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Abstract: We refine the Beale-Kato-Majda criterion for the breakdown of smooth
solutions of the 3-D incompressible Euler equations in the case of axisymmetry.
In this case the angular component of vorticity in the cylindrical coordinates alone
controls blow-up of the higher Sobolev norms of the velocity.

1. Introduction

The Euler equations for homogeneous inviscid incompressible fluid flows in R are

-^+(v V)ι> = -Vp i n R 3 x R + , (1)
ot

V v = 0 in R3 x R+ , (2)

u ( . , 0 ) = ι>o in R3 . (3)

Here υ = (v\(x9t)9V2(x9t)9v^(x9t)) is the velocity of the fluid flow, p — p(x,t) is
the scalar pressure, and VQ is the initial velocity satisfying V VQ — 0. Taking the
curl of (1), we obtain the equation for the vorticity ω = V x v9

— + v Vω = ω Vv. (4)
ot

For the existence of local in time smooth solutions we have the following result by
Kato [3]: Suppose an initial velocity field VQ G Vm, m ^ 3, is given. Then, there
exists TO = 7b(||tfo| |//3) such that the system of equations (l)-(3) has the unique
solution

υ e C([0, Γ]; Vm} Π Cl([Q, Γ]; Vm~l) (5)

for all T G (0, TO), where we used the function space

Vm = {v <E#W(R 3) |V v = 0}.
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On the other hand in [1] Beale, Kato and Majda showed that if the local solution
satisfies

/ | |ω(OIU~<*<oo (6)
o

for some T > 0, then the solution v can be continued in the class (5) to the interval
[0, T]. We are concerned here with the axisymmetric solution of the Euler equations.
By an axisymmetric solution of the equations (l)-(3) we mean a solution of the
form

v(x9t) = vr(r9x39t)er + vθ(r,x3,t)eθ + V3(r,x3,t)e3

in the cylindrical coordinates system. Here we use

<*= (0,0,1), r=

If the initial data VQ is axisymmetric, belonging to Vm, m ^ 3, then due to the ro-
tational covariance properties of the Euler equations, and by the uniqueness of the
local classical solution as described above, the solution remains axisymmetric during
the time of the local existence. In the particular axisymmetric case of VQ( ,0) = 0,
Majda [4] and Raymond [5] showed that the global smooth solution for smooth
initial data exists. This is due to the fact that ̂  is conserved along the particle tra-
jectories in this case. He proved, in particular, that the Beale-Kato-Majda criterion
(6) is satisfied in this case.

In the case of ΌΘ( ,0)ΦO there is no longer conservation of ^ along the
particle trajectories, and there is numerical evidence suggesting for possible finite
time breakdown of smooth solutions (see e.g. [2]). In this paper we show that
if the finite time breakdown of axisymmetric smooth solution occurs for the 3-D
Euler equations, then necessarily some norms of ω# = ̂  — ̂  must blow up at

that time. (See Theorem 1 and its corollary in Sect. 3 for a precise statement of
our result.) Our result could be useful to test numerically the breakdown of the
smooth solution of the 3-D Euler equation in the axisymmetric case by computing
the growth in time of the norms of ω# in the integral appearing in the theorem.

2. Preliminary Estimates

For an axisymmetric flow v(r,z) we can write the vorticity

co = ωrer + co3e3+

where
dvβ I d , . dvr dv3

u>r = --Γ— , ω3 = -— (we), cue = ~ --- T-
ox3 r or ox3 or

Below we use the notations

v = vrer + v3e3, ώ = ωrer + ω3e3

and
~ d d

V = er—+e3—or ox3
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We set

On the other hand we use

dvr dvr ^
dr 8x3

dr

We begin with the following elementary lemma:

Lemma 1.
| |V£||LOO ^ ||w||z,

Proof. Let us denote

cos θ = —, sin θ — —, where r = Λ/jc? + x\ -

Then, we have

dvr —(#ι cos θ -f U2 sin θ)
or

dv\ SV2

dϋ dv\
-— cos θ 4- -— sin
OX] 0X2

dU2 dV2
-— cos θ 4- -̂ — sin Θ

dϋ\

dx\

dv\

8x2

and

8x3
-—(v\ cos θ + V2 sin θ)
0x3

dvi . dvi .
-— cos Ό 4- T— sin (
OX i 0X2

dv\

ox^

dx\

and obviously,

Summing up these inequalities we have

dvr dvr

8x3 dr
<

thus obtaining (7). This completes the proof of the lemma.
Below we use the notation

| |M| | C y = sup
u(x) - u(y)\

393

(7)

x-y\y '

where 7 E (0,1). The space C0'y(R3) is the usual Holder space equipped with the
norm

llwllc°'T = IIMIU°° ~f~ llwllc^
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The following is a refinement of the similar type of inequality in [1] for the case
of the axisymmetric vector fields.

We note that we will use the same notation C for the constants appearing in
the inequalities afterwards.

Lemma 2. Let (γ,p) G (0, 1) x [l,oo) be given. Suppose ωθ G C^R3) ΠZ/(R3),
and let v be an axisymmetric vector field in R3 with the axis of symmetry X--
axis such that

V # = 0, V x £ = ω0e0 .

Then, we have the following inequality.

| |Vu||ιoo ^ C{1 + | |ωβln"r| |Loo + |M|Loo(l + \n+(\\ωθ\\Cy\\ωθ\\LP))} ,

where C is a constant depending only on y and p\ r( ) denotes the distance
function from the x^-axis, i.e.

r(x) =

and ln~ r = - In r //><!, and ln~ r = 0 otherwise.

Proof. It is well known (see e.g. [1], or [4])

= Cωθ(x)eθ(x) + [ K *

where C is a constant matrix and K( ) G C°°(R3\{0}) is a matrix kernel defining
a singular integral operator in R3, satisfying the estimate

\K(y)\ Z e R3

and, having the cancellation property [6];

/ K(x - y)dy = 0 Vα, b with 0 < a ^ b ^ oc .

We have

for an absolute constant C. Using the cancellation property of K, we can decompose

\[K*(ωθeθ)](x)\ g
R3

K(x - y)(ω(x) - ω(y))e0(y)dy

K(x - y)ωθ(y)eθ(y)dy

+

|jc—y\ <R

= I + Π + HI + IV .

/

K(x - y)ωθ(y)eθ(y)dy
\x-y\>R
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We estimate the first term

395

/ \K(x-y)\\X-y\*dy
\x-y\<ε

g ω β C 7 x -
\x-y\<ε

where C is a constant depending on y. The third term is easily estimated as

ΠI ^ C\\ωθ\\Loo f \x- y\~3dy ^ C\\ωθ\\Loo ln

By Holder's inequality we have

IV < C I /

£-1

p

x —

^ C( fr
, R

p-\
00 P+2 λ ~P~

\<*>Θ\\LP ^ C\\ωθ\\LpR'

For the second term, using the cancellation property and the mean value theorem,
we have

K(x - y)eθ(y)dy
\x-y\<&

/ K(y)e0(x-y}dy
\y\<a

f K(y)(eθ(x-y)-eθ(x))dy

+ I \eθ(x-y)\\K(y)\dy

where s £ (0,1). By direct computation from

we have

\Veθ(z)\ ^ -— .

For \y\ < ̂  we observe

r(x - sy) ^ r(x) - r(y) ^ r(x) - \y\ ̂  r(x)
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Thus
C 2C

\Veβ(x-sy)\ ^ ^ — .
r(x — sy) r(x)

These observations lead to an estimate for the second term

II ^ C\ωθ(X)\ (l+ln+ (-^)] ^ C\\ωθ\\L°o + C\\ωθln~ r\\L~
\ \r(χ)/ /

if we assume ε rg 1. Summing up the estimates for I, II, III, IV, and taking

-I £
ε = min{l,||ω0||c/} and R=\\ωθ\\lP,

we obtain the desired result. This completes the proof of the lemma.

3. The Main Theorem

Using the lemmas in the previous section, we will prove the following main
Theorem.

Theorem 1. Let v be the local in time solution of Eqs. (l)-(3) corresponding to
axίsymmetrίc initial data VQ G Vm, m ^ 3.

Suppose there exists a number (y, p) G (0,1) x [1, oo), and M < oo such that
the following inequality holds'.

o

T Γ /

-/exp /
o Lo

„ 1
+ ω0(,s)ln H Loo kfr \dt ^ M ,

J
(8)

then the solution v can be continued in the class (5) to the interval [0, T].

Remark. The above inequality (8) can be reduced to the simpler, but less sharper
form as follows:

/{IWOIU~0 + in+(IMθ||HMOM) + IMoin-r\\L«>}A ^ M .
0

Before proving this theorem we state an immediate corollary of it.

Corollary 1. Let v be the local axίsymmetric solution of the Eqs. (l)-(3) which
belongs to the class in (5) for all T < T7*, and suppose

lim sup IIKOH//" = °° ,
t/*τ*

then necessarily
r*
/ \\ωθ(t)\\LooΛ = oc
o
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or

/ exp [/{||ωβ(*)|Uoo(l + \n+(\\ωθ(s)\\Cy\\ωθ(s)\\LP»
o Lo

-f Hω^^)In r\\Loo}ds \dt = oo

for any (γ, p) G (0,1) x [1, oo).

Proof of Theorem 1. We write the vorticity equation (4) in the axisymmetric
case as

V t; = 0, (9)

£>ωr „ ~

-w = ω Vv- (10)

=ώ Vt> 3 , (11)
LJl

D_

where we denoted

D_ _ d_

We first claim

ll^ exp (f \\Vΰ(s)\\LooΛ] , (13)
\ o /

where C is an absolute constant. Indeed, let p ^ 2. Multiplying \ώ p 2ωr and
\ώ /7~2ωs on both sides of Eqs. (10), (11) respectively, adding them up, and inte-
grating over R3, we have

J |c5|/>-2_ co|2 + - / ί; V cψ ^ / \Vv\\ώ\pdx .
R3 dt PR3 R3

After integration by parts, using (9), we obtain

uι R3

where we used (7) in the last inequality. Dividing by l l ώ l l f ^ 1 ? and using GrόnwalΓs
inequality we obtain

( ί. λ
\\&(t}\\LP ^ ||ώ0||^exp /||VtJ(j)||LooA I (14)

\ o /
for all p ^ 2. Now let

A& = { x <E R3 |ώ ^ ||ω||Loo - ε } Π { x e R3 | |jc| < R} ,
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where R is chosen large enough so that the Lebesgue measure \Aε\ of Aε is not
zero. Then,

1 / \ ̂

(15)

On the other hand, by an elementary interpolation, and Sobolev's inequality we
have

\\UO\\LP g ||ώo|fr IHIll ^ CMjSr ||ώo||/2 . (16)

Combining (15) and (16) with (14), we obtain

- e) £ C Ihlί ||ώ0|| exp
0

Passing first p — > oo, and then ε — > 0, we obtain (13) as claimed.
Now, assume (8) holds. By Beale-Kato-Majda's criterion (6) it suffices to show

that

f(\\Q>Θ\\L°° + \\ώ\\Lo°}dt < oo . (17)
0

Since
V v(t) = 0, V x ΰ(t) = ωθ(t)eθ ,

(17) follows immediately from the hypothesis by combining (13) and Lemma 2.
This completes the proof of the theorem.
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