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Abstract: A class of exact Wightman functionals satisfying all fundamental phys-
ical requirements in an arbitrary number of space-time dimensions, which bear
the appearance of describing interacting fields, was recently constructed by C.
Read [1]. It is shown here, that the construction can be considerably generalized,
and that even the enlarged class belongs to the Borchers class of a system of
generalized free fields.

1. Introduction

Ever since Wightman’s formulation of the axioms [2] to be satisfied by the collec-
tion of n-point functions of local quantum fields, there has been a discomforting
lack of models. Apart from models with polynomial interaction in two and three
space-time dimensions, there are essentially only constructions based upon free
fields and generalized free fields [3] available. These constructions involve Wick
polynomials of derivatives of a given field, as well as so-called p- and s-products
[4] (i.e., pointwise products resp. sums of independent fields in different Hilbert
spaces). Although one can easily produce non-vanishing truncated Wightman
functionals, such models do not describe interacting particles.

We recall the well-known list of axioms for a hermitian scalar field, referring
to the standard literature [2] for the precise formulation: Positivity and Hermitic-
ity permit to reconstruct a Hilbert space containing the cyclic vacuum vector,
and an (in general unbounded) hermitian field ¢(f) on this Hilbert space whose
vacuum correlation functions are given by the Wightman functional. Poincaré
Invariance of the Wightman functional ensures the invariance of the vacuum
vector along with the Poincaré covariance of the reconstructed field. The Spec-
trum Condition and Cluster Property ensure the positivity of the energy spectrum
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and the uniqueness of the vacuum. Finally, Locality expresses the commutativity
of field operators ¢(f) smeared in causally disconnected regions of space-time.

In a recent paper [1], a new class of solutions was presented which satisfy all
Wightman axioms in any number d + 1 of space-time dimensions. The models
are based on Feynman-like rules without at the same time being perturbative;
instead, every n-point function is obtained as a sum over finitely many graphs.
Some of the free input parameters of the models play a similar role as coupling
constants in ordinary Feynman rules (although it will become clear in the course
of this communication that they rather determine the structure of the field as a
Wick polynomial), while the remaining parameters serve as appropriate cutoffs
to ensure convergence of all sums and integrals involved. Unlike regulators in
perturbative approaches, these cutoffs need not be removed in the end. They
comprise a smooth space-time cutoff function, a mass distribution in a finite
mass interval, and a numerical limitation of the number of vertices.

In the present contribution, we intend to shed new light onto these models. It
is found that the class of models [1] can be considerably extended by a general-
ization which essentially makes the “interaction polynomial” obsolete. We shall
then reduce the entire construction to Wick products of generalized free fields,
and discuss aspects of the sharp mass limit of the extended class of models in
comparison with the original class.

2. A Quick Review of the Original Construction

The definition given in ref. [1] of the n-point functions

%‘(flaafn)z <Qa¢(fl)¢(fn)9> (1)

is the following (in somewhat schematic notation, to be presently specified).

Vi)=Y — (Hdgdw(pw(gp)lz)x

banded Giner! €€ Einer
graphs
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xH[mPi[p])- G / ( I1 4 9(q°)|<p(q)|2> H(r!arév(q,gp))],
i=1 ¢,dom* eEE,-‘dom veV;

(@)
where the sum extends over a class of “banded graphs.” A banded graph is a
(possibly disconnected) graph which contains one connected subgraph (‘“band
graph” or simply “band”) for every field entry ¢(f;) in Eq. (1) such that the sets
Vi of vertices of the n bands are disjoint and exhaust all vertices of the full
graph; every band has a distinguished “external” vertex of degree 1. The internal
vertices are of degree 2 < r < R for some finite number R. In each band the
number s; of vertices is limited by some finite number S, and the vertices are
labelled 1,...s;. Inequivalent labellings of the vertices of the same abstract graph
are considered as different banded graphs to be summed over. The banded graph
has no external lines and no edges connecting a vertex to itself.
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Edges which connect vertices of the same band will be called “domestic;”
they are oriented from the vertex with lower ordinal number to the vertex with
higher ordinal number; if a domestic edge connects to the external vertex of the
band, then it may carry both orientations. (This restriction on the orientations of
domestic edges in [1] seems not really to be necessary. We view it as another
model input parameter.) Edges which connect vertices of different bands will be
called “interband;” they are oriented from the band with lower ordinal number
to the band with higher ordinal number. The integration rules are the following.

(i) Associated with every domestic edge e € E4o, is 2 momentum vari-
able ¢ € R%!, to be integrated over Minkowski space R%! with the mea-
sure dg 0(q°)|¢(q)|>. Here 6 is the Heaviside step function for the energy, and
lo(k)|? = p(k?) - |O(k)[* consists of a smooth mass distribution p with support in
a mass interval m§ < k? < m?, where 0 < my < my, and the square modulus of
the Fourier transform of a real space-time cutoff function @(x) in the Schwartz
space .7 (R%*!) (i.e., smooth and all derivatives decaying faster than any power
of the arguments).

(i1) Associated with each interband edge ¢ € Ej,., are a momentum vari-
able p € R%! and a group variable g € L which runs over the four connected
components of the full Lorentz group. These variables are integrated with the
measure d (g, p) = dgdp 0(p°)|o(gp)|? involving the right invariant Haar mea-
sure dg on L. We notice that the variables g enter only in the combination gp;
thus effectively, the group integrations extend only over the Lorentz boosts and
the time inversion in the rest frames of the momenta p. In fact, up to the re-
dundant integral over the compact stabilizer group O(d) of p, the measure is
dpu(g, p) o dp 6(p°) dk (k2) 7" |p(k)[26(p? — k2), where k = gp € R,

(iii) The combinatorial weights Giner! and G; gom! are given by Hv,v, m(v,v’)!
where m(v,v’) is the number of edges connecting the vertices v and v/, and the
product extends over all pairs of vertices in different bands, and within the band
i, respectively.

(iv) The integrand contains a “coupling constant” r!a, for every internal ver-
tex v of degree r along with the momentum conservation delta function 6,(q, gp)
for the momentum flow at that vertex involving the domestic momenta ¢ and
the Lorentz transformed interband momenta gp.

(v) Finally, the momentum transfer at each band is given by P = P[p] =
Y owl — i P> Where the sums refer to all interband momenta flowing out of
the band, resp. into the band. There contributes to the integrand a factor Fi(Py)
for every band, where f; are the Fourier transforms of the real test functions
fi € F(R9*1). It is worth noting that the momentum transfer of the field operators
(involving the interband momenta p) is decoupled from the momentum flow
within a graph (involving the transformed momenta gp and the domestic momenta
q)-

The rapid decay of the integrand along with the momentum conservation
delta functions guarantees that every integral in Eq. (2) converges absolutely.
Due to the limitations S of the number of vertices per band and R of the degree
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of vertices, there are only finitely many different banded graphs, so the func-
tional (2) is well defined. It is evident that it is translation invariant since the
arguments of the test functions sum up to zero, ), P; = 0. It is invariant under
the orthochronous Lorentz group L' since for v € L' the change of integra-
tion variables p — p, g — gy~ ! and g — g takes the functional (2) into its
Lorentz transform. We note here that the domestic variables g, being coupled by
momentum conservation to the Lorentz invariant variables £ = gp, may also be
considered as Lorentz invariant. This explains why the momentum cutoff does
not violate Lorentz invariance: it affects only Lorentz invariant variables.

The spectrum condition is satisfied since for every j < n, the sum of momen-
tum transfers Z . P; is a sum of interband momenta p restricted to the forward
light-cone. The umqueness of the vacuum will become apparent later when we
identify the Hilbert space.

The axiom with the most unprecedented realization in the new models is
Locality. We shall limit ourselves here to the simple core of the exact but tedious
argument given in [1]. Namely, we shall discuss the commutativity of ¢(f) and
&(f") when f and f' are delta functions at space-like separated points x and x’ €
R4!1, Although these are not a priori admitted as test functions (the convergence
argument given in [1] will fail for such functions), we may argue as follows
for the validity of the simplified argument: Given the spectrum condition and
Poincaré invariance, it is a standard result [2] that at the Jost points where
all coordinates are space-like separated, the Wightman distributions are in fact
functions. By the Reeh-Schlieder theorem [2], it is then sufficient to test the
commutativity of ¢(x) and ¢(x’) within Wightman functions at Jost points.

Consider therefore the change in the sum (2) when the field entries ¢(x) at
position i and ¢(x”) at position i + 1 are interchanged. Along with every banded
graph contributing to %, = %;(...x,x’...) there corresponds a banded graph
contributing to %, = #,(...x',x ...) which differs only by the numbering of
bands and therefore by the orientation of the interband edges extending from band
i to band i +1. Let there be o such edges in a given graph. The associated integra-
tion variables g and p, here and later on collectively indicated by (g,p)., enter
the arguments of the test functions f (P) = exp —iPx and f i+1(P) = exp —iPx’
through P = P[p], the measure factors 6(p°)|(gp)|?, and the momentum con-
servation delta functions. Due to Poincaré invariance, we are free to choose the
Lorentz frame such that x° = x’°, hence P(x — x’) = —P(x — x’). In this frame,
each integral contributing to %, is of the form

/ X /(Hdgdp 9(p°)|s0(gp)lzexp(ip(x—X’)) 116:C- Py x ...,
1 v

(3a)
while the corresponding integral contributing to %, is of the form

/ X / (Ha’ga’p 00°)lp(gp)I* explip(x’ — x)) [T6:C =g x ...
1 v

(3b)
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where . .. stands for further factors and dependences on other variables common
to both contributions to % resp. Z,, and independent of (g, p),. By the change
of integration variables (g, p), — (9T, Pp),, where T resp. P are the time resp.
space inversion in the given Lorentz frame, the integrands are transformed into

each other (note that the cutoff function © is real, hence O(k) = O(—k), so
lo(gp)|? is invariant under gp +— —gp). This establishes Locality, graph by
graph.

Finally, Positivity of the Wightman functional (2) becomes manifest if one
views every graph integral as an operator product of integration kernels (= the
square brackets in Eq. (2)) in the Fock space .7 (H ) over the underlying Hilbert
space H = L*(L x R%!, dy) with the measure du(g,p) = dgdp 0(p°)|e(gp)|.
More precisely, every band subgraph with v, resp. v;, interband edges oriented
out of resp. into it, and p “bypassing” interband edges linking some lower band to
some higher band, corresponds to a kernel interpolating from the (m = voy + p)-
“particle” subspace .7, = H®" to the (n = v, + p)-“particle” subspace .7, =
H®". As a kernel, it is a function of m pairs of variables (g, p) to be integrated
(with the measure d i) with the variables of a wave function in .%, (“annihilation
part”), and n free pairs of variables (g,p) (“creation part”). It is given by the
expression in square brackets in Eq. (2) which is a function of the integration
variables (g,p)our and (g,p)in associated with the out- and ingoing interband
edges, while the bypassing edges contribute as delta function kernels 6(g, g")6(p —
p")/|(gp)|*. (Note that every application of an integral kernel operator in H or
7 (H) involves the integral measure d (g, p) = dgdp 0(p°)|(gp)|?, so one has
not to worry about denominators.)

A careful analysis of the combinatorics reveals that actually every field op-
erator in Eq. (1) arises as a finite sum of integral kernels, sandwiched between
the completely symmetrizing projection operator [] = P, [1, onto the sym-
metric Fock space Z(H) = [[.% (H). Namely, let (k)in resp. (k)our denote two
collections of v4, ingoing resp. Voy Outgoing momentum variables, and let the
functions K, ((k)in; (k)out) be given by the domestic integrals summed over all
band graphs with these variables assigned to the given number of in- and outgoing
external lines:

1
Gl /( H dq 0(qo)l<p(q)|2> H(r!a,év(q,k)),

e€Egom veV

KVV;:t((k)in; Kout) = Z

band
graphs

@
as read off Eq. (2). Since there are no according band graphs, K, vanish for
Vin + Vout > S(R — 2) + 1. Let furthermore

O )rmk (9, P)iny (9P s (G5 PDouts (9, 0")p) =
= f(P[p]) - [KX (gP)in; (gP)ow) @ (delta kernels)®#]

Vout

(&)

be integral kernels interpolating between H ®“ou*# and H ®¥n*# where f resp.
K, are functions of the indicated in- and outgoing interband variables P[p] =

'out

> out? = 2in P 1eSp. (gp)in and (gp)oy: only, and (delta kernels)®# stands for the
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delta functions in p pairs of bypassing interband variables (g, p), as explained
before.
Then ¢(f) is represented by the integral kernels

¢(f)= Z va"'ll ( e q)(f)yin’# ) Huout+u : (6)

p!vn! vout! Vout,
Vin,Vout, b

We shall refer to the functions (4) as the “reduced kernels.” They are sym-
metric in both their in- and outgoing sets of variables. They encode the entire
dependence of the model on the choice of the constants a, (r < R) and the
number S (limiting the number of graphs), as well as the previously mentioned
restriction on the orientations of domestic edges. Since the remaining input pa-
rameters determine the integral measure of the Hilbert space H, the model is
now specified by the reduced kernels K, and the measure d .

The assertion that the prescriptions (2) and (4-6) produce the same Wightman
functional is the central claim of this section. Since it is essential for the rest of
this communication, we formulate it as a lemma.

Lemma. Let the fields ¢(f) be represented as integral kernels (4—6) on the sym-
metrized Fock space F(H). Let the vacuum vector {2 be represented by the
number 1 € C = % C F(H). Then the vacuum correlations of ¢(f) coincide
with Egq. (2).

Proof. A vacuum correlation of n operators ¢(f;) is a finite sum, extending over
single band graphs contributing to every reduced kernel (4) and therefore to (5),
and over single permutations contributing to the symmetrizing projections in Eq.
(6). Every such contribution clearly corresponds to a banded graph contributing
to the sum (2), and vice versa. However, the correspondence is not always one
to one. It only has to be checked that multiple counting and numerical coeffi-
cients according to Eqs. (4-6) together produce the correct combinatorial weights
(Gineer!' [ [; Gi ,dc,m!)_1 as in Eq. (2). The domestic factors are explicitly present in
Eq. (4) and need not be considered any longer.

At this point, in order to get the global factor 1/Gige!, it is crucial that the
sum (2) extends over all inequivalent labellings of the vertices of the banded
graphs, while the sum (6) extends over all inequivalent labellings of the vertices
and external lines of the band graphs.

We start with a two-point function and consider a banded graph G contribut-
ing to Eq. (2) with its two band subgraphs G; and G,. We label the vertices of
G as v;, those of G, as w; (for this matter not distinguishing the external vertex
of each band graph from its internal vertices). Let m;; edges connect v; with
w;, thus v; = 3, my interband edges connect to v;, and k; = 3, m;; interband
edges connect to w;. Let finally v = 3, v; = 3 k; denote the total number of
interband edges of G. Apart from the domestic combinatorial weights (which are
common to Eq. (2) and Eq. (4)), the banded graph enters Eq. (2) with the weight

1/Ginger! = [T;; 1/my.
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Let us compute the coefficient according to the prescription (4-6). Assume
for the moment that the symmetry groups of the vertices of G; and G, considered
as abstract subgraphs of G, i.e., ignoring the labelling of vertices and orientation
of edges, are trivial. This assumption is equivalent to the assumption that each
labelling of the vertices gives rise to a different labelled band graph. Then there
are v!/ [ ], v;! inequivalent assignments of v distinguished momenta (k) = (gp) to
the external lines of Gy, and similarly v!/ ][, x;! assignments of momenta to the
external lines of G,, each giving rise to one term in the sums (4). Furthermore,
each set of v; lines extending from v; can be partitioned in v;!/ ][, my! ways
to join the vertices w; with multiplicities m;;, and there is a similar number of
partitions for the vertices w;. Finally, each of the m;;! contractions of m;; lines
between v; and w; is counted separately. Thus the total number of contractions
of band graphs which give rise to the same banded graph G equals

@)

v! v! ;! k!
I e T e T -
[T wi! TT; 55! ; I1; my! ; [T my! i G

inter! )
Since the symmetrizing projection operator between the two kernels contributes
a weight 1/v! for each permutation, and the explicit numerical coefficients in
Eq. (6) contribute another factor (v!/v!)?> = 1/v! to the two-point function,
the weight of each term is 1/ (v!)? and the combinatorial weight as in Eq. (2) is
reproduced.

Now let the vertices of the abstract band graphs G; possess some symmetry
groups S; and let S C S; x S, be the symmetry group of the vertices of G. Then
one may sum in Eq. (2) over all labellings of the internal vertices of G; and
over all labellings of the internal vertices of G, independently, if one includes
a correction factor 1/|S| for overcounting of banded graphs. Similarly, one may
sum in Eq. (4) over all labellings of internal vertices and over all labellings of
external lines independently, if one includes a correction factor |S;| for each of the
two kernels. On the other hand, the counting of inequivalent contractions of two
band graphs with labelled vertices and external lines which give rise to the same
banded graph with unlabelled interband edges provides an additional multiplicity
factor |S; x S»/S| which cancels the correction factors for overcounting. We
conclude that for two-point functions, the prescriptions (2) and (4-6) produce
the same combinatorial weights.

Turning now to higher n-point functions, we repeat the previous reasonings
with the obvious generalization. The total number of contractions of band graphs
G; (i = 1,...n) contributing to Eq. (4) which give rise to the same banded graph
G is found to exceed the expected weight 1/Giner! by the factor [T, v 1Wi,!,
where v and v, are the number of in- and outgoing interband edges of G;.
This factor is cancelled by the corresponding factors in the denominators of the
numerical coefficients in Eq. (6). The square root numerators of the latter (which
arise twice each) are compensated by the weights 1/(v+ u)! of each permutation
within the projections va between two kernels, while the remaining factors

1/p! in the denominators of Eq. (6) are cancelled by the number of permutations
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of the sets of bypassing variables at each kernel. The discussion of symmetries
of the vertices of band graphs also parallels the two-point case. This completes
the proof of the lemma. g

Due to the lemma, Positivity of the Wightman functional (2) is manifest. Let us
now complete the list of arguments that Eq. (2) fulfills all Wightman axioms.

The orthochronous Lorentz group L' is represented on H, and therefore on
the Fock space by second quantization, by the tensor product of the natural
action (on p € R%1!) and the right regular action (on g € L). Since the measure
is invariant under this action, the representation is unitary. For the same reason,
functions of k = gp represent Lorentz invariant elements of H or Z(H), and
the reduced kernels (4) are scalar quantities. Consequently, the full kernels (5)
and finally the fields (6) transform like scalar fields.

The invariant Wightman domain of the field operators ¢(f) is %‘7’ =
span ([] ¢(fi)$2 C F(H). 1t is clear that 2 is the only translation invariant

vector in the Hilbert space %¢. The property of the reduced kernels
K (K )in; (Kout) = K22 (K Youts (K)in) @)

ensures that (B, ¢(f)¥) = (¢(f)®, ) for B, ¥ € Z?, ie., ¢ is a hermitian field.

Corollary. ([1]) The n-point distributions given by Eq. (2) define a hermitian
scalar local Wightman field.

3. An Enlarged Class of Local Wightman Fields

We make the following crucial observation. As was remarked before, the fields
¢(f) are completely specified as operators on .7 (H ) by the reduced kernels (and
the measure) while it is irrelevant how these kernels were produced by domestic
integrals over band graphs. One may indeed choose a sequence of reduced kernels
as the primary model input.

None of the arguments for Finiteness, Positivity, Translation Invariance,
Lorentz Invariance and Spectrum Condition along with the Cluster Property is
affected if one replaces the reduced integral kernels K,Ziﬁt((k)in; (k)out) given by
Eq. (4) by arbitrary smooth polynomially bounded functions of the respective in-
and outgoing variables k = gp, and defines ¢(f) by Egs. (5) and (6). Since the
kernels only act between symmetrizing projections, these functions may be cho-
sen symmetric in both of their two sets of variables. Furthermore, the argument
for Hermiiticity of ¢(f) is unaffected provided the reduced kernels satisfy condi-
tion (7) above. These assertions are obvious except, maybe, the one concerning
Finiteness, for which we refer to estimate (11) in the lemma below.

Finally, the above simplified argument for Locality remains unaffected when
in Egs. (3) the delta functions due to each band (integrated over the domestic
variables) are replaced by the respective reduced kernels, provided
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K7 () U (K)o (K)p) = Ky (K)ws (k) U (K)p) ®

where U indicates the union of the respective sets of variables. (The reduced
kernels (4) have this symmetry.) Namely, when K resp. K’ refer to the reduced
kernels due to the field entries ¢(x) resp. ¢(x’), then in a typical contribution to
,, products of reduced kernels

K2 5(gp)e U DK (U (gp)os - . )

replace the delta functions in Eq. (3a), while in the corresponding contribution
to #,’,
K2, 5(gp)e U DK (U (gP)es - )

replace the delta functions in Eq. (3b). As before in Sect. 2, the dots indicate
dependences on other variables which are common to both contributions. With the
same change of the integration variables (g, p), as before, the crossing symmetry
(8) ensures %, = X, .

In view of the two conditions (7) and (8), it is sufficient to specify a termi-
nating (in order not to spoil temperedness of the ensuing distribution) sequence
F = (F,(ki,...,k,))ven of smooth polynomially bounded symmetric functions
satisfying

Fy(kyy...,k,)=F,(=ki,...,—k,) ©)]

(i.e., the Fourier transforms of real functions). We shall call functions satisfying
the symmetry (9) “hermitian.” Then the reduced kernels

K ((k)y; (k)y) = Furp((k)y U (=k)p) (10)

satisfy conditions (7) and (8).

The reduced kernels (10) inserted into Egs. (5) and (6) define a manifestly
finite hermitian scalar local Wightman field ¢r. Due to the lemma above, this
class of fields extends the class constructed in [1].

The preceding arguments apply also without substantial change to mixed
Wightman functionals with field entries ¢q)(f;) specified by different sequences
F@ of reduced kernels. The following conclusion is immediate.

Corollary. Every terminating sequence F = (F,(ky, . ..,k.)),en of (smooth poly-
nomially bounded symmetric) hermitian functions defines, upon insertion of the
reduced kernels (10) into Egs. (5) and (6), a hermitian scalar local Wightman field
¢r on the symmetric Fock space % (H). The fields ¢r associated with different
sequences F are defined (as operator-valued tempered distributions) on the joint
Wightman domain & = span (] ¢po) ()2 C F(H). They are relatively local
with respect to each other.

We shall call a field ¢p “of order v” if F,, # 0 and all other F 1, vanish. In the
general case, ¢ is a finite sum over its components of order v.

The assignment F' — ¢ is clearly real linear (in the obvious sense for each
component of order v). It is continuous in the following sense.



462 K.-H. Rehren

Lemma. The correlations of fields ¢ru) (of fixed order v;) are bounded by
n
(2, 80 (F) -+ pm ()] < Cop [TIFDII, an
i=1
where the constants C(,;y < oo depend on the test functions f; € ¥ (R4, and

IFI? = sup 2/(Hdgi|<p(gipi)|2>lFu(gxp1,.~,gupu)l2. (12)

m3 <m2=p? <m? i=1

Thus, for each test function, the assignment F — ¢r(f) is weakly continuous on
the joint Wightman domain %y C F(H).

Proof. Every correlation of field operators in the vacuum state is a finite sum of
integrals of the form

/ (H dp 9<p°>) [1/i@ipn / (H dg lw(gp)V) TT&“@P)v, -3 (P))
i=1 i=1

such that each momentum gp enters precisely one of the reduced kernels
K® = KWJi™" as an ingoing (creation) variable, and another one as an out-
going (annihilation) variable. The g-integrals over products of reduced kernels
with the measure dg|p(gp)|* can be estimated, by repeated use of the Cauchy-
Schwarz inequality, by the product of the corresponding finite L?>-norms of the
reduced kernels. The latter are functions of the involved p? only, and can in turn
be estimated by the supremum over the mass interval [mg,m,], i.e., the norms
given by Eq. (12). After these crude estimates, which are common to all terms in
the sum, the remaining p-integrals of the form [([]dp 6(p®)) IT, f:(P:[p]) still
converge absolutely due to the decay of the test functions [1]. Summing all these
integrals yields the finite constants C,,). a

4. Reduction to Generalized Free Fields

Let us now study some elementary cases, starting with fields of order 1 which
we denote by ¢r with Fi(k) = F(k) a hermitian polynomially bounded smooth
function. These comprise the fields in [1] when all “coupling constants” vanish,
or when S =0, hence every band graph has only its external vertex of degree 1
and Fi(gp) = 1. One finds that

(12, 05/ (F)pr(F)2) = / dp 6p°) ( / dg |so<gp)|2F'<gp>F<gp)) L@ (-p),

13)
while all truncated higher n-point functions for fields of order 1 vanish. Thus,
wr are generalized free fields with mass distribution pr supported in the mass
interval m3 < p? < m?,
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pr(p?) = / dg le(gp)I*|F (gp)|* - (14)

The generalized free fields for different functions F' are in general not inde-
pendent, i.e., their correlations (13) do not vanish. There are in fact only countably
many independent such fields. To see this, it is convenient to view a function
F(k) in the two-sheeted region M = {k € R®! : m < k? < m?} as a family
(labelled by the mass) of pairs of functions on velocity space Fi(m;v) := F(k),
where k = +g,p,, with p,, = (m,0) a momentum vector in its rest frame and
gv € LT the Lorentz boost by the velocity v. At each mass p*> = m?, the value
of the mass distribution in the mixed two-point function (13) is a scalar product
in the space L2({v € R? : v? < 1};dnn) ® C?,

N 1 I
/ dglp(ap) "Fgp)F (9p) = 5 3 / din () Flm; 0)Fe(mv) — (15)

e=+,—

with the measure d7,,(v) = d%v (1 —v?)~“*D/2|(g,pn)|>. The real linear space
of hermitian functions corresponds to the +1 eigenspaces of the real linear
symmetric involutive operator (F,,F_) — (F_,F,). These eigenspaces pos-
sess countable orthogonal real bases of the form (FX(m;v), F®(m;v)) with F§
smooth and polynomially bounded in u = v/+v/1 —v? and F* = F2. Since the
measure d7,, varies smoothly with m, the family of bases can be chosen to vary
also smoothly with m. The real span of the functions (k2)"F%(k) := m*"F$(m;v)
at k = £g,pm € M is dense (in the topology (12)) in the space of hermitian poly-
nomially bounded smooth functions on M. Since @25 (f) = @p(—Lf), it follows
from Eq. (11) that the countable family of independent generalized free fields
©® = pre has a Wightman domain which is dense in the Hilbert space generated
from the vacuum by all order 1 fields @F.

The next case is an order v field with F, a constant function. One finds that

F,

O () = 0 () (16)
is just a Wick power of the generalized free field ¢p-; of order 1. Similarly, if
F, is a symmetrized tensor product of v single variable hermitian functions

Fyk,... k)= [[FPUne) an

7I'€Su i=1

then the associated field ¢f of order v is the Wick product

¢r(f)=:[[er: (M) 18)

i=1

of the generalized free fields ¢; = @) of order 1. It is not very difficult to prove
Egs. (16) and (18) by verifying that the combinatorics of the integral kernels
produces precisely the products of two-point functions required by Wick ordering.
Namely, every factor in Eq. (17) arising in a creation kernel will be eventually
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integrated with another such factor in an annihilation kernel, yielding a two-point
function with mass distribution of the form (15), while the numerical coefficients
in Eq. (6) cancel against the combinatorial factors due to symmetrization.

Now, every symmetric hermitian function F, in v variables can be approxi-
mated (in the topology (12)) by real linear combinations of symmetrized tensor
products of v hermitian functions in one variable. We conclude:

Corollary. The fields ¢r of order 1 form a countable system of generalized free
fields . The fields ¢ of order v are approximated (in the sense of the lemma of
Sect. 3) by homogeneous real Wick polynomials :P(p): of degree v in the latter.
The vacuum vector is cyclic in the Hilbert space J4 = &y C F(H ) with respect
to the fields of order 1, which consequently act irreducibly in F8.

5. Conclusion and Discussion

We can now apply the classical results in [5] to conclude that the new fields ¢r,
and in particular the fields constructed in [1] which are finite sums of fields ¢ of
order v, v < S(R—2)+1, belong to the Borchers class of the countable system of
generalized free fields defined by their two-point functions (13). (As a reminder:
the Borchers class of an irreducible (multi-component) field ¢, consists of all
fields on the same Hilbert space which are relatively local with respect to ¢g, and
which are therefore automatically relatively local with respect to each other.) For
fields with a sharp mass (such that the scattering matrix is defined), coincidence
of the Borchers class implies coincidence of the scattering matrix [5].

Let us therefore insert a remark concerning a limit of sharp mass m; \, my
which is desirable for a particle interpretation. Note, however, that scattering
aspects of fields without a sharp mass were also considered in, e.g., [6]. In the
original class of models [1], the naive limit attained by sharpening the bare mass
distribution p(k?) is severely obstructed since due to momentum conservation for
the flow within a graph, there will always occur powers of several measure factors
|o(q)|? at the same argument in the integrands (e.g., in two-point functions the
domestic momenta associated with the edges connected to the external vertices
coincide due to momentum conservation but are independently integrated; the
problem will be aggravated whenever the coupling a, # 0). In order to keep the
highest of such powers regular in the sharp mass limit, all the lower powers must
become suppressed, so the limiting Wightman functional will consist of products
of two-point functions only and one ends up with a free field. Apart from this
obstruction, every contribution from the cubic coupling a3 will die out exactly
as soon as m; < 2my, due to momentum conservation at the triple vertex.

On the other hand, no such obstruction prevents us in the enlarged class
of models ¢ from sharpening the mass distribution p(k?) independently from
the cutoff function © and the reduced kernels F,. The singularity obstruction
is absent since there are no domestic integrations, and the latter effect is absent
since there is no momentum conservation at the integration kernels. However, as
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we have seen, in the limit p(k?) — §(k? — m?), the system of generalized free
fields becomes a countable family of independent Klein-Gordon fields ¢, and
the limiting fields ¢r will be Wick polynomials therein.

To summarize the previous remarks, we have found that although the sharp
mass limit is much more flexible within the enlarged class of models, the lim-
iting fields will belong to the Borchers class of a countable family of massive
free fields, and hence will not describe scattering [5]. Even if it remains to be
clarified in which precise sense the corresponding conclusion can be maintained
for generalized free fields [6], in view of the results of Sect. 4 we do not share
the optimism expressed in ref. [1] that the new fields might describe interaction
as long as the mass remains smeared. However, the approach of ref. [1], and in
particular the surprising mechanism which restores locality upon integration over
the “inner degrees of freedom” associated with the Lorentz group, might well
contribute some new and interesting stimulations to constructive quantum field
theory.
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