
Commun. Math. Phys. 178, 27-60 (1996) Communications IΠ

Mathematical
Physics

© Springer-Verlag 1996

Residue Formulas for the Large k Asymptotics
of Witten's Invariants of Seifert Manifolds.
The Case of SU(2)

L. Rozansky1

Physics Department, University of Miami, P.O. Box 248046, Coral Gables, FL 33124, U.S.A.

Received: 3 April 1995/Accepted: 17 July 1995

Abstract: We derive the large k asymptotics of the surgery formula for SU(2)
Witten's invariants of general Seifert manifolds. The contributions of connected
components of the moduli space of flat connections are identified. The contributions
of irreducible connections are presented in the residue form. This allows us to
express them in terms of intersection numbers on their moduli spaces.

1. Introduction

Let Aμ be a connection on an SU(2) bundle E over a 3-dimensional manifold M.
The Chern-Simons action is a functional of this connection:

Scs = I τrε^fd'x (AμdvAp + \A,AVA^ , (1.1)
1 M \ ό J

here Tr denotes a trace in the fundamental representation of SU{2).
Consider an ^-component link 5£ in M. Let us attach α-dimensonal irreducible

representations Vaj to the components S£j of 5£. A partition function of the quantum
Chern-Simons theory with the Planck constant

ft = ^ , kez (1.2)

can be presented as a path integral taken with an appropriate measure over the gauge
equivalence classes of Aμ:

ZU}(M,J?;k) = f[@Aμ]etScs^fl Trα, Pexp ( §AμdxΛ , (1.3)

here Pexp(/^ Aμdxμ) e SU{2) is a holonomy of Aμ along the contour ify and

Trα is the trace in the α-dimensional representation Va. We also use the following
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general notation: {x} denotes a set of n numbers x\,... ,xn. E. Witten noticed in [1]

that the partition function (1.3) is a topological invariant of the (framed) manifold

M and link ££. He also showed that the ratio

(1.4)

is equal to the Jones polynomial for q = ef .

Another important result of [1] is that Z^y(M, if; k) can be exactly calculated

through the surgery formula. Let us first define a rational (p,q) surgery on a knot

Jf belonging to a manifold M. We choose a pair of cycles C\, C2 on the boundary

of the tubular neighborhood Tub(JΓ). C\ is a meridian, it is contractible through

Tub(jΓ). C2 is a parallel, it is defined by a condition that it has a unit intersection

number with C\. The parallel C2 is defined only modulo C\. The (p, q) surgery on

J f is produced by cutting Tub(J f ) out of M and then gluing in back in such a

way that the cycles C\ and C2 on δΎub(Jf) are identified with C[ = /?CΊ + qC2

and C2 = rCi + sC2 on δ(M \ Tub(JΓ)). The numbers r,s e Z are defined modulo

p, q by a condition

/ λ s - ς r r = l , (1.5)

which follows from the fact that C[ and Cr

2 should also have a unit intersection

number. The topological class of the new manifold M' constructed by the (p, q)

surgery does not depend on a particular choice of r and s.

Let Mf be a manifold produced by rational (pj,qj) surgeries on the first m

components of the link i f in M. M' still contains a link i f ; consisting of the

remaining components i f m + i , . . . , i f « of if. According to [1], the invariant of the

new pair M'\^£' can be expressed in terms of the old one through the surgery

formula

f, (1.6)
7 = 1

here /fr is a framing correction phase and the matrices U^q generate a K—\-dimen-

sional representation of the surgery matrices

) . (1.7)

The formula for U^q was derived by L. Jeffrey in [2]:

x Σ xJ/z exp \τ^(P«2 - 2α(2^« + μβ) + s(2Kn + μβf )1 , (1.8)
/i=±ln=0 L 2 Λ ? J
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here Φ(£/^ A ^) is the Rademacher function defined as follows:

s(p, q) is a Dedekind sum

^ ( i ) ( f ) (1.10)

N. Reshetikhin and V. Turaev showed in [3] that the surgery formula (1.6) de-
fines a topological invariant, without relying on the path integral representation (1.3).
This made the whole theory mathematically rigorous. They also formulated a set of
general conditions on the components of Eq. (1.6) for it to define an invariant. The
problem with the surgery formula (1.6) is however that it does not make obvious the
relation between the "quantum" invariant Z^ay(M, £?\k) and the well-known classi-
cal invariants of M and S£ such as Betti numbers, linking numbers, etc. A possible
remedy is to study the large k asymptotic behavior of Z{α}(M, J*f; k) by applying a
stationary phase approximation to the path integral (1.3). The stationary points of
the phase (1.1) are SU(2) flat connections on M. Let Jί be their moduli space,
J(c being its connected components numbered by the index c. Each component Jίc

gives its own contribution Z?\(M,££\k) to the total invariant:

} )(M,JS?;t). (1.11)

The individual contributions are presented as asymptotic series in % (or the expo-
nentials thereof):

Z$}{M^;k) = (2πh)^ exp Q

or, equivalently,

^ [ΐ ( ^ ^ ) ] (1.13)

Here S ŝ *s a Chern-Simons action of connections of Jίc and

TVzero = dim Hi - dim Hx

c , (1.14)

H^1 being the cohomologies of the covariant (with respect to Aμ) derivative D.

The coefficients A^\sic>} are called n-loop corrections. The expression for the 1-
loop correction was derived in [1, 4 and 2] (some details were added in [5]):

Pexp ( §Aμdxλ . (1.15)
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In this formula Hc is an isotropy group of Mc (i.e. a subgroup of SU{2) which
commutes with the holonomies of connections of Mc\ Np^ is expressed in [4] as

Λ/ph = 2/c + dim//c° + dim//,1 + 3(1 + bλ

M). (1.16)

Here Ic is a spectral flow of the operator L_ = +D + Dit acting on 1- and 3-forms
on M, bλ

M is the first Betti number of M. TR is the Reidemeister-Ray-Singer torsion.
L. Jeffrey observed in [2] that \/F^T defines a ratio of volume forms on Jίc and

The higher loop corrections A%\S^ come from the rc-loop Feynman diagrams.
They are expressed as multiple integrals of the products of propagators taken over
the manifold M and the link ££ (see, e.g. [6, 7] and references therein for details).

The asymptotic formulas (1.11)—(1.13) follow from the path integral of Eq. (1.4)
and can not be derived directly (at least, at this point) from the surgery for-
mula (1.6). In other words, the asymptotic properties of the r.h.s. of Eq. (1.6)
are not immediately obvious. Therefore it is interesting to take the surgery formula
for the invariant of a particular simple manifold and try to find its large k asymp-
totics in order to compare it with Eq. (1.15) and multiloop Feynman diagrams. This
program was initiated by D. Freed and R. Gompf in [4]. They observed a numerical
correspondence between the invariants of some lens spaces and Seifert manifolds
calculated through surgery formula and the predictions of Eqs. (1.11), (1.15) for
large values of k. L. Jeffrey worked out the full asymptotic expansion of the in-
variants of lens spaces as well as some mapping class tori in [2]. She checked
analytically that the classical and 1-loop parts of the flat connection contributions
were equal to the Chern-Simons action and the r.h.s. of Eq. (1.15).

In our previous paper [5] we studied the large k asymptotics of the invariant
of Seifert manifolds constructed by rational surgeries on the fibers of S2 x Sι. We
demonstrated the consistency between our results and Eqs. (1.11), (1.15) for the case
of 3-fibered spaces. We also found that the contributions of irreducible flat connec-
tions were finite loop exact. This means that (up to minor details) the asymptotic
series ]CίS=i ^n hn~ι of Eq. (1.12) appeared to be finite polynomials for the case
when dimHc = 0. Such behavior is similar to the one observed in [8] for the 2d
Yang-Mills theories and explained there by a non-abelian localization.

In this paper we study the large k asymptotics of SU(2) Witten's invariant
of general Seifert manifolds X r £ i . We calculate all contributions Z^C\X rE\;k)

(Proposition 3.1) and relate them to connected components of the moduli space
of flat connections (Proposition 4.3). Our formulas express the contributions of
irreducible connections as residues, which makes them look similar to the non-
abelian localization formulas of [9] and [10]. By comparing our expressions with the
residue formulas for intersection numbers derived in [9] and conjectured in [10] we
express the contributions of irreducible connections in terms of intersection numbers
on their moduli spaces (Proposition 5.3). As a byproduct of our calculations we
derive the full asymptotic expansion of the partition function of 2d SU(2) Yang-
Mills theory on a Riemann surface with punctures, including the contributions of
constant curvature reducible connections (Proposition 5.2). In Appendix 6 we discuss
the alternative way of deriving the asymptotics of Witten's invariants of Seifert
manifolds which relates them to Kostant's partition function (this is analogous to
the relation between the intersection numbers and Duistermaat-Heckman polynomial
discussed in [9]). In Appendix 6 we use the moduli space of twisted flat SU(2)
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connections in order to get rid of singularities of the moduli space of untwisted
connections and to simplify some residue and intersection number formulas.

2. A Surgery Formula for Seifert Manifolds

The simplest way to construct a Seifert manifold Xafp\ is to perform n rational

surgeries on the manifold Σg x S\ Σg being a g-handled Riemann surface. Choose n
points Pj, I S J = n o n Σg and consider an ^-component link i f in Σg x Sι formed
by the loops Pj x Sι. The Seifert manifold Xafp\ is constructed by n rational

»»t q J

(Pj'Qj) surgeries on the link components if/. The surgery formula (1.6) tells us
that

Z(Xg^Ry9k) = eiffτ X) Z{oί}(Σg x S\^;k)flϋ[^qj) . (2.1)

The framing correction /fr for this surgery was calculated in [4]:

5
here we used a notation

j (2.2)

P=UPj, H=PΣf- (2.3)
7=1 7=1 Pj

The invariant Zμy(Σg x Sι, i f k) is equal to the Verlinde number, i.e. to the number
of conformal blocks of the SU(2) WZW theory at level k for the surface Σg with
n insertions of the primary fields (9aj which correspond to the representations V^.
The number N?, is given by the Verlinde formula

Z{x}(Σg x S\se;k) = N9

{a} = Σ * % ^ r ' ( 2 4)

here S is an SL(2,Z) matrix which interchanges a parallel and a meridian:

and 5αj? is its K - 1-dimensional representation:

Saβ = yfsin (|αjϊ) . (2.6)

By substituting Eqs. (2.2) and (2.4) into Eq. (2.1) and using an obvious relation
SU{p>q) = U{-q>p) we arrived at the following equation:
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0=1
e*g

x exp
iπ H

2K\P
; * ) , (2.7)

K—\ PYiΛ l — ULtLR^λ Pi~ί

k ) = y e X P l 2KPP I y y
L ? ' v / £-^ . nΛ-2a—2 ί π n\ ^—' 2—-/

x exp 2π/ ]
j=\ Pi

iπ « IKmj^μj
• (2.8)

Here we split the invariant Z(X fpy k) into a product of lengthy numerical factors

and a sum ZS(X'(R\ k) whose large k asymptotics has to be determined. Note that

this sum takes a slightly different form if we substitute rhj = jU/AWy for mf.

ZS(X exp 2niΣ^
7=1 Λ'

exn (—^^-

0=1 sin
sin ( 2πβ—

Pi
(2.9)

This expression bears a close resemblance to the following two objects: Verlinde
numbers and a partition function of the 2d Yang-Mills theory. With the substitution
of Eq. (2.6), Verlinde formula (2.4) turns into

W β = i

(2.10)

According to [11], a partition function of a 2d Yang-Mills theory with the cou-
pling constant a defined on a unit area surface Σg, which has n punctures with the
holonomies

(2.11)

around them, is equal to

1

2g_lπn+2g

_2Σ - ^ (2.12)

The similarity between the sums in Eqs. (2.9), (2.10) and (2.12) becomes ap-
parent if we put

a, =
Pi

β; = -
iπH

Pi
(2.13)



Residue Formulas for Large k Asymptotics of Witten's Invariants 33

The sum (2.9) is a generalization of the other two sums: it has a quadratic exponent
of Eq. (2.12) and a sine in denominator of Eq. (2.10). The difference between the
ranges of summation in the sums (2.9) and (2.11) does not affect the similarity of
calculation of their asymptotics as we will see in the next section. Note however that
we cannot multiply the summand of Eq. (2.10) by an arbitrary quadratic exponential.
The exponent of Eq. (2.9) is special: the exponential is periodic in β after the sum
over nij is taken.

3. A Residue Calculation of Asymptotics

Now we turn directly to the asymptotic calculation of the sum (2.8). We convert
it into a sum over β e Έ in two steps. By slightly shifting the argument of the
denominator along the imaginary axis we can double the range of summation:

Pj

(3.1)

Indeed, the product of sines kills the summand at β = 0 (to see that the same
happens at β = K combine the terms at nij and qj — mf). If the product of sines
is absent (as it happens for the sums (2.10) and (2.12) if n = 0) we may add an
extra factor

sin Uβ)
^ ^ ( 3 . 2 )sin [f (/? - iξ)]

that will take care of β = 0,K.
As the next step, we extend the sum over β to all integer numbers by using the

following simple lemma:

Lemma 3.1 If the function f(β) defined on Έ has a period T then

TΈf(β) = ψ lim Vε Σ f(β)e-πεβ2 • (3.3)

As a result,

ZS(X μy,k) = J - limVi ' E exp \2πiK ± %-τA lim \ Σ e " ^
»Ίί/ 2A<!-^0 mj=0 y J=ι pj J ξ^o+ 2 βeZ

rjμjmj - β(mj + ^ ) ) ] 1 . (3.4)
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Thus we eliminated the difference in the summation range between Eqs. (2.9),
(2.10) and Eq. (2.12).

At this point we can use the Poisson resummation formula

Σf(β)= Σ fdβexp(2πimβ)f(β), (3.5)
βez mez-oo

which tells us that

Z,(Xgi*y,k)= ±]imyΓePΣ Σ Σ (flμj)
gΛ,ϊ 2K ε^O mj=0 moeZ{μ}=±l\j=l J

( n r . \ 1 +oo

lid Σ - ^ {Km) + μjmj) lim - / dβe~^ F(β; m0, {m}, {μ}) , (3.6)
y=l Pj ) ε ~ > 0 Z -oo

A substitution β = Kβ in the integral (3.6) would demonstrate explicitly the ap-
plicability of the stationary phase approximation in the limit K —> oo. The stationary
phase point for the phase of the integrand (3.7) is

βst = 2κζ lmo-Σ—) (3-8)
ti y j=ιPjJ

The steepest descent contour CSd(/?st) in the complex β plane is the line

βst) (3-9)

In the process of being deformed from its original form Imβ = 0 to (3.9) the
integration contour crosses those poles

β,=K(l + iξ) (3.10)

of the integrand (3.7) for which

0. (3.11)

Therefore to the leading order in ε

f dβe~™β F(β;mo,{m},{μ})= e-*^' J dβF{β;mo,{m},{μ})
-°° csd(j?sl)

+2πi Σ,

sign(f )(βst-Kl)>0
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Let us substitute this expression into Eq. (3.6) and take the sum over mj9μj and
m0. The function Zs(Xnr£\;k) will be presented as a sum of the contributions of

all stationary phase points (3.8) with mo and rrij belonging to the summation range
of Eq. (3.6) as well as the contributions of the poles (3.10). Both stationary points
and poles form 1-dimensional lattices Λst and ΛLp, which are invariant under the
shift

β^β + 2K (3.13)

and (if we put ξ = 0 in Λp) a reflection

J8--J8- (3-14)

The function

exp \2niJ2— [Km] + μjmj)) F(#m 0 , {m}, {/x}) (3.15)

V J=ιpj J
is invariant under the same transformations in the limit ξ —• 0 if we combine the
shift (3.13) with the shift of rπj

rrij -> nij -qj9 \ tk j ύ n , (3.16)

and the reflection (3.14) with the reflections

m o - ^ - m o , nij - > - m j 9 μj -^ - μ J 9 l ^ j ^ n . (3.17)

An extra symmetry

/wo-»wo-1, rnj^mj + pj (3.18)

helps us to keep m7 within their summation range. Thus we conclude that the
contributions of the stationary points Λst and poles Av have the symmetries (3.13)
and (3.14). Now we can apply Lemma 3.1 "backwards" to the contributions of Λst

and yip. We remove ^ lirriε-»o y/ε from Eq. (3.6) while taking only the contributions
of the poles βo and β\ and of the stationary points 0 ^ βst ^ K (if βstή=0,K, then
their contributions should be doubled in view of the symmetry (3.14)):

Zs(Xg^yk) = Zs,poiar + Z s , s t p h . , (3.19)

Σ ^ M + μŷ  )
j=\ Pj

x \\m^Sβ=βιF{β;m^{m},{μ}\ (3.20)

Zs,st.ph. = PΣ Σ Σ T ( Π

x lim / dβF(β;mo9{m},{μ}). (3.21)
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Here we used the following notation: let G be a group acting on a set X. For X G J ,
we denote by SymG(x) the number of elements of G which leave JC invariant. In
the future we will need two groups: the group of reflections ± (its only nontrivial
element multiplies real numbers by — 1) and the group of "afrme" reflections Z±
which combines reflections of ± with the shifts by integer numbers.

If we substitute Eqs. (3.19)—(3.21) into Eq. (2.7) we will see that the whole
invariant Z{X (Ey,k) turns into a sum of polar and stationary phase contributions.

Let us first calculate the contribution of the stationary phase points βstφ0,AΓ. We
introduce a new integration variable

X =

K

lst f s i g n ( H )
(3.22)

so that

lim / dβF(β;mo,{m},{μ})
>0+

+oo exp ( - -f f x
x / dx—

2πiK H sm \2πφ)

(3.23)

Here we expanded the preexponential factor of the intergrand in powers of x and
integrated the series term by term.

The case of βst = 0, K requires a more careful consideration because the station-
ary phase point coincides with one of the poles (3.10). First of all, we introduce
new variables

β' = β-Kl, m'j = πij -

in which the contribution of βst = Kl is equal to

(-1)Λ / ( n \

spec. = —y— Σ Σ [YlVj) exp

(3.24)

7=1 \Pj
~mf - -.

x exp
7=1

rJ i l

lim JdβΌφ μj) (3.25)
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Here

sin

and the contour C(ξ) is described by equation

Let us split the function G (β1; μj) into odd and even parts:

G± (β' μj) = ± (G (β' μj) ± G(-β' μj)) .

37

(3.26)

(3.27)

(3.28)

To calculate the integral of G~ (β1; μj) we double the integration contour and then
close it:

lim / df/G- (β' μj) = \ lim [ / - / W " (β' μj)
ξ~>° c(ξ) z^0+lc(ξ) c{-ξ)\

= πiResβ'=o G~ (β' μj) = πiResβ,=0 G (β' μj) . (3.29)

We substituted G (β' μj) for G~ (β' μj) because G+ (β' μj) has zero residue.

To integrate G+ (βr; μj) we introduce a new integration variable

χ = f / L e - f s i g n ( f )
K

(3.30)

so that the integration contour C(ξ) folds into two branches: one over and one under
the positive semi-axis in the complex x plane. The expansion of the preexponential
factor sin2"2 9 '"" (fβ') m powers of x leads to Γ-function type integrals:

lim / dβG+ (β' μj) =
ξ~*° C(ξ)

xd'

2K 1 P

/'-»62Z

l'_n_2g+3

2πφ

sin(2πφ)

l'-n-2g+3\

2 )

(3.31)

t)=0

The Γ-function in this equation is well-defined even if its argument is negative,
because it is always half-integer.

It remains now to substitute Eq. (3.23) into Eq. (3.21) and (3.29), (3.31)
into (3.25). Recall that Zφέc? represents the contributions of β s t = 0,K to ZSjSt.ph.
The sum over mo in Eq. (3.21) is finite due to the condition 0 ^ βst ^ K.

Now we turn to the polar contributions. The calculation of the residue in
Eq. (3.20) is straightforward. The problems come from the condition (3.11). Con-
sider a contribution of a general pole /}/. We introduce the new variables (3.24), so
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that the pole at β = βι corresponds to the pole at β' — β'o = ίξ. In the new variables
the contribution of βι to Z s p o i a r is equal to

Σ Σ Σ
*m<<Pj {μ}=±\ moez

i0

x exp

here

^ F ( β ' ; m0,m
r

j9μj),

exp
j=\

iπiΣμj ( -+-m'j - -Sjl

Σ
y=i Pi

(3.32)

(3.33)

We used the symmetry (3.18) in order to reduce the range of summation over m'j to
0 ^ m'j < Pj. The numbers m'j are integer or half-integer depending on the parity
of qj and /. The same symmetry (3.18) allows us to further transform the sum
Σ osm'.<Pj into

(3-34)

if we substitute μjfΐij for m'j everywhere in Eq. (3.20). After taking a sum over
{μ} = ± 1 , we arrive at the following expression:

Σ

y = 1

y = 1

We can extend the sum over mo to

Σ
0 = 7 = 1 Pj

( 3 3 5 )

(3.36)
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if we transfer the polar contributions (3.29) from ZS5St.ph. to ZSjPOiar. Then this sum
can be split in two parts with the help of the formula

/(/no) _ ^ / ( m 0 ) _ sign(fl)

mo>a^y^± (^o ~~ β ) mo>o^y^± (mo) o<w <\a\ Synij, (mo) Sym_j_ (mo — \cι\)

x / ( s i g n ( a ) m 0 ) . (3.37)

The residue in Eq. (3.35) is calculated at β' = iξ, so we can assume that

lmβf > 0. Then the sum Σ m o > o s ml(m0)
 c a n ^ e e a s ^ y calculated:

e2πiβ mo /

Σ o , , m ί m , = j cot(πj?'). (3.38)

Let us introduce the variable β" = β' — iξ. The residue in β" is calculated at 0. A
dependence on ξ in the vicinity of this point is nonsingular except for the factor
cot[π(jβ// + iξ)] coming from the sum (3.38). Since the range of summation in
Σmo>o d ° e s n o t depend on μ'j, the sum Σrμ,y=± in Eq. (3.35) can be calculated
explicitly:

pj J [ \pj J 2KPJ 2 J ) \

-2cos \2π (—m1: - -sΛ sin ( - — J cos ( Iπβ'^ J . (3.39)
L \Pj J 2 J\ \κPjJ \ Pj)

The factors sin \lπ(β/f + ^ ) ^ j and sin i f ^ ^ ) cancel the singularity of cot[π(jS"

+ iξ)] if n ^ 1. Otherwise the singularity will be canceled by the extra factor (3.2).
As a result, we may simply put ξ — 0 in Eq. (3.35):

:,polar,reg. ~ ^s,polar,sing./ ' V̂  ^ ^ ^

(3^41)
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^j_ Sym ± (m 0 )Sym ±
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exp 2π//?sign

sin
n+2g-2

(3.42)

The reason why we call the sum (3.42) singular (apart from the apparent ugliness of
the sum over MQ) is that it seems to be related to a singularity in the "underlying"
moduli space. Note that z[^olar r e g — 0 if g = 0 because the function whose residue
is calculated in Eq. (3.41) is nonsingular at β = 0.

Now it just remains to combine together Eqs. (2.7), (3.19), (3.21), (3.23), (3.31),
(3.40)-(3.42) into one proposition:

Proposition 3.1 The large k asymptotics of Wίttens invariant of a Seifert mani-
fold is a sum of a finite number of contributions:

Z(Xgc£};k)=
pj-\

Σ

-Σ
/=0,l

Σ
/=o,i

Σ

Σ

7(irr.sp.)

y(irr.)

(3.43)

= (-1)"
κγ-2
ir S

x exp

x exp

,e0/'! \SπiKH gin'
(3.44)
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' sign(P) , i , , w ( ί )

41

x exp
j=\

x exp j

TT

7,/?y ) - 3 s i g n ( -

sin
cot(πβ)

Π l | Λ I fj i 1 i\\ ( ft P \ //-» r>"*i

/sin 2π -̂ -m7- sΛ cos sin 2τψ —

Σ
{μ'}=±\

Σ
( r-^n μ'm'

0<m 0<
μ .m' Sym± (mo)Sym

e x p \_^Hβ2 + 2 π i β s i g n

sm
n+2g-2

y = 1

(3.45)

(irr.sp.) _ 7(irr.)
Z

; . , Sym z ±

x exp 2mX Σ (^mf - l-sjqjl
j=\ \Pj °>

x exp ^ ί UΣ
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oo

x y,,=0 \2πiKH)
I' -nE2Z

K o , \ n+2g-2
2πφ \ y

i^Φ)) ,5, j=ι b=0

(3.46)

A condition Σ / = 1 ~Γ^ ^ Z in the second sum of Eq. (3.43) means that for any

choice of signs ± in front of the numbers mj the sum is never integer. The condition

3μf = ±1 : Σ,n

 =ι I~2—L ^ TL means on the contrary that there exists a choice of signs

such that the sum is integer.

4. Flat Connections and Asymptotic Contributions

4.1. Connected Components of Moduli Space

Our goal is to relate the terms Z J ^ . ^ , Z ^ j . , and Z{^;] of the asymptotic

formula (3.43) to connected components of the moduli space M{X r£y) of flat

connections of the Seifert manifold Xgst\ in accordance with the quantum field

theory prediction (1.11). In this subsection we describe the connected components

{ q }

A flat connection Aμ on a manifold induces a homomoφhism Hol^ of the fun-
damental group %\ into the gauge group which in our case is 577(2). This homo-
moφhism maps an element x e π\ into a parallel transport along x:

Ho\A(x) = Pexp ( §Aμdxμ ] e 5*7(2). (4.1)

Two flat connections Λμ and Λ'μ are gauge equivalent iff there exists an element h
of the gauge group which conjugates one homomoφhism into another:

HoL*/ =h-ιUolAh. (4.2)

Therefore Jί is also a moduli space of homomoφhisms π\ —> SU(2) up to a global
conjugation.

The Seifert manifold X Γ£Ί is constructed by the surgeries L ^ " ^ on the

loops Py x Sλ of the manifold I g x ^ 1 as it was described in Sect. 2. The fun-
damental group of X (E\ is generated by the following elements: the loop b along

Sι

9 the loops a\9...,an around n punctures Pj on Σg and the standard generators
cι,d\,...9Cg,dg of π\(Σg). These elements satisfy relations

aftfj = 1, 1 ^ y ^ n , (4.3)

«i an=cxd\c[λd\λ Cgdgc~ιd~x , (4.4)

and the requirement that b commutes with all other elements of π\.
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There is another set of important elements in π\. These elements represent the
middle cycles of the solid tori (i.e. their parallels) which we glued in during the
surgeries:

fj = a'jW, 1 ύ j S n . (4.5)

Consider a homomorphism Hol^ : %\ —> SU(2). We introduce a function φ :
π\ —> [0,j] such that for x G n\ both HOU(JC) and exp[2πzσ3</>(x)] belong to the
same conjugation class of SU(2). Since b commutes with cij, Eqs. (4.3) and (4.5)
imply that for some numbers m, m G Z,

φ(aj) =

Φ(fj) =

rhj + qjφ(b)

Pj

φ(b) - rj-rhj

Pj

(4.6)

(4.7)

The remaining analysis depends on the value of φ(b). If φ(b)ή=0, ~, then
&) does not belong to the center of SU(2). Therefore since b belongs to the

center of π i ( I f £ i ) , all the holonomies should belong to the same U(l) subgroup
» ' l q J

of SU(2), in particular,

HolA(b) = Gφ[2πiσ3φ(b)], HolA(aj) = exp [2πiσ3

mj + ^ ' ^ M . (4.8)

This means that the connection is reducible: the isotropy group Hc, which commutes
with the holonomies, is equal to U(l). Also since all the holonomies now commute,
the r.h.s. of Eq. (4.4) is trivial. Therefore for some m^ G Z,

7=1 Pj

Substituting here Eq. (4.6) we find that

(4.9)

(4-10)

As for the phases φ(cj-)9 φ(dj), 1 ^ j ^ g, they are totally unrestricted. The only
condition on HoU(cy ) and HoU(rfy) is that they belong to the same subgroup U(l) C
SU(2) as all other holonomies.

Proposition 4.1 The connected components of reducible flat connections with

φ(b) + O,\ are Jί^γ^ Their holonomies are described by Eqs. (4.8), (4.10)

and (4.6). The choice of numbers m\,...,mn,rho is limited by a condition

1-. (4.11)
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If φ(p) = 0, \ then HoU(6) belongs to the center of SU(2) and the connec-
tion can be irreducible. Equations (4.3) restrict the possible conjugation classes of
the holonomies Ho\A(aj). Since this time HoU(Z?) is invariant under the reflection
e2πiφσ3 _^ e-2πiφσ^ W

Pj

If g = 0, then Eq. (4.4) degenerates into

ax an = l . (4.13)

This condition imposes a quantum group version of the polygon (e.g., triangle for
n = 3) inequalities on the phases φ(aj). If however g ^ 1, then since the commu-
tants hχh2h^xh2l, hχ,2 € SU(2) cover the whole group SU(2), Eq. (4.4) does not
restrict the phases φ(aj).

Proposition 4.2 The connected components of irreducible flat connections are

^T~\-ΐ ^ne conJuQa^on classes of some of their holonomies are determined by

Eq. (4.12) with φ(b) — | , / = 0,1. The choice of the numbers rhj is limited by
the condition (4.11).

If there exist the numbers fij = ±1 such that X)y=1 fijφ(aj) G TL, (cf Eq. (4.9))

then some of the connections of the connected component Jί ™\!~ are reducible and

we denote it as

4.2. Identification of Asymptotic Contributions

We are going to identify the contributions that the connected components of the
moduli space Ji(X Γ £ Ί ) make to Witten's invariant Z(X Γ £ Ί k).

# ' t q J W'l q J

Proposition 4.3 The contribution to Witten's invariant Z(X (Ry,k) of a reducible

component y # g d

} ; ^ is z g j ^ of Eq. (3.44) such that

πij = my(mod pj), m0 = m0 + Σ ~ ( 4 1 4 )
Pj7=1 Pj

The contribution of an irreducible component Jίvl. ~ is Zi^l^ such that

(4.15)

The contribution of a special irreducible component Jt^^- (which also contains

some reducible connections) is Z^fy^ whose indices are given by Eq. (4.15).
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One possible way of verifying these claims is to use Eqs. (1.12) and (1.15).
One has to compare the already known Chern-Simons actions of flat connections
to the leading exponentials of Eqs. (3.44)-(3.46). One-loop corrections can also
be compared if at least some of the parameters in the r.h.s. of Eq. (1.15) can be
independently calculated. We carried out this program for 3-fibered Seifert manifolds
X° (fτ? fl' ff) i n [51 by u s i n S t h e 1-1°°P calculations of [4].

A more direct way of identifying the asymptotic contributions is to "measure"
(or, in the language of quantum theory, "observe") directly the holonomies of flat
connections along some elements of the fundamental group of the manifold. Suppose
that we know that for an x G %\ the conjugation class of Hol^(x) is the same for
all connections of a connected component Mc. Let us introduce a knot (that is,
a Wilson line) along x carrying a y-dimensional representation of SU(2). In other
words, we multiply the integrand of Eq. (1.3) by an extra factor Tτy¥Qyjp(§χAμdxμ).
According to Eq. (1.15), at the 1-loop level in \jK expansion the contribution of
J(c will be multiplied by

Tr7 Pexp (§AμdΛ = Try exp[2πiσ3φ(x)] = ^ " ^ (4.16)

Therefore the knot is an observable which measures the conjugation class of the
holonomy.

We introduce the following link into the Seifert manifold X Γ £ Ί : a line along
gΛ q )

b with y-dimensional representation and n lines along aj with yj dimensional repre-
sentations. The new Witten's invariant Z{yy;y(X (pΛ,J£ik) can be easily calculated
with the help of the lemma whose simple proof can be traced back to [1]:

Lemma 4.1 Let JΓ be a knot in a manifold M and let C/fm be the meridian of
JΓ. If C/f carries an (^-dimensional representation and Jfm carries a y-dimensional
representation, then

Z*,y(M, Jf, Xm; *) = T Z T ^ W •*" *) = , \κ

π '' Za(M, Jf; k). (4.17)
5, ' s i n ( f α )

As a result,

-.'Λ^Λ^ fτ!l?(ΐ7

- , — - sin (f «y) *

s i n ( f

Instead of going through the detailed asymptotic calculation of the sums of this
equation along the lines of the previous section (which is possible but tedious) we
will present a simple argument which will show how the extra factors

S i n (*ftθ (4 19)
sin (f/0 ( 4 1 9 )
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and

sin ( f α,77 )
fπ x (4.20)

affect the asymptotic formulas (3.44) and (3.46). Note that all the terms in Eq. (3.43)

came as local contributions of some special points β*: ^^ym came from the sta-

tionary phase points β* = βsU z £ \ . / came from residues at β* = Kl and Z^?;]

came from both stationary phase and residue at β* = KL Therefore to the lead-

ing order in K the effect of the factor (4.19) is to multiply these contributions by

Λ ol\ Comparing this factor with the r.h.s. of Eq. (4.16) we conclude that

: 2K ' ( 4 ' 2 1 )

This means that for zί*J'?

φ(b) = — I m0 - E — 1 , (4.22)
H \ i=\Pi)

w h i l e f o r Z r λ ^ a n d Z ) , ^ ^

φ(b) = l- , (4.23)

in full agreement with the Proposition 4.3.
To find the effect of the factor (4.20) consider the calculation of the sum

rAT > ( 4 2 4 )

which produces the factor 0βX

 J' ' of Eq. (2.7). The relevant part of this sum is

here mv and μu are m and μ coming from Eq. (1.8) while μs comes from the
formula

S i ϊ l ( z ^ 7 ) = \ ^ Vsexp^-i^μsβaj) (4.26)

The sum (4.25) can be calculated along the lines of the previous section. It will turn
into a purely gaussian integral over α7. The stationary phase point which dominates
this integral is

«S-> = ̂ o + Wjβ . (4.27)
Pj
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On the other hand, comparing an integral over αy of the summand in Eq. (4.25)
with the exponentials of Eq. (2.8) we conclude that

rrij = μsmu, μj = μsμu , (4.28)

so that

f 2Km' + ί»β. (4.29)f μs
Pj

Therefore to the leading order in K, the effect of the factor (4.20) is to multiply
the contributions by

sin Uφy
V * (4.30)

sin( f αf>) '

with αj s t ) coming from Eq. (4.29) in which we should substitute β = β*. Then
Eq. (4.16) tells us that

φ(aj) =
Pj

(4.31)

which is again in full agreement with the Proposition 4.3.
Finally as a result of our identifications we can recognize the presence of

the factors Πy=i sin[2π</>(/7)] in all the formulas (3.44)-(3.46), e.g. the factors

Π/=i s m ( (rjmj ~ Φ)) m ^q O 44) and Π/=i s m (~fm) ~ \sjl) m Eq. (3.45).

5. Intersection Numbers on Moduli Space

Consider again the asymptotic formulas (3.43)-(3.46). Whereas the contributions of
reducible connections ^f^Vmo are presented as infinite asymptotic series in l/K, it
turns out that the contributions of irreducible connections are in fact finite polyno-
mials in l/K. This follows easily from the residue formula (3.45). The situation
seems similar to that of the Yang-Mills partition ruction calculation of [8] and the
calculation of Verlinde numbers in [12, 13]. In all these cases the moduli spaces
contributing the polynomials to the partition functions are isomorphic. In particular,
it is easy to see that

• " • • L - " - 1

 Ξ ™ / ; ( 5 - 1 )

here Jί^{Σg) is a moduli space of SU(2) flat connections of a ^-handle surface
with n punctures Pj and holonomies around them fixed by Eq. (2.11). Both the
Yang-Mills partition function (2.12) and Verlinde number (2.10) were expressed in
terms of the intersection numbers on Jί^{Σg). We will derive a similar expression

for zS ' j . j by comparing the asymptotic formulas for these three objects and using

the localization formulas of [8, 9 and 10].
We start by presenting the residue formulas for the partition functions (2.10)

and (2.12).
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Proposition 5.1 A number of conformal blocks for the SU{2) WZW model on Σg

with n insertions of the primary fields Θ^ is equal to

NU = - 4 M j
Jy=1 sin(2πα/-0)

2(2π<£)sin
cot(2πKφ)

n-\

Σ HIM/ sign
V=1

Σ « I Sym±(m)

exp sign - £ " = 1 μ7α7

sin
(5.2)

if n + 2g-2 > 0 αrcd n + ^ " = 1 α7- is even. If n + Σ"=i αy ^ ° ^ ^ w N9

{a} = 0.

Proposition 5.2 A partition function of the 2d Yang-Mills theory on a g-handled
surface Σg with n punctures Pj, the holonomies around which are fixed by
Eqs. (2.11), has the following asymptotic representation in the limit of small gauge
coupling constant a: / / Σ " = i ^j ί ^ t n e n

Z{θ}(Σg; a) = zf^(Σg; a)
g; a), (5.3)

2gπ«+2^-3 (πφ)Π sin(2πθjφ)

. \ w - l

2 / {μ}=±l V=l Sym± (TO)

exp \-aφ2 + 2π/φsign (X)"=1 μjθλ (TO -
L \φn+lg-2

, (5.4)

exp
oo (_l)9-l

(n+ 20+ 2/ '-3)!

(B + 20-3) !
m -

n+2g+l'-2 (5.5)
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Ifn is even and 3μj = ±1 such that Σn

j=x μjθj e TL, then Z^{Σg\a) in Eq. (5.3)

should be substituted by zίι£:sp'\Σg;a):

in „**%=! /rt <,„ M \ / n \

Σ τiμj)

ίn+2g-l

^ V ' ,,5, (ΠΛ)
 <5 6)

The contributions z l ^ ' ^ Γ ^ α) come from constant curvature U(l) connections, the

contribution ZJ1^ (Σg;a) comes from irreducible flat connections.

Equation (5.2) was derived (for the case of n = 0) in the papers [12, 13]. E.
Witten derived Eqs. (5.5) and Eq. (5.6) in [8].

According to [8],

2Z^\Σg; a) = J exp (ω + AaΘ) (5.7)

here Θ is a 4-form defined in [8] and ω is a symplectic form on Ji^{Σg) normal-
ized in the following way: if aμ and bμ are two su(2) valued 1-forms representing
the tangent vectors at a point on Jί^{Σg) then

ω(aμ,bμ) = —^ Tr Jaμ A bμ . (5.8)

The moduli space Jί^{Σg) is a bundle over a moduli space Jί(Σg) of flat
connections on Σg without punctures2 (let us forget for a moment that Jί(Σg) has
a singularity, we also assume that θj are small and Σ y = 1 ±0,- $ Z ) . The symplectic
form ω is a sum of forms

f (5.9)
7=1

here ω 0 is a pull-back of the symplectic form on Jt(Σg) while ω7 are closed 2-forms
normalized so that

fωj = δij9 (5.10)

Sf (q S i ύ n) are the 2-dimensional spheres which make up the fibers of the
bundle Jf{θy(Σg) -> Jί{Σg\

The Verlinde number (5.2) is a dimension of the Chern-Simons Hubert space
for Σg with n insertions of primary fields Θaj. In other words, it is a number of
holomoφhic sections of a certain line bundle over Ji{θ}(Σg) with

(5.11)
2k

2 I am thankful to L. Jeffrey and A. Szenes for explaining to me the properties of this bundle and its
symplectic structure.
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Therefore it is given by the Riemann-Roch formula

NL= I ekωΊά(Jί{e}(Σg)) (5.12)

(see, e.g. [11, 10] and references therein). Note that a natural symplectic form
coming from Eqs. (1.1) and (1.3) is

ω' = 4π2ω . (5.13)

Therefore the semiclassical formula for the dimension of the Hubert space should

contain the exponent exp ί ̂  J = exp ί | ^ J in full agreement with Eq. (5.12).

The Todd class Ίά(Jί^{Σg)) can be expressed as

Ύά(Jί{θ}(Σg)) = exp ί 2ω0 + Σ > 7 \A{Ji{Θ}{Σg)) (5.14)

(see, e.g.[10] and references therein). Upon substituting this expression in Eq. (5.12)
we get

° = J exp Kω0 + Σ*J<»J U{Ji{θ}{Σg)) . (5.15)

The pairs of Eqs. (5.2), (5.15) and (5.4), (5.7) are particular cases of the following
conjecture which can be deduced from the calculations of [8], the main theorem
of [9] and the calculations and conjecture of [10]:

Conjecture 5.1 For the numbers θj91 ^ j ^ n such that £ ) " = 1 ±θj φ ΊL, let
Jί{Q}(Σg) be the moduli space of flat SU(2) connections on Σg with n punctures
and holonomies (2.11) around them. Then for the two (not necessarily integer)
numbers K, a

I e x P K

'K
= - 2 π ( -

+ΛaΘ A(Jί{θ}{Σg))

sin " (πφ)
sin(2πKΘjφ)

E (flμj) sign (tμjθj) Σ S v m

1

( }

exp [-aφ2

+ ; = 1 μjθj) (m - \Σ"=ι μjθj\)]

smn+2g-2(πφ)
. (5.16)
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Suppose that we change the phases θj by small amounts Aθj such that for any
t € [0,1], Σ"=i Mθj + tΔθj) $ TL. The topological class of the manifold Jί{θ}{Σg)
does not change. As a result,

exp \K iω0
Aθj)ωj A{Jί{θ}{Σg))

= -2π f f V Res0=o .
2y si \πφ)

. \ n-\

Σ Σ

exp [-aφ2

^ + Aθj)

sinn+2g-2(πφ)

(5.17)

It is easy to put the r.h.s. of Eq. (3.45) in a form similar to the r.h.s. of Eq. (5.17)
X^n -Λ-mj
^ - 7 = 1 ~Pj

for the case when Σy=i ^~ ί ^ :

x exp

x exp
P

Σ ΠA*/
 e χ p

ί}=±i V/=i /

,p .(iLm! -\s.{

sin y (πφ)
cot(τLfo/>)Π sin

j=\

2πKφ
'mf . EL

. \ n-\

2J {μ'}=±l \j=l
Σ

ign (Σ"=i ^sign

v"=i"

Sym ± (m 0 )

sinn+29-2(πφ)

(5.18)
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Comparing this expression with the intersection number formula (5.17) we come to
the following conclusion:

Proposition 5.3 The contribution of a connected component Jίyl'-!- of the moduli

space of irreducible flat connections to Wit ten's invariant Z(X (p\',k) can be
» Ί q J

expressed in terms of the intersection numbers of the forms on this component:

ί—\Λnl £*"! π s i g n (?)
ί'-'J~

x exp iK±(r-Lmf-l
2πiK±

x exp hS 7

Σ

I e χ p

£ΛPJ J

H

Sjqj

e χ p

+
1

7=1

2π» Σ ^ -j-m'j - ~Sj>

)j + 2πi—Θ £>j), (5.19)

or, equivalently,

7(irr.) =

{m'YJ~

SJgn(P)

x exp

x exp

μπiK± (j^m? - \sjqjl'

/ exp

x Π2/ sin 2π ( —m'j s,l Λ (5.20)

The numbers m'j and rhj are related by Eq. (4.15), also -M1^^ - is isomorphic to
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Note that the last product in Eq. (5.20) looks like the "equivariantized" Reide-

meister torsion of the Seifert manifold.

The formula (5.19) looks very similar to Eq. (5.7) and also to Eq. (5.12) if we

recall that

Nβ

{a}=Z{a}(ΣgxSι

9<?;k)9 (5.21)

the ^-component link if consists of n loops which go along Sι of Σg x S1. E. Witten
proved Eq. (5.7) in [8] by applying the equivariant localization arguments to the
path integral representation of the 2d Yang-Mills theory. It seems likely that there
should be a path integral localization proof for Eq. (5.19) as well. We came to
Eq. (5.19) through the back door: by working out the large k asymptotics of the
surgery formula and then cooking up an intersection number that would match the
contribution of an irreducible connection. A localization argument would derive the
r.h.s. of Eq. (5.19) directly from the path integral (1.3). Note, however, that even for
the seemingly simpler case of Eq. (5.12) there is no localization proof yet. M. Blau
and R. Thompson [14] could only use abelian localization in order to establish
Verlinde formula (2.4). At the present time in order to prove the formula (5.12)
one has to show that the path integral for Z^0Cy(Σg x Sx,^\k) is equal to the number
of sections of a certain holomorphic line bundle and then use the Riemann-Roch
theorem to calculate that number.

6. Conclusion

An extensive use of path integral arguments puts the theory of Witten's invariants
somewhere between mathematics and physics. The path integral calculations are
tested in physics against the data coming from experiments with elementary par-
ticles. In a similar way we can say that the asymptotic expansion of the surgery
formula (1.6) provides us with experimental data about Seifert manifolds. This data
has to be compared with the asymptotic expansion (1.13) of the path integral.

Being viewed in this way, the annoying complexity of the formulas (3.43)—
(3.46) should be encouraging. It means that there is plenty of experimental data
(i.e. topological invariants of 3d manifolds) hidden in them. As we already know,
this data includes Chern-Simons invariants, Reidemeister-Ray-Singer torsion and
spectral flows at the 1-loop level. The Casson-Walker invariant appears as a 2-
loop correction to the contribution of the trivial connection to Witten's invariant of
rational homology spheres (and Seifert manifolds Xo,{£} among them, see e.g. [5]).
The full trivial connection contribution in the general case of X rEχ was studied

in [15] with the help of Eq. (3.46). We do not repeat this analysis here.
In this paper we were mostly interested in the contributions of irreducible flat

connections. These contributions appear to be finite loop exact. Our main result is
Eq. (5.20) which expresses these contributions in terms of the intersection numbers
on the moduli space of flat connections. Similar expressions were obtained by J. An-
dersen [16] for the case of Seifert manifolds with H — 0. He expressed Witten's
invariant as a trace of an operator acting in the space of sections of a certain line
bundle and then used the Lefschetz-Riemann-Roch theorem in order to calculate
that trace. We have not completely reconciled our formulas yet.

The form of Eq. (5.20) is very suggestive. It combines symplectic form on
the moduli space, 4-form Θ (which appeared in Witten's study of 2d Yang-Mills
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theory [8]), ^4-genus and an "equivariantized" Reidemeister torsion of the Seifert
manifold. However Eq. (5.19) was derived "through the back door," that is, by
comparing the residue expression (3.45) coming from the surgery formula (5.17)
with the residue formula (5.17) for the intersection numbers. It would be much
better to derive Eq. (5.19) directly by applying some sort of localization arguments
in the spirit of [8] to the Chern-Simons path integral (1.3). This still remains an
unsolved problem.

Acknowledgements. I am thankful to J. Andersen, L. Jeffrey, A. Szenes, A. Vaintrob and E. Witten
for valuable discussions and advice. This work was supported by the National Science Foundation
under Grant No. PHY-92 09978.

Appendix 1

There is an alternative way of calculating the sum (3.1) which is similar to the one
used in [5]. This method is a Fourier transform of the method used in Sect. 3. It
involves gaussian integrals instead of residues and boundary contributions instead
of stationary phase contributions.

We start by expanding the denominator of Eq. (3.1) in an analog of geometric
series:

(Al.l)

Here Kn(m) is the SU(2) Kostant's partition function:

+ Λ - 1 \ (m + Λ - 1 ) ! e2πin

n-X j = ( n - l ) J
In other words, the polynomial Kn(m) is equal to the number of ways in which an
integer number m can be split into a sum of n ordered nonnegative integers.

The expression (Al.l) can be put in a different form if we use a "shifted"
Kostant's polynomial

...
(n- 1)!

π _ e2πimx

R e s * = o -r-jn—7 for m ^ 0 ,
(2i)n~2 sin

Kn(m) = 0 for m < 0 . (A1.3)

Since Kn(m) = 0 (as defined by ^(/w) = ^ y Πjlϊi™ +7*)) if m £ Z, 1 - w ^

m ^ — 1, we can shift the range of summation in Eq. (Al.l) so that

>.Lβ_iξ)) = W+29~2 g Kn+lg-iωOφ (~f-Aβ - « θ) (A1.4)
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The Poisson resummation formula

Σ δ(y-m)= Σ eπiln Σ e2πi(l~2β/^
/=o,i β'ez

55

(A1.5)

allows us to convert the sum in Eq. (A 1.4) into an integral over γ:

x exp ( - ^

We substitute this expression into Eq. (3.1). Since the summand of Eq. (3.1) is

invariant under the shift β —> β -f 2̂ Γ, we can combine the sums ΣjgL-je+i Σβ'eΈ

into one sum ΣβeZ' which we transform into an integral with the help of the

Poisson formula (3.5):

Pj-\

/=0,l V/=l

/ Π γ .

exp 2πz Σ — {Kmj +

Σ 7^7 ̂ +2,-2(7) exp 2π/y (/ + %

+ OO

— OO

2 π i f l H
. (A1.7)

The integral over β is purely gaussian and straightforward to calculate. We go

from rπj to nij according to Eq. (3.24) and transform a sum Σmy=o m t 0

/ Pi TΊn

o^'M 11/= 1

by substituting μjmy for m'j. Since ^ W + 2 ^ - 2 ( T ) = 0 for y < 0 we can extend the
integration range to all y. We also substitute

7=1

(A1.9)
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for y. After all these transformations we end up with the following expression:

K

H >Σeiπ!" Σ
/=0,l 0<m'<-

1

x exp

< Σ
M=±i y=i

/ exp
7=1

Kn+2g-2(r>mpVj)QXV[-^Jjy ) > (A1.10)

here

Σ

x K n + 2 g - 2

x exp

M H + I

y = i

. (Al.ll)

-(tot)
The function Kn+2g_2iy^m'j^j) ^s locally polynomial in y but it (or its derivatives)
has a break at the points

7 = 1 -

(A1.12)

because the shifted Kostant's partition function Kn+2g-2(y) (or its derivatives) has
a break at γ = 0.

The sum Σ m o G Z in Eq. (Al . l l ) can be limited to

J=l

(A1.13)

because Kn+2g-i{y) = 0 if 7 < 0. The remaining semi-infinite sum over mo is reg-
ularized by the factor e~2πmoξ which is present in Eq. (Al. l l) . Actually, if g = 0,
then the alternating sum over μfj is similar to the ones which express the weight
multiplicities of tensor products through Kostant's partition functions. Therefore the
sums

( A 1 1 4 )Σ
{μ>}=±l\j=l
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are equal to zero if γ + Km0 is big enough. As a result, only a finite number of
terms contribute to the sum over mo. If g ^ 1, the number of terms is infinite but
the limit at ξ —• 0+ is still finite.

The best way to find an expression for Kn+2g-2(yimρ Pj) is t 0 u s e m e residue
part of Eq. (A1.3). The sum over (A1.13) can be calculated with the help of
Eqs. (3.12) and (3.38):

exp[2π/0sign(α)(m-|α|)]" ι , A 1 1 - .
{J\LAD)

It is clear from this formula that KnJrlg_1{y\ml^μj) is indeed a local polynomial in

y, the breaks at the points (A 1.12) come from the "singular" sum Σ0<m<a>
The calculation of the integral over y in Eq. (A1.10) is now straightforward

(but tedious). The integral is a sum of the contributions of the stationary phase
point y = 0 associated with irreducible connections and break points (A 1.12) as-
sociated with reducible connections. To calculate the former one has to take the

~ (tot)

polynomial which is equal to KnJrlg_1(y\m'pμj) in the vicinity of γ = 0 and substi-

tute it in Eq. (A1.10) instead of Kn^2g_2(y;mp μ7). To calculate a contribution of a

point (A 1.12) one may substitute the term of the sum ΣmeZ of Eq. (Al . l l ) which

has the break at that point, in the similar way. These calculations lead ultimately to

Eqs. (3.43)-(3.46). We do not discuss them here but the examples for the case of
a 3-fibered rational homology sphere X$ (^, ^ , &• j can be found in [5].

As we see, the residue calculations of Sect. 3 are simpler and more straightfor-
ward. However the calculations involving the Kostant partition function present a
clear group theoretical picture by relating the surgery formula to multiplicities of
irreducible representations in tensor products of representations of quantum groups
(for more details see [5]). This simplifies the analysis of reducibility of connections
providing the contributions to Witten's invariant based on general simple Lie groups.

Appendix 2

In Sect. 4 we used the fact that the moduli space Jί^y(Σg) of flat connections on
a punctured surface is a bundle over the moduli space Jί{Σg). However the space
Jί(Σg) is singular. Its singularity results in the "ugly" sums like Σ0<m<\γn θ

in Eq. (5.4) and in the requirement that the sums Σ/=i =^y should not be integer.
In order to avoid the singularity of Ji(Σg) E. Witten suggested in [8] to consider

the twisted SO(3) bundle over Σg for which the moduli space of flat connections
is nonsingular. Since we are dealing with punctured surfaces, we may even avoid
using SO(3) directly although our formulas will be very similar to those of [8].
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The base for our bundles is the moduli space Jί(Σg) of flat connections on
Σg with one puncture, the holonomy around which is equal to eιπσ\ Note that
aim Jί(Σg) = dim Jί(Σg) = 3g — 3. In fact, Jt(Σg) is a 2g times folded covering
of the moduli space of flat connections on the twisted *SΌ(3) bundle over Σg. For
the set of phases

the moduli space J(^{Σg) which we will also denote as simply as Jίn{Σg), is a

bundle over Jί{Σg) in much the same way as it was a bundle over Jί{Σg) when

θ\ rather than θ\ was very small. The reason why we can use notation Jin(Σg)

for J({Q}(Σg) is that in contrast to the case of θ ; < 1, the topological class of

does not depend on the phases θj as long as θj <C 1.

Rewriting the r.h.s. of Eq. (2.12) in terms of θj we find that

j f^ft ώVπβfy . (A2.2)

The extra factor (—1)^ translates into shifting the summation from integer to half-
integer m in the Poisson resummation formula:

Σ(-l)βδ(β-x) = Σ +l2e2πimx (A2.3)

As a result, instead of Eq. (3.38) we should use

Σ sm(πβ

We can also drop the second sum in Eq. (3.37) if \a\ < \, which is indeed the

case if 0/ <C 1. Thus we get

instead of Eq. (5.4).
If we introduce a set of integer numbers α7 related to αy

dι=K-au α2 = α2,...,αΠ = αΠ, (A2.6)

then apparently

As a result, if α,- <C ΛΓ, then instead of Eq. (5.2)
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Finally, if we introduce the new numbers

m\ = — -m[, m2 = m2,...,m
f

n = mn ,

and assume that rhj <C pj, then Eq. (5.18) can be rewritten as

7=1
x exp

x exp

χ Σ Π ^ e χp
{μ}=±l V=l /

in H
2JΠ 7 - 3 sign

/ /

y=i

exp
r_MgΛ2)Γi;=iSίn

ψj

sin + 2 g _

Since Eqs. (5.17) and (5.15) still hold:

ω = ω0

7=1
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(A2.9)

. (A2.10)

, (A2.ll)

(A2.12)

we conjecture that

/ e x P
n „

A: ωo + 2y/θiωj +4aΘ

(A2.13)

We do not need to generalize this equation further to the analog of Eq. (5.17)

because the manifold jMn(Σg) is manifestly independent of θj.
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Combining Eqs. (A2.10) and (A2.13) we obtain the nonsingular version of

Eq. (5.19) which holds for rhj < py.

7(hτ.) _
(A2.14)

xexp 2πiKΣ ^m? ~ ~.

x e x P ^ F ^

x Π 2 z s m 2 π —m, Sjl-\

jΛ \Pj J 2Pj
(A2.15)
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