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Abstract: We define a Rohlin property for one-parameter automorphism groups of
unital simple C*-algebras and show that for such an automorphism group any co-
cycle is almost a coboundary. We apply the same method to the single automor-
phism case and show that if an automorphism of a unital simple C*-algebra with
a certain condition has a central sequence of approximate eigen-unitaries for any
complex number of modulus one, then any cocycle is almost a coboundary, or the
automorphism has the stability. We also show that if a one-parameter automorphism
group of a unital separable purely infinite simple C*-algebra has the Rohlin property
then the crossed product is simple and purely infinite.

1. Introduction

A C*-dynamical system is a C*-algebra with an action of a locally compact group
by automorphisms. To analyse such a system the notion of Rohlin property was
introduced and exploited at least when the group is the integer group Z or perhaps an
amenable discrete group [8, 12, 13,5,3,4,22,26,19,20]. We here introduce a Rohlin
property for one-parameter automorphism groups; if « is a strongly continuous one-
parameter automorphism group of a unital simple C*-algebra 4, « is said to have
the Rohlin property if for any real number p € R there is a central sequence {v,}
of unitaries in 4 such that «,(v,) — e’?'v, converges to zero uniformly in ¢ on every
bounded subset of R. In this case the spectral projections of v, would be periodically
transformed, in a sense, under o, with period 27/p; so this is an analogue of
the Rohlin property for single automorphisms. The main result (Theorem 2.1) will
show that then for any a-cocycle u, i.e., a continuous family wu(¢) of unitaries
with u(s)as(u(t)) = u(s +t), s,t € R is almost a coboundary, i.e., has a sequence
{wn} of unitaries with w,o,(w)) — u(¢) uniformly in ¢ on every bounded subset
of R. (Here a small condition on u should be imposed; see 2.1 for details.) The
only natural examples we can give of one-parameter automorphism groups with the
Rohlin property are on simple non-commutative tori (Proposition 2.5). (Others may
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be obtained by considering infinite tensor products.) Note that any one-parameter
automorphism group of an AF algebra does not have the Rohlin property since K|
is trivial (the unitaries {v,} above must give non-trivial elements in K;). This is
very much different from the situation for single automorphisms [20]. We also note
that the crossed product by a one-parameter automorphism group with the Rohlin
property must be simple (Proposition 2.4).

We employ a similar method to show that if an automorphism o of a unital
simple C*-algebra with a certain condition (which is satisfied by AF algebras and by
purely infinite C*-algebras if o, = id on Kj), has the property that for any complex
number A of modulus one there is a central sequence {v,} of unitaries such that
o(v,) — Av, — 0, then for any unitary u in the connected component of 1 of the
unitary group of A4 there is a sequence {w,} of unitaries such that w,a(w}) — u
(Theorem 3.2). If the C*-algebra is AF and the automorphism induces the trivial
action on K, the above property is equivalent to the Rohlin property. (This is
perhaps not surprising because the Rohlin property may be obtained by the property
that any non-zero power of the automorphism is not weakly inner in any tracial
representation [20], which follows easily from the above property.)

If a one-parameter automorphism group « has the Rohlin property then there are
a-covariant irreducible representations [17]. If the C*-algebra has real rank zero and
satisfies the condition referred to above, we shall show that there is a decreasing
sequence of almost a-invariant projections whose limit is a minimal projection in
the second dual (Theorem 4.1). (A similar result for single automorphisms with
trivial action on Kj can be obtained by using part of the arguments for 4.1 if the
automorphism satisfies the property that all non-zero powers are outer; a substan-
tially weaker property than the Rohlin property in general.) We have an example of
one-parameter automorphism groups where the conclusion of Theorem 4.1 does not
hold. (In this example «; is inner.) Then we shall show that the crossed product of a
unital separable purely infinite simple C*-algebra by a one-parameter automorphism
group with the Rohlin property is simple and purely infinite (Theorem 4.8).

2. One-Parameter Automorphism Groups

Let A be a unital C*-algebra and let
A% = loo(N9A)/CO(N9A) s

which is a unital C*-algebra; x = (x,) + co(N, 4) has norm lim sup ||x,||. Embedding
A into [*°(N,4) by x — (x,x,...) and also into 4°°, we denote A° NA’' by A..
Let a be a strongly continuous one-parameter group of automorphisms of 4; then
o acts on [°°(N,A) in the natural way and leaves co(N,4) and 4 invariant. Let

[P°(N,4) = {x € I"°(N,4);t — a,(x) is continuous}
which is a C*-subalgebra of /°°(N, 4) containing co(IN,4) and A4, and let
A° = IP(N,4)/co(N, 4), Aoy =AF NA .

By an a-cocycle # in A, , We mean a continuous family u(z), ¢ € R, of unitaries
in Ay 4 such that for s, € R,

u(s)os(u(t)) =u(s+1).
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For a unitary u € 4, if u is in the connected component of 1 of the unitary
group of A, let /(u) be the infimum of the lengths of rectifiable paths from u
to 1 and otherwise let /(u) = oo. If A4 has real rank zero, then either /() < = or
I(u) = oo [24].

Theorem 2.1. Let A be a unital separable simple C*-algebra and let o be a
strongly continuous one-parameter automorphism group of A. Then the following
conditions are equivalent:

1. For each p € R there exists a unitary v € Aoo,q such that a,(v) = e"Puv.
2. For each a-cocycle u in Ao 4 such that t='1(u(t)) — 0 as t — 0, there exists
a unitary w € Aoo,q such that u(t) = wo,(w*).

In this case for each a-cocycle u in A such that t~'1(u(t)) — 0 as t — 0, there is
a sequence {wy,} of unitaries in A such that ||u(t) — wya(w})|| — O uniformly in ¢
on each compact subset of R.

A one-parameter automorphism group o of a unital simple C*-algebra 4 is
said to have the Rohlin property if a satisfies the condition (1) in the above
theorem.

Let T be a subset of 4. We say that T is equicontinuous with respect to o if
the family of continuous functions ¢ — «,(x) with x € T' is equicontinuous, i.e., for
any ¢ > 0, there exists a > 0 such that if |¢| <6 and x € T, then |lo,(x) — x|| <e.

Lemma 2.2. Let u(t), t € R be a continuous family of unitaries in Aoy Then
there exists a sequence {u,(t)} of continuous families of unitaries in A such that
(u1(2),ux(2),...) represents u(t), {un(+)} is equicontinuous on every compact subset
of R and {u,(t)} is equicontinuous with respect to o for each t € R. Moreover if u
satisfies that ||u(s) — u(t)|| < Cls — t| for distinct s,t € [—r,r] with some C,r > 0,
then {u,} can be chosen so that ||uy(s) — u,(¢)|| < C|s — t| for distinct s,t € [—r,F],
for all sufficiently large n.

Proof. For each t € R there is a sequence {x,} in 4 representing u(¢) such that x,’s
are equicontinuous with respect to o. Since x}x, — 1 and x,x} — 1. 1, = x,|x,| !
is well-defined for large n and {u,} satisfies the same properties as {x,}. Thus we
can assume that x,’s are unitaries.

For each ¢ € R let {#,(¢)} be a sequence of unitaries in A representing u(¢)
such that #,(¢)’s are equicontinuous with respect to a. Let ny = 0. For each £ € N
we choose an n; € N such that ny > ny_y and if 5,7 € [k k] satisfies |s —¢] <
27" then ||lu(s) — u(?)|| < 1/3k. Let my = 0. Then we choose an m; € N such that
my > my_y and for any [ = my and s,t € P, = {j € [k, k]| 2" € Z},

@i(s) — @] < [luls) — u(@)|| + 1/3k .
For [ with my < I <myy and s € Py define h;s = h]; € A of small norm by

(s 4+ 277) = e™isg(s) .
Let
u(t) = ei(’“s)znkh’ﬁﬁ,(s), t € [s,s+27],

w(t) =u)(—k), t = —k, and u;(¢t) =dy(k), t = k. Thus we obtain the contin-
uous functions u, on R for n = my. We assert that {u,} satisfies the required
properties.
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For ¢t € 27™"Z with m € N, {u,(¢)} represents u(¢). Let s,¢ € R. For a sufficiently
large k& with s,¢ € [—k, k] we have that for n = my,

l[un(s) = un(OI| = Nlun(s) — ua(sH| + [ln(s") = un(EI] + [Jun(") — un(O)|
< llu(s) — (Il + 1/k,

where s',t' € P, with |s—s'| <27, |t—1¢| <2 ™. Hence {u,(-)} is equi-
continuous on each bounded interval of R. In particular {u,(¢)} represents u(t) for
each t € R.

If s € 27™Z with m € N, then {u,(s)} is equicontinuous with respect to «. Since
{u,(-)} is equicontinuous, this is the case for any ¢ € R.

To show the last assertion choose an increasing sequence {n;} such that for
ne{mom+1,...,my —1} and I = —2F + 1,25 42, 2k

en = un(r275(1 — 1)) — un(r27*D)|| < Cr2=*.
Suppose that Cr27% < 2. We define u/, by: For ¢ € [r27%(1 — 1),r27%1],

(1) = =Dy (97K - 1)),

where £ is defined as before by log(u,(¥2*I)u,(r27*(1 — 1))*) with branch along
the negative real axis. Then since ||A|| < 2 arcsin &,/2, the new {u} satisfies the
required properties.

Lemma 2.3. Let A be a unital simple C*-algebra and let {v,} be a central sequence
of unitaries in A such that for any ¢ >0, Sp(v,) + (0,¢) =T (regarded as R/Z)
for all sufficiently large n. Define a linear map of the algebraic tensor product
A® C(T) into A by

Pu(a® f)=af(v).

Then {¢,} is an approximate homomorphism, i.e.,

||¢n(x)* — G, [|Pn(xy) — Pu(x)Pu(P)|
converge to zero for any x,y € A ® C(T), and for any x € A © C(T),

lim {|,(x)|| = [lx]| ,
where ||x|| is the C*-norm of x € A ® C(T).

Proof. 1t follows by easy computations that {¢,} is an approximate homomorphism.
Then the map x — (¢1(x), P2(x),...) defines a homomorphism of 4 ® C(T) into 4°°
and so

7(x) = lim sup || pa(x)]|
defines a C*-seminorm on 4 ® C(T). (See [23,9] for similar arguments.)
Let 7 be an open interval in T and let for a € 4,

da)=sup{p(a® 10 = f = u},

where y; is the characteristic function of /. Then it follows that é is a C*-seminorm
on A. Since J(1) = 1 by the assumption on Sp(v,) and since A4 is simple, it follows
that 5(a) = ||a||, a € 4.
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Note that any non-zero closed two-sided ideal of the tensor product 4 ® C(T)
contains a non-zero element a ® f. If y is not a norm, there is a non-zero element

a® f such that
Wa*a® f7f)=0.

Since f*f dominates cy; for some ¢ > 0 and /=), this contradicts that J is a
norm. Since 4 © C(T) has a unique C*-norm, we obtain that

1x) = |lxll, xe4oC(T),

which suffices to conclude the proof.

Proof of Theorem 2.1. For each p € R, t — e’ can be regarded as an a-cocycle
in Aeo,«- Thus (1) is a special case of (2). We shall prove that (1) implies (2).

Let u be an a-cocycle in 4. 4 and ¢ > 0. First we choose an N € N so that
I(N)/N < ¢. Let {u,(-)} be a sequence of continuous families of unitaries which
represents u as in Lemma 2.2. Then it follows that

un(8)ots(un(t)) — un(s + 1)

converges to zero uniformly in s, on each compact subset of R. Here we may
suppose that u,(0) =1 and I(u,(N)) <eN. We choose a sufficiently large n € N
so that for s,z € [0,2N],

”un(s)“s(un(t)) — un(s + t)” <eg,

and we let U =u,. By Lemma 2.2 we may further assume that there is a con-
tinuous family x(¢),¢ € [0, N] of unitaries such that x(0) =1, x(N) = U(N) and
for distinct s,¢ € [0, N],

[lx(s) = x()I <els —¢] .

Define a unitary W in 4 @ C(T) by
W (s) = U(Ns)o(s—1)(x(Ns)*)

for s € [0,1]. Since W(0) =1 = W(1), W is in fact in 4 ® C(T).
Define a one-parameter automorphism group y on C(T) by (v, f)(s) = f(s — ¢).
Suppose that 0 < s<1land 0 <t < N. If Ns > ¢, then

(Woy ® yyn(W*))(s) = U(Ns)ow(s—1)(x(Ns) " x(Ns — ¢))u(U(Ns — £))" .

Since |[|x(Ns)*x(Ns —¢) — 1|| <&t and |[u(Ns) — U(¢)ou,(U(Ns — t)|| <e, it follows
that
(Wory @ pyn(W*))(s) — U(t)|| < e(t +1).

If Ns <¢, then
(Wou @ yyn(W™))(s)
= U(Ns)o(s—1y(x(Ns) Yons (N + Ns — £))ou(UN + Ns — £)*) .
Since ||x(Ns) — 1|| < &Ns and ||x(N + Ns — t) — U(N)|| < &(t — Ns), it follows that
13, @ 3y (W )s)— U] < et + |UNS)ans(UN)a(UCN + Ns — )Y — U(0)|
<eé&(t+2).
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Hence we obtain for ¢ € [0, N],
|Wo, @ pyyn(W*) —U() @ 1| < e(t +2).
By (1) there is a unitary v € Ao, such that o,(v) = e 2"/Ny, Let {v,} be a
sequence of unitaries in A4 representing v such that {v,} is equicontinuous with

respect to o. We define a linear map ¢, of 4 ® C(T) into 4 by
Pn(a® f)=af(va)

as in Lemma 2.3.
Note that for a € 4 and f € C(T),

P00 @ yyn(a ® f) = aa)f(e™ N v,) = a(af (va)) ,
ie., for x € 4 © C(T),
lim ||y 0 0 ® yyw(x) — o © Pu(x)]| = 0.

We find a W € 40 C(T) C A4® C(T) such that |W; — W|| < ¢ and find an
n € N such that for ¢t € [0,N),

@n(WD)Pu(WT) = 1| < e+ [P — 1],
[ n (W) pu(W1) — 1| < e+ (W7 — 1],
|fn 0 o ® yyw(W1) — e 0 Pu(W)|| < €,
”d)n(Wl)d)n ou ® yt/N(Wl*) — ou(W1a ® ')’t/N(Wl*)“ <e,
|n(Wr0; ® ')’t/N(Wl*)) - (U@)@)|| <e+ |0 @ yt/N(Wl*) -U@)e1|.
Then for W = ¢,(W;) we obtain that
IWe(W™) = UM < &+ |n(W1)n 0 & © yyn(W1)* = U(®)]
< 2e+ ||gn(W10 @ yyn(W7")) — pu(U (1) ® 1)||
< 3e+ W @ yyn(WT) = Ut) @ 1|
< Se+ [|[Woy @ yyn(W*) — U() @ 1|
< Te+et.
Since W is close to a unitary, the unitary w obtained by the polar decomposition
of W has the desired properties.

For each sufficiently large n we specify N, x(¢) and v, and then construct
w, =w in the above way. If A is separable, it is easy to make {w,} cen-
tral. (We have assumed the separability only for this reason.) This concludes the
proof of (1) = (2).

The last statement follows from the same proof as above. We do not need the
separability for this statement.
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Proposition 2.4. Let A be a unital simple C*-algebra and let o be a strongly
continuous one-parameter automorphism group with the Rohlin property. Then
the crossed product A x R is simple.

Proof. The dual action & of R on 4 x R is defined by &,(a) = a, @,(4) =e'?'4,
where a € 4 and the canonical unitary group A implementing « on 4 are elements
in the multiplier algebra. Then it soon follows that each &, is approximately inner,
ie., &, = limA du, |4 x R, where {u,} is a central sequence of unitaries in 4 with
lim ||ot;(4n) — € "P'u,|| = O uniformly in ¢ on every compact subset of R. Hence any
closed two-sided ideal of 4 x R is left invariant under &. Since 4 is simple, this
implies that 4 x R is simple.

Proposition 2.5. Let A be a simple non-commutative n-torus, i.e., the univer-
sal C*-algebra generated by n unitaries ui,...,u, with uuu} u;y = e¥0y1 € Cl1
such that the anti-symmetric matrix © = (0;;) satisfies that Om ¢ Z" for any
non-zero m € Z". Let o be a one-parameter automorphism group of A such
that

dt(uj) — ezmpjtuj

and any o, with t %0 is not inner, i.e., (Z"+OZ")NRp={0} with p=(p1,..., pn)"
Then a has the Rohlin property.

Proof. This is noted in [18] in a different context. Let ¢ € R. We shall find a
sequence {my} in Z" such that

dist (O@my, Z"") — 0, p'mp—q.
Then the sequence of unitaries
M2, umkn
n

my Mkl
Ut =u " u,

is central and satisfies that o,(u™) — e24'y" — (),
This follows since

G={(Om+kpm)kmelZ"}

is dense in R"™!. To prove the density of G suppose that G +R"*!. Then since G
is a subgroup of R"“,_there must be a non-zero ¢ = (&, &) € R” x R such that
(&,9) € Z for any g € G, i.e.,

(=0%0,m) + (%o, k) +(&ip,m) €L,
which implies that &, € Z" and
(—O& +&pm)y e L.
Then it follows that & %0 and ¢, p € Z" + OZ", a contradiction.

3. Single Automorphisms

Let A be a unital C*-algebra and let « be an automorphism of 4. Let

Ae ={f€Cl0,1]®4]f(1) = a(f(0))}.
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Condition 3.1. There is an increasing function f :R; — R, such that for any
u in the connected component of 1 of the unitary group of 4, there is a con-
tinuous path #,s € [0,1] of unitaries in 4, such that # =wu, #; =1, and the
length /(&%) of # is bounded by f(L(u)), where L(u) is the length of u(s),
s €[0,1].

We shall consider this condition later in Propositions 3.4 and 3.5.

Theorem 3.2. Let A be a unital simple C*-algebra and let o be an automorphism
of A. Suppose that Condition 3.1 is satisfied and that for any p € T there is a
unitary v € Ao such that a(v) = pv. Then for any u in the connected component
of 1 of the unitary group of A there is a sequence {v,} of unitaries in A such that
u = lim v,o(vy;).

Proof. Let u € A be a unitary in the connected component of 1 and let u(1) =u
and u(k) = uoa(u(k — 1)) for k =2,3,..., i.e,, u is an a-cocycle in the sense that
u(k)o*(u(m)) = u(k + m) for k,m € Z. Let vy be a rectifiable path of unitaries in
A such that

U()(O)Z 1, vo(l)zu.

Let, for k =1,2,...,n— 1,
v = u(k)a*(vy) € C[0,1]1® 4.

Note that s € [0, 1] — vo(s + )*vo(s)(n)"(vo(s - )) is a path from 1 to vgu(n)a"(vy)
in the unitary group of 4,, where vg(s)(n) is defined in the same way as u(n), based
on vo(s) instead of u, and that the length L(vju(n)a"(vo)) as a function on [0, 1]
is at most 2/(vy), independent of n. Using Condition 3.1 let wyp = 1, wy,...,w,_2,
Wp—1 =« "(vgu(n)a"(vp)) be a sequence of unitaries in 4, such that

||wk—wk_1|| < C/n, k=12,...,n—1,

where C = f(2l(vy)). For k=0,1,...,n—2 let w; € C[0,1]® A4 be a unitary

such that
1"{’}k(t) = Wk(t)a te [O’ 1/2] 5

Wi (1) = wep1 (1),
[Wx —wi|| < C/n

and let w,_1 = w,_1.
Let @ = va*(W;). We define a unitary ve€ C(T)®4 as follows: for
t € [k/n,(k + 1)/n),
v(t) = Dx(nt — k).

Then v is indeed continuous in ¢ € T because for £k =0,1,...,n— 1,
(1) = u(k)a* Wy (w1 (1)*) = ulk + Da* (w1 (1)*)

T51(0) = u(k + 1a* ™ (wi41(0)*) = u(k + Dok (wira (1)),

and
to(0)=1,

Fp_1(1) = u(n — Da" Yo~ w*u(n)a (1)) = u@n)a ' wrun+ 1)) =1.
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Note also that
1By ) = v o O a(vroF 05 )*)*
= u(k + 1)l (00 (W 4 Wi Yol (v )ouu(k)*)
Boo(By_; ) = oW Up—10" ' (Wp_1))*
= oWy o' (W )" (0] )er(us(n — 1)°)
= VoW UpU .

Thus it follows that
[lo(@®)e(v(t — 1/n)) —u|| < 3C/n.

Let {u,} be a central sequence of unitaries in 4 such that ||a(u,) — e~ 2"/"u,| — 0.
Define a linear map ¢,, of 4 © C(T) into 4 by

Om(a® f) = af(um).

Since [[va ® P1/n(v*) —u @ 1f| < 3C/n and ¢p 0 @ Y1/ = 0 Py, We have, as in
the proof of Theorem 2.1, that for a sufficiently large m, a unitary w which is close
to “¢m(v)” satisfies that

[lwa(w*) —u|| < 3C/n.
This concludes the proof.

We have not proved an obvious adaptation of Theorem 2.1 to this case, i.e., the
equivalence of the following two conditions:

1. For any u € T there is a unitary v € Ao, such that a(v) = pw.
2. For any u in the connected component of the unitary group of 4., there is
a unitary v € Ao such that u = va(v*).

To prove this we would need an obvious condition involving central sequences
which is stronger than Condition 3.1, and which we could not prove unless 4 is an
AF algebra. We shall now consider Condition 3.1.

Lemma 3.3. Let A be a unital C*-algebra of real rank zero and let u(s), s € [0,1]
be a continuous path of unitaries in A with [u(0)] =0 in K,(4). Then for any
& > 0 there is a continuous function h of [0, 1] into the self-adjoint part of A such
that for all s € [0,1]

lu(s) =" <&
Furthermore if u(0) = 1 = u(1), then h can be chosen such that h(0) = 0, e =1,

and ||h(t)|| < Cil(u) + C,, where C; and C, are constants independent of u
(depending on ¢).

Proof. For any ¢ > 0 there exist a § € (0,¢/2) and N € N such that if ||ug — u;|| <0
with ug,u; unitaries of finite spectra, the unitaries

2N—1 i
4= Y e"™NB([k/2N — 1/4N,k/2N + 1/4N)),
k=0
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where P;(+) is the spectral measure of u; on T, can be connected by a
continuous path #, of unitaries such that &, —u| < &/2, Sp(#) is finite, and
G = {(t,A)|4 € Sp(d,)} looks like:

t

Some of the end points may not exist (all e™™’s may not be eigenvalues

of Sp(#;)); so some line segments should be removed from the above picture
(cf. [2]; here we have used freedom to change the pattern of eigenvalues slightly).
In particular, (0,e™/¥) may be connected to at most four points of (1,e™/N+ml/Ny
I=-2,-1,0,1,2 in G as ¢ increases.

Let L be the length /(u) of u. If M € N satisfies that L/M < § < L/(M — 1)
one finds a sequence t() =0 <t} < #, < --- < 3y = 1 such that for s,¢ € [t;,_1,1],

llu(s) —u(®)]| < 6.

Then composing the # constructed for the pair u(t;,—;), u(t;), we obtain a path #(s),
s € [0,1] such that ||u(s) — #@(s)|| < e and G;={(t, 1) |t € [ti—1,4], A€Sp(i(¢))} sat-
isfies the condition as above. Then starting from A(0) = —ilog#(0) with ||A(0)|| =
7 we can continuously define 4(¢) = —ilogii(t); the definition of 4(¢) (or the eigen-
values of A(¢)) is by no means unique and in general the spectral projections of
h(t) are finer than those of #(t).

To be more precise, if #(t) =, ui(t)pi(t), pi(t)’s are projections with
> pi(t) =1, and p;(t)’s are mutually distinct at a neighbourhood of ¢ = ty, A(t)
may be defined as

S (logu(0) + 2t)pr() ()
1
in that neighbourhood, where ), is the sum over a finite set of integers, log u;(¢) is
defined as a continuous function, and py(¢)’s are projections with >, pu(t) = pi(¢).
If wi(¢)’s are mutually distinct for ¢ < #y except for pp;—1(ty) = wi(to),
and d(t) =Y, w(t)pi(t) for t =1y, where u(t)= pi-1(t) = wai(to) and
Pi(t0) = pai—1(t) + p2i(fy), then A(t) is defined up to ¢ =1¢ as in (*) and by
assuming log uo;—1(f) = log (%), A(¢) may be defined as

> Zki(—i log pi(2) + 21k ) pi(t)  (++),

where p(t)’s are projections with ), pf.(¢) = pi(¢).
If a(t) = Y, W' (t) pi'(t) for t = to, p/(t)’s are projections with . p/'(t) =1,
u/(t)’s are mutually distinct for ¢ = ¢ except for 1y, (t0) = py(to) = pi(to), then
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h(t) is defined up to t =1y and >, pu(to) = py;, (o) + ph(to). Let t; < 1 be
close to #). By the Riesz decomposition property, we find subprojections g¢; of
P/ (%) such that

[pi(t1)] = [q2i+1,6] + [q2i4]

Xk:%’k = pi'(t) -

Then we find a path p,(t), t € [t1,t] of projections from pu(t) to o1,k +
g2k at t =ty for each k such that >, p,(¢t) = pi(t). By using these paths we
change A(t) for t € [t1,4] keeping the relation 7(¢) = ¢”®. Then we can continue
to define h(t) for t>1 by finding paths pj(¢) such that pj;(f%) =gy and
>y Pt = pLD).

If u(0) =1 = u(1), we assume that #(0) = 1 = #4(1). Starting with A(0) = 0, we
can estimate the norm of A(¢): If t_) < t < #,

[A()]| < 27k/N

and hence for any ¢ € [0, 1],

2n 2n
|A(®)| < 2rM/N < 2n(L/6 + 1)/N = 5NL+ N

We note that if K¢(A4) is totally ordered, then the above % can be defined in a
unique way by requiring that the ramification can occur at most on one eigenvalue
of #(t). (This requirement makes the choice of subprojections g; unique when we
use the Riesz decomposition property in the above proof.) In this case if u(0) =
1 = u(1) we have that A(1) € 27Z1.

We also note that if 4 is purely infinite and simple, we can also impose the
above requirement, though in this case this does not remove the freedom we have
when applying the Riesz decomposition property. (If Sp(#) is full, we can use this
freedom to control the norm of A(t) to just over m.)

Proposition 3.4. Let A be a unital simple C*-algebra of real rank zero such that
A has a weakly unperforated ordered group with the Riesz decomposition property
as Ko(A) and has the cancellation property. Let o be an automorphism of A such
that o, = id on Ko(A). Then A, satisfies Condition 3.1.

Proof. Let u € Ay be a unitary with [u] = 0. Since u(0) can be approximated by a
unitary of finite spectrum, we may assume that Sp(u(0)) is finite. Let & = 4* € 4
be such that ||4|| < 7 and u(0) = . Let

us(t) — u(t)e—l(l—t)sh—itsa(h) .

Then up = u, u1(0) =1 =u;(1), the length of u;, s € [0,1] is ||A||, and the length
L(uy) of u; as a function on [0,1] is at most 2|4|| greater than L(ux). Hence
we may assume that #(0) =1=u(l) and we can regard u as an element of
(SA)t = (C(0,1)® A)*.

Suppose that u;, s € [0,1] is a path from u to 1 in the unitary group of 4,.
By Lemma 3.3 us(1) can be approximated by e”*) with 4(0) =0 and ”() = 1.
Hence there is another #'(s) with ||#’(s)|| = 0 such that

1s(0) = "™ (0)=0=H(1).
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By replacing u, by

t v uy(t) e—i(l—t)h’(s)—itoc(h’(s)) o~ (1=1)h(s)—itu(h(s))

we can assume that u#;(0) = 1. Thus u is connected to
d s e TA—DR()—ita(h(1))

in (SA)*. Let (1) = >, 2nkpy, where {py} is an orthogonal family of projections
in A. Then the class of ' is equal to

; klpk] — Xk:k[a(llk)] =0

in K;(SA4) which is identified with Ky(4), where we have used that [ p;] = [a( px)].
Hence u (with u(0) = 1 = u(1)) is connected to 1 in the unitary group of (S4)*.

By applying Lemma 3.3 to u with ¢ = 2, there are continuous functions 4,4’ of
[0, 1] into the self-adjoint part of 4 such that 2(0) = 0 = #’(0), #'(1) =0, ||A(2)|| <
CiL+ G, |W@)| < =, and

u(t) = RO eih'(t) i

Note that u and the unitary v defined by v(¢) = e™*) can be connected by a path
of unitaries in (S4)* of length at most 7 and that v and the unitary w defined
by w(t) = e™1 can be connected by the path of unitaries (! ~O+isth(1) \whose
length is at most 2(C;L + C,). We shall now show that w can be connected to 1

by a path of unitaries in (SA)" of length at most 4n(C\L + C,).
Let

K
h(1)= > 2mkpy,
K=K

where {p;} are mutually orthogonal projections in 4 and |K| < CiL + C,. Since
[w] =0 in K;(S4), we must have that

> klpl=0.
Let Ky be the maximum of |k| with p;=0. If Ko =0 then A(1) = 0 and there is
nothing to prove. If Ky > 0, suppose that pg,+0. Since

Kolpx, 0+ - klpk] 20,
k=21

it follows that
_KO
Kol[pk,] = Ko kzl [p] -
Suppose that [pg,] < Zk_:Kﬁl[ pr] which follows from the strict inequality in the
above formula by Ky(4) being weakly unperforated; then there are subprojections
qi of py for k = —1,...,—Kj such that

Ky
[Pl = > laxl.
k=—1

By using the cancellation property we then find a partial isometry W such that

—Ky
WW*ZpKO, W*Wzkzlqk.
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Let
—Kp —Kp
Up = cost | pg, + Z gk | +sin0(W —W*)+1—pg, — > qx -
k=1
Then
UeeZnitpKO U(;eith(l)—ZnitpKo
connects w to ¢, where
Ko—1
b =2n Z kpy +2n Z k(pr — qr) +2m Z (k + Daqx
k=—K, Ko

+ 27C(K0 - 1)(PK0 + PKO_l) .

If [p,] £ 30, [pe), e, Ko = 2 and Kol px,] = Ko 350, [ i), which im-
plies that py =0 for k= —1,...,—Ko + 1, let p}<0 be a non-zero subprojection
of pg,. Then [ p}<] [p-k,], and we apply the above procedure with p}(o in
place of Pky- Then we again apply the above procedure to the resulting K’ with

Pk, — Pk, in place of pg,, to transform e to ™" with
Kop—1
W' =2 Y kp}
k=—K0

with no K term.

If p_k,+0, we can use a similar argument to remove the —Kg’ term. By
repeating this argument we find a path of unitaries which connects w to 1.
Since each argument requires a path of length 7, the resulting path has length
at most

4K < 4n(CiL+ Cy).

Proposition 3.5. Let A be a unital purely infinite simple C*-algebra and let o, be an
automorphism of A such that o, = id on Ko(A). Then A, satisfies Condition 3.1.

Proof. A purely infinite simple C*-algebra has real rank zero [28] and satisfies that
any non-zero projections p and g are equivalent if [ p] = [g] in Ky(4) [11]. Hence
this can be proved in the same way as Proposition 3.4.

Actually this case is simpler. When we apply Lemma 3.4 in the proof of the
above proposition, we impose the extra condition indicated just after the lemma,
and we obtain the self-adjoint # which may end up with

h(1) =2nkp +2n(k + 1)q,
where p+q =1 and

k[pl+ (k+ Dlq] =

We have to estimate the length of a path which connects w : w(t) = e™® to 1.
Suppose k£ > 0. Then since [ p] = (k + 1)[1], we find k£ + 1 non-zero subprojections
.,ex+1 of p such that e; +---exy; = p and [e;] = 1. Then w and the unitary
y defined by y(t) = e>™*+Df1—e1) can be connected by a path of length k7. Since
[1 —e;]=0, y can be connected to 1 by a path of length (k¥ + 2)n. Thus the
estimate is (2k + 2)n = 2||A(1)||. The other case can be treated in a similar way.
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4. Real Rank Zero C*-Algebras

Theorem 4.1. Let A be a unital separable simple C*-algebra of real rank zero
and let o be a one-parameter automorphism group of A. Suppose that o has the
Rohlin property and that A has a weakly unperforated ordered group with the
Riesz decomposition property as Ky and satisfies the cancellation property, or A
is purely infinite. Then for any ¢ > 0, there is a decreasing sequence {e,} of
projections in A and an a-cocycle u in A such that

Adu(t)ooy(en) = ey,
”u(t) - 1” <g te [05 1] s
and the limit of e, in the second dual A** is a minimal projection.
Proof. Let {x,} be a dense sequence in the unit ball of the self-adjoint part of
A Lete >0, eg=1, a© =, and uo(t) = 1 for all £ € R. We shall construct a
decreasing sequence {e,} of non-zero projections in 4 and a sequence {u,} with
u, an a"~D-cocycle such that
un(l1 —ep—1)=1—ep1,
”un(t) - 1” < 2_n87 te [0’ 1] ’
o™ = Aduy(t) o o™,
o en1) = et
D, (exxmen) < 1/n, m=12,...,n,
where if e is a projection in 4 and 4 is a self-adjoint element of ede, D.(h) denotes
max o.(h) — min o.(h) with ¢.(%) the spectrum of 4 in ede. If this is done let
u(t) = Um wuy(2)---ui(1),
n—oo
which exists for all ¢ € R, is an a-cocycle, and satisfies
lu@)—1|| <& ¢te€][0,1].

Note also that Adu(t) o o,(e,) = e, for all n. Let ¢ be a state of 4 such that
¢(e,) =1 for all n. Then by the condition that D, (e,xe,) — 0 as n — 0, ¢ is
uniquely determined. Thus ¢ is a pure state, which proves that lime, is a minimal
projection in A**.

Suppose that we have constructed e;’s and u;’s up to k = n — 1. Let f = a*~D
and let {p > 0 be such that for ¢ € [0, %],

1B:(xm) — Xm|| < 1/2n

for m=1,2,...,n. Let N € N and 6 > 0. Then by Lemma 4.2 below we find a
non-zero projection p in e,_1A4e,_; such that D,(pf_i,(xn)p) < dform=1,...,n
and /=0,1,...,N. Noting that all non-zero powers of B, are outer and applying
Lemma 4.3, we may further assume, by replacing p by a smaller projection, that
if £, 1=0,1,...,N, and k1,

| Brto (P YXmPBrey ()] < 6
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for m =0,...,n where xo = 1. By Lemma 4.4 below we find an orthogonal family
{40,91,.-.,qn} of projections and a unitary v such that

9 =P,
u(l—e1)=1-e51,
Advo B (gk-1) =qr, k=1,...,N,
|Bio(P) — gkl < &(6,N), k=0,...,N
[o—1]| < e@,N),

where ¢(0,N) — 0 as § — 0. Let {g;;} be matrix units such that

qii = 4i »

gij = Advo B (qi-1,j-1), Lj=1,...,N.
Let

Then E is a projection in e,_;4e,—; and satisfies that
IE = Bu(E)I| < 2/V/N +2e(8,N)=¢, ,

and that for A € aq, (qkXmqr),

———1 N). E
&w—(N+1§1>”

1
< |l—— X
‘WW+W§%””

“w+wﬁzwm% <N+1ZM>H

< (N4 1% + 7 >k (Xm — A1)qu;

H(N—l—l
25/ N

S (N+1)°0"+ > Dy (qixmq1)
=0

where &' = 6 + 2¢(0,N) and
Dy (91xmq1) = Dp(pB—11(xm) p) + 38(3,N)

< 0+ 3¢(0,N).
Thus we have that
Dg(ExpE) < (N +1)(N +2)(0+3e(0,N)) = ¢, .

Both ¢; and &, defined above can be made arbitrarily small by making N sufficiently
large and then § > 0 sufficiently small.
By Lemma 4.5 there is a f-cocycle u such that

Aduy; o Bi(p) =
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Let v(0) =1 and let for £ =1,2,...,
o(k) = vBiy(v) - B (v)

and define
N
w = Z%ﬁt(v(j))ﬂpo(u}“ ()" .
Jj=

Since f,(v(j))Bj,(uf P)v(j)* is a partial isometry with initial projection g; and final
projection f,(g;), w; is also a partial isometry. Note that
2= Be(w(i))Biry (uf PY0(I)"q1j0(J)Bjey (uf PIB(0(G)7) -

wEw/] = N+l

We assume that
g0 = vu;;p .
Then '
gio = Adv(i — 1) o Bi—1),(q10)Adv(i — 2) © Bi-2),(q10) - - 10
= 0(i — 1)Bi—1)(910)Bi-2) (v q10) - - - Bis (V" q10)0" q10

= v(i)uy, p
and so
g = v()uj, pujiv(j)" -
By using this we obtain that

wEw] =

N 1 Zﬂt(v(l))ﬁlto(ut p)ultopu]toﬁjlo(ut p) ﬂt(U(]) )

- N#-l‘l 3= Bi(w())iyy 41 Ptjtg-+: B (0(S)*)

N 1 > Bi(o(i ))ﬁt(ulto )Bt(l’)ﬂt(“ﬂo )B:(v(j)*)
= Bt(E ).
Note that

wiE = ]\[—_'_T Uz; ﬁ,o(l)(l))ﬂzto(utoP)uztopuﬂov(J)

1 . * )
= NEl Svto(i + l)u(,-+1),0pujtov(1) ’

and so

Z p ]tov(.])

1 N e
wE —E = —]Z%)U(N + l)uE‘N+1),0pujtov(j) N n 1

N+1 3

Hence
2

N+1

[ow,E — E|| <

’
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and thus Ew,E is invertible in EAE and close to £. By Lemma 4.6 below there is a
B-cocycle u in 4 such that

u(t)(l - en—l) =1-e,
Adu(t) o B(E) =E,
llu(to) — 1| < 7(er),

where y(¢) — 0 as ¢ — 0 as in the lemma.
Let x(¢), ¢t € [0,%] be a path of unitaries in 4 such that

x(0) =1, x(f) = uy, »
x(t)(1—e1)=1—e,1,

(&)

_|S_t|’ st € [O,IO] .
fo

[lx(s) = x(@)]| <
Define a unitary W € 4 ® C(T) by

W(s)= u(tos)ﬁ,o(s_l)(x(tos)*) .
Then

(W*(E @ )W )(s) = W*()EW(s)
= Bros—1)(x(t05))u(to5)™ Eu(to5) Bros—1)(x(%05)™)

= Bios—1y(x(205))Brys(E)Bros—1y(x(t05)™)
and for 1 € og(Ex,E)

|W*(E @ D)W (xm @ DW*(E R D)W — AW*(E @ DHW||

= ax, (| Bios(E ) Bro(s—1)(x (208 ) Yom Brys—1)(x(208))Brys(E) — Asys(E)||

< 29(e1)+12n+ ¢, .
As in the proof of Theorem 2.1,
Wﬂtot ® (W™ )(s) = u(tot)

with error up to 7y(g ). This is true for ¢ € [0,1]; then it follows that
for all ¢+ € R\{0},

?(81)“"

1B, @ yyy (W) — u(t) ® 1| < .

Now we use an approximate homomorphism {¢,} of 4 © C(T) into 4 as defined in
Lemma 2.3 such that ¢, o f; ® 9 = Biyr © dm and we let w be a unitary obtained
from a suitable image of W in 4 so that the following conditions are satisfied: for
e, = wEw*,

")

i+ 1),
0

”ﬁt(en) - en” <

D, (enxmen) < l/n, m=1,...,n.
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By Lemma 4.7 we then find a f-cocycle u, such that
u(t)(l —ep—1)=1—e,_1,

Adu,(t) o Bi(en) = en ,
u(t)y~ 1.
This concludes the proof.

Lemma 4.2. Let {xi,...,x,} be a finite sequence of self-adjoint elements in A.
For any € >0 there is a non-zero projection p in A such that D,(px,p) <e,
m=1,...,n

Proof. Here we use the assumption that 4 has real rank zero (cf. [7]). If Di(x;) =
max g1(x;) — mina(x;) = ¢, let 4 € g1(x1), f a non-zero non-negative continuous
function on R such that supp f C (4 — ¢/2, 1 + ¢/2), and let p; be a non-zero projec-
tion in the hereditary C*-subalgebra generated by f(x;). Then D, (p1x;p1) <e. If
0p,(P1x2p1) = &, we repeat this procedure for pixap1 € p1Ap; in place of x; € 4
to obtain a non-zero subprojection p, of p; such that D,,(psx2 p2) <eé. Note that
Dy, (p2x1p2) < Dy, (p1x1p1) <é. We repeat this n — 2 more times to obtain a pro-
jection p = p,.

Lemma 4.3. Let B be an automorphism of A such that BF is outer for any
k=1,...,N, and let {x1,...,x,} be a finite sequence in A. For any non-zero
projection e in A and ¢ > 0 there exists a non-zero subprojection p of e such that
for k+1in{0,1,...,N} and m=1,...,n,

IB*(p)xmB ()| <.

Proof. This follows from [15]. By using the assumption that 4 has real rank
zero, we can take for p a projection instead of a positive element of norm
one.

Lemma 4.4. For each N € N and sufficiently small 6 > 0 there exists an &(5,N) >
0 such that lims_, &(0,N) = 0 and the following conditions are satisfied: For any
non-zero projection p in A with

IpBE(pI <6, k=12,...,N,

where B is an automorphism of A, there is an orthogonal family {qo,q1,-..,qn}
of projections in A and a unitary v € A such that

90 =D,
Adv o B(gk—1) = g,
I18°(p) — aell < 2(3,N) ,
lv—1|| <&(d,N)
for k=1,...,N.

Proof. This is standard. After construction qq,q;,...,qr—1, We construct g;, by func-
tional calculus, from

(I—go— = q-0)F(P)(1 —qo = — 1),
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which is close to f*(p). If qo,...,qy are obtained, the unitary v is obtained, by
polar decomposition, from

N N N
S aB(p) + (1 - qk> (1 - Zﬁ"(p)) -
k=0 k=0 k=0

Lemma 4.5. For any projection E in A there is an a-cocycle u in A such that
Adu(t)oa(E)=E .

Proof. Let E' be a projection in 4 such that |[E — E’|| < 1/2 and E’ is in the domain
of the generator ¢ of a. Let W be the unitary obtained by the polar decomposition of

EE'+(1-E)(1-E').
Then WE'W =E. Let h=[0(E'),E'l = &(E')E' — E'6(E’). Then [hE'] = 5(E")
and so (0 — 9 )(E’) = 0, where 8;(x) = [h,x]. Define an a-cocycle v by

d

7,70 = —v(®)a(h),  v(0)=1.
Then it follows that Adv(¢) o o,(E') = E’. Let u(t) = Wv(t)o,(W*). Then u is the
desired a-cocycle.

Lemma 4.6. For each small ¢ > 0 there exists a y(¢) > 0 such that lim,_,¢y(¢) =0
and the following conditions are satisfied: For each projection E in A and an a-
cocycle u in A with

llow,(E) — E|| <& for some ty >0,
Adu(t)oa(E)=F,
Eu(ty)E is connected to 1 in the invertible elements of EAE ,
there is an o-cocycle v in A such that
Adv(t)o(E)=E,
l[v(t0) = 1| <7(e) .

Proof. There exists a unitary W such that W ~ 1 and AdW o« (E) = E. Since
[u(to)W*E] = 0 in K{(EAE) and AdW oo, |EAE has the stability by 3.2, there
exists, for any ¢ > 0, a unitary V] in EAE such that

lu(to)W*E — Vi AdW o o (V)] <€ .
In the same way there is a unitary V; in (1 — E)A(1 — E) such that
lu(to)W*(1 — E) — VY AdW o a, (V)| <& .

Let
v(t) = (V1 + Vu(t)ou(Vy + Va)" .

Then v is an a-cocycle and

Adv(t)o(E)=F,
lo(z0) — 1] <& + 3w — 1] .
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Lemma 4.7. Let ¢ > 0 be sufficiently small and e a non-zero projection in A such
that ||o,(e) — e|| < &(|t| + 1). Then there exists an a-cocycle u such that

Adu(t)oa(e)=e,
u(t) — 1| < d(e), te[0,1],
where 8(¢) — 0 as ¢ — 0.

Proof. Let f be a non-negative C*° function on R with compact support such that

[ f(t)dt = 1. Let
Ci = [lt| f()dt, G = [|f'@®)dt .
Then for f,(t) = f(yt)y with y >0,
JrHwdt=1,  Jify(dt=Cfy,  [IfOldt =yCy.

Let &4 be a C*-function on R with compact support such that A(t) =0 on
(—00,1/2 — 1/2%?] and A(t) =1 on [1/2 + 1/2%2,1]. Let y > 0 be such that

Cive
1— &

gCify+1)=+e or y=
Let
x = [ fO)m(e)dr

Then |[x —e|| <&(Ci/y + 1) = /& |Ix|| £ 1, and so [|x*> — x| < 2||x — e <2V/e If
24/e < 1/8, then Sp(x) C [0,1/2 — 1/23?2]U[1/2 + 1/2%%,1] and p = h(x) is a pro-

jection such that
lp—xl = (1—4/1-8Ve)2 < 4ve.

Let 6 be the generator of a, and let

A _ L —ipt
h(p)= 27Ifh(t)e dt .
Since X ‘
h(x) = [ h(p)e"*dp ,
it follows that
C1CC3v/e
< < — £V
8P < G| S Cory = 22

where .
Cy = [|h(p)pldp .

(See [6,27] for details.) Since ||p —e|| <54/¢, there is a unitary w such that
wpw* = e and ||w — 1|| <30+/¢ (if 104/¢ < 1/2). By the proof of 4.5 there is an
a-cocycle v such that

lo() = 11| = 2[l6(p)llle] ,
Adov(t)oalp) = p.

Then u(t) = wo(t)o,(w*) is the desired a-cocycle.
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We present examples concerning the conclusion of Theorem 4.1; there is a
non-unital purely infinite simple C*-algebra B and a periodic one-parameter auto-
morphism group f of B with period 1 such that if e is a non-zero projection in B
then ||4(e)|| = 1, where A is the generator of 8, and that there is a unital purely
infinite simple C*-algebra and a one-parameter automorphism group o with a; inner
such that the conclusion of Theorem 4.1 does not hold. Note that for this periodic
B there are many invariant pure states [16].

Let O, be the Cuntz algebra generated by » isometries Si,...,S, [10] and let «
be a one-parameter automorphism group of O, such that

O(t(Si) = eipitSi .

If {p1,..., pn,— pi} generates R as a closed subsemigroup for any i = 1,...,n, then
the crossed product O, x, R is simple [14] and furthermore if p;’s are all positive
(or all negative), O, X, R has no non-zero projections [21]. (Since O, has a KMS
state for « in this case, o does not have the Rohlin property. We could not decide
whether « has the Rohlin property in the other cases.) Let 4 be the crossed product
of O, by a,,n € Z. Then A4 is a unital purely infinite simple C*-algebra [22]. We
extend the action a to an action & on 4 in a natural way; then &; is inner, i.e.,
&, = AdU, where U is the canonical unitary in 4 which implements o; on O,. Let
f be a continuous function on T with supp f contained in a small neighbourhood of
0, and let B be the hereditary C*-subalgebra of 4 generated by f(U). Then &;|B is
close to the identity with & = log(&;|B) well-defined as a *-derivation ([25], 8.7.7).
Let 4 be the generator of &|B and let § be the one-parameter automorphism group of
B generated by 41 = 4 — . Then, since 6 commutes with « it follows that §; = id.
Since 4 xg R =0, x, R® C(T) and B xR = B xgR is a continuous field over
T to the C*-algebra B x4 T, it follows that B xg T is isomorphic to a hereditary
C*-subalgebra of O, x R. Hence it also follows that the fixed point algebra B*
is isomorphic to a hereditary C*-subalgebra of O, x R. This implies that for any
non-zero projection e in the domain of the generator 4; = 4 — 9,

[di(e)f = 1.

Because if ||41(e)|| <1, then let A = [4;(e),e] and let 4, = A; — &), with dp(x) =
[A,x]. Then for ¢ > 0,

1 d
tdy _ tA) — stdy (l—S)tAId
Ile e Hbf—dse e s

< 2|Alie .

Since ||A|| <1 it follows that ||e42 —id|| <2. Then J; = log(e4?) can be defined
as a *-derivation. Then for 43 = A, — 0; = A, — 8, — 01, we obtain that A3(e) = e
and that

et =ehe0 = id .

Since B x5, T2 B x4 T with B3, = €43, B% is isomorphic to a hereditary C*-sub-
algebra of O, x R. Since B has the non-zero projection e, this is a contradiction.
We assert that the conclusion of Theorem 4.1 does not hold for (4, &) above.
Suppose that there exists a decreasing sequence {e, } of projections and an &-cocycle
u such that
Adu(t) o a(en) = €y ,
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and the limit of {e,} is a minimal projection in A**. Let ¢ be a pure state of 4 such
that ¢(e,) =1 for all n. There is a one-parameter unitary group U implementing
@ in the GNS representation 7y associated with ¢ such that u(z)U,& = &, where my
is omitted and & is the cyclic vector associated with ¢. For any ¢ >0 we can find
an a-cocycle v in B+ C1 and a unit vector # in the range of B such that

o) — 1| <&, t€[0,1],
u(t)Um = €'y

for some p € R (cf. [18]). By Kadison’s transitivity theorem there is an x € B4
such that x£ = n and ||x|| = 1. Let f be a continuous non-negative function on R
with integral 1 and let

xp = [e P f(t)o(2)d(x)u(t) dt .
Then x;& = n and ||x¢|| = 1. Thus we may suppose that
lle? v(t)a,(x)u(t)* —x|| <e, t€[0,1].

We can now see that {xe,x*} are approximately projections in B (i.e., there is a
sequence { p,} of projections in B such that ||xe,x* — p,|| — 0) (cf. [22]) and that

||Adv(¢) o &(xe,x™) — xe,x*|| <2¢ t€[0,1].

Hence || (xe,x*) — xe,x*|| <4e, ¢ € [0,1]. This implies that B contains an almost
d-invariant projection (cf. 4.6), which is a contradiction if ||6]| is sufficiently small.

Theorem 4.8. Let A be a unital separable purely infinite simple C*-algebra and
let o be a one-parameter automorphism group of A. If o has the Rohlin property
then the crossed product A x, R is a purely infinite simple C*-algebra.

Proof. The simplicity is shown in Proposition 2.4.
Let ey, e; be non-zero projections in 4 such that e;e; = 0 and [¢;] = [1]. By 4.5
we obtain an a-cocycle # in A such that

Adu(t) o ay(e;) = e; .

By replacing o« by Adu(¢) o a;, we assume that a;(e;) = e;. Let U be an isometry
in A such that UU* = e;. Let p >0 and define an a-cocycle u by

u(t) = e PU*ay(U).
Then for any ¢ > 0 there exists a unitary ¥ in 4 such that
lu(®) — Ve, (V)| <&, t€[0,1].

Thus for U; = UV, )
||OC;(U1) — e””Ulll <e t€][0,1].

In the same way we have an isometry U, such that U,U; = e, and
la(Ur) — e P'Us|| <e, te€[0,1].
Let Ay, hy be C°-functions on R such that
0=m=1 0=h=1,
supphi C [-5p/2, p/2], supph, C [-p/2,5p/2],
B4+h =1 on[-2p2p].
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Let, as in the proof of Lemma 6 in [22],
x=Uh(H)+ Uhy(H),

where H is the generator of the canonical unitary group 4, in the multiplier algebra
of A xR, and

hH) = [h(t)Adt ,

A _ 1 —itq
Then () = 3= [ e hig)dq

xx* = H(H)+h(H),
xx* = B(H — p)ey + h(H + pley + hiho(H — pYV1 Vs + hiho(H + p)VaVy .

If f is a continuous function on R such that f(¢r)=1 on [-3p/2,3p/2]
and supp(f) C [-2p,2p], then for y = f(x), it follows that x*xy =y and
|lyxx* —xx*|| is small depending on & If ¢>0 is sufficiently small then
lvf18(1x*1) — fi8(]x*|)|| < 1/4, where f; is a continuous function on R such that
fs(t)y=1 for t = s, f(¢) =0 for ¢t < s/2, and linear on [s/2,s]. Then it follows
that || f12(|x|)f1/s(x*) — fi/s(|x*|)|| < 1/4, i.e., x is an approximate scaling element.
By Lemma 4.2 of [1] 4 X R contains an infinite projection. The rest of the proof
goes exactly as the proof of Theorem 2 of [22] by using Theorems 4.1 and 2.1.
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