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Abstract: The three-dimensional Maxwell-Bloch system governs the multi-longi-
tudinal and transverse mode dynamics of two level wide aperture lasers in an optical
ring cavity. The system is hyperbolic in the propagation direction, and dispersive
in the transverse directions due to diffraction effects. A rich variety of optical pat-
terns and chaos are present in the dynamics. We show the global existence of
weak solutions in Lp (2 ^ p < oo) spaces of the Maxwell-Bloch system under
both absorbing and periodic boundary conditions. The weak solutions are unique
within the class of solutions provided by our regularization procedure and approach
a universal attractor which has only partial smoothing instead of the C°° smoothing
property found in early works for the (longitudinal) one-dimensional and (trans-
verse) two-dimensional cases. The idea of the proof makes essential use of both
the hyperbolicity and dispersivity of the system. In the case of periodic boundary
condition, our result depends on a conjectural Strichartz inequality.

1. Introduction

In this paper, we are concerned with the dynamics of the three dimensional
Maxwell-Bloch(MB) two level laser system:

-σS' + σ& , (1.1)

t + (1 + iΩ)0> = (r - JT)δ , (1.2)

where A± = the two dimensional Laplacian in (x9y) e R2 or T2 (Tn will denote the
unit ^-dimensional torus), (x,y) being the transverse dimensions; the real parameter
a measures the transverse diffraction; z £ Γ1, the longitudinal or propagational di-
mension that has been normalized to size one. The complex variables δ and & are
the electric and polarization fields, and Jί is proportional to the difference between
the atomic and the initial inversion; the positive parameters σ and b are respec-
tively the dissipation(decay) rates of the electric field and population inversion both
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scaled to the decay rate of the polarization; the real detuning parameter Ω is the
difference between the atomic and the cavity frequencies divided by the polarization
decay rate; r = r(x,y,z) is the external pumping function; and * denotes complex
conjugate. For physical background and derivation of (1.1-1.3), we refer to Newell
and Moloney [14].

The MB system reduces to the familiar complex Lorenz system if we ignore
all the spatial dependence, so naturally MB is a chaotic system. This simple ode
system is only realizable experimentally when imposed constraints such as curved
mirrors, apertures, etc., prevent the development of spatiotemporal structures. This
is achieved however at the expense of output power of the laser. Ideally one seeks
spatially and temporally coherent high power laser output by removing many of
these constraints and allowing the laser to be extended spatially in a direction trans-
verse to the laser (z) axis. Typically, there are two end mirrors located at z = 0
and z — 1. The laser turns on when enough energy is pumped externally, either
incoherently (electrical discharge in a gas, broadband fiashlamp for a solid rod,
electrical voltage for a semiconductor, etc.) or, coherently (external laser beam).
In the highly constrained geometry described by the complex Lorenz ode system
(single longitudinal and transverse mode) the chaotic dynamics becomes nontrivial
well above the first Hopf bifurcation (first laser threshold) and is difficult to realize
experimentally. Transverse constraints can be removed by making the end reflectors
flat and longitudinal constraints depend on the properties of the laser material itself.
When removed a multitude of spectacular spatial temporal patterns due to the lon-
gitudinal (βz) and the transverse {Δ±$) effects can emerge. Such lasers are of great
technological significance in pattern recognition, space-based telecommunications,
medical applications, etc., in circumstances where their spatiotemporal outputs can
be exploited or controlled. For recent studies in the physics literature on pattern dy-
namics of lasers based on (1.1-1.3), we refer to [1,8,11-15], and references therein.
The pumping function r = r(x,y,z) normally has fast spatial decay in (x, y), and its
contribution is restricted to a bounded region, outside of which all the field variables
can be regarded as zero. This motivates our absorbing boundary condition which
we take to be Lly(R2) x L2{TX) for convenience. The other is the commonly used
periodic (in (x9y,z)) boundary condition L2(T3). We will mainly consider these two
boundary conditions in this paper, and comment on their physical modifications (see
Lugiato et al. [13]) that can be handled with our method.

In the one-dimensional (in the longitudinal z) case, Constantin, Foias, and
Gibbon [6] showed that the MB system admits a unique global weak L2 solution
for any L2 periodic initial data; moreover, the weak solutions converge to a finite
dimensional C°° universal attractor as t —» +oo. The MB system in this case be-
comes hyperbolic with two characteristic speeds, which is an essential ingredient of
their work. In [6], the authors demonstrate the interesting time asymptotic (t —» oo)
smoothing property of the MB system, even though the system is hyperbolic, and
no second order dissipative effects are present. The dissipative terms are of zeroth
order, and do not regularize dynamics. The smoothing instead comes from the spe-
cial coupling of the polarization and the electric fields in MB.

Recently, Birnir and Xin [2] treated the two-dimensional transverse (in x and
y) case, and showed that the MB system admits unique global strong solutions in
HS(T2) (1 < s ^ 2) for periodic initial data; moreover, the strong solutions con-
verge to a finite dimensional C°°(Γ2) attractor as t —> oo. By strong we mean
the solutions are imbedded into L°°(T2), and become classical H2(T2) solutions
if the initial data are in H2(T2). Thanks to the coupling of $ and ^ , and the
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L2 preserving group Qxp{itA±}, the two dimensional transverse case is even better
than the one dimensional longitudinal case in that attracting sets exist for the MB
dynamics in Hs

9 1 < s ^ 2.
In the three-dimensional MB, we have an interaction of propagation in z and

diffraction in (x,y), corresponding to an interplay of hyperbolic and dispersive
aspects of the problem. Like in the case of the well-known three-D Navier-Stokes
equations ([5,10,16]), one is unable to show global existence of strong solutions to
three-D MB with Sobolev imbedding. Instead, weak solutions are more appropriate.
We first establish the existence of global smooth solutions to a regularized (MB)
system, then show that the smooth solutions are strongly continuous with respect
to the initial data for any finite time in the L2 sense independent of the regulariza-
tion. As in [6], this will allow us to construct the weak L2 solutions to MB when
we remove the regularization; moreover, the continuous dependence on the data
yields the uniqueness of weak solutions within the class of solutions obtained by
our regularization. We will see that a technical difficulty arises that prevents us from
proving uniqueness among all weak solutions as in the-one-D longitudinal or two-D
transverse cases. The key step in our proof of continuous dependence is to estimate
the nonlinear terms by Cauchy-Schwarz or Holder inequalities and control different
factors by combining the use of characteristic variable and the Strichartz inequality.
The Strichartz inequality for the whole space R2 is well-known, yet for a periodic
domain T2 it remains a conjecture, see Bourgain [3]. Our result in the periodic case
will depend on Bourgain's conjecture. In both type of boundary conditions, the weak
solutions and the attracting set are shown to stay in (β,£P,Jf) e L2 x (Lp ΠL2)2,
for a suitable p e [4, oo) coming from the Strichartz inequalities. The existence of
a universal attractor follows for the unique global MB dynamics above; however,
we find that it is only partially smoother than the initial data, i.e., it is smoother
in terms of the directional derivative dz — iaA± but not the complete derivatives.
This is very different from the one and two dimensional cases discussed in early
works. In fact, the same partial smoothing occurs if we drop the x or y dependence,
and the cause is the presence of both dz and iaA± terms. During our proof, we re-
cover the C°° smoothing property of the attractor in the one-dimensional (in z) and
two-dimensional transverse cases. As a byproduct, we extend the results in [2] from
strong to weak solutions.

To be consistent with notations in early works [6 and 2], we make the change
of variables δ=X9 & = Y9 Λ* = Z + r to rewrite (1.1-1.3) as

Xt +XZ - iaA±X = -σX + σY , (1.4)

γt = -(l+iΩ)Y-ZX , (1.5)

Zt = -bZ + Re(Z7*) - br(x9y9z), (1.6)

where r(x,y,z) is a smooth function with compact support. The initial condition for
(1.4-1.6) is: (X,Y9Z)\ί=o = (XQ,YQ,ZO). Our main results are

Theorem 1.1. Let (Xo, Yθ9Zo)(x9y9z) e (L2 x (I2 Γ)L4)2)(R2 x Γ1). Then there
exists a global solution:

S(t9 ) - (X(t9 ), Y(t9 ),Z(ί, . )), . = (x9y9z)
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of the system (1.4-1.6) such that

1) S : [0,+oo) -> L2 x (Z4 ΠL2)2(R2 x Γ 1) w continuous and bounded;
2) S satisfies the integral equations:

X(t9x9y9z)= U(t)Xo(x,y,z-t) + σfU(t-s)Y(s,x9y,z-t + s)ds, (1.7)
o

Y(s, ) ώ - /Z(*, )X(s, )ds, (1.8)
0 0

Z(ί, ) - Zo( ) - 6/Z(5, )ds + Re /X7*(s, )<fa - r( )& , (1.9)
0 0

where U(t) = Qxp{-iatA± - σt}, (1.7) λo/ώ fri L 2(# 2 x Γ 1) end (1.8-1.9) λo/rfs
in (Lloc(R2 x T'))2;

3) ίAe solution S(t, •) is unique within the class of solutions obtained from
our regularization (see Lemma 2.1) and the resulting unique MB dynamics admits
a universal attractor sd in (L2 x (L2 Γ)L4)2)(R2 x Γ 1) such that if (X9Y,Z) G si
then (dz - iaA±)X e L2(R2 x Γ1) and (Y,Z) e (L°°)2{R2 x Γ1);

4) ifSjip, )J=^ 5(0, ) in L\R2 x Γ1), and ||(7y(0, ),Zy(0, ) ) | b g C as
7 -> oo, for some finite constant C < oo, ί/ze« /or any later time understood in
the sense of 3):

in (L2)\R2 x Γ 1

\\(Y(t,-),Z(t,.))\\L4 g C .

We will present similar results for the periodic boundary conditions in the coming
sections. Let us remark on the different features of the MB solutions for different
dimensions. The two-D transverse (in (x, y)) case is the nicest in that it allows
global classical solutions and attracting sets in H2. The one-D longitudinal (in z)
case also admits global classical Hι solutions, however, the attracting set is not in
Hι. Similarly the two-D longitudinal and transverse case (in (x,z) or (y,z)) admits
global classical solutions in H2 but no attracting set even in Hx. The three-D MB is
the worst case in that there seem to be no global classical solutions and there is only
partial smoothing of the attractor. The three-D MB bears quite some resemblance
to the three-D Navier—Stokes equations in terms of regularity properties of solutions
(see [4]) and also in terms of how the usual method of proving classical solutions
via the Sobolev imbedding fails. Fortunately, we have at least uniqueness of weak
solutions within our regularization.

The rest of the paper is organized as follows. In Sect. 2, we give the proof of
Theorem 1.1. In Sect. 3, we prove the analogue of Theorem 1.1 for the periodic
boundary conditions. In Sect. 4, we analyze the partial smoothing property of the
attractor si, and comment on the inhomogeneous broadening effect and a nonpe-
riodic boundary condition due to the imperfect reflection of end mirrors and finite
cavity size.

2. Three-Dimensional MB on Absorbing Domains

In this section, we derive a-priori estimates for solution (X,Y9Z) to the system
(1.4-1.6), and use them to justify the existence and uniqueness of weak solutions
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as limits of smooth solutions to a regularized (MB) system. We will be brief with
those estimates that follow directly from [6].

Multiplying (1.5) by 7* , (1.6) by Z, adding and taking the real part, we have

\Z(t, ) | 2 ), = -\Y(t, ) | 2 - b\Z(t, ) | 2 - brZ , (2.1)

which yields upon integrating in t that

\Y(t, ) | 2 + |Z(ί, . ) | 2 S (|ϊb( ) | 2 + |2b( )i2 " br2/2β)e-2^ + Z>r2/2j3 , (2.2)

where /? = min(l, | ) , for any t ^ 0, and any (x, >>,z). Integrating (2.2) over space
gives

HJΊIi + imii ύ {\\Yo\\l + \\Zo\\1

2-b\\r\\ll2β)e-2fs' + b\\r\\\l2β . (2.3)

It follows from (1.4) that

t, •) = eiatA±-σtX0(x,y,z - t) + σ}e>«'->V±-<*t-')γ(s,x,y,z -t + s)ds.
o

(2.4)
Taking the L2 norm over space and using e'atA± being an L2 isometry, we have

\\X\\2 ί e-°<\\X0\\2 + σfe-«->ψMs)ds , (2.5)
0

which gives as we plug in (2.3):

\\XUt) S e-σt\\Xo\\2 + (^ψ-J + ̂ (0||(7o,Zo)||2 , (2.6)

where e(t) = (e~βt - e~σt)/(β - σ), if β + σ, and e(t) = te~σ\ if β = σ. Combining
(2.3) and (2.6), we have the L2 bounds:

g 2

(2.7)
Squaring (2.2) and integrating over space give the L4 bounds:

| | ( 7 , Z ) | | 4 ( 0 ύ 11(70,20)114^ + C(bJ)\\r\\4 . (2.8)

Now as in [6], we proceed to estimate the difference of any two solutions (X\, Y\,Z\)
and (X2572,Z2) to system (1.4—1.6); and introduce their differences and averages:

ξ=Xι-X2, η=h-Y2, ζ = A-Z2, (2.9)

X=\(Xι+X2), Ϋ=\{Yλ + Y2), Z=\(ZX+Z2). (2.10)

The variables (ξ, η, ζ) solve the following linear system with coefficients X,Y,Z:

ξ, + ξz-iaA_Lξ=-σξ + ση, (2.11)

ηt = -(l+iΩ)η-Xζ-Zξ, (2.12)

ζ, = -bζ + Re(Xη*) + Re(ξΫ*). (2.13)
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Inequality (2.2) implies that

(|f|2 + | Z | 2 ) α . ) ^ ^ 2 ( ), V ί ^ O , (2.14)

where

h{ f = br\ )/j8 + Σ ( l ^ ( )|2 + iZbX )|2)
/=1,2

We make the change of variables: z'' = z - t, (t,x,y) = (*,*, >>)• Then (2.11-2.13)
become

ξt-iaΔ±ξ = -σξ + ση9 (2.15)

tit ~ ηz> = - ( 1 + iΩ)η-Xζ - Zξ , (2.16)

ί* - Cz' = -bζ + R e ( l ^ * ) + Re(ξf * ) . (2.17)

In the new variables (t,x,y9z')9 (2.14) reads:

|f|2 + |Z | 2 ( ί ,x, Λ z 7 ) S h2(x,y,z' + t), (2.18)

for any t > 0, and (x,^,^) e R2 x Tι. It follows from (2.15) that

,z') + σ Je^^^'^-^s^y^ds . (2.19)
o

Multiplying (2.16) by η*9 (2.17) by ζ, adding and taking the real part shows:

Klil2 + I£I2)< - W + KI2V ^ ~\«\2 - W2 +1*1(1^/1 + l f ί l ) ' (2 2°)
or

ί,x,>',z/), (2.21)

which gives upon integrating in t:

(\η\2 + \ζ\2){t,x,y,Z') g e-Mijol2 + |(o|2) + / e - ^ '
0

(2.22)

The proper handling of the last integral is the key to achieving the estimates of
(ξ, η, 0 ( 0 in terms of their initial data. In [6], the authors exploit the two distinct
characteristic speeds to separate h2 and \ξ\2 so as to bound the Lx norm (in z) of
the last integral in terms of the product of the L2 norm square of ξ and h. In fact,
in their case, the original variables (t,z) are better. However, in the presence of
dispersion, we need to make use of both hyperbolicity and dispersivity, for which
the new variables (t,x,y,zf) are more convenient.
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Integrating (2.22) over (x, y) G R2 to get with Cauchy-Schwarz inequality:

e-^η0χ0)\\lHR2) + J J e-^'-s\\η\2 + \ζ\2)z,

0 &

/ , \l/2

+(1 +b~ι) [ffe-K'-s)h4(x,y,z'+s)
\0R2 )

[ -^\ξ\\t,x,y,z')\ . (2.23)

The first integral can be estimated by integrating t over [j,j: + 1], j = 0,1,..., [ί] + 1,
and summing up. Thanks to the hyperbolicity in the system, we pull out ||Λ||4 as
below:

/ / e-^-sΨ(x, y,zf+s) = ff e-^-s^h\x, y,zf + s)
OR2 R2 0

g / Σ J}\\x,y9z
f+s)e-Kt-s)ds+[yih\x9y9z'+s)ds)

R2 \j=Q,[t] j [t] J

Σ fh4(x,y,z'+s)e-^-s-jyS+ f h\x,y,s)ds
y=o,W o [t]

i ( Σ }
R2 \y=o,Mo

= U Σ e-β(t~J) + 1 J ll^llVx^) ^ C(β)\\h\\4

4 , (2.24)

or

(ffe-K'-°Ψ(x,y,Z'+s))2 ϊ C{β)\\h\\\. (2.25)

In view of (2.19), the second integral is bounded from above as:

fdτfe-^\ξ\\τ,x,y,z') ί C Jdτj \eίaτA--<"ξo(x,y,z')\4

O R 2 O R 2

t 4

J ase η{s,x,y,z )+σ4CjdτJ
0 R2 0

(2.26)
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where C is a universal constant. By changing variables in the PDE corresponding
to the operator e

iaτΔ^~σ\ we infer from (2.26):

fdτfe-β{t-s)\ξ\\τ,x,y,zf) S CfdτJ \eiaτA±ξ0(x,y,z')\4

O R 2 O R 2

+σ4Cj dτj } ds eiφ~s)Δ± η(s,x, y,z')eσs

o #2 o

(2.27)

Let us recall the Strichartz inequalities for the free Schrόdinger operator (see
IV

\\eiatΔ^φ(x,y)\\LP+ur ύ C\\φ\\L2, Vί ^ 0 , (2.28)

Kato [9]):

and

If v(s,x, y)ds ^ Cf | | φ ) | \ o ds, V t ^ 0 , (2.29)

where C is a universal constant; and r = ^{^-i) > r ^ (^^oo).

Let us choose p = 3,r = 4 in (2.28) and (2.29). So for any fixed z\ we have

fdτf\eiaτΔHo(x,y,z')\4^
Λ rθ

and

JdτJ

Thus (2.27), (2.30), and (2.31) imply:

τ,x,y,z>) ί C\\ξo(x,y,z')\\4

L2m + C(σ)
0 R2

f\\η(s)\\L2meσsds) , (2.32)

(2-30)

ϊ C (j \\η(s)\ \LHmeσsdsY . (2.31)
\o /

or

C(σ)e2σίί/ 11,(5)| \hmds . (2.33)
0
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Combining (2.23), (2.25) and (2.33), we get

-b-ιyc(β)\\h\\l*

+ C(σ)te2σtf\\η(s)\\2

LHmds) . (2.34)
0 /

Integrating (2.34) over z' e Γ1, we obtain

b-ι)C(σ,β)\\h\\2

4te
2σt J \\(η,ζ)\\2

2ds , (2.35)
o

which yields by Gronwall inequality:

\\2

L2 + (l+b-ι)C(β)\\h\\2

4\\ξo\\2

2)

l +b-i)C(σ,β)\\h\\2

4} , (2.36)

for all t ^ 0, where

||/*||4 ύ C(b9β)\\r\U K Σ IK^Zo.Olk . (2.37)
z=l,2

Clearly, estimate (2.36) is also valid in the original variables (t,x,y,z). Plugging
(2.36) into (2.19) gives the desired bound on Ĥ H2* in terms of the L2 norm of the
initial data (£o,*7o?Co)- Let us now study solutions to a regularized (MB) system in

Lemma 2.1. Consider the following regularized MB system:

Xt+Xz- iaA±X = -σX + σY • φε, (2.38)

γt = - ( l + iQ)γ - ZX , (2.39)

Zt = -bZ + Re(Z7*) - br(x, y,z), (2.40)

with φε the usual smooth mollifier converging to the delta-function as ε —> 0. Then
for any initial data (Xo

ε, 7o

ε,Zo

ε) = (Xo * φB, Yo • φ ε,Z 0 • φB) with (Xo, Yo,Zo) G (Z 2) 3,
iA^re ^ w ί «Λî i/e solutions (X\ Y\Z&) e C(R;Hk),for any k ^ 2, to (2.38-2.40).
Moreover, estimates (2.2), (2.7), (2.8), and (2.36) AoW independent of ε e (0,1].

Proof Let us write down the integral equations:

X(t9 ) = U(t)XZ + σjf U(t -s)(Y*φε)ds,
o

F(ί, . ) = y - ( 1 + iΩ)JY(s, ) ώ - JZ(s, • )X(s, )ds,

Z(t, ) = Z^-bJ Z(s, •) ds + Re /JT(s, )Γ*(i, ) rfs - br{ )t, (2.41)
o o
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where U(t)X$ = eiatA±~σ%(x,y,z -t)9 and =(x,y,z). It is straightforward to
verify that the operator T defined by the right-hand side of system (2.41) is a con-
traction mapping in C([0,ί*);(#*) 3 ), k ^ 2, if /* =t*(\\(Xjj,Y*9Zξ)\\k) is small
enough. Hence we have local in time solutions to (2.41). Such solutions also satisfy
the differential system (2.38-2.40) in the L2 sense, and (2.39-2.40) holds a.e. in
(x,y,z) for all t ^ 0. Our a-priori estimates (2.2), (2.7), (2.8), and (2.36) apply
to (XB, Y\Zε) independent of ε £ (0,1]. Based on these L2 bounds, we differentiate
(2.41) in (x9y9z) and derive bounds on ||<3α(X,7,Z)||2, |α| = 1,2,...,*, inductively
by the Gronwall inequality. Thanks to the regularization in (2.38), any spatial deriva-
tive of X can be bounded by | | F | | 2 with an ε dependent bound. This and Sobolev
imbedding allow us to overcome the nonlinearity ZX and XY*. We obtain then
global strong solutions to (2.38-2.40). The proof is complete.

We are ready for:

Proof of Theorem 1.1. By Lemma 2.1, and in particular the estimate (2.36), we
see that for each t, (Xε

9Y\Zε) is a Cauchy sequence in {L2f(R2 x Γ 1). As ε -->
0, the strong (Z 2) 3 limit of ((X\Y\Zε) denoted by (X9Y9Z) satisfies the integral
equations (1.7-1.9) in L2 x (Lι

{oc)
2(R2 x Γ 1). Strong continuity of S(t) follows from

weak continuity and continuity of the norm. The weak solutions obtained from the
regularization satisfy inequality (2.36), hence depend continuously on the data and
are unique within our regularization. By adapting the a-priori estimates above, we
easily see that the weak solutions are independent of the mollifier function φ and
the way ε tends to zero. Moreover, estimates (2.7-2.8) imply an attracting ball for
the MB dynamics in L2 x (L2 ΠL4)2. We complete the proof except for the attractor
and its partial smoothness which we defer to Sect. 4.

Remark 2.1. We may follow the a-priori estimates (2.1-2.36) to study uniqueness
of any weak solution. We infer from the second and third integral equations for
(Y,Z) components of weak solutions that (2.1) holds a.e. in (x,y,z) for all t which
then leads to (2.2) and (2.14) (a.e. in (x,y,z)). Notice that so far, we do not need
the equation for ξ. However, (2.22) should be in a different form:

M - < υ ( M 2 + |C|2) ^ {\+b-χ)jtf{x9y9z!+s)\ξ\\s9x9y9zr)ds9 (2.42)
0 0

where dt — dz is understood as a directional derivative and not a difference of two
partial derivatives, since we do not know they exist separately. In deriving (2.42),
we also drop the term — \η\2 — b\ζ\2, as it turns out that omitting this term will not
change the uniqueness proof, although it does affect the bounds. Now proceeding
as before with the right-hand side in (2.42) using only the integral form of the ξ
equation, we have

2 2\ζ\2)^C(t,b,σ,β)f\\(η,ζ)\\2

2ds. (2.43)
0 x,y,zf 0

The left-hand side of (2.43) is just

0 x,y,z



Global Weak Solutions and Attractors of 3D Maxwell-Bloch Systems 521

by change of variable to (t,x,y,z). However, we do not know if we can interchange
the integration over (x,y,z) and j t since the time derivative of \η\2 + \ζ\2 exists only
a.e. in (x,y,z). If this could be done for all t, then it would not be hard to show
that the time derivative of \\(η,ζ)\\j is in U and we would integrate out \\{r\,0112
and prove uniqueness by the Gronwall inequality. In the transverse two-D case, z
dependence drops out, and we get out |^|2 + |£| 2 by integrating (2.21) in t for a.e.
(x,y), since \η\2 + \ζ\2 is Lipschitz hence absolutely continuous in t for a.e. (x,y).
So (2.22) is valid without the first integral on the right-hand side. Uniqueness then
follows from the Gronwall inequality.

3. Three-Dimensional MB on Periodic Domains

In this section, we extend our results in Sect. 2 to the MB system (1.4-1.6) on
Γ3, including the special case when either x or y is absent (which is the 2D MB
with both longitudinal propagation and transverse diffraction). All the estimates up
to (2.27) remain the same; however, the Strichartz inequalities are no longer valid
for periodic domains when p = 3,r = 4. Even if they are valid for other powers of
p, r, they hold only locally in time. We refer to the recent work of J. Bourgain [3]
for a detailed account of the modified Strichartz inequalities. Some of the Bourgain
estimates related to our analysis are:

1) If /(x) = Σne^aneίnx Ξ L\TX\ then

J(nx+n2t)

L\T2)

or

< 2 72 I

(3.1)

Similar estimates are conjectured to be true with L4 replaced by Lp, p < 6; while
it is known ([3]) if p ^ 6, such inequalities break down.

2) If f(x,y) e L2(T2), then it is conjectured that

2, if p < 4 . (3.2)

Estimates like (3.2) break down if p ^ 4.
To apply (3.1-3.2), we write them as in [3]:

2, P < ^ Γ ' (3-3)

where d is the space plus time dimension; d = 2 if x e Γ1, and d — 3 if x G T2. We
keep in mind that p = 4, d = 2 is proven and p < 4, d = 3 is still a conjecture.

Let us convert (3.3) into a convenient form for our application. First (3.3) reads:

Jdt J dx\i*Δ±f\rZcj>\\f\\ξ,
0 Td~ι
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so for T > 2π and n = [T/2π] + 1:

T Inn

Jdt J dx\eitΔ-f\P^ Jdt J dx\eitΔ-f\P
0 Td~ι 0 Td~ι

2πj

J dt J dx\ei{t~2πU~ι))A±ei2πU~l)A±f\p

7=0,n 2n(j-\) Td~ι

= Σ Jdt J dx\eitΔ'
j—0,n 0 γd-\

(applying (3.3))

= Yc? »P\\f\\ξ
\ 2,

(3.4)

It follows that for any T > 0:

/A
0 7

(3.5)

Then (3.5) and the Minkowski inequality imply the analogue of (2.29) as below:

v(s,x)
LP(Td-'x[0,t]) 0

= Jdτ J dx

Zfdτ

/ dx

jdsi J dx\e^-s)A^v(s,x)\'
o V '

fdsl J dx\ei(τ-s)Δ±υ(s,x)\p

0 XT'*-1

which implies

LP(Td-<x[0,t])

+ 4π) 2 '
- ^ 2 — C P J ds\\v(s)\\2,

(3.6)

(3.7)

Λ 22 Λ2

In case of the two-dimensional MB in (x,z) or (y,z)9 A± = j ^ or π , we
are in the d = 2 regime, and so we take p = 4. Employing (3.5) and (3.7), we
obtain as before (2.36), except that the coefficients C(β) and C(σ) now depend on
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time t continuously due to the time dependent bounds in (3.5) and (3.7). All the
rest remains the same and we arrive at a similar global existence and uniqueness
theorem for weak solutions with the space I? x (L2 ΠL4)2(R2 x Γ 1 ) replaced by
L2 x (L4)2(T2), and L\oc by Lι in Theorem 1.1.

In case of the three-dimensional MB on Γ3, let us assume that (3.3) holds for
some /?* £ (2,4). Then we go back to (2.22) and use the Holder inequality to
derive:

\\(η,ζ)\\2

LHτ2)(t,Z') 5Ξ

Y (3.8)
J

The first integral is bounded as before:

) P * * 2 (3.9)
0

The second integral is bounded with (3.5) and (3.7) as

J
0 T2

^\ξ\P*(t,x,y,z') S Cγ(t)\\ξ0(x,y,z')\\l* +C2(t) (f \\η(s)\\LKn)

\0

(3.10)
which yields

•W (t,x,y,z') ^ CKOllίoίx^^JHV)
τ2 I

Substituting (3.9) and (3.11) into (3.8) and integrating in z' gives

Ufa, Oil W o =

+C2(t)f\\η(s)\\2

L2{τ2)ds. (3.11)
o

p*-2

ds, (3.12)

J£!_
p*-2 0

from which we conclude with Gronwall inequality. Summarizing, we have:

Theorem 3.1. Let (Xθ9 YU9Zo)(x9y9z) eL2x (L<**)2(T3X q* - j ^ 9 where

p* E (2,4) is the exponent for which the conjectural Strichartz inequality (3.3)
is valid. Then there exists a global solution:

S(t, ) = (*•(/, ), Y(t, ),Z(t, • ) ) , - = (x, y,z)
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of the system (1.4-1.6) such that:

1) S : [0,+oo) -> L2 x ( l / ) 2 ( Γ 3 ) is continuous and bounded.
2) 5 satisfies the integral equations (1.7-1.9), (1.7) holds in L2(T3) and (1.8-

1.9) hold in (Lι(T3))2.
3) S is unique within the class of solutions constructed by our regular ization

and estimate (2.2) holds a.e. in (x,y,z), any t ^ 0; so does (2.7) for t ^ 0; in
particular, there exists an absorbing ball of the MB dynamics in L2 x (Lq )2(T3).

4) // Sj(O, ) j ^ ? S(0, ) in L2(T3), and | |(7/0, ),Z/0, ) ) | | i , * ( Γ , ) £ C as
y —> oo, /or /ίKί'ίe constant C < oo, ίΛen /or any /aίer ίi'me understood in the sense
o/3):

(I 2 ) 3 (Γ 3 )

5) If (XO,YO,ZQ) is independent of x or y, then the above conclusions 1)—4)

are true with q* = 4 on T2 without the conjectural assumption on /?*(= 4).

4. Partial Smoothing of the Universal Attractor

In this section, we discuss the regularity of universal attractor s# of the MB system.
Theorems 1.1 and 3.1 show that S(t) is a group of continuous maps in L2 x (Lp Π
L2)2, with p = 4 or p = q* > 4. This and the existence of the absorbing set

Bpo = {(X,Y,Z) : \\(X,Y,Z)\\L2X(LPnLi}2 £ po} ,

where po depends only on the coefficients of MB, ensures the existence of the
universal attractor stf defined as the intersection of all S(t)BPo,t > 0. The s$ is
the largest invariant set of the MB dynamics in I? x (Lp Π l 2 ) 2 , and all trajectories
S(t)(Xo,Yo,Zo) eventually approach si. We refer to [6] for the basic properties of
the universal attractor si.

We will treat the periodic case below. Easy adaptation with Fourier transform
gives the same result for the absorbing domain R2 x Tx. As a byproduct, we will
show that si is C°° for the two-dimensional transverse (in (x,y)) MB system on
T2, thereby extending the result in [2] to smoothing of si on rough data. We state

Theorem 4.1. The universal attractor si for the three dimensional MB dynamics
on T3 or R2 x Tι is included in a sub space ofI? x (Lp ΠL2)2 defined as

& = {(X, Y9Z) eL2x (LpΠL2)2\ - iaA±X +XZ e L2,(Y,Z) £ (L°°)2} .

Proof We first show that for each V = (X,Y,Z) £ si, the last two components
(Y,Z) £ (L°°(T3))2. This part is the same as in [6] except that we can not say
anything about the maximum norm of X due to the presence of the dispersion term
iaA±. Since V £ si, then for any t > 0, there exists Vo = (Xo,Yo,Zo) £ BPo (Vo is
time dependent) such that V = S(t)Vo. We have from (2.2):

\(Y,Z)(x,y,z)\2 ^ M2+e-2β'(\Y0\
2 + \Z0\

2)(x,y,z),



Global Weak Solutions and Attractors of 3D Maxwell-Bloch Systems

where M depends only on the coefficients of MB. Let

Σ = {(x,y,z) € T3 : \(Y,Z)\(x,y,z) ^ 2M} ,

then on Σ
3M2 ^e-2βt(\

which upon intergating over Σ gives
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Sending t -> +00 yields |Σ| = 0, and (Y,Z) G (L°°)2.
Next we show that if V = (X,Y,Z) G si, then its first component X satisfies

-iaA±X+Xz G L2(T3). Write V = S(t)V0 for some Vo G Bpo; so V(s) = S(s)F0 =
S(s - t)V, Vs G [0,t], lies on the attractor si. By (2.4):

X(x,,y,z) = eιat -L~σtX()(x,y,z — t)

t

i~(7j e 1 {s,x, y,z — t -\- s)as , \^ * )
0

where 7(5, ) is the second component of S(s)Vo = S(s — t)V, which implies that

Y(s, ) = Vo - (1 + /Ω)/ 7(τ, )dτ - JZ(τ, )X(τ, )rfτ , (4.2)
0 0

where Z(τ, ) is in L°°(T3) by what we just showed above. Hence,

1 1 % OII2 ύ (1 + Ω 2 ) ^ p 0 + ||2Ί|ooPo Ξ M I < +00, Vs ^ 0, (4.3)

where Mi depends only on the attractor si. Now we write Y(s, ), ^(s, ) into a
Fourier series:

(4.4)

where k = (^1,^2,^3) G (2πJ^)3, and prime denotes J^. We also denote
(*i,λ2). It follows that

k 0

_ y> ik - (x,y,z)

/£ (χ,y,z)

—ia(t—s)\k±_ \2-σ{t-s)+ih{-t+s)

ίa\k±\2 + σ + i

t e-ia(t-s)\k± \2-σ(t-s)+ik2(-t+s)

ds (4.5)
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We deduce from (4.5) with the Minkowski inequality that

\\(-iaA± + dzy\\l ^ 2 V 2

k Vo

Σi/*ωιv" ^
, o V k

'k(φ-M'-s)J

g 8 ^ + 2 ^ - = Λ f | , (4.6)

where M2 depend only on the coefficients of MB. Hence,

\\(-iaA± + dz)(X(x) - eiatA±-σtX0(x,y,z - t))\\2 ^ M2 .

Let φ e C°°(Γ3), then

/ ( - i a A ± + d z ) X ( x ) φ * ( j c ) Λ c = / ( - w J ± + dz)(X(x) - e i a t A ± *

+ / (-ϊβJx + a z )(^^" σ %)φ* . (4.7)
T3

Here all derivatives are in the weak sense. Now by (4.6) and (4.7):

T3

^ M2\\φ\\ - J (eiatA--σ%)(-iaA± + dz)φ*dx
T3

^ M\\φ\\2 + e-σtp0\\(-iaA± + dz)φ\\2 . (4.8)

Letting t —> +oo in (4.8) shows

or (-ΪΛJJ_ + 3Z)Z G L2(T3). We complete the proof.

Remark 4.1. Because of the multiplier (σ + ifa + ia\k±\2)~ι, we do not have
smoothing in all partial derivatives ((fa + a\k±\2)2 does not bound c\k\2 from
above). We only have full smoothing in all derivatives if either a = 0 which is
the one-D in z case or fa is absent which is the two-D in (x,y) case.

Remark 4.2. Since (—iaA± + dz) is only a directional derivative, we are unable
to show that Y or Z has smoothing in terms of (—iaA± + <?z). In fact, applying
(—iaA± + dz) formally to the Y and Z equation will generate V ± (^ζ7,Z) terms,
on which we have no control in L2.
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Remark 4.3. In case of the two-D transverse (in(x,y)) MB, we go to the (7,Z)
equations to show (Y,Z)eHι and iterate the above procedure to achieve C°°
smoothness of attractor sύ as in [6]. Moreover, the smooth attractor on the periodic
domain has finite Hausdorff and fractal dimensions. The details of these calculations
are carried out in [2].

Finally, we comment on some physical modifications on MB. The first is that due
to imperfect mirror reflection and finite size cavity, the periodic boundary condition
in the z direction should be replaced by

where R G (0,1) is the reflection coefficient of the mirrors, and At > 0 is the delay
time. However, one can make a linear change of variable in z and t (see [13]) so
that the transformed MB is periodic z and differs only in that the Re(XF*) term
in the Z equation is replaced by ea zRe(-AT*) for some constant a' > 0. The other
is the inhomogeneous broadening effect of laser beams([13]), which amounts to
replacing the Y term in the X equation by

S<p{δ)Y{δ9t9x9y9z)dδ9

and (Ύ,Z) depending on the parameter δ. If φ is a delta function in δ, we are back
to (1.4)-(1.6). Incorporating both effects, we have the modified MB system:

Xt+Xz-iaA±X = -σX + σJφ(δ)Y(δ9t9x9y9z)dδ9 (4.9)
Rι

Yt(δ9t,x,y,z) = -(l+iΩ)Y-ZX9 (4.10)

Zt{δ9t9x9y9z) = -bZ + e?zlRεiXY*)-br(x9y9z). (4.11)

It is not hard to verify that if φ e Lι(Rι) or L2(Rι) our analysis on weak solutions
carries over to system (4.9-4.11). We omit further details.
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