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Abstract: We prove that if a reference two-point distribution of positive type on
a time orientable curved space-time (CST) satisfies a certain condition on its wave
front set (the "class 0hii9 condition") and if any other two-point distribution (i) is of
positive type, (ii) has the same antisymmetric part as the reference modulo smooth
function and (iii) has the same local singularity structure, then it has the same global
singularity structure. In the proof we use a smoothing, positivity-preserving pseudo-
differential operator the support of whose symbol is restricted to a certain conic
region which depends on the wave front set of the reference state. This local-to-
global theorem, together with results published elsewhere, leads to a verification of a
conjecture by Kay that for quasi-free states of the Klein-Gordon quantum field on a
globally hyperbolic CST, the local Hadamard condition implies the global Hadamard
condition. A counterexample to the local-to-global theorem on a strip in Minkowski
space is given when the class &ht,g condition is not assumed.

1. Introduction

In the quantum field theory (QFT) of a Klein-Gordon scalar field on a globally hy-
perbolic curved space-time (CST) [2, 11], the Hadamard condition [18, 5] is believed
to be a "physically necessary" condition on the two-point distribution of a quasi-
free or more general state [13, 12, 28, 26]. Some reasons for this belief arose from
investigations into the point-splitting renormalization technique used in defining ob-
servables quadratic in the field operators on such space-times. It was discovered that
the Hadamard condition is sufficient for point-splitting renormalization to yield a
stress-energy tensor Tμι/(x) that satisfies a set of properties encapsulating what is
meant by "physically meaningful." These are called the Wald axioms [43, 44]. The
local Hadamard condition (LH) specifies the asymptotic behavior of the two-point
distribution O^OEI, xi) for x\ close to x2 to be
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ω2(xι, xi) ~ lim — Ί ( 1? 2 + v(a:i, x2) In σe(xi, x2)) + w(zi, x2)

where u and i? are certain smooth functions determined by the metric g, the function w
is smooth and determined by the "physics" (the state-dependent part), and σe(x\, xi) =
σ(xi,X2) + 2(T(x\) — T(x2))ci + e2, where σ(xi,X2) is minus the signed square of
the geodesic distance from x\ to x2 and T is a global time coordinate function on
M. The global Hadamard condition (GH) is the requirement that in addition the
two-point distribution has singularities only at points x\,x2 which are connected by
a null geodesic within a causal normal neighborhood of a Cauchy hypersurface. This
condition is given rigorous meaning in [28]. Once (GH) has been defined, (LH) can be
described as the requirement that for each space-time point x, there is a neighborhood
Ux of x such that (GH) holds on Ux x Ux.

In the local algebra approach [15, 17] to quantized fields on CST [7, 9, 28, 25]
an issue first raised by Kay [22, 23] is whether all globally Hadamard states are
locally quasiequivalent. Luders and Roberts [34] made progress on this question on
Robertson-Walker space-times and recently Verch [42] has proven local quasiequiv-
alence on any globally hyperbolic CST. Another issue (see e.g., [14]) is whether the
global Hadamard condition determines a folium of states that satisfies the "principle
of local definiteness" [16, 10]. Again, progress on this question was made by Luders
and Roberts [34] and more recently Verch [42] has provided a proof that for ultrastatic
space-times, quasi-free Hadamard states satisfy local definiteness. In the present work,
however, these algebraic issues are sidestepped and instead only certain properties of
general two-point distributions (such as their singularity structure) are investigated.

Fredenhagen and Haag [10] have investigated whether the laws of quantum gravity
can be expressed locally in such a way that global laws can be recovered from them.
Specifically, they considered a local algebraic framework on a manifold M with
unspecified metric and used extensions of sheaf theoretic ideas to noncommutative
algebras to demonstrate the reconstructibility of a globally defined state from its local
germs, given suitable restrictions on the algebra and states of the theory. (The strongest
restriction was that the state satisfy a "Reeh-Schlieder property.") A related question
asked in [10] is whether specifying the (local) germs of a globally defined folium can
be sufficient to permit reconstruction of the global folium.

Partly motivated by consideration of an analog to this latter local-to-global ques-
tion in the context of quasi-free states satisfying the Klein-Gordon equation on a
generic globally hyperbolic curved space-time, Kay [23] arrived (on the basis of a
variety of evidence [27]) at the following

Conjecture 1.1 (Kay). Suppose that ω is a quasi-free state satisfying the Klein-
Gordon equation on a globally hyperbolic space-time. If the two-point distribution
ω2 has the usual commutator and positivity properties and is locally Hadamard, then
uj2 is globally Hadamard.

This is a reworded version of Conjecture 2 and its Reformulation in [23] and is re-
ferred to simply as Kay's conjecture in this paper. Later, confidence in this conjecture
was strengthened when it was shown by Gonnella and Kay [14] that several potential
counterexamples to Conjecture 1.1 failed to be so. One such example, considered
earlier and in a different context by Najmi and Ottewill [36], was a locally Hadam-
ard, Klein-Gordon two-point distribution having space-like separated singularities and
hence not globally Hadamard. In [14] it was shown that this two-point distribution,
along with other examples having space-like separated singularities, violate the nec-
essary positivity conditions required for them to be two-point distributions of states.



A Local-to-Global Singularity Theorem for Quantum Field Theory on CST 3

Another set of two-point distributions, which had also been considered earlier and in
a different context by Allen [1], were bisolutions of the Klein-Gordon equation on de
Sitter space having extra space-like separated singularities. It is pointed out in [14]
that these examples manifestly satisfied the positivity requirements but were not lo-
cally Hadamard. (The coefficient of the leading term of the asymptotic expansion was
strictly larger than that required by the Hadamard condition.)

An important consideration leading Kay [27] to regard Conjecture 1.1 as an analog
of Fredenhagen and Haag's local-to-global question in terms of folia was the belief
that sufficiently strong extra singularities for a space-like separated pair of points
would force a locally Hadamard state out of the folium of globally Hadamard states
on any bounded region containing this pair. See [24, 25] for related discussion and
conjectures.

The main goal of this paper is to present a "local-to-global" theorem more general
than Kay's conjecture. Results published elsewhere [37, 38] are employed in showing
that Kay's conjecture is a special case of this local-to-global theorem. The language
of micro-local analysis is used throughout and is found to apply very naturally to this
problem and to yield a quite general answer. This is not the first paper on quantized
fields on curved space-time in which micro-local methods are used: Dimock's work
on the scattering operator for a scalar field on curved space-time [6] makes significant
use of the distinguished parametrix theory of Duistermaat and Hormander [8]. Also
see [35] for even earlier examples of papers in which pseudo-differential operators
were used in the context of quantum field theory on stationary and static space-times.

The "distributional approach" to quantized fields on curved space-time used
throughout this paper is outlined in Sect. 2. Section 3 presents a brief introduc-
tion to micro-local analysis and lists some results that will be useful in later sections.
In Sect. 4 the class &hi,g condition for a time orientable CST (M, g) and the main
local-to-global singularity theorem are stated, followed by an outline of the proof of
this theorem, the proof being contained in Sects. 5, 6, 7, and 8. (These sections are
summarized in Sect. 4.) In Sect. 9, Kay's conjecture is verified using the existence of
globally Hadamard quasi-free states on an arbitrary globally hyperbolic curved space-
time and the equivalence (for quasi-free Klein-Gordon states) of the global Hadamard
condition with a certain wave front set spectral condition (WFSSC) introduced in
[37, 38] which is in turn stronger than the class &M,g condition. In fact an even
stronger statement than Conjecture 1.1 is proven: any two-point distribution of posi-
tive type which has the local Hadamard singularity structure and whose commutator
is i times the difference of the advanced and retarded fundamental solutions of the
Klein-Gordon operator (modulo a smooth function) must have the global Hadamard
singularity structure. (Note that we do not assume the quasi-free property or that the
Klein-Gordon equation is satisfied.) In Sect. 10, we demonstrate the necessity for the
reference state to satisfy the class &M,9 condition, by displaying a counterexample
to the local-to-global theorem on a strip in Minkowski space when this condition is
not assumed. Section 11 discusses some implications of the local-to-global theorem,
in particular the strengthening of the belief that the Hadamard condition is physi-
cally distinguished, and a corollary displaying some dependence among the axioms
on curved space-time.
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2. Distributional Approach to Quantized Fields on Curved Space-Time

A pair (M, g) is a (curved) space-time (CST) if M is a smooth n-dimensional pseudo-
Riemannian manifold (n > 2) equipped with a smooth metric tensor field g of signa-
ture (+ ). The metric g determines the notions of time-like, null, and space-like
vectors υ G TX(M) at a point x e M by the conditions gx(υ,v) > 0, gx{v,v) = 0,
and gx(υ,υ) < 0 respectively, where gx is the value of the metric tensor field at x.
Time-like, null, or space-like curves on (M, g) are smooth curves on M whose tangent
vectors at every point on the curve are time-like, null, or space-like respectively. A
geodesic is a (parametrized) curve whose tangent vector is parallel transported along
itself. Points x\,X2 G M are causally related if x\ and X2 can be connected by a
time-like or null curve in M. They are space-like separated if they are not causally
related. They are null related if they may be connected by a null geodesic. The
closed light cone Vx at x consists of all nonzero time-like and null vectors in TX(M).
Clearly Vx decomposes into two components at each x. A time orientable CST is one
in which a continuous global designation of "future" component of the closed light
cone can be made. In this case the future/past (also called forward/backward) closed
light cone at x is denoted by V^. A CST (M,g) with a hypersurface S such that
every inextendible causal curve in M intersects S precisely once is labelled globally
hyperbolic. Every globally hyperbolic CST is necessarily time orientable. Some of
these definitions are as in Hawking and Ellis [19] and Chapter 8 of Wald [45]. Also,
a covector k G T*(M) is called dual to v G TX(M) iϊk- gx( ,v).

For the test function space on a space-time (M,g), we use in this paper the
space of smooth complex-valued functions of compact support C Q ° ( M ) . The dual
space of CQ°(M) with respect to the metric volume form on (M, g) is the space of
distributions on M and is denoted &\M). See Sect. 6.3 of [21] for definitions and
further discussion of distributions on a manifold.

Let &m(M) denote (g)m C$°(M) for m > 1 and define &0(M) = C. For a
collection of functions {/m}m>o, where fm G &m(M) and only a finite num-
ber of the fm do not vanish, define / = 0 ^ = o / m With involution defined as

/* = Θm=g/m> w h e r e fm(χu ->χm) = fmfrm, ,x\\ and the product of /
zndg = 0 m = o gm defined as / x g = 0 ^ = o ( / x g)m, where (/ x g)m(x\,..., xm) =
Σ S o /ifaiί ' χi)9m-i(%i+\ > ? #m), the set of all such / becomes an involutive
algebra Jέ?(M), called the Borchers algebra on M. See [3, 10].

Let &m(M) denote the space ® m [ ^ Γ / ( M ) ] , the dual of &m(M). The direct sum
topology is given to 3S{M) = 0 ^ = o ^ m ( M ) . If μ is in 3S\M\ the dual of M{M)
with respect to this topology, then for each m > 0 the m-point distributions (or
functions) are μm = μ\&m(M) £ &m(M). If ω G Jff'(M) satisfies ĉ o = 1 and the
positivity condition ω(f* x /) > 0 then ω is a state. Suppose in addition that ω
satisfies the local commutativity condition

ω( 0 / (8) £ (8) •) = CJ( 0 # 0 / (8) •) (1)

for supp / and supp # space-like separated. (This is a statement of the independence of
measurements (commensurability) of observables at space-like separation, a typical
quantum mechanical restriction.) Then one may think of the m-point distributions
ωm(x\,... ,Xm) as representing the expectation values of the product of m field
operators Φω(x\),... ,Φω(xm) with respect to some vector Ωω in a Hubert space
3@ω, an interpretation made available by an analog of the Wightman reconstruction
theorem [3, 40], which is here given the generic label of "GNS construction" [4]. We
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call a triple (M, g, ώ) whose ω satisfies these properties a quantum field model on the
CST(M,g).

A state ω is quasi-free if the ra-point distributions satisfy ω2rn+\ = 0 for m > 0
and

U2m(f ® <8> fm) = Σ ω2^πi ® ̂ 2 ) ' ' ' ̂ ( Γ 2 ^ 1 ® /" 2 m ) (QF)

for m > 1, where Πm is the set of permutations π: {1, . . . , 2m} —» {1, . . . , 2m} such
that πi < π 3 < < τr2 m_i and TΓI < π 2 , π3 < π 4 , . . . , π 2 m _ i < τr2 m. The main
focus of research in quantum field theory on CST has been on states constructed from
a linear wave equation via canonical quantization on CST [2]. These states turn out
to satisfy (QF).

The fact that a quasi-free state ω is determined entirely by its two-point distribution
leads one to direct particular attention to ω2. Two general properties of ω2, as implied
by those for a (not necessarily quasi-free) state ω of a quantum field model on (M, g),
are as follows:

Positive Type: For any / e Cg°(M),

^2(/®/)>0. (PT)

This follows from the generic positivity condition on ω which in turn corresponds to
the positive definiteness of the inner product on the Hubert space 3@ω obtained by
GNS construction from ω.

For any two-point distribution u, the symmetric (anti-symmetric) part is defined
by

u±(f ®g)=- (u(f ®g)± u(g 0 /)) .

Equation (1) implies the following necessary condition on α>2:

Local Commutativity: For any /, g e CQ°(M) such that supp / and supp g are
space-like separated,

/ ® 0 ) = O. (LC)

The properties (PT) and (LC) make sense for any space-time (M, g), even possibly
one that is not time orientable, and are two of the basic properties for ω2 that are
necessary for the state ω to yield a physically meaningful field Φω by the GNS
construction. We suggest in Sect. 11 that on a time orientable CST a certain "wave
front set spectral condition" is a third such condition. There may be more, however.

A Klein-Gordon quantum field model on (M, g) is a quantum field model (M, g) ω)
such that ω in addition satisfies:

Klein-Gordon: For any f,ge C§°(M),

ω2 ((D + rn2)f ®g)=ω2(f®(Π+ m2)g) = 0 . (KG)

Here, • = gμuVμVu, where V μ is the covariant derivative on the pseudo-
Riemannian manifold (M, g). The term m2 may be replaced by a more general po-
tential V(x) and a first derivative term — ibμ(x)Vμ may be added.

In order to have a well-posed Cauchy problem for the Klein-Gordon equation, we
assume in this paper (as is usually done) that the CST for a Klein-Gordon quantum
field model is globally hyperbolic. For states satisfying (KG) on a globally hyperbolic
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CST we also assume in this paper the property (QF) for ω as well as the following

property:

Commutator: For any f,ge Cfi°(M),

(ω2)-(f ®g) = ̂ Δ(f®g), (Com)

where Δ = A A — Δ R and ΔA and Δ R are the advanced and retarded fundamen-
tal solutions of the inhomogeneous Klein-Gordon equation. These distributions are
uniquely determined by their support properties [31, 32, 33]. Condition (Com) is a
direct consequence of canonically quantizing a scalar field satisfying the Klein-Gordon
equation. Clearly it implies (LC).

3. Micro-Local Preliminaries

The definitions adopted for the distribution spaces &'(Rn), ^ ' ( M n ) , and &'(Rn) on
Mn and &\M) and <S\M) on a manifold M may be found in [21] or Appendix B
of [37].

The convention for the Fourier transform of / £ S^(W), denoted by a hat Λ, is
chosen to be

for k eMP. Here dx is shorthand for the Lebesgue measure dxι dxp on W. The
inverse Fourier transform of /, denoted by a check v , is then f = f~, where g~ is
defined by g~(x) = g(—x) Recall that Λ maps ^(W) isomorphically to itself.

Following [21], given an open set X C M.p one defines the space of symbols
S™δ(X x Rq) o n l x f of order m and type p, (5, where m e M, 0 < p < 1 and
0 < δ < 1, to be the space of smooth functions a on X x Ίkq such that for any
compact set K c X and multi-indices a, β, there is a constant Caiβyκ such that

sup \DZD%a(x,k)\ < Ca

for all k £ W, where D% = D°l D%, Dβ

k = Dβ

k\ 2?f«, 2?^ = -idx<9 and

.D^ = —Ίdky Here, |fc| is the Euclidean norm of k, namely,

x m*)
If p + <S = 1 this space is denoted by S™(X x W) and if p = 1 and δ = 0, it is called

Given a symbol 6 in 5 ^ ( M P x W), where the second copy of MP is considered
the dual of the first, the pseudo-differential operator B with symbol b is defined on
u e S^(W) by

for a ; G l p . The spaces of pseudo-differential operators with symbols in S™δ

" \ S™(MP x W) and Sm(W x W) are denoted P™δ(W), Pp(Mp) and P
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respectively. B is also defined on v e ^'(W) by (Bv)(u) = v(Bu) for all u G

Again following [21], if υ G &f(W), then Σ(v) is defined to be the complement
in Mp\{0} of the set of all k G Mp\{0} for which there is an open conic neighborhood
Wk of k such that v is of rapid decrease in £%, by which we shall mean that for any
integer TV, there exists a constant CN such that for all ξ G 5§&,

Also, for u G ̂ '(M**), the set Σx(u) is defined for x G W to be

Φec§°
φ(x) φ 0

Remark. This definition is natural because of:

Lemma 3.1 (Lemma 8.1.1 of [21]). Σ(φυ) C Σ(υ) for any smooth φ of compact
support, and any v G &f(βP). D

Hence "squeezing" the support of φ to x "squeezes" the set Σ(φu) to Σx(u).

Definition 3.2. The wave front set WF(u) ofue &'(β?) is the set

WFO) = {(x, k) e T*(IF)\O: k e Σx(u)} ,

where 0 stands for the zero section W x {0} o/fλέ? cotangent bundle T*

It follows from the definition of WF(w) for u G &'(W) that [21]

) = sing supp ix ,

where the set sing supp u, called the singular support of u G ̂ Γ / (M P ), is the comple-
ment in Mp of the largest open set on which u is smooth and π\ is the projection onto
the first variable. Roughly speaking, if (#, k) is a point in the wave front set of u9

then x specifies the location of a singularity of u and k its "direction of propagation."
This definition extends to distributions on manifolds (u G &'(M)), in which case
WF(w) is an invariantly defined closed conic subset of T*(M)\0 and 0 is the zero
section of the cotangent bundle T*(M) [20].

The following result is reproduced from [21], to which the reader is referred for
a proof.

Proposition 3.3 (Proposition 8.1.3 of [21]). Ifυe ^'(W) then

TΓ2(WF(Ϊ;)) = £(?;),

where π 2 is the projection onto the second variable. D
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4. Local-to-Global Singularity Theorem

Let (M, g) be a time orientable curved space-time, not necessarily globally hyperbolic,
and choose a particular time orientation (continuous global designation of closed
"future" light cone) for M. Let

&M,g = {((*i,fci),(*2,*2)) e T*{M) x T*(M): h e (V£)d, k2 G (V-)d} ,

where (a*, A;*) G Γ*(M), 2 = 1,2 means that x{ G M and fc* G T*.(M\ and ( y ^ ) d is

the set of covectors dual to elements of V*1. Note that <^&M,g is invariantly defined.

Definition 4.1. Lei (M, g) be a time orientable CST with time orientation chosen. A
two-point distribution μ2 G <$2{M) is of class &M,g if

WF(/i2) c MMt9 .

In the special case M = Mn, define J ^ n to be

Mn = {((xi,fci), (s 2, fe)) G Γ*(Mn) x T*(IT): (fcOo > 0, (k2)0 < 0} ,

where the natural coordinate representation for covectors on JΆn is chosen, i.e., ki =
((fci)o, (fc<)i, , (fc*)n-i). (The slice of ^ = π 2 ^ n = {(fei, fe): (fci)0 > 0, (fe)0 < 0}
in the (fci)o-(A:2)o plane is shown in Fig. 1 in Sect. 5.)

Definition 4.2. A two-point distribution μ2 G ̂ ( M n ) is of class ^ //*

C ^ n .

Note that this is not an invariantly defined class on Mn since J%n is not invariantly
defined with respect to global coordinate transformations of W1. For any Lorentzian
metric g on W1 having the property that (V^)d C {k G Mn: A:0<0}, with respect to
the natural coordinates of IRn, one can see that ^ ? i ^ ^ C ^ n ? so that ^ is a larger
class than S\n^g in this case.

The main goal of this paper is to demonstrate that if one has a "reference" two-
point distribution μ2 of class &fai9 which is of positive type (PT) and satisfies local
commutativity (LC), then if another two-point distribution ω2 is of positive type (PT)
and has the same antisymmetric part as μ2 modulo C°°, and in addition differs from
μ2 by a C°° function on sets of the form U x U, then ω2 differs from μ2 by a C°°
function globally. In fact it turns out that to prove this statement it is not crucial
(except to maintain physicality) to require that μ2 satisfies (LC). The proof that local
smoothness of the difference ω2 — μ2 implies global smoothness of ω2 — μ2 depends
only on the (PT) requirements for μ2 and ω2, the local smoothness of the difference
^2 — μi, the global smoothness of (ω2 — μ2)-, and the requirement that μ2 is of class

The method of proof is to first prove the result on flat space-time Mn, with the
class £% condition replacing the class &M.g condition, then to extend the result to a
curved space-time (with the class &M,g condition) by using the coordinate charts on
the manifold to map back to W1. Specifically, in Sects. 5 to 8 the following statement
is proven:

Theorem 4 3 (Local-to-global). Let (M, g) be a time orientable space-time, not nec-
essarily globally hyperbolic. Suppose that μ2 G J^/(M) is of class SPu.g and satisfies
(PT), and that ω2 G ̂ ( M ) satisfies
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1. U2 is of positive type,
2. (ω2 - μi)- e C°°, and
3. for all x G M, there is a neighborhood Ux of x such that (ω2 — β2)\uxχUx is

smooth.

Then Lϋ2 — μ>2 is globally smooth.

Sections 5 to 7 treat the case M = Mn, and where "class 5 ^ " replaces "class

Following is an outline of the proof of Theorem 4.3 for the case M = Rn. First,
in Sect. 5, for each c G (0,1), a pseudo-differential operator Ac with symbol αc is
constructed which preserves local smoothness and positivity of tempered two-point
distributions and such that ac has support inside a certain conic region (namely the
region cone supp αc, a slice of which is pictured in Fig. 1). Given any distribution
μ2 G Uζ/(IRn) such that τr2WF(μ2) has support in the region @ = n2^Bn (i.e , a μ2

of class ό^), the value of c can be chosen (to be co, say) so that A := A^ acts as
a smoothing operator on μ2. If ω2 is a two-point distribution of positive type with
the same local singularity structure as μ2 and if we take χ = φ0 0 φo where φ0 is
an arbitrary smooth cutoff function (so that χω2 is also of positive type), then Aχω2
is locally smooth and of positive type. In Sect. 6 the Cauchy-Schwartz inequality
for Aχω2 is used to show that Aχω2 is smooth everywhere. In Sect. 7, the global
singularity structure of α;2 is recovered from that of Aχω2 as follows. It is shown that
χαζ is of rapid decrease in certain directions determined by the conic support of the
symbol of A, and that the Cauchy-Schwartz inequality for χω2 extends the directions
of rapid decrease to a larger set. The rapid decrease of χμi in these directions and
the symmetries of u = α;2 — μ2 imply that xu decreases rapidly in all directions, so
that xu and hence u are smooth globally. Hence CJ2 has the same global singularity
structure as μ2.

In Sect. 8, coordinate charts on the manifold are used to map back to Rn and
thereby show that the difference (ω2 — μ2)(x\, x2) is smooth for x\, x'2 in neighbor-
hoods of x\, X2 G M respectively.

5. The Smoothing Operators Ac

We construct a class of pseudo-differential operators Ac corresponding to each c in
the interval (0,1) as follows. Fix ψ0 G C^iW1) with the properties that supp T/Ό C
{k G Mn: Jfc| < 1}, ψo(k) > 0 for |fe| < 1, and ψ0 = 1 on the set {k G Mn: |fc| < \}.
The function ^o is chosen to depend only on |fc|. Fix c G (0,1) and for nonzero
λ G l n let ψ\iC(k) = ̂ o ( ^ ) . Note that ψχiC(k) φ 0 for k in the open ball of radius
c\λ\ with center at Λ. If Λ φ 0, we have c\λ\ < |λ| and the support of ψχ^c does not
include k = 0.

Fix σ > 0 throughout this paper and let Rσ be the set {λ G Mn: λ0 > 0, |λ| > σ}.
For each c e (0,1) define the function ac for kχ,k2 G Άn by

ac(kuk2)= I dλψχjC(-kι)φλ,c(k2). (2)
jRσ

This integral is well-defined since the support of ψχίC(k) with respect to λ for k fixed
is compact. The slice of supp ac in the (kι)o-(k2)o plane is shown in Fig, 1.
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Now denoting (k\, k2) e M2n by k9 the operator Ac on u 6
(z 1,0:2) G l 2 n is defined by

e ι^x'k'ac(k)u{k)dk.

for x =

(3)

Here (x, k) - (x\,k\) + (x2, k2).
Following are some definitions needed for this and later sections.

Definition 5.1. A set Φ6 C HF w conic iff sk e % for all s > 0 whenever k e Φ6.
The conic extension 0/α 5βί ^ c F w ί/ι̂  smallest closed conic set containing ^
and is denoted cone SK Tjf & w a function on W then cone supp & w cα//^J the conic
support 0/ 6.

See Fig. 1 for the slice of cone supp ac in the (/ci)o-(&2)o plane.

Fig. 1. Slices in the (/ci)o-(/c2)o plane of supp α c , cone supp ac, {(k\, k2): k\+k2 = 0},Wσ = {(k\, fo): ^1
^ 2 = 0 , (fc2)o>O, Ifezl > σ } , ^ = {(fei,fe2):fei+fe2 = 0, (fc2)0 > 0}, ^ = {(ku k2):(kι)0 > 0, (k2)0

0}, 7r2WF(μ2) and 5

Definition 5.2. Λ distribution u e ^ ( M ) w locally smooth /ĵ /or each point x e M,
there is a neighborhood Ux of x such that u\uxxux is smooth.

We summarize the desired properties of ac and Ac in the following

Lemma 5.3 (Properties of ac and Ac). In the following c e (0,1) is fixed except for
property (e).

(a) ac e C°°( l 2 n ) .
(b) ac e Sn(R2n x m2 n), hence Ac e P n (M 2 n ) .
(c) Ac maps ^'(R2n) into itself
(d) If(kuk2) eK' = {(kuk2): h + k2 = 0, (fc2)o > 0, \k2\ > σ}, we have

ac(ki,k2) > 0 .

(e) Given a μ2 satisfying the class SPn condition, the constant c G (0,1) can be chosen
small enough that

cone supp ac Π τr2WF(μ2) = 0 .
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(f) IfuG ^f(R2n) is locally smooth, then so is Acu.
(g) Ifue ^'(β?-n) is of positive type, then so is Acu.

Proof. Property (c) is obvious once (a) and (b) have been shown. Property (a) follows
from the property that the integrand ψχ,c(—kι)Ψλ,c(k2) is smooth with respect to
(&i, k2) and is smooth and compactly supported with respect to λ.

For μ > 0, we have

ac(μkuμk2) = /

= /
JRσ

= μn

jRσ/μ

where the following scaling property of ψχjC has been used:

Note that when |fci|, \k2\ are large enough the condition |λ| > σ in the integral in the
definition of αc in Eq. (2) is superfluous because the integrand already vanishes for
|λ| < σ. Hence for large \k\ |, \k2\ and μ > 1, the last integral in the above calculation
is ac(k\,k2) and it has been shown that ac(μk\,μk2) = μnac(k\,k2). This proves (b).
In particular, Ac is a pseudo-differential operator with symbol ac homogeneous of
degree n for large k.

Choose (kuk2) G Wσ. Then k2 E Rσ and

is strictly positive for λ = k2. Since λ = k2 is in the range of integration and the
integrand in Eq. (2) is positive valued and smooth in λ, we have proven (d).

The proof for property (e) is rather long and is contained in Appendix A. Also,
R. Verch has discovered a construction of a simpler pseudo-differential operator,
which may be used in the proof of the main theorem. This construction, as well as
the proof of the relevant properties, is found in Appendix B.

Property (f) follows easily from the pseudo-local property of pseudo-differential
operators, namely sing supp (Acu) c sing supp u. See p. 39 of Taylor [41].

For heC°° let h~ be the function x ι-> h(-x). If / e ^(W1) it follows that

Acu(f <g> /) = [acύ]v (/ 0 /) = acύ((f)v ® /) = u (ajj ®

Here the check symbolv denotes the inverse Fourier transform. Now

= ac(kuk2)J(h)f(-k2) (4)

= /
JR

dλgλ(kι)gχ(-k2)
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where gχ(k) = f(k)ψ\iC(-k) G C£°(IRn) and hence is in ^ ( l n ) . We have used the

property that ^ λ , c is real-valued. Note that Eq. (4), together with / Θ / " G 2

and ac G Sn(R2n), implies that JR dλj^^gχ G ̂ ( M 2 n ) . Hence,

Acu(f®f) = Λί / dλgλ®g^\. (5)

Since the integral in Eq. (5) can be approximated by a Riemann sum, and since

for each term g\. (g) cjχ. in the Riemann sum, continuity of u on ^ ( M 2 n ) implies

Acu(f Θ /) > 0 and property (g) is proven. D

6. Local-to-Global Smoothness

Now we demonstrate that the positivity of a two-point distribution υ leads to the
conclusion, via the Cauchy-Schwartz inequality for υ, that local smoothness of υ
implies global smoothness of v.

Proposition 6.1. If v G ̂ '(β}n) is locally smooth and of positive type, then v is
globally smooth.

Proof The positivity of v implies the Cauchy-Schwartz inequality:

W ® g)\2 < υ(f ® f)υ(g ® g)

for real-valued /, g G C^(Άn). Now let fp be a sequence of functions such that
P G C0°°(IR

n), P > 0, JΓln p = 1, and supp P -> {0}. In other words p ~> <5 in
the topology of ^ ( I Γ ) . Let f*(y) = p(y - x). Then

\v((fS ~ ft) ® #)|2 < v((/ί - /,g) ® (/ί - /«))v((7 0 (/) .

Choose an xo £ B£n_ Choose a positive integer NQ and V, W, U (open) neigh-
borhoods of xo with V", W compact, V C W, and PF C f/such that (i) f
is smooth on U x U (so that v is uniformly continuous on W), and (ii) for
p,q > No and x G V\ we have supp (fξ — f%) C W. Given e > 0, choose δ
so that x\,X2,y\,yi £ W and 0 < |xi — 2/i| < <5, 0 < 1̂2 — 2/21 < 6 imply
that |υ(xi,X2) - v(y\,y2)\ < e. Also choose AT > AΓ0 so that for all p,q > N,
whenever x G V" and #i G supp (/£ — / | ) we have |xi — x| < ό. Then, since
/ dx\dx2v(x,x)[p(x\ — x) — fq(x\ — x)][fp(x2 — x) — fq(%2 — x)] = 0 (we can
perform the integration with respect to x\ explicitly) and v(f 0 /) is positive, we
have, for x G V and p,q> N,

,X2) — v(x, x)][fp(x\ — x) — fg(x\ — x)] x

q(X2-x)]\

dxλdx2e\fp(Xι -x)- fHxi - x)\\fp(x2 -x)- fg(x2 - x)\

4e.
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Hence wp(x,g) = υ(fξ,g) is uniformly Cauchy on the compact set V and, by com-
pleteness of M, the sequence {wp(x, g)} converges uniformly on V to some number,
call it w(x,g).

Doing the same for the second argument results in a function w(x,y) with x,i/G
W1 such that w(x, y) is the uniform limit on compact sets of υ(fξ ® /*) as p, q —> oo.
To show that u> G C 0 0 we replace the test functions in the Cauchy-Schwartz inequality
by / = daf£ - dafι

x, g = d^gζ — d^g^ and use an analogous argument as above to
conclude that Wp£(x, y) := v(daf^ ® d@f!j}) is uniformly Cauchy on compact sets as
p,q —> oo, and hence has a uniform limit on compact sets, call it wa^(x1y).

Now clearly wPΆ and w^f are smooth functions on l n x l n . Furthermore,
Wp^(x,y) = d%d/jjwPiq(x,y). Hence d^d^wp^q —> w a '^ uniformly on compact sets
as p, q —> oo.

It is now straightforward to argue that the derivatives d^dζw exist and are equal
to wa>P (see, for example, the proof of Theorem V.9 of Reed and Simon [39]).
Finally, it is clear that υ is representable by w, which completes the proof of the
global smoothness of v. D

7. Proof of Main Theorem on Mn

Proof of Theorem 4.3 for the case M = Mn (with class &Pn replacing class SPM^)- Let
μ2 and ω2 be as in Theorem 4.3. Let u = ω2 — μ2- Since μ2 is of class ^ , by property
(e) of Lemma 5.3 there is a CQ for which cone supp αCo does not intersect π2WF(/i2)
Hence supp αCo and π2WF(μ2) are also disjoint. Denote αCo by a and A^ by A.

Fix some real-valued function φ0 e C0^°(ln) and let χ = φ0 ® φ0 e C0°°(l2 n).
Since u G &'(Wln) is locally smooth, so is \u and since χιι e ^f(M2n), property
(f) of Lemma 5.3 implies that A\u is also locally smooth. Furthermore χω2,χμ2 G
c^(]R2n) a r e of p0Sitive type, and property (g) of Lemma 5.3 implies that Aχω2, Aχμ2

are also.
Since μ2 is of class ^ and WF(χμ2) C WF(μ2), we obtain that π2WF(χμ2)

and cone supp α are disjoint. By Proposition 3.3, we have that χμK&i,/^) is of
rapid decrease (see Sect. 3) in cone supp a. Thus, by property (b) of Lemma 5.3, the
function aχμ2 is of rapid decrease in all of M2n\{0}, and so Aχμ2 e C°°.

The preceding shows that Aχω2 = Aχu+Aχμ2 e J^ ' (B 2 n ) is locally smooth and
of positive type. By Proposition 6.1 we have Aχω2 G C°°.

Now let §o be the conic set defined by

% = {(kuh) ^0:k^k2 = 0,(k2)0 > 0} .

Note that WQ is the conic extension of Wσ for any σ > 0. Properties (b) and (d)
of Lemma 5.3 and the global smoothness of Aχω2 then imply that χω~2 is of rapid
decrease in W§. See Fig. 1 for the slices of ^ and W§ in the (fci)o-(&2)o plane.

Let S be the region

Clearly S is a closed conic subset of M2n\{0} and S Π @ = 0. See Fig. 1.
Although it is not apparent from Fig. 1, the sets supp αc and cone supp ac

protrude slightly into the region @ in conic neighborhoods of points of the form
Id = (0,(^)1,(^)2,(^)3) Φ 0, i - 1,2. However, the choice of α = αCo has been
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made according to property (e) of Lemma 5.3 so that cone supp a does not intersect
τr2WF(μ2) anywhere in M2n\{0}.

Now we consider the Cauchy-Schwartz inequality for χω2 expressed in terms of
the Fourier transform χuζ:

\χωi{f <8> g)\2 < χuΓiif ® f~)χωϊ(g~ <8> g) ,

where /, g are arbitrary real-valued Schwartz test functions. Since χ is of compact
support, χωi(k) is a smooth function of k G M2n, so one may insert in the inequality
sequences of positive-valued test functions {fτ},{§*} which tend to the delta functions
δkλ and δk2 in the topology of i^ '(M n ). In this limit the inequality becomes

|χ£ζ(fei,fe2)|2 < χSi(fci,-fei)χS5(-fc2,fe2) (6)

The property S Π (P = 0 implies by Proposition 3.3 that χμϊ is of rapid decrease
in S. Furthermore, from χω2 G &"f(β?n) it follows (see e.g., [21]) that there exists
an integer M and a constant C such that for all k e M2n\{0}, we have \χuΓ2(k)\ <
C(l + \k\)M. Hence for (kuk2) G 5, we have (-fe2,fe2) G ^o, and Eq. (6) implies
that for all TV, there exists CAT such that

< C2

N(\

But y/2\kι\ < A/I^IP + I ^ I 2 = |fe| and V2|Jb2| > |* | since |fe2| > |Jbi|. So in S, we/

have theJnequaUty \χωi(k)\2 < C2

N(l + |A:|)M(1 + \k\)-M~2N = C2

N(l^ \k\)~2N.
Hence χω2 is of rapid decrease in S. Furthermore, the rapid decrease of χμ2 and χϋζ
in S imply that of γu in S.

Since φo has been chosen in the definition of χ = φo 0 0o to be real-valued, χu
has the following two symmetries. Firstly, χu(k\,k2) = χS(/c2,A:i) modulo a term
of rapid decrease, since χ = 0o ^ 0o is symmetric with respect to interchange of
k\ and &2 and w has smooth antisymmetric part, by hypothesis. Secondly, it follows
from the positivity of μ2 and ω2 that the (μ2)+,(α;2)+ are real and (μ2)_,(u;2)_ are
imaginary. The hypothesis of the smoothness of u- then implies that \u must be
real-valued up to C°°. This implies that χu(k\, k2) = χu(—k\, —k2) modulo a term of
rapid decrease. The second symmetry extends the rapid decrease of χu(k\, k2) from
directions (k\,k2) ψ 0 for which \k2\ > \k\\ and (A;2)o > 0 (i.e., points in S) to those
directions for which \k2\ > \k\\ and (k2)o < 0. Hence all directions (k\,k2) φ 0
with |fc21 > I fei| are directions of rapid decrease. The first symmetry extends the
directions of rapid decrease from all (fci, fe2) φ 0 for which |fe2| > |fci| to those for
which Ifei| > |fe2|. Hence all directions (fei,fe2) Φ 0 are directions of rapid decrease.
Therefore xu e C^°(m2n). Since the support of φ0 was arbitrary, u e C°°(R2n). D

8. Extension to Curved Space-Time

Proof of Theorem 4.3. Let (M,g), μ2 and ω2 satisfy the hypotheses of Theorem 4.3.
Set u = ω2 — μ2 as before. Choose any points x\, x2 e M such that x\ φ x2i together
with small enough contractible open neighborhoods U\,U2 containing x\,x2 such that
U\ Γ\U2 = 0. We wish to show that u is smooth when restricted to the neighborhood
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U\ x U2 of (x\, X2) in M x M. Choose chartjnappings φ\, Φ2 sending U\, U2 to open
subsets V\, V2 of Mn respectively, such that V\ Π V2 = 0 and

((^Γ 1 )** !^ > 0 and ((02-
1)*A:2)o > 0 (7)

for any cotangent vectors k\ G (VJ)d, &2 G 0^7)^. Here Xj and xf

2 range in the sets
U\ and £/2 respectively. Such a choice of φ\,φ2 is always possible for small enough
C/i, U2 on the time orientable CST (M, #).

Now let -01 G CQ°(UI),Ψ2 G Co°(t/2) be positive-valued cutoff functions such
that V1O1) ^ 0 and ^2(^2) ^ 0. Also let ψι = (φ^Tψi and ^ 2 = (φ^YΨi. The
mapping </>* on Co°(Vi U V2) is defined to be

Also let ψ = ψ\ + ψ2, where $1 and ^ 2 are extended to functions in C^{V\ U V2)
by defining them to be 0 outside of V\ and V2 respectively. Let μ2 be the following
distribution on Mn x Mn: if /, g G C0°°(mn) then

Similarly, define u)2(/ 0 §) = ω2[φ*(ψf) 0 Φ*(ψg)] and & = d)2 - μ2.
Clearly, μ2 and α)2 are in ^ ( I R 2 7 1 ) and are of positive type. Also (#2 — A2)-

is smooth and (D2 — β2 is locally smooth, as follow directly from the corresponding
properties of cc;2 — μ2. Now since the wave front set transforms under diffeomorphisms
of the manifold M as a subset of the cotangent bundle T*(M) (cf. Theorem 8.2.4 of
[21]), we have

WF(μ2) C (φ~ι (8) 0"1)*WF((^ (8) ψ)μ2) .

Here Ψ = ψ\ + ψ2, where ^ u ^ are extended to C Q ° ( M ) by defining them to be 0
outside /7i, t/2 respectively. Since μ2 is of class &kfi9 (Definition 4.1) and WF((ψ 0
V0μ2) C WF(μ2), the distribution (ψ 0 ^)μ 2 is also of class 5^ 5 ί / and by Eq. (7), μ2

must be of class &Pn (Definition 4.2). Hence the results of Sects. 5, 6 and 7 apply and
we conclude that α)2 - μ2 G C°°(M2n). This means that (ω2 - μ2)\(uιuu2)χ(U1uu2) £
C°°. Without loss of generality, U\ and C/2 can be chosen so that ω2 — μ2 is smooth
on U\ x U\ and f/2 x ^2- Then, since U\ and t/2 are disjoint, it follows that (ω2 —
μ>2)\uιχu2 ̂  C°°' which is the desired result. Since the choice of the original points
x\,X2 G M was arbitrary, it follows that c<;2 — μ2 G C°°(M x M). The proof of
Theorem 4.3 is complete. D

9. Verification of Kay's Conjecture

Work published elsewhere [12, 8, 37, 38] shows the existence of globally Hadamard
two-point distributions μ2 satisfying (KG), (Com) and (PT) up to C°° on any globally
hyperbolic space-time (M,g). According to Condition 3 of Theorem 5.1 of [38] (see
also the Note Added in Proof), the global Hadamard condition for a μ2 satisfying
(KG) and (Com) is equivalent to the following condition:
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Definition 9.1. Let μ2 G S$2'{M) w/zere (M, g) w α ftme orίentable curved space-time
(not necessarily globally hyperbolic). Then μ2 satisfies the wave front set spectral
condition (WFSSC) if

WF(μ2) = {((x1,/e1),(x2,/c2))G(T*(M)xT*(M))\0: (8)

where the equivalence relation (x\,k\) ~ (x2, k2) means that x\ andx2 are null related
by a null geodesic 7 and the duals of k\ and k2 are the tangents to 7 at x\ and x2

respectively.

Observe that the WFSSC requires μ2(x\,x2) to have singularities at all points
x\,X2 connected by a null geodesic, and if x\ and x2 are connected by more than one
null geodesic, then there will be several directions for (k\, k2) (all null) in WF(μ2) at
(x\ j xi)' This property is sufficient for a model satisfying a linear wave equation. For
more general models one does not expect that these directions will be only null; they
may also be time-like (see Kohler [29] and the upcoming discussion on his WFSSC).

Note that if ((xu fei),(x2, fa)) £ WF(μ2) then kx £ (V^)d, k2 e (V~)d

9 and so
the set on the right side of Eq. (8) is a subset of ^BM,# See Definition 4.1. Hence a μ2

satisfying the WFSSC is of class &M,g. Theorem 4.3 then implies that any two-point
distribution ω2 satisfying (PT), (Com) and the local Hadamard condition is globally
Hadamard. (This is all in 4 dimensions, but we foresee no obstacles to extending
this to any dimension n > 2, provided that the appropriate replacements are made
in the asymptotic expressions in the global Hadamard condition.) This verifies Kay's
conjecture.

Indeed, what has been proven is stronger than Kay's conjecture:

Theorem 9.2. Let (M, g) be a 4-dimensional globally hyperbolic (hence time orί-
entable) curved space-time. Let ω2 G S#2{M) be the two-point distribution of a state
(so that ω2 is of positive type). Suppose also that ω2 satisfies (Com) and the local
Hadamard condition. Then ω2 is globally Hadamard. •

Note that ω2 is not required to satisfy (KG) even up to C°°. Furthermore, μ2 and
ω2 need not be the two-point distributions of quasi-free states; they are allowed to
be those of any two states μ and ω on (M, g). Finally, observe that the only reason
that the space-time must be globally hyperbolic is in order that ω2 can satisfy the
global Hadamard condition (the statement of which requires global hyperbolicity).
Otherwise the manifold need only be time orientable.

In [37] a condition more general than WFSSC was proposed (Property 4.9), which
allowed k\ to be any covector in (V^)d, and required —k2 to be the parallel transport
of k\ along some causal geodesic from x\ to x2. Recently Kohler [29] has proposed
a modification to the WFSSC designed to take into account (for non-linear theories)
the possibility that more than one causal geodesic may connect x\ and x2 and that at
such (x\, x2) the covectors (fci, fa) may not be null. (This was not considered in [37].)
His condition is reproduced as follows:

Definition 9.3 ([29]; Definition 7). The two-point distribution ω2 G &2'(M) satisfies
the [modified] wave front set spectrum condition iff its wave front set WF(ω2)
consists only of points (x\, fci), (x2j fa) G T*(M)\0 such that x\ and x2 are causally
related and k\ is in the dual of the closed forward light cone. Furthermore there are
causal geodesies ji joining x\ and x2 and vectors U in the dual of the closed forward
light cone, such that Σi h = fa and tne parallel transported vectors U along 7̂  sum
up to —fa.
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In the case that several null geodesies connect x\ and x2, this definition allows
the covector k\ to be split up into several parts, such that each part is in (V^)d

and such that after each part is parallel transported along a different null geodesic to
x2 and summed there, the covector — k2 is obtained. Kohler presents new examples
of Wightman fields (other than linear) on a manifold satisfying this more general
condition and violating Definition 9.1. (For fields satisfying a linear wave equation, the
WFSSC in Definition 9.1 is sufficient.) We observe that a local-to-global singularity
theorem is true for examples satisfying this modified WFSSC since the class &hii9

condition can still be shown to follow from it. See also the dissertation of Kohler [30]
where it is shown that the "supercurrent" (in a globally Hadamard product state) of an
analog of the free Wess-Zumino model on Ricci flat (globally hyperbolic) space-times
is a Wightman field satisfying the modified WFSSC in a nontrivial way.

10. A Counterexample on a Strip in M4

Consider the vacuum two-point distribution ω2 G ̂ ' ( I R 4 x IR4), defined as the inverse
Fourier transform of

±-δ(kι+k2)θ((h)0)δ(kϊ-m2).
2π

Let G be the symmetric part of ω2:

G = (ω°2)+ .

Recall that \A is the antisymmetric part of ω\, so that ω\ = G + (i/2)Λ Take
μ2 = 2G + (i/2)Z\ = ω\ + G and ω2 = ω\ + (G + Gτ). Here we define Gτ as
Gτ(f ®g) = G(f ® gτ), where gτ(x°2,x2) = g(-x%,x2) and where (z§,x2) = x2 =
(x2i x\,x2,x2). The globally hyperbolic space-time is chosen to be

M = {x e m 4 : α < £ ° < b}

for some fixed α, b such that 0 < a < b. On M, the difference ω2 — μ2 is locally
smooth, the antisymmetric part (ω2 — μ 2 ) - vanishes, and μ2, ω2 are of positive type.
The positivity is easy to see for μ2, since it is the sum of distributions of positive type,
namely ω2 and G. To verify positivity for ω2, choose / G C°°(]R4) and decompose /
into its even and odd parts /+, /_ with respect to x°, so that / = /+ + /_, / J = /+ and
fΣ = — /_. Because of G(f<S>g) = G(fτ<g>gτ) and the symmetry and time-translation
invariance of G, we have G(f+ <g> f_) = G(/_ 0 /+) = 0, and the same holds for Gτ.
Thus

+Gτ(f+ 0 /+) + Gτ(f- 0 /_)]

+(?(/+ 0 /+) •

(Note also that μ2,ω2 satisfy (KG).)
However, ω2 has singularities at space-like separated points, namely the singular-

ities arising from Gτ (cf. the first example considered in Gonnella and Kay [14]).
Finally, one can show that
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τr2WF(μ2) = {(fei, fa) φ 0: kλ + k2 = 0}

Thus WF(μ2) is not a subset of ^g n , nor of ^&M,g for our choice of (M, g). Hence
if μ2 does not satisfy the class ^ condition (and hence does not satisfy the class
&%i,g condition) the local-to-global statement need not hold on this space-time. We
expect similar counter-examples to exist for arbitrary time orientable space-times.

11. Discussion

There is already much evidence in the literature [5, 43, 44, 13, 12, 28, 42] that the
global Hadamard condition (GH) should be regarded as a necessary condition for
a quasi-free state on a Klein-Gordon quantum field model to be "physical." (GH)
strongly appears to be distinguished among properties characterizing the asymptotics
of quasi-free Klein-Gordon states for x\ near to x2. The resolution of Kay's con-
jecture provides further confidence in (GH) since with (GH) we have a local to
global theorem (Theorem 9.2), whereas without (GH) no such theorem is expected
to hold (Sect. 10). Moreover, Theorem 4.3 remains true with the class &M,g condi-
tion replaced by Kδhler's modified WFSSC. In the opinion of this author, this latter
condition is a strong candidate for a generalization of the Hadamard condition for
two-point distributions satisfying (PT) and (LC) on any quantum field model (free or
self-interacting) on a time orientable space-time. Furthermore, an explicit formulation
of a WFSSC for m-point distributions with m > 3 has been suggested by Kohler [30].
(A tentative attempt made in Chapter 4 of [37] has been shown by Kohler to be inad-
equate.) In any case we propose that for a quantum field model (M,g,ω) on a time
orientable space-time (M, g) there is one more physically necessary condition on α;2

besides (PT) and (LC), namely Kohler's modified WFSSC.
We end our discussion of the local-to-global theorem by restating Theorem 9.2

as a converse of Theorem 6.6.2 of [8], demonstrating some dependence (mod C°°)
between the global Hadamard condition and the positivity condition:

Corollary 11.1. If (M, g) is a A-dimensional globally hyperbolic CST, and ω2 is a
locally Hadamard two-point distribution satisfying (KG) and (Com) mod C°°, then
the following statements are equivalent:

1. cυ>2 is globally Hadamard.
2. CL>2 is of positive type mod C°°. •
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A. Proof of Lemma 5.3(e)

Following we present the proof of Lemma 5.3(e).

Define the sets S\ and S2,c for c G (0,1) to be the intersections of the unit
sphere S2n~ι C M2n with the conic sets τr2WF(μ2) and cone supp ac respectively.
Also let R = Sn~ι Π cone Rσ = Sn~l Π {λ G Mn: λ0 > 0} and let S3 = S2n~ι Π
cone {(fei, k2): k\ + k2 = 0, k2 e R] = S2n~ι Π gg, where gg is defined in Sect. 7.
Clearly 5Ί, S2,c, and 53 are compact subsets in S2n~ι and i? is compact in Sn~1, and
S\ Π 5 3 = 0 since μ2 is of class (Pn by assumption. For λ G Mn\{0} and c G (0,1),
l e t b χ ^ c ( k \ , k 2 ) = ψ \ , c ( — k ι ) ψ \ , c ( k 2 ) . A l s o f o r y e R a n d c G ( 0 , 1 ) l e t S 4 j 3 / , c b e t h e
intersection of S2n~ι with cone supp byjC. Note that cone supp by,c = cone supp byc

for 5 > 0, where bs

yc(k\,k2) = by^c(sk\,sk2) = by/s^c/s(kι,k2). Hence cone supp ac C
Uλecone#σcone supp 6λ ? c c U^GjRcone supp byiC9 hence ^2,0 C ΌyeRS^y,c.

Note that if λ φ 0, then as c tends to 0 the conic support of 6Λ,c tends to the ray in
the (—λ, λ) direction. Furthermore, (as will be shown) for any y G R, S$,y,c may be
contained within a set of the form B%c(wy), where kc is a constant depending only on c
(not on ?/) which can be chosen so that kc —» 0 as c —> 0 and where κ;y = (—y, y)/VΪ.
Here, B^(x) is the closed ball in 5 2 n - 1 with radius r and center x G S^72"1, with
respect to the spherical metric d( , •), i.e., 5^(x) = {z G S2n~ι: d(x,z) < r}. The
distance dist(5i,S3) = inf m i 6 5 l 5 m 2 G 5 3 d(m\,m2) between the disjoint compact sets
S\, ^3 is clearly nonzero. If k is chosen to be half that distance, then for all y G R,
the set B%(wy) will be disjoint from S\. Then, for some c chosen so that for all
y G R, S^y^ C B%(wy), we must have

S2,c C U 2 / e j R 5 4 , y , c C UyeRBξ(wy) C Sf .

This would then prove (e). What remains is to show that Vc, 3kc such that \/y G

Note that if (k\,k2) is a point in the set S^y,c (for y e R) then the following
relations are satisfied:

| i | | 2 | ,

2. for some s > 0 we have |fci + sy| < c\sy\, \k2 — sy\ < c\sy\.

Clearly the set defined by the second pair of relations lies within the ball in M?n given
by

\(kuk2)-(-sy,sy)\ <c\(-sy,sy)\ .

Hence S ^ c C S2n~ι Γ){(kuk2): 3s > 0,(fci,fc2) ^ Bc\(-sy,sy)\(sy,sy)}. Here
Bt(w) is the closed ball with radius t and center w G M2n with respect to the Eu-
clidean metric I I on IR2n. The set on the RHS of the above inclusion is obtained by
taking the union of the balls Bc^_sy^sy)\(-sy, sy) over all values of s > 0 and then
intersecting with S2n~ι. It is clear (from drawing a sketch) that this union of balls is
the solid closed cone (minus the vertex) whose angle from the axis direction (—y,y)
is arcsinc. Hence when kc = arcsinc then for any y G R, S4,y,c lies within the set
Bξc(wy) in S2n~K This proves (e) of Lemma 5.3. •
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B. Construction of Simple Smoothing Operator (by Rainer Verch)

For a given μ2 G <§ί/(IR2n) with WF(μ2) C ^ ? n , a simple smoothing operator A with
properties sufficient for the proof of the main theorem on Mn will be constructed in
this Appendix.

Let μ2 £ ^ ' (M 2 n ) with WF(μ2) C Mn be given. Then there is some positive
number a such that Σ(μ2) = π2WF(μ2) is contained in a set of the form K x (-K),
where K is some open conic set in W1 with the property that fco > α|k| for all
k = (ko,k)eK.

Relative to this set K, we shall define A as the pseudo-differential operator of a
symbol α, whose construction will be given as follows: Consider the by a unit in the
negative &0-direction shifted copy K\ := K - (1,0) of K. The two sets Λf := mn\lif,
.yί£ := i^i, form an open covering of Mn; denote by ψi,ψu a smooth partition of
unity in M.n subordinate to this covering. Let j be a smooth monotone function on M
taking non-negative values and with the property that j(t) = 0 for t > 2 and j(t) = 1
for t < 1. Then define the function

a(kuk2) := jdkMφdk^Ji-ikMΦΛ-h), i j ^ e f ,

on M2n. It is not difficult to check that a and all its derivatives are bounded, so we
have a G SQ0(]R2n x M2n), and we define A as the corresponding pseudo-differential
operator acting on ^ ' ( M 2 n ) .

Lemma B.I. Properties of a and A are:

7. 0 < a(kuk2) < I for all kuk2 e W1.
2. u of positive type implies Au of positive type for all u G J^ ;(IR2 n).
3. (cone supp a) Π 7Γ2WF(μ2) = 0.
4. Ifki = -k2 G Mn\{0}, with (fci)o < 0 αnJ |/ci|2 > α~ 2 + 1, then a(kuk2) = 1.

Proof 1) is clear from the definition. 2) follows as in the proof of Lemma 5.3(g), it
is a straightforward consequence of the special form of a. 3) We have π2WF(μ2) C
K x (-K), and a has support in (Mn\K) x (Άn\(-K)) which is a conic set in M2 n. 4)
Observe that (fei)0 < 0 and \kι\2 > a~2 + \ entails j((kι)0) = 1 and fei G M n\^7, and
we have ^ = 1 on Mn\ϋfi. So if in addition fci = — k2, then α(fci, ^2) = ^(^i ? ~^i) =
j((kΰo)2Φe(ki)2 = 1. •
Remark. For the proof of the main theorem it is sufficient to have such a smoothing
operator for each μ2 G ̂ (M 2 7 2 ) . In the proof of the main theorem, the initially given
μ2 G ̂ '(M2n) is multiplied by a smooth spatial cut-off function χ of compact support,
and the smoothing operator is only applied on χμ2.

References

1 Allen, B : Vacuum states in de Sitter space Phys Rev D 32, 3136-3149 (1985)
2 Birrell, N D , Davies, P.C W : Quantum Fields in Curved Space Cambridge: Cambridge University

Press, 1982
3 Borchers, H.J : On the structure of the algebra of field operators Nuovo Cimento 24, 214-236 (1962)
4 Bratteli, O., Robinson, D W : Operator Algebras and Quantum Statistical Mechanics, Vols 1,2 Berlin,

Heidelberg, New York: Springer, 1979, 1981
5 DeWitt, B S , Brehme, R W : Radiation damping in a gravitational field Ann Phys. (N Y ) 9, 220-259

(1960)



A Local-to-Global Singularity Theorem for Quantum Field Theory on CST 21

6 Dimock, J : Scalar quantum field in an external gravitational background J Math Phys 20, 2549-
2555 (1979)

7 Dimock, J : Algebras of local observables on a manifold Commun Math Phys 77, 219-228 (1980)

8 Duistermaat, J.J , Hormander, L : Fourier integral operators II Acta Mathematica 128, 183-269 (1972)

9 Fredenhagen, K : On the general theory of quantized fields In: Schmϋdgen, K (ed.): Mathematical
Physics X Berlin, Heidelberg: Springer-Verlag, 1992, pp 136-152

10 Fredenhagen, K, Haag, R: Generally covariant quantum field theory and scaling limits Com-
mun Math. Phys 108,91-115(1987)

11 Fulling, S A : Aspects of Quantum Field Theory in Curved Space-Time Cambridge: Cambridge
University Press, 1989

12 Fulling, S.A , Narcowich, F J , Wald, R M : Singularity structure of the two-point function in quantum
field theory in curved spacetime, II Ann. Phys (N Y ) 136, 243-272 (1981)

13 Fulling, S A , Sweeny, M , Wald, R.M : Singularity structure of the two-point function in quantum
field theory in curved spacetime Commun Math Phys 63, 257-264 (1978)

14 Gonnella, G, Kay, B S : Can locally Hadamard quantum states have non-local singularities?
Class Quantum Gravity 6, 1445-1454 (1989)

15 Haag, R, Kastler, D : An algebraic approach to quantum field theory J Math Phys 5, 848-861
(1964)

16. Haag, R., Narnhofer, H, Stein, U : On quantum field theory on gravitational background. Com-
mun Math Phys 94, 219-238 (1984)

17 Haag, R : Local Quantum Physics Berlin, Heidelberg: Springer-Verlag, 1992

18 Hadamard, J : Lectures on Cauchy's Problem in Linear Differential Equations New York: Dover,
1952

19 Hawking, S.E, Ellis, G F R: The Large Scale Structure of Space-Time Cambridge: Cambridge
University Press, 1973

20 Hormander, L : The Analysis of Linear Partial Differential Operators III Berlin, Heidelberg, New
York: Springer, 1985

21 Hormander, L: The Analysis of Linear Partial Differential Operators I, Second Edition Berlin,
Heidelberg, New York: Springer, 1990

22 Kay, B S : Talk (see Workshop Chairman's Report by A Ashtekar, pp 453-456) In: Bertotti, B ,
de Felice, F , Pascolini, A (eds.): Proc 10th International Conference on General Relativity and
Gravitation (Padova, 1983). Dordrecht: Riedel, 1984

23 Kay, B S : Quantum field theory in curved spacetime In: Bleuler, K , Werner, M (eds ): Differential
Geometrical Methods in Theoretical Physics Dordrecht: Kluwer Academic Publishers, 1988, pp 373-
393

24 Kay, B.S : Quantum field theory on curved space-time In: Schmϋdgen, K (ed): Mathematical Physics
X Berlin, Heidelberg: Springer-Verlag, 1992, pp 383-387

25 Kay, B S : The principle of locality and quantum field theory on (non globally hyperbolic) curved
spacetimes Rev Math Phys, Special Issue, 167-195 (1992)

26 Kay, B S : Sufficient conditions for quasifree states and an improved uniqueness theorem for quantum
fields on space-times with horizons J Math Phys 34(10), 4519-4539 (1993)

27 Kay, B S : Private communication, dated April 1995

28 Kay, B S , Wald, R.M : Theorems on the uniqueness and thermal properties of stationary, nonsingular,
quasifree states on spacetimes with a bifurcate Killing horizon Phys Rep 207 (2), 49-136 (1991)

29 Kohler, M : New examples for Wightman fields on a manifold Class Quant Grav 12, 1413-1427
(1995)

30 Kohler, M.: The stress energy tensor of a locally supersymmetric quantum field on a curved spacetime
Doctoral dissertation, University of Hamburg, 1995

31 Leray, J : Hyperbolic Differential Equations Princeton, N J : Lecture notes, Institute for Advanced
Study, 1963

32 Lichnerowicz, A : Propagateurs et commutateurs en relativite generale. Publ Math de Γlnst. des
Hautes Etudes, Paris 10, (1961)

33 Lichnerowicz, A : Propagateurs, commutateurs et anticommutateurs en relativite generale In: DeWitt,
C , DeWitt, B (eds ): Relativity, Groups and Topology New York: Gordon and Breach, 1964, pp 821—
861

34 Liiders, C, Roberts, J E : Local quasiequivalence and adiabatic vacuum states Com-
mun Math Phys 134, 29-63 (1990)



22 M J Radzikowski

35 Moreno, C : Spaces of positive and negative frequency solutions of field equations in curved space-
times I The Klein-Gordon equation in stationary space-times, II The massive vector field equations
in static space-times J. Math Phys 18, 2153-2161 (1977), J Math. Phys 19, 92-99 (1978)

36 Najmi, A H , Ottewill, A C : Quantum states and the Hadamard form III: Constraints in cosmological
spacetimes. Phys Rev D 32, 1942-1948 (1985)

37 Radzikowski, M J : The Hadamard condition and Kay's conjecture in (axiomatic) quantum field theory
on curved space-time Ph.D dissertation, Princeton University, 1992 Available through University
Microfilms International, 300 N Zeeb Road, Ann Arbor, Michigan 48106 USA

38. Radzikowski, M J : Microlocal approach to the Hadamard condition in quantum field theory on curved
space-time To appear in Commun Math Phys

39 Reed, M , Simon, B : Methods of Modern Mathematical Physics, I: Functional Analysis New York,
NY: Academic Press, 1980

40. Streater, R F., Wightman, A S : PCT, Spin and Statistics, and All That Reading, Massachusetts:
Benjamin/Cummings, 1964

41. Taylor, M.E.: Pseudodifferential Operators Princeton, NJ: Princeton University Press, 1981
42 Verch, R.: Local definiteness, primarity and quasiequivalence of quasifree Hadamard quantum states

in curved spacetime Commun Math Phys. 160, 507-536 (1994)
43 Wald, R M : The back reaction effect in particle creation in curved spacetime Com-

mun Math Phys 54, 1-19 (1977)
44 Wald, R M : On the trace anomaly of a conformally invariant quantum field on curved spacetime

Phys Rev D 17, 1477-1484 (1978)
45 Wald, R M : General Relativity Chicago, IL: The University of Chicago Press, 1984

Communicated by G. Felder

This article was processed by the author using the IΔTgX style file pljourl from Springer-Verlag




