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Abstract: We give the spectral decomposition of the path space of the Uq(sl2) ver-
tex model with respect to the local energy functions. The result suggests the hidden
Yangian module structure on the sl2 level / integrable modules, which is consis-
tent with the earlier work [1] in the level one case. Also we prove the fermionic
character formula of the sl2 level / integrable representations in consequence.

1. Introduction

In the last decade of investigation, various close relations between the solvable lattice
model and the conformal field theory have been revealed (for example, [2-5]). The
aim of this article is to point out a new interesting relation between the spectrum
in the solvable lattice model and the hidden quantum symmetry in the conformal
field theory.

Consider the higher spin vertex model associated with the / + 1 irreducible rep-
resentation of Uq(sl2) ([6,7]). It is well-known that the characters of the sh or
Uq(sl2) level / integrable representations <£(k) can be calculated by using its path
space ^{k) ([2,8]). The energy of a path p is given by the sum of a sequence of
numbers h(p) = (h\(p),h2(p),...) minus the ground state energy which depends on
the corresponding boundary condition. Here h^p) is the ith local energy determined
from the / + 1th component of p and its nearest neighbors by the local energy
function. We propose the fact that the local energy functions not only play a com-
binatorial role, but also can be regarded as the q —• 0 limit of the local integrals of
motion which commutes with the corner transfer matrix.

At q = 0, the energy of a path p is essentially the eigenvalue of the logarithm of
the corner transfer matrix on the one dimensional configuration space Σpe&ίkfiP-
Hence p itself is the "eigenvector" of the corner transfer matrix, and at the same
time it is a simultaneous "eigenvector" of the mutually commuting infinitely many
"local operators" ht at q = 0.

In this paper we studied the spectral decomposition of the path space with
respect to the local energy functions A, . That is, we decomposed the path space
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&>(k) as

where ^(k)^ denotes the "eigenspace" with the spectrum ϊί. We found that the
spectrum can be parameterized by the restricted paths and the Young diagrams.
Moreover, it turns out that the spectrum has a rich degeneracy structure. Determining
the explicit form of the sl2 character of ^(k)^ we see that it equals that of an
irreducible Yangian module.

In the level one case, the Yangian structure on the sl2 integrable modules has
been described in [1]. Consistent with their work, what our result suggests is that
even in the higher level cases, there is a canonical Yangian structure on the inte-
grable module ££(k) such that

where each W^ is an irreducible finite dimensional Yangian module with chW^ =
c h ^ . (A part of the Yangian structure is written in [9].)

We believe that this correspondence between the spectral decomposition of the
solvable lattice model and the "Yangian multiplets" in conformal field theory is
not a mere coincidence, but will play the important role in investigating the hidden
quantum symmetry in more general conformal field theories.

In addition, as a byproduct, the spectral decomposition leads to the fermionic
character formula conjectured in [9] and proved independently in [10].

This paper is organized as follows. In Sect. 2 we review the basic facts we use
in this article about the vertex model. In Sect. 3 we parameterize the spectrum of
the path space with the restricted paths and the Young diagrams. In Sect. 4 the
degeneracy of the spectrum is calculated. In Sect. 5 we derive several character
formulas. In Sect. 6 we discuss the connection of our results in the vertex model
with the hidden Yangian symmetry in the conformal field theory.

2. Local Energy Function and Character Formula

In this section we review basic facts about the vertex model. See [2,6,7,8,11]
for details. We consider the higher spin vertex model of Uq(sl2). Throughout this
paper we fix an integer / e N. Let S = {/,/- 2,...,-/} and let V be the / + 1
dimensional irreducible representation of Uq(sl2) with the standard basis {υs

weight^) — s, s G S}. We can extend this to the homogeneous evaluation rep-
resentation V(z) of Uq(sl2) with a complex parameter z=(=0. The 7?-matrix R(w) is
the ^(Γ/2)-intertwiner V(z\) 0 V(z2) -> V(z2) 0 V(z\) [6], where w = g . We put

R(w) = Σ R(w)i£ ES[S1 ® Es,iSl , (2.1)
sι,s2,s'vs'2(ΞSι

where Essr is an element in Endc(F) such that Esst vs>> — δs>,s>>vs for s,s\s" G S.
The i?-matrix above satisfies several properties, especially the diagonal nature at

limΛ(w)= Σ W-W'^E^QEM (2.2)
1^°
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up to a scalar multiplication, where H is a function

159

such that

H(s,s ) =
ifs

(2.3)

We call this function the H function or the local energy function. By setting

H(s,sf) = Hss,,

we can write the above definition in a matrix form;

1-2

-1+2

- /

/ 1-2

(I / - I
/ / - I

/ / - 1

-1+2

1
1

o \
1

/ - I / - I

(2.4)

Each matrix element R(w)s\]sl defines a Boltzmann weight of the configuration
(s\9 S2, s[, s2) round a vertex in a planner square lattice, where s\,s2, s[9 and s2 take
values in S. It is often written as

:xs',
(2.5)

The corner transfer matrix method reduces the local state probability to the one-
dimensional configuration sum [7], Fix a boundary condition s0 € S and let IV =
{s = (s\9S2,...,sN)\ Si G 5}. The corner transfer matrix A§°\w) is a matrix whose
elements are defined as

configuration in the interior edges

0
i i

for ί = JJ V ) e ΣN.
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Consider the limit q —> 0. By the diagonal nature of the 7?-matrix, the corner
transfer matrix is also diagonalized at q — 0, namely,

+NH(sN,so)) χ 6)

with the normalization of the i?-matrix as in (2.2). Hence the value H(s\,s2) +
2H(s2, S3)-] h NH(sN, so) essentially contributes to the energy of a configuration
sΈ Σjsi with this boundary condition so.

Let us pass to the case when the lattice size N is infinity.

For * = 0,...,/, let s(k) denote the kth ground state (s[k\sf\...) = (/ - 2k,
- ( / - 2k), I - 2k, - ( / - 2k),...). Let

Σ(k) = {s = ( J I , 52,...) \siGS for all /, s^s{k)} , (2.7)

where s « ^ ' denotes the condition that Si = s\ except for finitely many Γs.

We call Σ = LJ&=o ̂ (^) m e s P a c e of m e s P m configurations of the vertex model

associated to the / + 1 dimensional representation of Uq(sl2).
Equivalently, we can define the configuration space above using a path walking

on the si2-weight lattice instead of a spin configuration. Let

0>(k) = {p = (PuP2, . . . ) \ P ι - Pi+λ G S for all /, p « fk)} , (2.8)

where p(k) = (p[k\p{k\...) = (kj - k,kj - &,...) denotes the ground state path.
Then the one-to-one correspondence

0>{k) ~ Σ(k),

(PuPi,-.-) ^ (P2 - PuP3 - Pi,--) (2.9)

preserves the ground state for each k. We call & = Lj[=o^(^) t n e P a t n s P a c e °f
the vertex model associated to the / + 1 dimensional irreducible representation of
Uq(sl2) We identify Σ(k) with 0>(k) hereafter1.

Define a map

),h2(p), . . ) ,

by setting

- Pi, Pi+2 - Pi+\), (2.10)

where the function H is defined in (2.3). The value hj(p) is called the /th local

energy of p e &{k). Let h{k) = h(fik)) = (k,l - k,k,l - k,...).
Now put the (total) energy of a path p G 0>(k) as

hf)) (2.11)

1 Sometimes a spin configuration s is also called a path in the literature through this correspondence
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(see (2.6)). Also define the sh weight of a path p e & as

Pi. (2.12)

The following theorem is proved in [2]. (See also [8] for its relation with the crystal
basis.)

Theorem 2.1. For k = 0,1,... /, let Δ(k) = | y ± g and let ch &>(k) = qΔ{k)

) , (2.13)

where ch&(k)(q,z) is the character of the sh or Uqίsh) level I integrable module
of the highest weight (/ — k)Λo + kΛ\.

The image of έ?(k) by the map h is denoted by Sp(&). Then,

Proposition 2.2. For k = 0,1,... /,

Sτp(k) = {h — (/zi,/?2,...,) I (1) (Nearest neighbour condition) hi + hi+\ ^ /

(2) (Boundary condition) h « h } .

Proof. Let /? G έ?(k). Then /z(j5) trivially satisfies the condition (2) by definition.
Let us assume that hi(p) — j for some j e {0,...,/}. Then by the definition of
H (formula (2.4)), pi+2 — pi+\ ^ —l + 2j, which means hi+\(p) ^ / — j . Hence
h{&(k)) C Sp(Λ). The h{β\k)) D Sp(t) part is similar to the oncoming proof of
Theorem 4.2: Put z = 1 in it. D

Remark 2.3. If (A/_i(p), **(£), A, +i(p)) = (y, / -y,y) for some j e {0,1,...,/},
then pi = pi+\ + / — 2/ and # + i = />/+2 + 2/ — /, i.e., /?,- and /?ί+i are uniquely
determined by pi+2>

We call Sp = |JA:=O Sp(A:) the spectrum of the path space SP with respect to the
local energy functions ht.

Main Problem. Decompose the path space 0> by its spectrum with respect to the
local energy functions Λz .

We carry out the spectral decomposition of the path space in the next sections.

3. Decoding Map

In this section we fix k€{0,...,/}. By the nearest neighbor condition in Proposi-

tion 2.2, we can divide each he Sp(A ) into segments

A = (01 I 02 I ••• I Qm I Qoo),
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J\ = 1 < Ϊ2 < 73 < ••• < Jm+i = A f + 1 , (3.1)

so that in each segment the sum of two adjacent elements hi,hi+\ is always /, but
any sum of the adjacent two lying across different segments is greater than /. We
call those segment #/'s elementary blocks of h. Let l(g) denote the number of the
components in an elementary block g when it is finite. Each gt has the form as
follows:

/ ( [ [ * » ] ] * ) i f/ to) is even
Qi=< ,<,,,_, f o r ι = l , . . . , m , ( 3 . 2 )

UVH'-AyJ]"^") if/to) is odd
where [[i]]a denotes

a pairs

/, / — /, /,/ — /,.. ., i, I — i. (3.3)

And let us write the last block g^ as

Kl-KkJ-k,...) if Mis even

{l_Kkj_κκ^) i f M i s o d d (3-4)

for later convenience. Then, supposing there are J elementary blocks of odd length,

we can now rewrite the given h G Sp(&) in the following form:

,l2, [[/ - hψ,

, h, [U - h]ΐ\

[[mjύt\[{mJ2\t\ ,[[mJnj]]
b^,lj,[[I - Ijψ',

bb'2,.-.,[[mJ+ιnj+ι]]bj+'^>,h+u[U -

(3.5)

where

{rriij} : the initial elements of the blocks of even length ,

{// I 1 = ιr = J} the initial elements of the blocks of odd length ,

lJ+\ = hym+ι : the initial elements of the last block g^ , (3.6)

and {ZfyKresp. { Q } ) are some positive (resp. non-negative) integers determined by
the lengths of the corresponding blocks. Notice that J = M mod 2.
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Example 3.1. (/ = 3 , * = 1 )

(a) h = (1,2,1,2 I 2,1 I 3 I 0,3 | 2,1,2 | 3,0,3 | 1,2 | 3,0,3 | 1,2,1,2,1,2,...,)

= [[I]]2, [[2]]1,3, [[O]]1^, [[I]]1,3, [[0]]1, [[I]]1,3, [[0]]1,1, [[2]]°° ,

(b)A = (0,3 I 1,2,1 I 3,0,3 | 1,2,1,2,1,2 | 2,1,2,1 | 3,0,3 | 2,1,2,1,2,1,2,1,...,)

Lemma 3.2. For a given h e Sp(&), consider the sequence of the initial elements
of elementary blocks

i, h+\) (3.7)

in the notation of (3.5) and (3.6). Then,

0 S mn < rnn < < mXnχ < l\ ,

/ - U-χ < mn < mi2 < < mίnι < lu for / = 2,..., J + 1 . (3.8)

Proof. The statement directly follows from the fact that the initials of the adjacent
elementary blocks Qi — (hy^ s) and #/+i = (hy.+lt ) satisfy

Ay, < h7i+ι if /(gff) is even,

l-hΊι <h7ι+ι if l{Gi) is odd (3.9)

by Eq. (3.2). D

For the given h e Sp(k), let

P (3.10)

be the numbers defined in (3.6). From the lemma above, we see that a sequence of
the form

(Λλ[[/- Λ]]^,[[/- /, + 1]] J 2 ,[[/- // + 2]]^ ? . . .,[[/ / + 1 - l ] ] ^ - - ^ s ( / ϊ + i ) (3.11)

with some d{ e Z ^ o is inserted between two initials //5/;+i in h. Set

7=0

U = ί, ( A ) = Σ (//+i - / + //) for z = l , . . . , 7 , (3.12)

where /o = /, and ίi < ^ < < ί/ < N by the above lemma. Then we can find
a sequence

a(h) = (au...9aN)e(Z>oΫί (3.13)
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.,[[/< - i F ' s

(3.14)

We regard the above defined a(h) as a Young diagram of depth N = N(h) by

TV JV-1

/ = l i=\
(3.15)

where 7^ denotes the set of the Young diagrams of depth N (see Fig. 1). For later

convenience, we set a(h) — φ when N(h) = 0, and 70 = {$}•

Example 3.3. (Continued from Example 3.1.)

(a) h = ^ f \ \ 0 \ 0 \ \ 0

It reads as N = 11 and

a(h) = (0,2,1,1,0,1,0,1,1,0,1)

(b)A = [[0]]1,l,[[2]]1,3,t[0]]I,[[l]]3,[[2]]2,3J[[0]]1,[[l]]°,2,frm~
It reads as N = 7 and

«(Λ) = (1,1,1,3,2,1,0)
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aN

Fig. 1. Young diagram corresponding to a = (a\9 ,a^

We have seen so far that once h* is known, then h G Sp(&) is uniquely

determined by the index a(h) G YN^y Now let us consider the sequence P =

(/i,..., lj, lj+ι) for h G Sp(k). We shall associate with it a restricted path of length

N = N(h).
A sequence r — (ro,...,rN) is called a level / restricted path of length N if it

satisfies the conditions

Let &N(k) denote the set of the level / restricted paths of length N with the condition

ô = O, rN = k .

Note that <fflN(k)ΦΦ if and only if N = k mod 2 and N ^ k. Since the sequence

P = (h9...9lj,h+i) satisfies

0 < h > I - h < h > '
> I — lj < lj+ι —k if J is even

< I2i-χ > I-In < hi+\ >
< h > l-h+\=k if J is odd

(3.16)

by Lemma 3.2, we can define r(h) e ^(k) for h G Sp(&) as

Oth ίith /2th

.. , /2/-1 - 1, hi-u hi-ι ~ 1 , . . . , / - /2/ + 1, / - /21, / - /21 + 1,. .,

. . . , * ) . (3.17)

(See Fig. 2.) Note that the numbers (ίi,...,ί/) in (3.12) are interpreted as the

extremal points of the extremums (/1, / — h, h,...) of the path r(/Γ).
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h

t\ fc h tj N

Fig. 2. Restricted path r(h) (J : even)

Example 3.4. (Continued from Example 3.3.)

(a) A* = (3,2,3,3,1). So

0

(b) A* = (1,3,3,2). So

r(A) =

0

3 5 7 10 11

1

1 2 5 7
Now let us summarize the above argument. We have found the map

πk : Sp(*)

VΞA: mod 2

(3.18)

defined by (3.13) and (3.17). We call the map %k the decoding map of Sp(&).
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Theorem 3.5. The decoding map %k is bijective.

Proof. It is easy to construct the inverse map. D

By the theorem above, we identify the spectrum Sp(£) of the path space
oo

with U (3tN(k) x YN). For re StN(k\ ae YN, let
N=k

N=k mod 2

h{p) = πj-\r9a)} (3.19)

be the path space of the spectrum (r,a). And let

\a = Σ qΔ^+E^zm^ (3.20)

be the character of &(fc)r^. Then by definition

ch^(A:) = Σ ch &(k)?t3. (3.21)
(r,a)eSv(k)

4. Degeneracy of the Spectrum

In this section we calculate the character ch^(k)^^ which describes the degeneracy
of the spectrum.

For re ^(k\ we consider the sequence

n = (nι,...,nN)9 nx ^ g nN (4.1)

obeying the condition

(4.2)
f m-ι + 1, if r, _2 = n < r,-_i ,

m = 0, /I,- = < .
1̂  «/-i, otherwise .

We define the degree of the restricted path re RN(k)> denoted by d(r), as

d(r) = Σm. (4-3)
/ • = 1

For an arbitrary a e YN, we define the size of the Young diagram, denoted by
, as\a \,

|*|= Σ (#+!-'>• (4.4)
Ϊ = 1

This is in accordance with the usual definition of the size of the Young diagram
through the correspondence (3.15).

Proposition 4.1. Fix a given (r9a) β 0tN(k) xYN,(N^k,N = k mod2). Then
for any p e 0*(k)?t$ the equality

= d(r)+\a\ (4.5)

holds.
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Proof. The proof will be given by the induction for a\,...,a^.

If a = 6, it is easy to show both sides of (4.5) are

Σ Hi + $k- JΛψ11, if J is even ,

η (4.6)

Σ ih - ψ k - (J+iY~})l, if J is odd .
1

Next suppose that the statement is true for some a£Yχ. Let a' G YN be an
element such that a\ — aι + δ^j for some 7 ( 1 ^ / ^ N). It is sufficient to prove
that for any pf e ^(k)F(p,

E{pf) = E(p) + N + 1 - /, p e &(k)rt3 . (4.7)

Let l\,...,lj,t\9...,tj be the numbers defined in (3.6) and (3.12). Suppose

fw_i <I ύtm (4.8)

for some m, (1 ^ m ^ J + 1), where to = 0, ί/+i — N. We set

/ = ίw_! + /, \S-t^tm- tm-ι (4.9)

Then π^ι(r,af) is obtained by inserting a term [ [ / - /m_i + ί — 1]] between the

(m -h 2(a\ H + aj) - l ) t h component of π^x(r,a) and the one right next to it.
Thus

E{p') - E{p) - {(m + 2(*! + + £!/))(/ - /w_! + t - 1)

+(w + 2(αi + ••• + «/)+ l)(/w_i - t + 1)}

2(/m + ••• + //)

+ + aN)

where the first term is the contribution from the inserted sequence [[/ - lm-\ -f
t — 1]] and the second term is the one from the shift of the sequence following the
inserted sequence. Hence

E{p') - E(p) = /m_! + 2(/w + + lj) + h+i - (J + 2 - m)l - t + 1

= N-tm-\ -t+1

= N-1+1 . D
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Let us turn to the calculation of the si 2 part of the character,
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(4.10)

We first introduce a partition of N associated to each Young diagram of depth
N. Let BN be the set of the ordered partitions of N, i.e.,

(4.11)

Define a map β : YN —> BN

so that

CL\ = #2 — ' ' ' = Q>b\ <

= = aN .

β(a) = b = (bu...9bs) (4.12)

< - < cibλ+ +bs_x + 1

(4.13)

Note that the map β is a surjection. This definition is more easily seen in Fig. 3.
Let

Xt(z) =
z — z - 1

(4.14)

This is the character of the (b+ 1 )-dimensional irreducible 5/2-module V/,.

Fig. 3. The partition of TV associated to a Young diagram a^Y^ι,β(a)= b = {b\ib2, ,bs_\,bs)
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Theorem 4.2. Let (r9a)e0tN(k) x YN, (N ^ k, N = k mod2). Let b = (bu...,bs)
e BN be the partition of N associated to the Young diagram a as in (4.13). Then

Σ

Combining (4.15) with (4.5), we have

χbι(z) (4.16)

The proof of Theorem 4.2 is divided into several steps.

Step 1. In this step we show that the left hand side of (4.15) can be expressed by
the product of the incidence matrix.

For any (r,a) £ &N(k) x YN, (n ^ k, N = k mod2), let ^be the corresponding
element in the spectrum Sp(£) (Theorem 3.5). Let M and J be the numbers defined
in (3.1) and (3.5) respectively, i.e., J is the number of the elementary blocks of
odd length in h and

Λf = (4-17)

Let Σ{k)f^ be the subset of Σ(k) corresponding to ̂ (k)^a through the identity
(2.9). For p e &*(k)ff£9 let ίe Σ(k)?ya be the spin configuration corresponding to
p. Then it has the following form:

5 = ( j i , . . . , 5 A r + i , - / + 2 / y + i / / - 2 / y + i / - / + 2 / j + i , . . . ) . (4.18)

The summation s\ -\ h sM+\ represents how the path goes up or down from the
starting point p\ to the (M + 2) t h point of p, i.e., / — lJ+\. Therefore the following
equality holds:

(4.19)

(4.20)

We define the function F(r,a;z) as

For a — 0,1,...,/, we set

l-a+\

Zl

J-2

zl-2a zl-2a
zl-2a

(4.21)
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α+1

l-a+1

zl-2a zl-2a

a+\

Zl

J-2

J-2a

\ I

(4.22)

The matrix Ma is named the incidence matrix. This is defined in such a way that

1) (M β ) l 7 Φ0 if and only if # / + 2 _ 2 z , / + 2 _ 2 y + a in (2.4).

2) If (A/β)l7 + 0, then (Mfl),7 = z / + 2 " 2 i .

From these properties, the (/,y')-component of the matrix
as

(Mhι...λfhm)ij= Σ ^ + +Sm

^ is expressed

(4.23)

where the summation is taken over all the spin configurations s such that

H(si9si+ι ) = hi9 si = I + 2 - 2/, ^m +i = / + 2 - 2/ . (4.24)

Lemma 4.3. 1) i w α/z arbitrary h = πk~ι(r,a), the function F(r,a;z) is given by
the sum of the matrix elements on the I — lJ+\ + 1th column of the matrix

Mhλ " MhMMh+ι . (4.25)

2) Equivalently, the function F(r,a;z) is also given by the (I + 1,1 — lJ+\ + 1)
component of the matrix

T(r,a) = zιHιMhx MhM VιJ+ι . (4.26)

Proof 1) For s e Σ(k)κs, sM+2 = -l + 2lj+\ as in (4.18). Applying (4.23), we
have the statement.

2) Easily follows from 1). D

Example 4.4. Here we consider the case

/ = 3, W = 3, k = 1 ,

r = (0,1,2,1),

3= (0,1,0).

In this case J = 1, M = 3, / y + 1 = 2, and (/ + 1, / - / / + 1 + 1) = (4,2). From these

data, h — πjc~
ι(r,a) is

A = (1,2,2,2, [[1]]°°).

The spin configurations in Σ{k)^$ are

, - l , 1,-1,1,...),
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where

(sus2,S3,s4) = (3,-1,1,1),

(3,-1,-1,1),

(3,-1,-1,-1),

(1,-1,1,1),

(1,-1,-1,1),

(1,-1,-1,-1).

Thus
F(r,a;z) = z4 + 2z2 + 2+z~2 .

On the other hand,

T(r,a) = z3H3MιM2M2V2

We see that the (4,2) component of the matrix T(r,a) is equal to F(r,a;z).

Let us proceed to the evaluation of T(r,a) in Lemma 4.3.

Step 2. In this step, we represent T(r,a) as a factorized form (4.36).
The next lemma is easily proved and useful for our purpose.

Lemma 4.5. For a = 0,l,...,l and « G N ,

(MaMi-af = VaHι_a . {A21)

Lemma 4.6. For a,a1 e YN, if β{a) = β(a'), then

F(r,a;z)=F(?9J;z). (4.28)

Proof If tfiΦO, there is a factor zιHι(M0Mι)aι at the left end of T(r,a) (see
(3.14) and (4.27)). Since

1 1 . . . 1

M0M/ = 1 I , (4.29)
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zιHι(MoMι)ai —zιHι. So it does not affect the function F(r,a;z) whether a\ is
equal to zero or not. Next we suppose that there is some i (2 ^ i ^ N) such that
aί = 1> di = 1? a n d ciiφdi. But from Lemma 4.5,

(MflM/_β)
α« = (MaMi-af1 = VaH^a . (4.30)

Thus we have the result. D

From this lemma we could assume that

fli = 0 , a29...9aNe{09l} (4.31)

in order to prove Theorem 4.2 without losing generality. Until the end of this proof
we set this assumption.

For a£YN such that β(a) = (b\9...9bs)9 let β0 = O9βχ = 6 i , . . . , 6 , = b\ + b2

-\ \-bi9...9βs = b\ \ \-bs = N, and 0 < t\ < < tj be the extremal points
of r. We align β 's and ̂ 's as follows:

β0 = 0 < ί! < < tm < βι ^ ίMl+i < < tm2 < β2 g

^ ίWί_2+1 < < tms_λ < βs_λ S tms_ι+ι < < tj < βs = N . (4.32)

Accordingly T(f9a) has a form

Z HiMi, -Mi (MyMiy )Mi ,. - -Mi (Mu'Mi—ui )Mi ,, •

. . Λ/f i ί Λ/#- * Λ / Ϊ , . * \Ayf- - - Λ//y ^ 7

(4.33)

M^_ι{Mh,_Mι_.h,_ι)Mlma_ι

where
f r# if m, is even ,

A = ̂  , . . . , ' (4.34)
1 [I - rβ. if mz is odd .

Using Lemma 4.5 one can replace the factors (MflM/_α) by (VaHι-a). Thus we
have

T(K 3 ) = z ι ( H j M h Mi V« m u M r , Mi Vy)

κ s 2 ^ ^ K _ M l m t _ i + l •••MhVh+I) .

(4.35)

Therefore T(r,a) is a product of the factors

T(r,a) = zlSιS2---Ss,

Si = H,_h,_Mlmι_ι+ι • MLι Vh, , (4.36)

where

m0 = 0, ms =J ,
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Example 4.7. To illustrate the procedures (4.32-35), let us give one more example.
Let

/ = 3, N = 9, k = 1 ,

r = (0,1,2,1,2,3,2,1,0,1) G M9(\),

α = (0,1,0,1,0,0,1,0,0) G A .

The sequence of the local energies is

The Young diagram corresponding to a is

Then we see that

βι = 1, h = 3, β3 = 6 ,

*i = 2 , h = 3, ί3 = 5, ί4 =

and the alignment of (4.32) in this case is

0 < l < 2 < 3 ^ 3 < 5 < 6 < 8 .

Accordingly

T(r,a;z) = r>H-iMxM1M1

From Lemma 4.5 this can be factorized as

z\H3 Vλ )(H2M2 Vx )(HιM2M3 Vx )(//2M3 Vx) .

Step 3. Finally we evaluate the factor Si explicitly.
Let Eij be the matrix whose matrix element is 1 at the (i,j) component and

zero otherwise.

Lemma 4.8.

Si = zh'-i-h< χβi-βi_λ(z) ^_Λ/_ i + l f /_Λ/+ 1 . (4.37)

Proof. Let us put m/_i + 1 — n, πii = m, for simplicity. We need to calculate the
product

Hι^hLMln'"MlmVκ. (4.38)
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First we consider the product H\_hι_ Mιn.
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\ .

where

Since /„ - h'i_ι = tn — /?,_i

/-/„+!

In a similar way

φtn-βi_λ(z) 1

(4.39)

(4.40)

(4.41)

/ι.+ 1

Zl

J-2

-l-2lΛ+ι
-l-2ln+ι

(4.42)
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Again, since ln+λ - ( / - / „ ) = tn+ι - tn,

(4.43)

Repeating this procedure, the result is shown as

ι> +i ι-h>+\ • (4.44)

Now we complete the proof of Theorem 4.2. By (4.20) we see

= zι-lj+ιF(r9a;z-1) . (4.45)

From Lemma 4.8, F(r,a;z) is evaluated as

F(r9a;z) = zι~lj+λ f[ χβ.-β^iz), (4.46)
i = l

where we have used

Taking into account the definition of β(a), we get the formula

5. Character Formulas

In this section, as an application of our decomposition, we derive some character

formulas for the level / integrable s/2-modules.
Owing to Theorems 2.1, 3.5, 4.2 and Proposition 4.1, we immediately obtain the

following formula:

Proposition 5.1.

ch^ )( i,z) = ̂ *> Σ Σ qd(n-"WlYlXbXz), (5.1)
N=k

N=k mod 2

where (b\9...,bs) = β(a).
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Since the summation over $N(k) and YN are independent of each other, (5.1)
can be rewritten as the following factorized form:

oo

= qΔ{k) Σ
N=k

N=k mod 2

= Σ qd{n,

GN(q,z)= E q^UXbXz). (5.2)
a£YN i= l

It is possible to evaluate the functions FN^{q) and GN{q,z) more explicitly. Let

(q)n = ft ( ! - < / ) ,

ΓT7T

(q)n(q)N-n

Proposition 5.2.

Proof. Let jβ/'s be the numbers defined in (4.12). Then

) = Σ ̂  π »,ω

= Σ Σ ^ ' ^ " ^ - ^ Π f e ^ ) - (5-5)
6,^1 α i^O z=l

Summed up with respect to αβw+1's, we see that the above equals

s qb\ qb\+b2 Q^χJr +bs-\ 2

Considering it particularly as a summation with respect to bs, again the above equals

N qN-bs s-\ qb\ qbi+b2 I

(5.7)
Then we find that GN(q,z) satisfies the following recursion relation:

G0(q,z) = 1 ,

GN(q,z) = Σ t _ NXb(z)GN-b(q,z) .
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On the other hand, let

The function Hχ(q,z) is essentially the Rogers-Szegό polynomial [12], and satisfies
the following recursion relation:

Ho(q,z) = 1 ,

Hι(q9z) = z+z-ι

9

HN{q,z) = (z+z-ι)HN_ι(q,z)-(l-qN-ι)HN-2(q,z). (5.10)

Then the right hand side of Eq. (5.4) is

hN(q,z) := ——HN(q9z) .
(q)

Using the recursion relations (5.10) time after time, we see that hχ(q,z) satisfies
the same recursion relations as (5.8). D

Next let us evaluate

Σ

Note that the degree of the restricted path r could also be calculated as

d(r) = £ jfiru-j - rN+ι-JtrN--ι-j - />_,), (5.11)
7=1

where

/ : { + , - } X { + , - } ^ { 0 , 1 } ,

h)ϊ/(-,-) =/(-,+) = o. (5 12)

By the expression (5.11) of d(r)9 we can regard d(r) as a total energy of the size
Λf + 1 lattice model which has the local energy function / . This / is essentially
equivalent to the local energy function of sl2 level / RSOS model. Thus we can
calculate FN^(q) in the same way as the one dimensional configuration sum of sl2

level / RSOS model [13].

Proposition 5.3.

= Σ, \qΛ -k-2j(l+2)+N \ - q k+2-2j(l+2)+N f

I L J L 2 J Jj=-oo

(5.13)
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Proof. Let

L 2

(5.14)

and define the function

FN(m9n9n±l)= § {g%J\m,n9n ± 1) - g{pJ\m9n9n ± 1)} . (5.15)
7=-oo

Then we can show the following properties:
(1) Initial condition

F1(m,n,n± 1) = g\*~'°\m9n9n ± 1) . (5.16)

(2) Recursion relation

FN+\{m,n,n + 1) = FN(m,n — l,w) +FN(m,n + l,w),

FN+\(m9n9n- 1) = qN+ιFN(m,n - l9n)+FN(m9n + l9m) 9 (5.17)

(3) Restriction condition

FtfOw, - 1 , 0 ) = F^(/w, / + 1, /) = 0 . (5.18)

From these properties it follows that

FNtk(q) =FN(a909l). (5.19)

Thus we have had the result. D

There is also an alternative (fermionic) expression of FN^k(q) given by
Bouwkneght et al. [14]

rrii-\ + % i -f- <5/,£+i)

where the summation is over all odd non-negative integers for rπ2a,^2a-2^2a-4,'
and over the even non-negative integers for the remaining ones (we set m\
N9mι+ι = 0 ) .
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6. Hidden Yangian Symmetry in WZW Models

In this section we point out an intriguing connection between our spectral decom-
position of the path space and the hidden quantum group symmetry in the WZW
conformal field theory.

The Hubert space of the sl2 level / WZW model is the direct sum of the

integrable representations J£(k) of the sl2 level /.
In the level 1 case the Yangian algebra of sl2 acts on 5£{k) by

δ o = /o, Qaχ = \fatcΈJ-mJc

m, (6-1)
Z m>0

where J% are the Fourier components of the sl2 current and fa

bc is the structure
constant of sl2 [1,5]. As a Yangian module, ££(k) decomposes into irreducible finite
dimensional representations as

oo

^ ( * ) = Θ θ WNta (6.2)
N=k αEYN

N=k mod 2

Each irreducible component W^s is an LQ eigenspace with the eigenvalue

^(N2-k2)+\α\+A(k), (6.3)

and it has the following sl2-module structure

0 ^ = 0 Vt,, β(3) = (bu...,bs). (6.4)

Comparing (6.2)-(6.4) with Theorem 4.2, we see a remarkable coincidence of
the Yangian decomposition of <£(k) and the spectral decomposition of the path
space &(k).

Let us consider why this happens. In general the integrability of field theory is
synonymous to the existence of an infinite number of the local integrals of motion
(IM) commuting with each other. Let us write the abelian algebra generated by
these IMs as J. In the spectral decomposition of the path space we regard the
local energy operators hi as the maximal family of the local operators commuting
with the energy operator E which is also equal to the Virasoro energy operator Lo.
If we identify λ/'s with the generators of «/, then the degeneracy of the spectrum
means the presence of a hidden non-abelian symmetry. In this way we recover the
decomposition (6.2) through our spectral decomposition.

Let us turn to the higher level case. We recall that any irreducible finite
dimensional representation of the sl2 Yangian is isomorphic, as an sl2 module,
to a tensor product of some irreducible representations of sl2 [15]. Then, looking at
Theorem 4.2, we naturally identify each degeneracy in our spectral decomposition
with the character of an irreducible Yangian multiplet. This leads us to the following
conjecture:

For / ̂  2, (for / = 1, it has been proved in [1]).
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Conjecture. 1) For each integral representation ££{k) of sli level /, there is the
canonical action of the Yangian and the algebra of the local integrals of motion
which are commutant with each other.

2) The <£(fc) decomposes into a direct sum of irreducible finite dimensional
Yangian modules. The set jj00'#=* ^JV(^) χ YN parameterizes the Yangian highest

N=k mod 2

weight vectors v?^ in L(k) such that the LQ eigenvalue of v?^ is A(k) -f- d(r)-\-
\a\, and as an sh-module the Yangian multiplet generated by v?ta is isomorphic
to <g)J=1 Vbn where β(a) = (bu...,bs).

To some extent the above Yangian module structure has already appeared in
[14] through a generalization of the idea of [1].

It has been clarified that the symmetry algebra of a two dimensional integrable
massive field theory is also the product of the algebra of the integrals of motions «/
and some "quantum group" symmetry commuting with each other [16]. Especially,
the WZW model allows the integrable massive deformation which has the Yangian
symmetry [17]. It is an important problem to understand how the symmetry algebra
of the WZW model here is related to the one in the deformed model.

We also comment that in the level 1 case there is a simple correspondence
between the spectrum of the vertex model and the one in the Haldane-Shastry
model [5]. The natural speculation is that there will be a higher spin analog of the
Haldane-Shastry model having a similar correspondence to the one in the vertex
model here.

To conclude, we expect that the correspondence between the spectral decompo-
sition of the solvable lattice model and the one of the corresponding conformal field
theory (and its massive deformation) will be a universal phenomena. This interplay
provides a new and useful way to investigate a hidden quantum symmetry structure
of other conformal field theories as well.

Acknowledgements The authors thank A Kuniba, P Mathieu, F.A Smimov, and J Suzuki for
useful discussion.

Note added After the submission of this paper, the authors noticed the paper, M. Idzumi,
K Iohara, T Jimbo, T Miwa, T Nakashima, and T Tokihiro, Quantum affine symmetry in
vertex models, Int J. Mod Phys. A8, 1479-1511 (1993), in which the path space is described
using the combinatorics similar to what we used for the description of the spectrum of the path
space in Sect 3

References

1 Bernard, D , Pasquier, V , Serban, D : Spinons in conformal field theory Nucl Phys B428,
612-628 (1994)

2 Date, E , Jimbo, M., Kuniba, A., Miwa, T , Okado, M.: Paths, Maya diagrams and represen-
tation of sl(r,C). Advanced Studies in Pure Mathematics 19, 149-191 (1989)

3 Frenkel, I B , Reshetikhin, N Yu: Quantum affine algebras and holonomic difference equa-
tions, Commun. Math Phys 146, 1-60 (1992)

4. Tsuchiya, A., Kanie, Y.: Vertex operators in conformal field theory on P 1 and monodoromy
representations of braid group Adv. Stud Pure. Math. 16, 297-372 (1988)

5 Haldane, F.D., Ha, Z.N.C , Talstra, J C , Bernard, D , Pasquier, V.: Yangian symmetry of
integrable quantum chains with long range interactions and a new description of states in
conformal field theory Phys Rev Lett. 69, 2021-2025 (1992)



182 T Arakawa, T Nakanishi, K Oshima, A Tsuchiya

6 Jimbo, M.: Topics from representation of Uq{g) - An introductory guide to physicists. Nankai
Lectures on Mathematical Physics. Singapore: World Scientific: 1992, pp 1-61

7. Baxter, RJ.: Exactly solvable models in statistical mechanics London: Academic, 1982
8 Kang, S.-J, Kashiwara, M., Misra, K., Miwa, T., Nakashima, T., Nakayashiki, A : Affine

crystals and vertex models Int J Mod. Phys A7, Suppl 1A, 449-484 (1992)

9. Bouwknegt, P , Ludwig, A., Schoutens, K.: Spinon basis for (5/2)^ integrable highest weight
modules and new character formula. To appear in Proc. of Statistical Mechanics and Quantum
Field theory, USC, May (1994) 16-21 (hep-th/9504074)

10. Nakayashiki, A, Yamada, Y : Crystallizing the spinon basis. Commun. Math. Phys. 178,
179-200 (1996)

11 Date, E., Jimbo, M., Kuniba, A., Miwa, T., Okado, M.: One dimensional configuration sums
in vertex models and affine Lie algebra characters. Lett. Math Phys. 17, 69-77 (1989)

12 Andrews, G.E.: The Theory of Partitions Reading, MA: Addison-Wesley, 1976
13. Andrews, G.E, Baxter, R.J., Forrester, P.J.: Eight-vertex SOS model and generalized Rogers-

Ramanujan type identities. J. Stat. Phys. 35, 193-266 (1984)
14 Bouwknegt, P , Ludwig, A., Schoutens, K.: Spinon bases for higher level SU(2) WZW model.

Phys Lett. 359B, 304 (1995)
15 Chari, V., Pressley, A.: LΈnseignement Math. 36, 267-302 (1990)
16 Smirnov, F.A.: Int. J. Mod. Phys. 7A, Suppl IB, 813-838, 839-858 (1992)
17. Bernard, D : Commun. Math. Phys 137, 191-208 (1991)

Communicated by M Jimbo




