)dt .

Let λn be the nth eigenvalue of H and Pn denote the orthogonal projection onto the
eigenspace spanned by un and let Qn = 1 — Pn. By virtue of Lemma 3.3 and the
fact that φ is rapidly decreasing, we have for any N = 1,2,...,

\\φ(λn-H)-φ(0)Pn\\ = \\φ(λn -H)Qn\\ ^ sup fe -4t)| ^ CN^-W* ,
k^n

with a constant CN independent of n = 1,2,... It follows that for any large N we
have, uniformly with respect to ξ and η,

(φ(H - λn)Φξ, Ψη) = φ(0)(Φξ, «„)(«„, Ψη) + 0(λ~N)
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as n — > oo. On the other hand (3.5) and Lemma 3.2 show that

and integration by parts yields

/2)) . (3.13)

We may compute (un, fy^) in a similar fashion and conclude that

(φ(H - λn)Φ^, ψ^) = J ( £ ( 0 ) Φ ( θ m θ ) + Oα-1/2)) + 0(λ~N) .

Thus, setting λ = λn and ξ = η = \/2λn and using Lemma 3.2, we have obtained
the desired lower bound along this sequence

\(φ(H - λ)Φt, Ψη)\ ^ C(λ + \ξ\ + \η\Γl/2c -

This completes the proof of Theorem 1.2. D

Proof of Remark 1. (7) We show that E(t,x,y) is nowhere in JSf/^R2) with

respect to (t, y) for almost all x G R1. The second statement follows from E(t,x, y) =
E(—t,y,x)*. We use the notation of the proof of Theorem 1.2. It suffices to show
that, for almost all c E R1, limsup^^ of

fE(t,x9

R2

is positive. Decompose, as before,

φ(H — λn)Φ/2r(x) = φ(0)(PnΦ/2r)(x) +φ(H — λn}(QnΦ/2r)(x) . (3.14)

The second term on the right may be estimated as follows by using the Sobolev
inequality,

\2 ^ C\\φ(H - λn)

Choose a constant M > 0 such that V(x) +M ^ 1/2 and estimate the right hand-
side by

2C((H+M)φ(H - λ^QnΦ^, φ(H - *«)

which is further estimated as in the proof of Theorem 1 .2, to give the bound

(||(// - λn$(H - λn)Qn\\ +\\(λn+M}φ(H - λn)Qn\\) \\φ(H - Λ^al l l lΦH 2

^ CNλ~N ,

where N is an arbitrarily large number. If we write Re Cne
ί^ "x = \Cn cos(\/2λ~nx +

τn), the asymptotic formulae (3.5) and (3.13) imply for the first term of (3.14)
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Thus, if we set GL n t = {\x\ g L : cos(V2λ^x + τΛ)| > 2~'} and GL =
'

lim sup λl

n

/2c\φ(H - λn)ΦVTΓn(x)\ > 0, for all x G GL .
n—χχ>

But the complement GC

L n f of GL^ in the interval [—L,L] has a measure ^

for large / and «, and the measure of the set GC

L = ΠSiU^iΠ^jt^ί « t vanishes.
This proves statement (7). D

Proof of Remark 1. (2) The function E(t,x, y) satisfies the Schrόdinger equations

(ίδ, + (1/2)Δ, - V(t,x))E(t9x9y) = (*Bt + (1/2)Δ, - F(^))Eα*, 7) = 0 ,

as can be easily checked as in the proof (2.55) and (2.56). Then, the theory of
Lascar [12] and Sakurai [15] on the propagation of the quasi-homogeneous wave
front sets implies that

WFaE C {(*,*, M */, f) :2λ = ξ2 = η2} ,

viz, for any (tQ9xQ, yQ) there exist p(t\ ψ(x\ φ(y) such thatjp(f,*, y) = ρ(t)\j/(x)φ(y)
does not vanish at this point and, for any small ε > 0, ΦE decays rapidly outside
the parabolic set

{OUξ) e R3 : |1 - |ξ|/|iί| | + |1 - 2λ/ξ2\ + |1 - 2λ/η2\ ^ ε} , (3.15)

as follows: for any large TV, \ΦE(λ,η,ξ)\ ^ CN(\ + \λ\ + \η\2 + l^l2)'^. It follows
that we have only to estimate

= (p(H - λ)Pnφξ,ψη) + (p(H - λ)Qnφξ,ψη) (3.16)

in the set (3.15). If λn is the eigenvalue of H nearest to λ, we have λ €
(λn-\,λn+ι) and the distance from λ to the end points of this interval is greater
than (l/2)min{λn+ι — λn,λn — !„_]}. Thus, by using Lemma 3.3 as in the proof of
Theorem 1.2, we deduce that the second term in the right of (3.16) is bounded by

\(p(H - λ)Qnφξ,ψη)\ ί CNλ~N ^ CN(\ + \λ\ + \η\2 + \ξ\2ΓN

On the other hand, when λ is large enough, the asymptotic formula (3.5) implies

\(p(0)Pnφξ,φη)\ ^ \\p\\L>\(φξ,un)\\(un,φη)\

But, we may estimate the left hand side of (3.7) from below as

, ϊ /«,#* . {M <ι"\+'™*-'a*« >= w lβlKI _ «-W) ,
Ωλ Ωλ v2(λ - V(x)) 2V2λ

and, because Ωχ ^ Cλl/2c by assumption, we obtain \Cχn\ ^ Cλl

n

 4c. This implies

\ΦE(λ,η, -01 ^ C(l + |A| + \η\2 + \ξ\2Γl/2° ,

as desired. D
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