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Abstract: We study the front dynamics of solutions of the initial value problem
of the Burgers equation with initial data being the viscous shock front plus the
white noise perturbation. In the sense of distribution, the solutions propagate with
the same speed as the unperturbed front, however, the front location is random and
satisfies a central limit theorem with the variance proportional to the time t, as t
goes to infinity. With probability arbitrarily close to one, the front width is 0(1)
for large time.

1. Introduction

We are concerned with the initial value problem of the Burgers equation:

ut + uux = vuxx, v>0,xeR\ (1.1)

with initial data:
U{Λ, \JJ — Us -f r x , \ l ' A )

where us = us(x) is the profile of the viscous shock front connecting one and zero,
Vx is the white noise, or formally the derivative of a two-sided Wiener process
Wx starting from zero. Without the white noise perturbation, we have the exact
solution:

έM')})~ (L3)

where x can be shifted by any constant xo e Rι

9 and we choose it to be zero
for convenience. It is well known that the viscous shock front (1.3) is asymp-
totically stable if it is perturbed by an integrable function at t = 0, see Ilin and
Oleinik [8]. We are interested here in the behavior of viscous shock fronts un-
der random perturbations. In reality, random perturbations abound in dissipative
dynamical systems admitting front solutions. In the case of conservative systems
derived based on conservation of mass, through suitable asymptotic reductions, one
often ends up with a scalar conservation law with either random coefficients or
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random initial data. Besides in the traditional gas dynamics [15], scalar con-
servation laws are found in: 1) surface water infiltration into randomly layered
soils, see [10, 11], etc., where water concentration obeys the Richards equation, a
viscous conservation law whose front solutions are called wetting fronts; 2)
transport of contaminants (such as heavy metals) in porous media with ran-
domly distributed sortion sites, [16, 4], etc., where the pollutant concentration
satisfies another viscous conservation law whose front solutions are clear indica-
tions of underground contaminant movement. We mention that the (inviscid) Burg-
ers equation with random initial data was also extensively studied in relation to
astrophysics (see e.g. [12]). In these problems, one faces the difficulty of both
randomness and nonlinearity. It is in general hard to pursue detailed analysis un-
less one specializes to completely solvable cases. On the other hand, what we learn
from these special situations helps us gain insight and can serve as guidelines for
numerical investigations on nonintegrable cases. This is our motivation to consider
Burgers equation with white noise (or Gaussian processes, see later) initial pertur-
bation imposed on fronts. Random initial data problems are related to, yet typically
simpler, than random coefficient ones, hence should be first considered. We hope to
extend our work here to random coefficient problems in the future.

Since each realization of the white noise is unbounded and not integrable, clas-
sical stability results of [8] do not apply. We remark that various aspects of the
Burgers equation with random initial data have been studied in numerous works
(see [1, 2, 6, 12-14]). In particular, in [6] the inviscid Burgers equation with the
initial data (1.2) was studied, using different methods and from a somewhat different
point of view.

Our main concern is the noise effect on the front behavior, namely, in what sense
one still sees a front, and whether the front width increases with time. Intuitively,
noise tends to smear out the front structure. We first write down the solution ex-
plicitly with Cole-Hopf formula, and identify the different features of various terms
as t —> +00. The initial condition enters the solution formula through its spatial in-
tegral. The formula thus makes sense even with singular initial data (1.2) and the
randomness appears in it through the Wiener process Wx. We study the distribution
of u(x,t) using the scaling and Markov properties of Wx. To extract the asymptotics,
the almost sure uniqueness of the maximal point of the process Wx — y is essential
for applying the Laplace type method. Our main results are:

Theorem 1.1. Let u(x,t) be the solution to the problem (1.1)—(1.2), and f(t) be
an increasing function of t. Then as t —> oc:

f{t)-\t
3) If —-p > c9 u(f(t),t) converges in distribution to a random variable

equal to zero with probability Jf(c) and equal to one with probability 1 — Jf(c\
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where

/
2π-oo

the unit Gaussian distribution function.

Remark 1.1. Notice that 1) and 2) of Theorem 1.1 are asymptotic cases of 3) when
c —> zhoo.

Theorem 1.2 (Front Width and Location). Let u(x,t) be the solution to the prob-
lem (1.1)—(1.2). Given any positive number ε e (0,1), let us define the left and
right endpoints of the interval containing the front as:

z-(t) = min{jt : u(t, x) — 1 — ε},

z+{t) — max{x : u(t, x) = ε}.

Then we have:

1) There exists a constant to>O such that the random variables {z+(t) —
z-(t)} are tight for t ^ ί0, i.e. for any δ>0 there exists an M, such that P(z+(t) —
zS{t) > M) < δ for all t > t0.

2) As s —» oo, we have

f , Wι

and the same is true for z_.

Remark 1.2. As part of the proof, we will show that z_(ί), z+{t) are almost surely
finite for f ^ *o. In essence, the theorem says that the noise does not spread the front
width for large time and that the front location as a function of t, when properly
centered and rescaled, converges in distribution to the Wiener process. In particular,
z + y 2 converges in distribution to the unit Gaussian.

Remark 1.3. The classical result of Ilin and Oleinik [8] says that the system ac-
commodates an integrable initial perturbation of the traveling front by shifting the
front by a finite distance. In the case studied here, the perturbations (in addition to
being highly irregular) are not integrable and the amount of additional "mass" the
system has to "swallow" is infinite. At a finite time t the response of the system
consists of shifting the front by a distance of the order n and yet keeping the front
width still at 0(1).

The rest of the paper is organized as follows. In Sect. 2, we put the solution formula
into a convenient form for later analysis, and show a Laplace-type lemma. In Sect. 3,
we perform probabilistic analysis and prove Theorem 1.1. In Sect. 4, we discuss the
asymptotic distribution of front locations and the tightness of front widths, and prove
Theorem 1.2.

2. Cole-Hopf Formula and a Laplace-type Lemma

By the substitution u — — 2 v ^ for the solution of (1.1)—(1.2), we end up with

solving the linear heat equation φt = vφxx for φ and the well-known Cole-Hopf
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formula [15]:

( \ / \ —1

/ —ΛGxp{-(2vrιG(η)}dη)[ f vφ{-(2v)-1 G(η)}dη ) ,
-oo t J \-oo /

(2.1)
where

G(η) = G(η;x,t) = / us(η')dη' + W(η) + {2t)~\x - η)2. (2.2)

Using (1

and so:

.3), we

η

Iι

0

have:

ιs(ηf)dη'
Ά

0

e-x/(2v)

L+*-*/(2v) λ 9v1n I
2

,

Γ , iKl +«gτ'(f^) ) e x p{-Sjza2

Ξ ^ (2.3)
De

To study the asymptotic behavior of Nu and De, we rewrite Nu as:

W(x -η) (η- t)2

2v 4vt



White Noise Perturbation of Viscous Shock Fronts of Burgers Equation 187

W(x->/tη) η2

—Tv

+ exp{-(2vΓ'(x --)}_/ exp{- J '-

l Γ /o Λ l / * \ λ °r ( W(x-η-t)

W(x-

+ exp{-(2v)- (,-£)}_/ ,exp{-^-2f-> - £},„, (2.4)

and similarly:

W(x-
exp i -

— oo

0 0 Γ W(x -y/iη-t)
e x P ϊ ^

Ί 2v 4v 9

(2.5)

Combining (2.4) and (2.5), we get:

φ,t)

_ exp{-+ exp{-(2vΓ ( x - - ) } { ^

-1) η2

We will analyze the solutions based on (2.6). To this end, we need:
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Proposition 2.1. If φ(u) e C(RX), φ(u) ^ — C\u\2 for \u\ large, where C is a pos-
itive constant; φ(u) < φ(uo), Vwφwo? then for the probability measures μχ with
densities eχPi ^ψi.u)}du ^ have:

J exp{λφ(u)}du

μι ± K, (2-7)

the unit mass at UQ, as λ —> +CXD. Moreover, the expected value Eμ/(u) —* UQ, as
λ —> +oo (it will be clear from the proof that the assumption φ(u) ^ — C\u\2 can
be replaced by φ(u) ^ — C\u\p with any p > 0).

Proof Let φ(u) e C°°(Rι), \φ(u)\ ^ C(\ + u2)m, for some m > 0. Consider:

Jφ(u)dμλ - φ(u0) = J(φ(u) - φ(uo))dμλ

= f (φ(u)-φ(uo))dμλ+ f (φ(u)-φ(uo))dμλ

= I + Π, (2.8)

where δ > 0 is a small positive number. The first term is bounded as:

|I| g sup \φ(u) - φ(uo)\ = ωψ(δ,uo). (2.9)

The second term can be written as:

^{««u]-««))}'" • (2.10)
Γ

|«-i|gί SRI

For any given δ > 0, there exists a constant A"=A^(^)>0, such that if u§

[«o - ^, wo + <5],

ς»(M) - <p(«o) g - ^ ) | M - M O | 2 (2.11)

On the other hand, for any δ\ > 0, we have:

fexp{λ(φ(u) - φ(uo))}du

^ / Qxp{λ(φ(u) - φ(uo))}du

φ (2.12)
u£[uo — Oι,uo+δ\]

where δ\ is independent of λ. Combining (2.10), (2.11) and (2.12), we obtain:

|Π| ^ (2δλ)-1 J \φ(u) - φ(uo)\exv{-λK(δ)\u - uo\2 + λωφ(δuu0)}du
\u-uo\>δ

exp{λωφ(δuu0)} / (1 + |M-Mo|2)m
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^ C(2δ\)~λ exp{λωφ(δuUo)}Cι(m,δ) f exp < — λ-K{δ)\u — UQ\ > du

δK{δ)λ I 2 I

Choosing δ\ small enough so that ωφ{δ\,uo) ^ δ K{δ)/4, and letting λ —> oo, we
have:

limsup IIII = 0,
A—>-OO

while
limsup|I| ^ ωψ(δ uo).

A—> o o

Finally, sending δ —> 0, we conclude that

Jφ(u)dμλ -*φ(uo\

which implies (2.7) and in particular

Judμχ^uo. (2.13)

The proof is complete.

3. Proof of Theorem 1.1

In this section, we present probabilistic analysis based on the solution formula of the
last section, and complete the proof of Theorem 1.1. The following is of fundamental
importance for our analysis:

Proposition 3.1. Let W be a two-sided Wiener process starting from 0, {i.e.
{Wu : u ^ 0) and (Wu : u ^ 0) are two independent Wiener processes). Then with
probability one

rdef (TJZ U2

J - sup [Wu - —-
u \ £

is finite and strictly positive, and there exists a unique UQ for which

J =WUn- ^-.

Proof. That J is almost surely finite and positive follows from elementary proper-
ties of the Wiener process (see e.g. [9]). It is well-known that with probability one
all local maxima of a Wiener path are different, and therefore the same is true for
the Wiener process with a drift, thanks to the Girsanov theorem [9]. This implies
the uniqueness of WQ. For completeness we present a more elementary proof: let
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and
= inf < v>u:Wΰ- — =Su

τ is a stopping time. Therefore, by the strong Markov property of the Wiener process
[9], on the event {τ < oo}, Bu = Wτ+U — Wτ has the distribution of the Wiener
process. The local behavior of Bu near u = 0 implies that Wυ — y takes a value
larger than Su in every neighborhood of τ and, consequently, that Su can occur only
once as a local maximum of the process {Wv — ̂  : v > u}. A similar argument for
v < u ends the proof.

Remark 3.1. A similar argument based on the strong Markov property shows that
the distributions of J and UQ are continuous. The Fourier transform of the density
of the joint distribution of J and wo was calculated in Groeneboom [7].

In what follows we shall use a couple of lemmas about the behavior of sequences
convergent in distribution under algebraic operations. The first one is known in the
probability literature as Slutsky's Theorem (Durrett [5]) and the remaining ones are
similar in spirit. Since the proofs of all these facts are very short, we include them
for completeness.

Lemma 3.1 (Slutsky's Theorem). Let Xn and Yn be sequences of random variables
on a probability space (Ω, 3F, P), and let X be a random variable such that Xn —> X
and Yn —• 0 in distribution. Then Xn + Yn —> X in distribution.

Proof. Let x be a continuity point of the distribution function of X. We need to
prove that

lim P(Xn + Yn ^ x) = P(X ^ x).
n—>oo

Let us choose ε so that x — s and x + ε are also continuity points of P(X ^ x). We
have:

P{Xn ^X-s)-P(Yn > ε) SP(Xn + Yn ̂ X) ύP{Xn ύ X + e) + P(Yn < s).

In the limit when n —> oc this implies

P(X g x - ε) g lim inf P(Xn + Yn g x) ^ \imsupP(Xn + 7W ^ x)

and taking ε to zero completes the proof.

Lemma 3.2. Lei Xw, Yn and Zn be sequences of random variables on
such that Y,

distribution.

Proof Clearly

such that Yn > 0, Zn ^ 0 and ψ —> 0 in distribution. Then also

and the last expression converges to zero in distribution. Hence

fore also γ

xj^z converges to zero in distribution, as claimed.

, and there-
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Lemma 3.3. Let pn and Xn be sequences of random variables on (Ω,^,P), such
that pn —> 0 and Xn —> X in distribution. Then also pnXn —> 0 in distribution.

Proof. Fix ε > 0. For any K > 0 we have:

P{\PnXn\ > ε) g

so that for any K > 0,

limsupP(|/?ΛΛΓπ| > ε) ^ li
n—+oo n—+oo

and, consequently,

lim P(\pnXn\ > ε) = 0,
w—> oo

which completes the proof.

Remark 3.2. pnXn does not have to converge almost surely, even if pn does.

Let us call the consecutive terms in the numerator of (2.6) Au Bt and Ct and the
consecutive terms in the denominator Dt and Bt (the second terms in the numerator
and in the denominator are identical).

Lemma 3.4. Let x — f(t), where f is an arbitrary {measurable) function of t.
Then, as t —• oo, we have

> 0Dt+Bt

in distribution. Thus, by Lemma 3.1, the limiting distribution ofu(xj) (if it exists)
is the same as the limiting distribution of B

Proof Lemmas 3.1 and 3.2 show that it is enough to prove that

A

and r

in distribution.
To prove the first of these two claims, we rewrite ^ as

-LQXΌί 2

2v JJ _ a
2v 4v

Now, for any fixed x and ί, the process W(x) — W(x — \ftr\) has the same distri-
bution as W(y/tη), by the Markov property of the Wiener process. Changing the
variable of integration to y = t~βη and using the scaling property of the Wiener
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process, we thus obtain

A,

Dt

Using Propositions 2.1 and 3.1, we see that the ratio of the two integrals in the
last expression converges almost surely to a finite, nonzero limit and thus, applying

Lemma 3.3 twice, we see that ^ —>• 0, as claimed. An analogous argument shows

that if —> 0 and the proof is finished.

To analyze the behavior of D

B^B , depending on how x varies with t, let us write,

using a similar idea as above:

Bt p(t)Bt

Bt+Dt p(t)Bt+Dt'

with ^ ^

and P(t) =

Lemma 3.5. Let x be an arbitrary {measurable) function of t. Then as t —• oo,
both t~ϊ logBt and t~ϊ \ogDt converge in distribution to a.s. positive limits.

Proof. Proceeding as in the proof of Lemma 3.4, we substitute y — t~*Y\\ and
using the Markov property of the Wiener process, we obtain:

By Propositions 2.1 and 3.1, the logarithm of the last expression, multiplied by t 3

converges with probability one to sup(JF(w) — y ) . This proves the assertion of the

lemma for Bt and the proof for Dt is analogous.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1, 1). We want to show that

P(t)Bt d

p(t)Bt+Dt

or, equivalently, (by Lemmas 3.1 and 3.3) that

P(t)B,

1?
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Since the above expression is positive, it is enough to show that for any y > 0,

\p{t)Bt

We have:

P\t)o

\ \ ( Dt \

Γ£- ύ y ) = P log p(t) ^ log -g- - log j ;
)Bt / \ Bt J

2V l 0 g g i -
β B

l0ggi-2vίyV

Thanks to the assumption of the theorem and to Lemma 3.5, the expression on the
right-hand side of the inequality goes in distribution to — oo. Since for any t and JC,
^(χ)~^(χ~?) is a unit Gaussian variable, the probability in the last expression goes

to 1 and the proof is finished.

Proof of Theorem 1.1, 2). We proceed exactly as in the proof of Theorem 1.1, 1),
except that now in the last expression the direction of the inequality is reversed. As
a result, P(-βτβ- ^ y) -> 0, which implies that -β^ Λ oo, i.e. that u(x9t) - i 0 as

p(t)rit P\})Bt

Proof of Theorem 1.1, 3). We will prove the theorem in the case x = \t + c\β
only; essentially the same proof applies to the general case. Let 0 < y < 1. We
have:

p(t)Bt+Dt " V V ^(1-7)

/ A v
= P( logp(t) ^ log χ + log - ^ 1

In our case

I

2v

where χt — W(x) — W{x — t) is a centered Gaussian variable with variance /. Hence

- j . f i s e n * [h.f t+1., .
Φ= vfΓi, Ί-y

and, since \ is a centered unit Gaussian variable, the theorem follows from Lem-

mas 3.1 and 3.3.
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4. Front Width and Asymptotic Distribution of Front Location

So far we have been studying the asymptotic behavior of the distribution of u(x, t),
where x was a deterministic function of t. We saw that the solution with randomly
perturbed initial condition still in some sense has the front structure. We now want to
propose a way to determine the location of the front. This location will be a function
of t and of the realization of the white noise and we will study its distribution as
t goes to infinity. We will first prove Theorem 1.2 for the endpoints defined in a
slightly different way (see Theorems 4.1 and 4.2 below). Next, using this result and
some techniques developed in its proof, we will prove the theorem as stated. In
fact, in the proofs of Theorems 4.1 and 4.2 we will find it convenient to use yet
another modification of the endpoint definition.

As we have seen in Lemma 3.4, the solution w(x, t) to our problem can be
written as a sum of two terms, z(x,t) = j^gf- and v(x,t) = ^ ^ p . It follows from
Lemma 3.4 that

sup |z(x,O| —> 0.
X

The term z(x,t) is therefore transient in a very strong sense and for the purpose of
studying the front structure, we will first analyze the behavior of v(x9t).

Note that 0 < v(x9t) < 1.

Lemma 4.1. For every t > 0 we have

lim v(x,t) = 1
x—» — oo

and
lim v(x9t) = 0

x—»oo

with probability one.

Proof. We will prove the first claim; the second one is proven in a similar way.
Since we are studying the behavior of v(x,t) for a typical realization of the ran-
domness and not its distribution, it is of advantage to rewrite it with deterministic
exponential prefactors in front of the integrals:

v(x t) =

We will first estimate the integral in the numerator from below. For this, it is enough
to consider η between —1 and 1. We then have

X-t-y/t^X-t- y/iη ^ X - t + y/t

and hence, for — x large enough (how large, depends on the realization of the Wiener
process),

for all η in the interval [—1,1]. We are using here the well-known fact that with
probability one ̂  —» 0 (see e.g. [9]). Consequently, for large negative x the numer-
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ator is bounded below by const e x p ( ^ ) (the constant depends on t). The first term
in the denominator is identical to the numerator, so we just need to show that the
second term cannot diverge too fast. With probability one there exists a constant c
such that for all u,

Wu < cu\Zκ

This follows, for example, from the Law of the Iterated Logarithm ([9]), although
a more elementary proof can be given. Consequently, the second term in the de-
nominator is bounded above by

This diverges slower than exponentially in x and the claim follows.

Definition 4.1. Fix a number ε £ (0, \). Let

X-(t) — min{x : v(x,t) — 1 — ε};

x+(O = max{x : v(x,t) — ε}. (4.1)

We think of x-(t) and x+(0 as the endpoints of the interval containing the front,
distorted by the random perturbation of the initial condition. They depend on the
choice of ε, but as the results below show, this dependence is not changing their
behavior in distribution in a significant way.

Theorem 4.1. The family x + ( 0 ^ ~ ( 0 is tight for t ^ to, for some finite t0 > 0.

Proof By definition of x+, we have

p(x+(t),t)B(x+(t)9t) = ε

D(x+(t\t) 1-fi'

i.e.

4
and, similarly,

Let η > 0. Since t~~ϊ \ogB(x+(t),t) and t~^ logD(x+(t),t) converge in distribution,
their difference is tight for t ^ to for some to > 0. We can thus find an M > 0
such that

> M <
D(x+(t\t)

for t ^ to > 0. Similarly, M can be chosen to satisfy

D(x-(t),t)
> M ) <

(4.2)

(4.3)
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Let us introduce the modified front endpoints by

x+(t) = max < x : log p{x, t) = log MO >;

I 1 ~ ε J
f_(0 = min^x : logp(x,t) = log \-MO >. (4.4)

I ε J

Of course, on the event { |H logg-gjgl SM}Π {|H Iogg^χ7)| g M}, we
have

f_(0 ^ χ_(f) ^ x+(t) S x+(t). (4.5)

It is therefore enough to show that the random variables *+(*)"*-(*) a r e tight for any

choice of M. For w real (positive or negative) let !FU = σ({Ws : s ^ u}) (the σ-field
generated by the random variables Ws with s ^ u). Then x_(0 is a stopping time
relative to the filtration (#«). Using the definition of p(x,t), we have

: W(x)- w(x- -λ -

— 4vlog
ε

If the last event happens, then either

W{x) - W(x-(t)) ^ hx - x-

or

w(x- -t) - w(x-(t) - \t\ ^ -l-{x - f_

for t large enough. Let us estimate the probability of the first one of these events.
Since x-{t) is a stopping time, the strong Markov property of the Wiener process
[9] implies that the probability is equal to

> KO : W{u) ^ ^

If we now choose K large enough, this is bounded above by

p(3u > KO : W(u) ^ -V

and this probability can be made as small as desired (uniformly in t ^ to), by
choosing K large. The second probability is estimated in an analogous way and the
theorem is proved.
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Proof of Theorem 1.2, 1). We have

= P Ut) * MO + M; **«\ *\; \ \ ^ S =
/>(M0, t) B(x-(t), t) D(x+(t), t)

where δ = ( γ ^ ) 2 . Shifting the variable of integration in the integral defining

D(x+(t),t) by x + ( 0 ^ - ( 0 , we obtain:

D(x+(t),t) = exp v " v " — " exp

2v

r^r, I rr v--wJ - *^(M0 ~ Vtη) η2

J e x P '
2v 4v

and

),t) = exp ( — ^ — ^ ^ ] exp

J e x P
2v 4v

Since

λθ „ /MO -*+('Λ „ /^(MO) - ^ ~
p{x-{t\t)

* C X P
2v

we obtain, after a cancellation,

•M0^A/)£m+(0-M0

^ M;

/• _ 3
2v 4v "Γ 4vV(
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^ M;

We shall estimate the first term; the other term is estimated in the same way. First,
let us show that for any c > 0 there is an A large enough, so that the probability

P(\/η < -AΓ* : W(x-(t)) - W(x-(t) - yftη) g cη2)

is arbitrarily close to 1. Indeed, using the scaling and strong Markov properties of
the Wiener process and the scaling property of the Wiener process [9], we have

P(3η < -At* : W(x-(t) - W(x-(t) - Vtη) ^ cη2)

= P(3η < -At* : t*W(η) ^ cη2)

= P(3u < -A : W(ύ) ̂  cu2), (4.7)

and the last quantity can be made arbitrarily small by choosing A large. Conse-
quently, with probability arbitrarily close to 1, we have

;W(x-(t) - /) - W(x-(t) -t-Vtη) _r£ ι?(x+(Q-s_
6 X P » 2v 4v +

Choosing c so that f < £, we obtain a bound on this part of the integral of the
form

and this is close to 1 with probability close to 1, since by the previous lemma
x+(t) — x-(t) rg Ktϊ with probability close to 1. On the other hand, the whole
integral in the denominator is of the order expC2Π with probability close to 1 by
Lemma 3.5 and Theorem 4.1. Hence, we do not change the order of the integral in
the denominator by restricting the η in the denominator to {η > —At*}. A similar
(but simpler) argument shows that the integral in the numerator does not change its
order of magnitude either, when η is restricted to this set. Finally, we know that
with probability close to 1, |x+(0 — x-(t)\ ^ CΠ, provided C is large enough. For
those realizations for which all the events with probabilities close to 1, mentioned
above, hold, we thus pull out a lower bound

C,expl-C2— I =C
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on the factor e 4v^ . Then the first term on the right-hand side of (4.6) is (up
to an arbitrarily small probability) bounded by

The bound on the second term in (4.6) is proven in the same way. The tightness
of x+(t) — x~(t) is proven.

We now show that the front endpoints as defined in the formulation of Theo-
rem 1.2 satisfy the same tightness statement. To this end it is enough to show that
the random variables x+(t) — z+(t) are tight. Note that with probability arbitrarily
close to one we have

sup |κ(*, *)-»(*, 01 < \

if we take t large enough. Thus if z+(t) > x+(t)+M, then except on a set of
small probability, we have two points x\ = x+(t) and X2 = z+(t)9 for which X2 >
x\ +M, υ(x\) = ε and φ ^ ) > f. The probability of existence of two such points
can be estimated exactly as in the proof of tightness of x+(t) — x~(t) above. A
similar argument applies to estimate the probability that z+(t) < x+(t) — M and
the analogous events for z_(ί) This shows that all the properties of x+(t) and
x-(t) we have proven, also hold for z+(t) and z-(t) and we complete the proof of
Theorem 1.2, 1).

Theorem 4.2. As t —• oo,

x-^-ί Λ r, (4.8)

Proof. As in the above proof, we will use the modified front endpoints x+(t) and
x-(t). We have:

- 0 ^ yV~t + 2vlog ^

V
Similarly,

as t becomes large enough. On the other hand,

fx-{t) - ±
P[ r ^ y ^ ^(yl ( 4 9 )
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Since, by the previous theorem, the last term goes to zero, the lim inf of the left-
hand side is bounded below by ^V(y). Taking δ to zero implies that

The previous theorem now implies that also

IWu

Convergence to normal for the x+(0 and x-{t) follows now easily from the relation
(4.5). The proof is complete.

Proof of Theorem 1.2, 2). Step I. The finite-dimensional distributions of the process
*l~7, 0 ^ t ^ 1, converge to those of W(t) as s —»oo. We shall only prove this

for the two-dimensional distributions; the proof in the general case is essentially the
same, but notationally more complicated. Again, in view of (4.5) it is enough to

show this for the modified endpoint process x + l~ τ . For t\ < t2 we have:

<7=

( { ) { - ^ ) ^ 2 v l o g ^ 2vMt\
^ y\ Λ τ= j —

-ψ) 2yή
= y si

Since the difference ^iV^ — yi\β is of order lower than s, we can neglect it and
hence when s —> oo, the upper limit of the above probability is bounded by the
upper limit of

which is the desired two dimensional distribution of the Wiener process, since the
yy( st_ \ ppγ st_ \

process 2

 r—— is a Wiener process. Similarly,

hmsupP
\ τ

ύ P{W{h) ^ yύ
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and hence, in view of Theorem 4.1, also

(x+(stx)- f x+{st2) - f ^
hmsup/Ί τ—*- S y\\ 7 = — - ^

In the same way we show that for any combination of the signs of inequalities, prob-
abilities describing the finite-dimensional distributions of x+(st) — j are bounded
above by the corresponding probabilities for the Wiener process and this implies,
that in the limit, we actually have to have an equality.
Step II. Tightness. In order to prove that the processes x+(st) — j actually con-
verge in distribution to the Wiener process, we need to verify tightness. Note that
x+(0 does not have to be a continuous function of t, so that convergence in dis-
tribution and tightness are understood here in the sense of the Skorokhod space
[3]. We shall use Theorem 15.5 of [3]. According to this theorem, tightness (and
with it, the desired convergence to the Wiener process) will be proven if we show
that

1. For each positive α, there exists an a such that

P(\x+(0)\ > ayG) S a

for all s;
2. For each positive α and β, there exist a δ e (0,1) and an so, such that

p(3tut2e[0,\]:\h-t2\ ^ δ;

^ s0.

The first condition is obviously satisfied; the second one simply says that for s ^ so

the modulus of continuity of the function y+}^\ where y+(t) = x+(t) — | , calculated
for the maximum increment <5, is with probability at least 1 — β bounded above
by α. Now, if

- y+(st2)\ ^ αv7?,

then, by the definition of y+, we have:

W[y+(stι)+ y j - W[y+{st\)- y j - y+{st\) = 2vlog — - + Rλ\

w(y+(st2) + Y ) - ^ ^ + ( ^ 2 ) - y ) - JV+C^) = 2vlog j ^ + R2,

where R\ and R2 are bounded by a constant times £3 with probability arbitrarily
close to one. This implies, except on a set of measure close to zero, that there
exist JCI and x2 with |xi |, |x2| < s;\x\ — x2\ ^ y and \W(x\) — W(x2)\ ^ Cocy/s,
where C is an absolute constant. The probability of the last event equals, by the
scaling property,

ci,#2 |*i |> |*2| ^ l ; | * i — * 2 | ^ ^\\W(x\) — W(x2)\ ^ C α ) ,
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and this goes to zero with δ —» 0, since Wiener paths are continuous. This ends

the proof of tightness of the processes ΊfΊ- No\

Theorem 1.2, 1), we extend the above result to z±.

the proof of tightness of the processes x+

 r

 2. Now as at the end of the proof of

Remark. All the results of the paper can be generalized to the situation in which

the viscous shock solution is perturbed by a stationary Gaussian random process

with sufficiently fast decay of correlations. Every such process can be represented

in the form

Xt = fφ(t-u)Vudu,

where Vu is the white noise and / is a square-integrable function. To show that the

variables Wx — J^ dtjφ(t — u)Vudu are tight, it is enough to show that their second

moments are uniformly bounded in x, i.e. that

φ(v)dv du ^ C,

where C is a constant, and I^X] is the indicator function of the interval [0,x]. This

is satisfied if / " ^ φ(v)dv e L2(RJ) and /M°° φ(v)dυ e L2(R+). The last condition

holds e.g. when φ(v) decays at infinity as \v\~a with an α > 2. This allows to repeat

all the calculations, approximating Yt by cWt and estimating the probability of the

error being large. Here c = J φ(v)dv; note that all the results of the paper hold for

white noise of arbitrary intensity with obvious changes.

Acknowledgements The authors wish to thank J. Lebowitz for helpful conversations and
A Szepessy for kindly suggesting the problem. J X. was partially supported by NSF grant DMS-
9302830, and the Swedish Natural Science Research Council (NFR) grant F-GF 10448-301 at the
Institut Mittag-Leffler

References

1 Avellaneda, M : Statistical Properties of Shocks in Burgers Turbulence II: Tail Probabilities
for Velocities, Shocks and Rarefaction Intervals. Commun. Math. Phys 169, 45-59 (1995)

2. Avellaneda M. and E, W: Statistical Properties of Shocks in Burgers Turbulence. Commun.
Math Phys.

3. Billingsley, P.: Convergence of Probability Measures New York: Wiley, 1968
4 Bosma, W., van der Zee, S.: Transport of Reacting Solute in a One-Dimensional Chemically

Heterogeneous Porous Medium. Water Resour. Res. 29, No 1, 117-131 (1993)
5. Durrett, R.: Probability: Theory and Examples. Cole Statistics/Probability Series, Wadsworth

and Brooks, Pacific Grove, CA, 1991
6. Fan, H.: Elementary Waves of Burgers Equation Under White Noise Perturbation. Preprint,

1995
7 Groeneboom, P.: Brownian Motion with a Parabolic Drift and Airy Functions Prob Th. Rel.

Fields, 81, 79-109 (1989)
8. Ilin, A.M and Oleinik, O.A.: Behavior of the solution of the Cauchy problem for certain

quasilinear equations for unbounded increase of the time AMS Transl. (2) 42, 19-23 (1964)
9. Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus Berlin-Heidelberg-New

York: Springer-Verlag, 1991
10. Phillip, J.R.: Theory of Infiltration. Adv. in Hydrosciences 5, 213-305 (1969)
11 Phillip, J.R: Issues in Flow and Transport in Heterogeneous Porous Media. Transport in

Porous Media 1, 319-338 (1986)



White Noise Perturbation of Viscous Shock Fronts of Burgers Equation 203

12 She, Z.-S , Aurell, E and Frisch, U.: The Inviscid Burgers Equation with Initial Data of
Brownian Type. Commun. Math Phys 148, 623-641 (1992)

13 Sinai, Ya : Two Results Concerning Asymptotic Behavior of Solutions of the Burgers Equa-
tion with Force. J Stat. Phys. 64, 1-12 (1991)

14 Sinai, Ya.: Statistics of Shocks in Solutions of Inviscid Burgers Equations Commun Math
Phys. 148, 601-620 (1992)

15 Whitham, G.B.: Linear and Nonlinear Waves New York: Wiley and Sons, 1979
16. van der Zee, S., van Riemsdijk, W.: Transport of reactive solute in spatially variable soil

systems. Water Resour. Res. 23, 2059-2069 (1987)

Communicated by J L Lebowitz






