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Abstract: In this paper we exhibit a large class of hermitian scalar field theories
satisfying the Wightman axioms. For each d > 0, and each polynomial P, we exhibit
a collection of theories which are loosely but legitimately based on a P(φ) interaction
in d space dimensions. One of the features of the construction is that the Wightman
n-point function of each theory is a sum of finitely many integrals associated with
"Feynman-like" graphs. Thus, it is in closed form.

0. Introduction

We present here a new approach to the construction of Wightman field theories. It
needs a new idea to obtain nontrivial scattering, but there are several new elements
in the proof of the Wightman axioms, of which we hope some may be useful in the
construction of nontrivial theories.

Our theories are scalar field theories, based loosely but (we feel) genuinely on
an arbitrary polynomial interaction in an arbitrary dimension. These theories satisfy
the Wightman axioms, including vacuum uniqueness, and they are in some sense
"perturbations" of a generalised free theory (see Definition 1.3).

However, they cannot be used directly to construct theories with nontrivial scat-
tering amplitudes, firstly because the Wightman functions as given are "too smooth,"
a fact which cannot be remedied by merely adjusting things for fixed instead of
"smoothly smeared" mass. Secondly, and more deeply, K.H.Rehren [Rehl] has suc-
ceeded in "decomposing" these theories into infinite Wick polnomials of countably
many Gaussian fields with various smeared mass density functions (here an "infi-
nite" polynomial means a polynomial in countably many variables with infinitely
many nonzero coefficients but finite total degree, the coefficients being so chosen that
the correlation functions converge in an appropriate manner). For the details of the
"Rehren decomposition," one should of course consult [Rehl]; let us just remark that
the decomposition is interesting in its own right, and by no means trivial. This result
thus places our theories in the Borchers class of something we know to be trivial, and
thus definitely precludes nontrivial scattering, at any rate in the case of fixed mass.
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Thus, our Wightman functions are obviously non-Gaussian, and with a little effort
one can see that they are not Wick polynomials in a single Gaussian theory either.
That they can, however, be decomposed into infinite Wick polynomials in countably
many Gaussian fields, is the point of Rehren's proof.

However, there are some new ideas in this construction which we hope will prove
useful.

The theories all involve summing certain integrals, indexed by certain graphs, in
order to obtain the Wightman functions of the theory. One of the main features of
the theory is that the number of graphs involved in calculating the Wightman n-point
function is finite; there is an integer parameter S of the theories such that the graphs
involved with the n-point function have at most nS internal vertices. That (with this
choice of integrand) one can get a local and covariant scalar field theory with only
finitely many graphs, is the main point of the proof.

We conjecture that the collection of graphs used might in some sense be "minimal"
for a collection of graphs having all the useful properties that these ones have; for
the details of our collection see §2.

In order to get our theories to work, we introduce various choices, notably an in-
teger parameter S which regulates the number of graphs that we use, and a smoothing
function θ which acts a bit like a momentum cutoff.

This kind of cutoff does not, however, have to be removed in order to get the final
answer; instead, covariance is restored by a judicious integration over several copies
of the (full) Lorentz group L. Details of the integration are given in our definitions
in §3.

The substitution required to establish covariance under a Lorentz transform 7 is
that one takes all Lorentz group dummy variables ge involved in the integrations over
L, and replaces them with elements ge(Ύ*)~l, where * denotes the transpose of the
linear map (for details, see §7). Our integral remains invariant under the substitution
because Haar measure is used for the integrations.

Of course the presence of integrations over the noncompact group L raises
questions of convergence; these are answered in §4. Positivity is shown by ex-
plicitly embedding the construction inside a suitably large Fock space eκ, where
K = L2(ld+1 x L); this is done in §5.

Locality, also, is restored by a rather more complicated substitution involving
our integrations over the Lorentz group. Each graph which we associate with the
Wightman n-point function splits itself up naturally into n "bands," one for each test
function; and the group elements ge are indexed by certain edges e of the graph.
If one has test functions fj and fj+\ which are concentrated at time t = 0, one can
formally indicate that the Wightman function Wn(f\,..., fn) should be invariant under
swapping fj and /j+i, by keeping most of the group elements ge fixed, but replacing
each ge such that edge e crosses from band j to band j + 1 with the element τge,
where r is reflection in the plane t = 0 (Rehren discusses this substitution further in
[Rehl]).

However, the above argument is not good enough for a formal proof, because the
convergence arguments of §5 are valid only for functions in the Schwartz space, not
for functions concentrated at t = 0; so one has to replace this simple argument with
something really quite delicate, which we do in §9, the longest and most difficult
section of the paper.

In spite of its difficulty, the author feels personally that this is one of the most
promising parts of the construction, and that there is real hope that one day an argu-
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ment like this may be used to prove locality for nontrivial theories. For the argument
is a way by which one may seek to prove results which are hinted at when one for-
mally equates two divergent integrals; such as one frequently encounters in this area
of research.

The spectral properties of our construction are relatively easy to establish, because
we are able to identify the Hamiltonian of our theory in a fairly explicit manner, in
§8 (it is the restriction to the appropriate subspace of the Hamiltonian of the large
Fock space mentioned above).

Well, that is the outline of our proof. We now begin the proof itself.

1. Preliminary Definitions

What follows is consistently done in dimension d + 1.
This theory is intended to be based on a free theory with "smoothly smeared"

mass. Thus, in the free theory we have a vacuum state Ω, and some field operators
\ with a two point function, CM(/, #)» given by

/

CO />

/ /(-k, -L)g(k, L)μ(L2 - k2)dkdL,
JΆd

(1.1)
where ~ denotes the Fourier Transform, and the function μ is supported on M+.

By the Kallen Lehmann representation theorem, this is the general form for the
two point function of any theory satisfying the Wightman axioms, except that the
nonnegative function μ may be replaced by a measure.

Our functions μ will always be infinitely differentiable and supported on an inter-
val [rag, 77i}], with πii > TΎIQ > 0 and (we may assume when doing calculations later
on, though it is not essential) mi < 2m0. We shall thus be assuming that μ G CQ°.
This last means that we think we can tell the one-particle states from the rest (only
states with mass between TTIQ and rai). Our convention with regard to the Fourier
Transform is that it is

so the inverse Fourier transform will have a factor (2π) ^+1) in d + 1 dimensions.
The theory will be obtained by performing an operation analogous (fairly!) to

formal perturbation theory with a restricted set of Feynman graphs. The (finite) set
of graphs involved is described in the next section. The polynomial interaction will
be of form

TV

p(Φ) = Σa*<t>i> (1 2)

ι=2

where the coefficients α; are real. Note that we expect our polynomial to begin with a
quadratic term; linear perturbations can be done separately if desired. The "constants"
involved in our theory, apart from the mass density μ and polynomial interaction P,
are as follows: an integer S > 0 regulates the number of graphs involved; a smoothing
function θ G S (Rd+1) "helps things to converge." [Limits as θ tends to some special
class of function, e.g. a delta function, may be of interest but are not attempted in this
paper. What we do with the function θ is somewhat akin to replacing the field φ with
a convolved version φ * 0; the process being done with the aid of a certain averaging
process over the Lorentz group, which preserves covariance and locality. We obtain
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fully local and covariant results without letting θ become singular, and our objective
here is to produce good answers which converge as "obviously" as possible.] And of
course, there is a real coupling constant λ . As we shall see, the Wightman function
Wn of our theory is a polynomial of degree at most nS in the coupling constant
λ. It is obtained by summing certain integrals associated with graphs of at most nS
internal vertices. We begin the definitions in Sect. 2, and conclude them in Sect. 3.

2. "Banded" Graphs

First, we apologise in advance for overuse of the letter / in this paper. Roman "i" is
used in this paper for the square root of —1, italic "f for the index to innumerable
sums; "/G" is a graphical Integrand, and "G^" is the set of internal vertices of a
graph G.

If G is a graph, we write Gv ! for the product

Π

where d(υ) is the degree of the vertex v. Should some of the edges of G perhaps be
multiple, we define

Ge\= m(v,w)\, (2.0.2)

where e(G) is the set of edges of G and m(v, w) denotes the multiplicity of an edge.

Definition 2.1. Fix an integer constant S > 0, which will be one of the parameters
of the theory.

For each n > 0, we define a collection Gn of labelled graphs as follows.
&n is the collection of all graphs G satisfying the following conditions:
The graph G has n "external" vertices labelled F\, ...,-Pn, and from zero up to

nS internal vertices. The internal vertices are labelled Xτj(i = 1, ..., n; 1 < j < Si);
where every Si = Si(G) G [0, 5] (sτ = 0 is allowed). Multiple edges are allowed
between (internal) vertices, but not "loops " connecting a vertex to itself.

The ίth band of the graph (i = 1, ..., n) is defined to be the subgraph with vertex
set B, = B%(G) = {Fi, Xίtj : j = 1, ..., Sl}.

In addition, the graph G must satisfy the following:

(2.1.1) The degree of every external vertex is 1.

(2.1.2) The degree of every internal vertex is between 2 and N, where N is the degree
of the polynomial P on which our theory is to be based.

(2.1.3) Every band of G is a connected subgraph of G.

Note 2.2: If the last condition (2.1.3) were omitted there would be divergent contri-
butions to our Wightman functions coming from graphs with one or more component
disconnected from any external vertex. (2.1.3) therefore performs something akin to
division by Z in the heuristics. Let us also emphasise that graphs in &n are labelled
graphs; the same abstract graph may have several manifestations as an element of

^
&h

The Wightman n-point function will be defined in the next section as a sum of
"Feynman-like" integrals associated with each graph G in Gn.
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3. The Graphical Integrals

Let S be given as in the previous section, and let us also choose, once and for
all, a smoothing function θ G ̂ (Md+1), a coupling constant λ G M, a polynomial
interaction P as in (1.2) and a smeared mass density μ as in (1.1). Note that the value
A = 0 is allowed, though it just gives a Gaussian theory. Also, our theories exist for
either sign of the coupling constant.

For each graph G G 3 ,̂ and each sequence f\ , ..., fn of functions in the Schwartz
space S(Rd+1), we begin to define the graphical integral /G(/I, •••, f n ) associated with
the graph G, which will contribute to the Wightman n-point function Wn(/ι> ..., fn)
of our theory.

Definition 3.1. Given G and the sequence f= /i, ..., /n» let us choose two sequences
as follows:

Let a sequence p = (pe : e G e(G)) be given, consisting of elements o/Md+1;
we shall sometimes write pe = (ke,Le) (ke G Md,Le G M), where Le is the time
coordinate. (Note that we intend to use bold italic p for individual vectors in Md+1,
reserving bold roman pfor use with vectors in larger spaces such as ]$(d+Ve(G\)

Then, let a sequence g = (ge, e G eχ(G)) be given, (where eχ(G) (<(e-cross ofG")
is the set of edges ofG which connect two different bands ofG) consisting of elements
of the full Lorentz group L on M.d+l. We emphasise, time reversals are allowed in L; so
also are space '"rotations" with determinant — 1.

The graphical integrand Mcr(f? p, g) is the product

Π (3.1-1)

where the functions MQ(Ϊ, p, g) are as follows:

(3.L2) If e connects Fi to Fj with ί < j, then

where H denotes the step function, H(x) = 1 (x > 0) or 0, (x < 0); and p^ is
Here and elsewhere, we write just gepef

or tne ̂ ue #e(peX (9e £ L, pe G M

(3.1.3) If e connects Fi to Xj,k> with i < j, then

(3.1.4) If e connects Fi to Xj,k> with ί > j, then

M*G = H(Le

(3.1.5) If e connects Fi to Xi<k then

where the linear functional φi(p) is as follows:

Φi(P)= Pe -
e connects Band τ e connects Band

to Band j, ι<j to Band j, i>j
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3>i 3<ί

let us say.

(3.1.6) Ife connects Xij to Xkji with i < k then

(3.1.7) If e connects Xij to X^i with j < I then

Notes on Definition 3: This is of course the fundamental definition of the paper.
Note that if one ignores the smoothing functions θ and the Lorentz group elements
ge, and if one mentally prepares to integrate with respect to the momenta pe, then
these expressions are not a million miles from the heuristic CW(/i,/j) for edges
e = (Fi,Fj); CMfi(xj,k) for e = (Fi,Xjyk) and CM(Zi,3,Zktι) for e = (Xij,Xkj).
We should perhaps emphasise, that multiple edges are of course represented multiply
in the product (3.1.1), as they are in the sequences p and g.

Definition 3.2. Let us adopt the notation of (3.1) and define further linear functions
Ψί,j(P) (* = l ? . - - j ^ ; j = I j j S ΐ ) as follows. Here and elsewhere, we adopt the
convention that if the edge e is internal to some band ofG (that is, z/e G e(G)\eχ(G))
then the group element ge is deemed to be the identity. Then,

gepe - 9ePe, (3.2.1)
ees+ ees-

where

S+ = Sij(G) = {e G e(G) : e connects Xij to F^ (with k > i) or Xk,ι

(with k > i, or k = i and I > j)} (3.2.2)

and

S~ = S^(G) = {e G e(G) : e connects Xiι3 to Fk (with k < i) or Xkj

(with k <i, or k = i and I < j)}. (3.2.3)

Note that ψ^j is the total flow out of vertex X^j if each edge of G is given a directed
flow gepe> the direction being "upwards" from Xiί3 to Xk,ι (when i < k, or i = k and
j < /), and from Xitj or Fi to Fk (when i < k); otherwise downwards. The reader
will find that the flows φij and φi of (3.1.5) also respect this orientation. From now
on we will feel free to refer to one vertex of a graph being "above" another in this
sense.

Definition 3.3. The first integrated moment Mc,ι(f, g) is the integral

ί Afσ(f,p,g)f Π
Jl(d+l)e(G) \ , _ ι
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where dp denotes volume integration over all variables pe, e G e(G); δ denotes the
d + 1 -dimensional version of the Dirac delta function; and questions of convergence
are temporarily postponed.

Concerning this definition, we would like to emphasise that the delta- functions are
evaluated at ^?J, a function which depends linearly on the variables pe, but also
on the variables ge. Therefore, the variables ge cannot be "integrated out" to yield a
Lorentz invariant version of the function θ. Also, when considering behaviour around
an internal vertex of one of these graphs, one should bear in mind that our integrals
are not concentrated on values of pe which add up to zero at the vertex; they are
concentrated on values gepe which add up to zero at the vertex.

Definition 3.4. The second integrated moment Mc,2(f) is (assuming convergence) the
integral

MG,ι(f,g)
eeeχ(G)

where eχ(G)\ denotes the number of edges of G that cross between two different
bands ofG, and dg denotes right-invariant Haar measure on the Lorentz group L.

[Right invariant Haar measure is left invariant as well, but it is the right invariance
we need. The measure may be written (up to an arbitrary constant) as

(3.4.1)

where the element g is written ΛVU9 where U is a space rotation and Λv a velocity
boost of velocity v, and dU is (finite!) Haar measure on the space rotations.]

Definition 3.5. The graphical integral /c(f) is defined as

where λ is the coupling constant, d(Xi^) is the degree of the vertex, α^ is the dth
coefficient of the polynomial P on which our theory is based, and \G& is the number
of internal vertices of G.

We will write
= Π

Note that the factors Gv\ in (3.5.1) may be regarded as arbitrary (one could compen-
sate for their absence by changing the polynomial, though one's conviction that there
ought to be factors of 4! floating around a φ4 theory dies hard). However, the factors
Ge! are essential; the proof of positivity will not work without them.

Definition 3.6. The Wightman n-point function Wn(f\,..., fn) is equal to

Y] /σ(l) (3.6.1)

The constant WQ is defined equal to L
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It is now our business to show that Wn(f) is indeed the n-point function of a scalar
field theory.

4. Finiteness

The object of this section is to prove the convergence of all doubtful integrals in Sect.
3.

Lemma 4.1. The integrand Mo(f, p, g) is equal to

n

Π£(&(P))Wσ(P,g), (4.1.1)
i=\

where NG does not depend on f; and for fixed g, it is in the Schwartz space
)e(G)) as a function of p. In fact,

> (4-1.2)
eGe(G)

where NQ is as follows:
(4.1.3) Ife connects FI or Xiyi to Fj or X3^i φ j, then

(4.1.4) Ife connects FI to Xi^t then

Proof . Looking at (3.1.2-7) we see that each NQ is an expression similar to M§ but

with all factors /^(q) removed. Since, by (3.1.1) MQ is the product of all the M§ ,
in order to establish (4.1.1) we need to show one thing:

(1) There is, for each i — l..n, a unique factor /i(q) among the MQ and invariably
we have q = φi(p).

Proof of (1): By (2.1.1) the degree of vertex FI is 1 so there is a unique edge e

incident at FI . This edge will (by (3.1.2-5)) contribute a single factor /i(q) to M for
some q; let us show that q = φi(p). If e = (Fi? Xltk) for some fe, this is the definition
(3.1.5). If e = (F$, FJ) for some j > i then q = pe by (3.1.2), as is also the case if
e = (Fi,X3ιk) with j > i by (3.1.3). By (2.1.3) Band i of G is connected; since F»
is not (in these two cases) connected to any other vertex in Band i, we conclude that
FI is the only vertex in Band i (i.e. sτ = 0); hence the only edge out of Band i is e
, going to Band j with j > i\ therefore φi(p) = pe = q. Likewise if e = (F^, Fj) or
(Fi, Xjtk) with j < 2, we still have si - 0 by connectedness of Band i, only this time
the edge e goes downwards to Band j, j < i, so φi(p) = — pe; and this agrees with
the value q found in (3.1.2,3). Thus (1) is proved. Thus we have established (4.1.1).
That NG does not depend on f is obvious from (4.1.3-7). We claim that as a function

of p it is in the Schwartz space; because for each edge e there is a factor |#(#epe)|2;

and θ o g G ̂ (Md+1) because θ is; and the other factors involved are all suitably
smooth because μ G J^(]R) is supported on [m^, rn\] with ra0 > 0. Thus our lemma
is proved.
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Note: This is a classic example of probabilistic mass "making things easier."

Lemma 4.2. The first integrated moment Mc,ι(f, g) exists and is equal to

ί (f[fi(Φi(P»}( Π ^,j(P))Vσ(P,g)dp (4.2.1)y^d+iMG) v f / \ . , /M x ι=l ' x ι=l,....n x

(where δ is the d + 1 -dimensional Dirac delta- function). It is a continuous multilinear
function of f i,..., fn .

Before proving the lemma, let us note that there is some modest similarity to a
Feynman integral here. If we compare the integral with

π
"

12
Pe

then the resemblance becomes quite reasonable, since the function 7VG does indeed
consist of a product of a lot of functions of p2

e, together with signs of the Le which
are associated with the orientation ("bands" etc.) of the graph G.

Proof . That (4.2.1) is the right expression provided it converges, is obvious from
(3.3.1) and (4.1).

By (4.2.1) we are integrating a function in the Schwartz space next to a product of
various delta-functions in linear combinations of the variables pe under integration.
It is therefore necessary and sufficient that we prove these combinations linearly
independent.

Let βo, ..., e<2 be the unit vector basis of Md+1. We must show that (for fixed g) the
|G<7|(d+ 1) linear functionals on m.(d+1)e(G) given by

(fc = 0, ..., d; e £ e(G)) are linearly independent. Give each edge of G a flow gepe in
the direction given in (3.2). Since the ge are invertible, let us write qe = gepe and
show that the above functionals are independent as functions of q. Now, the ψij are
the total q-flows into vertices Xij; so it is enough if for each fixed k, we show that
the functionals ψij(p) e^ (i = 1, ....n; j = 1, ....Si) are independent. But real- valued
flows on graphs are well known; within any component H of G, say involving m
vertices, it is known that any m — 1 of those flows are linearly independent. But every
component of G is a union of some of the bands by (2.1.3); so it contains at least one
vertex F^ hence the flows out of vertices X^3 are indeed independent, because they
never include all the flows out of vertices in a given component. That the integral
(4.2.1) is a continuous multilinear functional of the fa is then obvious, so our lemma
is proved.

Lemma 4.3. The second integrated moment exists, and MG^Ϊ) is given by the integral

\

Π <^MP)) AΓG(p,g)dpdg (4.3.1),
Γ

/
J
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where dg denotes the product of\eχ(G)\ copies ofHaar measure on the Lorentz group
L. This integral, moreover, is absolutely convergent (subject to the usual conventions
about removing the delta functions in favour of integrating over rather fewer of the
variables pe), and it is a continuous multilinear functional of the fa .

Proof . That (4.3.1) will give the second moment if it converges is a consequence of
Lemma 4.2. Removal of the delta- functions from (4.3.1) can be done in the following
helpful way. By (2.1.3) each band of G is connected; so if Si > 0 for some z, we
can choose ourselves a spanning tree TI for band i (that is, a graph T on vertex
set {Fi,Xij\j = 1, ....sj with e(Tτ) C e(G) and e(Tz) a minimal set such that T is
connected), which can be rooted at vertex FI (that is, the edges systematically directed
away from the root vertex Fi). Choose such a tree for each band, and let T be the union
of all the edges involved in the Ti . For each edge e G T let X^3 ( ( i , j ) = (i(e),j(e))
be the unique upper vertex of edge e (which is away from the root vertex Fi). Given
a sequence g E L\eχ(*G^ we define a unique linear map η = ηg on j^(d+i)e(G) jn me

following implicit manner: we write η(q) = ry((qe)eee(G)) = (Pe)eee(G), where

ifeee(G)\T,
if

(G) 9e'Pe> ~ Σe^5(G)\{e} 9e'Pe> > if

e'Pe' ~ Σe'eSΓ.(G)\{e} 9e'Pe'> if ij (4.3.2)

where ( i , j ) = (^(e),j(e))}; and once again #e/ is deemed to be the identity if e' φ
eχ(G).

We claim that there is indeed a unique linear map with these properties. For
if e G Ti is an edge at maximum distance from the root F% , (4.3.2) gives pe =
qe + Σ ^9e'*\.e

f since no other edge in Ti is incident at X^j . If e G Ti is at distance
one less than the maximum, (4.3.2) then gives qe in terms of the qe (e φ T) and
the pe (e at maximum distance from Fi). Continuing the process down to the root
vertex we find that the map does indeed exist and is unique. Note that it also has
determinant equal to one because its matrix is upper triangular with diagonal entries
equal to 1 if we take a basis of ^(d+1)e(G) consisting of vectors as follows.

The "natural unit vectors" ue>i (e G e(G),i = 0, ....d) in ]R(d+1)e«3) are sequences
q = (q^)jee(G) such that q/ = 0 unless / = e, in which case q^ = e2, the ith unit

vector in Md+1. We choose a basis of M(d+1)e(G) consisting of natural unit vectors ue,i
in an order with the following properties: first, unit vectors ue^ for edges e φ T
appear (d + 1 of them for each such edge), then vectors ue^ appear for the edges in
T at maximum distance from their roots, then for those distant one less, and so on.
In view of (4.3.2) it is clear that the matrix of η will be upper triangular with respect
to such a basis, with diagonal elements equal to 1.

If we make the substitution p = 7yg(q) in (4.3.1), the delta functions of (4.3.1) are

precisely Πeeτ *(Qe) S°» if we define a vectorspace VT isomorphic to ]&(d+i)(e(G)\e(T))

consisting of sequences (qe)eee(G)\τ ^n ^d+l » an^ ^ e denotes the map VT — >

and if ζg denotes the map r?g o e (4.3.4), we find (4.3.1) is equal to
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/

|eχ(<3)| r f n

\ Π /<&
JV^ \-ι

Moreover, since φi(p) depends only on momenta pe for e G eχ(G), this is also equal
to

Γ\eχ(G)\ / " _ \

(43.5)
Γ\eχ(G)\ f / " _ \

/ / ί Π /(&(*(<!)))
V ./VT \ = /

Let us now take (4.3.5) and perform all the dg integrations - or rather, estimate

them! Looking at (4.1) we find that if e G eχ(G) there is invariably a factor θ(gepe) in

NG. Also, if e G e(G)\ex(G)\T, there is a factor |#(p)|2 in Afc . So since Cg(q)e = qe

for e φ T , we may write

),g) Π fel2- Π
e<Ξe(G)\ex(G)\T e

where the function 7V^ is composed of all the other factors involved in NG , and the
main thing we need know about N'G is that it is uniformly bounded independent of
q and g; let's say \N'G\ < C\. Also, N'G = 0 unless every qe, e G eχ(G) is time-like
with q2 G [mo, mj]. Write then «siipp N'G for the set of q G VT such that there is any
g with N'G(q, g) nonzero. We find that for all q G supp NG,

I
\eχ(G)\

leχ(G)l

Let us evaluate the inner supremum. Because dg is Haar measure, the inner integral
depends only on q2 so let's assume q = (m,0) for some m G [mo, mi], the nonzero
coordinate being the time coordinate. This assumption is reasonable because at all
other values of q2, the factors μ(q2) in NG ensure that we are not in supp NG. If

g = ΛyU as in (3.4.1), and we write ||x||2 for the positive definite x\ + ... + x2

d + x%,

then ||#q||2 = m2(l + v2)/(l — v2). Now θ G ̂ (Md+1) so as v —» 1 the integrand is
o((l - υ2)a) for any a. > 0; in view of the formula (3.4.1) for dg, it is evident that
the supremum is finite, say equal to CΊ Then,

|eχ(<3)l _

* ^1^9 ' I I k \ q / 5
eee(G)\eχ(G)\T

hence the magnitude of (4.3.1) is at most

/

n /> n ^

I TT IΛ(^i(e(q)))l Π l^(qe)l^q (4 3 6)
e6β(G)\βx(G)\T

Now, we have used the notation q2 for the indeterminate L2 —/c2 , where qe = (ke, Le).
Let us now write ||qe|| for the positive definite (L2 + A;2)1/2 . If e is an edge which
crosses between two different bands, NG = 0 unless qe is timelike with positive time-
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coordinate Le . So, throughout supp N'G , we may consider the flow into the topmost
band (Band n) as follows: for all q G supp NG,

μn(6(q))|| > μ™(e(q)) eo| = Σ \Le\ > 4 Σ Nel l-
e enters band n * e/^ri

from "below"

(Here CQ is the time coordinate, we use the fact that all the Le have the same sign,
and e /* k means "e enters Band k from below.") Likewise, e \ k means "e enters
Band k from above." The last inequality holds because, after all, qe is timelike. For
other bands we get similar but slightly more complicated estimates:

eo| = I Σ Le -
eyn— 1 e\n— 1

n—1 e\,n—1 e/*n— 1 e/*n e/*n— 1 e/*??,

and generally,

μ*(e(q))iι > ^ Σ Nell - Σ Σ NJ (4.3.?)
e/*k l=k+l e/Ί

for all k = 2, ....n, q G supp NG . These incredibly crude estimates become quite
powerful when we use the fact that the fi are in the Schwartz space. Summing (4.3.7)
for k = 2 to n with factors 4k attached, we get

Σ4*μfc(e(q))|| > Σ Σ Iliel l ί^ 4" - 4fc"' - 4fc"2 - - - 42ί

Σ
Because /i,..., /n are in ^(]Rd+1) for each α > 0 there is a Cs = Cs(α) such that

α

(4.3.8)
fc=2

||qe

for any q G 5ί/pp N'G . Returning to (4.3.6) we find that for each a > 0, (4.3.1) is at
most

('* Σ h.ι)" ( Π
e6ev:(G) p.^P.(Γf\\p.ve€e(G)\ex(G)\T
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which (since q has a "free variable" qe only for e G e(G)\T, and θ is in ̂ (Md+1)) is,
for suitably large α, a convergent integral. So (4.3.1) converges; in view of the unifor-
mity of estimate (4.3.8) it is indeed a continuous multilinear functional of /i, ..., fn.
Thus the lemma is proved.

Corollary 4.4. The functions Wn(f\ , ..., fn) exist and are continuous multilinear func-
tions of /i, ..., fn.

Proof . (3.5) and (3.6) give Wn(f) as a finite linear combination of the moments

Having proved the existence of our functions Wn(f) , the next thing to do is to
prove positivity in the sense of the Wightman reconstruction theorem [SW, p. 1 17 ]. In
fact the rest of this paper will very much follow the lines of the reconstruction theorem
except that, rather than proving the cluster decomposition property, we prove vacuum
uniqueness directly; and our assertion of positivity is so phrased that Hermiticity
comes as a trivial consequence rather than requiring another proof. Positivity is the
topic of the next section.

5. Positivity

The aim of this section is to take the functions Wn defined in §3, and show that there
is a Hubert space 3$ containing a vector Ω (the vacuum) and, for each n > 0 and
/i, ..., /n in J^(Md+1) , a vector </>M(/I, ••-, /n)^» such that when n = 0 the vector is
Ω itself, and for all n and ra the inner product

>= Wn+mί^mj^m-lj— , f l Ί » / l j / 2 ϊ — j/n) (5.1.1)

It is therefore natural to start by defining the (slightly non-obvious) Hubert space

Definition 5.1. Let U denote Md+1 x L, where L is the Lorentz group as before.
Elements of U will typically be written (q, η). For each n > 0 we equip the cartesian
product Un with the product ofn copies of the measure dq x dη, where dq is Lebesgue
measure on M.d+l and dη is Haar measure on L. We then write 3@n for the Hubert
space L2(Un), and we write Ĵ % = C. Our Hubert space 3@ is the L^ — direct sum

^oθ^ίi Θ^2Θ.... (5.1.2)

where, if c G C and fi G 3@i , the norm of the sequence (c, /i, /2, /s,....) w

1/2

We will regard each S@n as a subspace of J^7 in the obvious way. We will now
make some definitions analogous to those of §§2 and 3. When the definitions are
complete, the reader will find that the vectors φM(f)Ω G 3$ that we have defined
are in fact symmetric under permutation of the n copies of U that underlie each space
J n̂ = L2(ί/n). The vectors may thus be regarded as elements of a symmetric tensor
product, as one would expect with a scalar field theory. The vectors φ^(f)Ω are thus
embedded in a rather large "Fock subspace" of H; the vectors φwΦΩ are far from
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dense, even in the subspace, so in §8 we restrict to a subspace of 3$ in which they
are dense.

Definition 5.2. Let the constant S be given, and the polynomial P on which the theory
is based, and an integer n > 0. The collection 2 p̂ of partial graphs is the collection
of pairs (G, SG) where G is a graph on vertex set {̂ , ί = 1 , ....n} U {XZί3 ,ί = l..n,j =
l..sl} with each sτ G {0, 1, ...S}; and SG is a function from the set {1,2, ...Λ(G)}
to the vertices of G, and Δ(G) G Z,0 < Δ(G). In addition, the following conditions
must hold:
(5.2.1) If Fi is an external vertex, then

where d(v) is the degree of the vertex v.
(5.2.2) If Xij is an internal vertex, then

where N = deg P.
(5.2.3) Every "band" of G (that is, each subgraph on vertex set {Fi} U {Xij} far
some fixed i) is connected.

Note. The idea of this is plainly that G is the "top half of a graph associated with the
Wightman function Wn+m,(gm,gm-\,...,g\,f\,f7.,...,fn) For v G G we will write
d+(υ) for the sum

d(υ)+\δel(v)\. (5.2.4)

Note also that the conditions (5.2.1) and (5.2.2) imply an upper bound (say, nNS)
on the integer Δ, so that our set 3 }̂P is finite, just as S^ is.

Definition 5.3. Let functions f\ , ..., fn be given, and (G, δo) £ ,̂p. Let sequences
p = (pe : e G e(G)\ and 7 = (^e : e G eχ(G)) be given, in Md+1 and L respectively.
Writing Δ = Δ(G) we define a function M Q(Ϊ, p, 7) on UΔ as follows:

(5.3.1)

where the functions M ^(f, p, 7)[q, rj] and M G l (f , p, 7)[q, η] are as follows.

(5.3.2) If the edge e joins Fi to Xi:k ,thenM~&

G = μ(p2

e)fi(ψ)\θ(pe)\\ where

The linear function ψ will sometimes be called φ ^(p, q).
(5.3.3) In any case other than (5.3.2), the function M &

G is a constant (i.e., a function
independent ofq and η) identical to the value M§(f, p,7) specified in (3.1.2,3,4,6,7),
where the symbol g is used instead of~f.

(5.3.4) I f δ G ( ί ) is an external vertex Fj , then M~ G

(l}

where LI denotes the time coordinate ofqi .

(5.3.5) If6c(i) is an internal vertex X3^ > then M
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Note that if Δ = 0, the function M ~ Q is of course a constant, as required; indeed,
the said constant is none other than Mo(f, p,7) as in (3.1).

It is worth while noting that in case (5.3.4), the value — q^ is equal to φ $(p,q),
because the vertex Fi cannot be connected to any other vertex of G and so Si = 0 by
(5.2.3). So, echoing (4.1), we may write

M ~ σ(f, P, 7) = fi(Φ ~ i(p, q)) N ~ G(p, 7), (5.4)
M=I '

where N~ G does not depend on the fa. We claim, and will prove shortly, that the
following integrals can be performed.

Definition 5.5. The first integrated function M α,ι(f, 7)[q, r/] is the integral

f Af"G(f,p,7)[q,ty]( TT δ(^~ (p, q)) W
Λ(^De(G) \ i = l n /

j=l,'....βt

where the functίonals ψ ij are as follows:

Ψ\j(P,q) = Ψ~i,j(G,p,'γ,q,η) = 'ψi,j(G,p,'γ)- ]Γ ηkqk,
δG(k}=X^3

Ψίj(G, p, 7) is the function defined in (3.2.1), and dp denotes volume integration over
jg)(d+l)e(G)

Definition 5.6. The second integrated function is the integral

where d^ denotes a product of \e,χ(G)\ copies ofHaar measure on L.

Definition 5.7. The partial integral I o(f) is the function

where
G+

v\=l[[d+(υy.

We claim that this function is in 3@&, for all f and all pairs (G, δc

Definition 5.8. For n > 0, the element ΦM(/I, •••> fn)Ω is the sum

which we claim is in H. The element Ω is the constant 1
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The rest of this section is devoted to proving that (5.1.1) does indeed hold for this
choice of the vectors ΦM($)Ω\ which of course implies all the statements about con-
vergence and integrability that we have made so far. The link between definitions
(5.3-9) and the Wn is as follows.

Definition 5.9. Let (G,fc) G &n,P and (G',δ'G) G S%njp be given, such that
Δ(G) = Δ(G'} = A. We define a graph Γ =< G\ G' >, '{which we claim is in
&n+m), as follows: If G has vertices {Fi,Xij : i- l,....n, j = 1, ....^} and G'
has vertices {Fi^Xij : i = l,....ra, j = l,....s^} then Γ has vertices {Fi,Xij :
i = 1, ....n + ra, j = 1, ....s*}, where

s =

= m+

Wfe define maps e : ^ — > m + z (z = 1, ....n) am/ e' : ί —> m + 1 — i (i = 1, ....ra),
β« J we abuse notation slightly by using c and cf also to denote the maps G — * Γ and
G' -> Γ swcA ίΛαί

ί;(<)(i=l,....n), (5.9.2)

5j ) = Xe(i)tj (ί = 1, ....n; j = 1, ....st), (5.9.3)

ί1

£/(i)(i = l,....m), (5.9.4)

;-,- (i = 1, -.m; j = 1, ....^). (5.9.5)

edges of Γ are the union of three sets: (1) The set of all edges e(e) = (e(w), e(v))
such that e = (w, v) G G, counted according to multiplicity.

(2) The set of all edges e'(e) = (ef(u)^e'(v)) such that e = (u,v) G G' , counted
according to multiplicity.

(3) Edges e\, 62, ..., ZA where each eι connects vertex e(δc(i)) to vertex ef(6'G(i))
(ί = 1..Δ).

Lemma 5.10. The graph Γ =< G; G1 > is indeed in &n+m whenever (G, δo) G &n,p
and (G1 ,δ'G) G ̂ n,p with Δ(G) = Δ(Gf). Furthermore, if M~ G denotes the partial

integrand associated with G, and M G the partial integrand associated "with G' ,
then for all sequences f, g, p, px, 7 and 7', we have

M ~ G(f, p, 7)[q, η] M~ G

7(g, p', 7')[q, η] =

*,7*) (5.10.1)

say, where Mp is the graphical integrand of Γ, the bar denotes complex conjugation,
and the maps e are as follows:

f* =e(f,g) is the sequence (gm,gm-ι, .-,^1, /i, /2, /s, ..., /n), (5.10.2)

p* = e(p, px, q) is the sequence (p*, e G e(Γ)),

α, i/ e = e(α), α G e(G)
„ _ P^ (Γe - e7(α), α G e(G;

Pe " S +Pά. z/e = e/(^). « Ξ e(GO
q , i f e = ei as in (5. 9.3);
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and
7* = e(7, 7', 77) is the sequence (7*, e G eχ(Γ)), where

(I*, if e = e(α),α E eχ(G)
7e* = < 7ά, ίf e = e'(α),α G eχ(G'). (5.10.4)

Iτ7i , ife = el as in (5.9.3)

Proof . In view of (5.9.1), each s* G [0,5] so the vertices of Γ are in accordance
with (2.1). In view of (5.9.2), the vertices of Γ are the disjoint union of e(G) and
e(G') If v = e(u) G e(G) then by (5.9.3) the edges incident at υ are the e(e) such that
e G e(G) is incident at u, together with the edges βι such that e(δc(ϊ)) = v. Therefore
the degree

d(v) = d(u) + \δςl(u)\ = d+(u) (5.10.5)

using the notation of (5.2.4). Likewise if v = ef(u) for some u1 G G' ', we have
d+(uf). By (5.2.1,2) we therefore have d(v) = 1 if v is external, and d(v) G [2, TV] if v
is internal; that is, (2.1.1 and 2) hold for all v G Γ . If i G {1, ..., ra} then Band i of
G is a graph isomorphic to Band m+ 1 — i of G' by the map e/ , so it is connected; if
i G {m + 1, ..., m + n} Band i is isomorphic to Band ί — m of G, so it is connected;
therefore (2.1.3) holds and Γ is in S +̂m as claimed. In order to establish (5.10.1)
we follow (3.1.1) and (5.3.1) to rewrite (5.10.1) as:

M~e

Gl[M~G

(l) U M~e

G/l[M~G,
(i) = J] Mf, (5.10.6)

where M ~ e

G is M ~ ^(f, p, 7)[q, 77] and M ~ e

qt = M ~ ^,(g, p;, V)[q, r/]; M " G

(t) is

M " σ

(<)(f, p, 7)[q, 17], M " G,(<) is M " G,(<)(g, p7, y )[q, r/]; and Mf is

Mf(6(f,g);6(p,p/,q));e(7,7/,r/) = Mf(f*,p*,7*) (5.10.7)

as in (5.9.3). Because of the three sets (5.9.3) which make up the edges of Γ, the
righthand side of (5.10.8) can be expanded as

Π M*' IJ Mpe)f[Meί. (5.10.8)
e€e(G) eee(G7) i=l

Comparing (5.10.8) with (5.10.9) we see that our lemma is proved if we can
establish the following three propositions:
(5.10.9) For each e G e(G), M " G = M€

Γ

(e\

(5.10.10) For each e G e(G'),M~e

G, = Mf/(e).

(5.10.11) For each i = 1, ....Z\,M~ G

(ί) M~ G/(ί) = M^ί.
Proof of (5.10.9). Case 1: If e connects F^ to Fj for some 1 < i < j < n: then by

(5.3.3) and (3.1.2), M~ €
G = H(Le)μ(p2

e)/;-(-pe)Λ(pe)!0(-7epe)|2 (5.10.12).
Now e(e) connects vertices Fe(^) and Fe(j) in Γ , and e is an increasing func-

tion, so by (3.1.2), M*} = H(JL:(e))μ((p:(e))
2)Λ*0.)(-p:(e))Λω(Pe%))l^(-7e%)P:(e))|

2

(5.10.13). However, by (5.10.4) p*^ = pe (and so L^e) = Le)ί by (5.10.2) /e*(j) = /_,-
and f*(i) = fi , and lastly by (5.10.4), 7*e) = 7e. So, (5.10.12) and (5.10.13) are
identical as required.
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Case 2: If e connects Fτ to Xj^ (j φ 0> or if e connects Xij to Xkj , then the
equality of M ^ and M^(e) is established using (3.1) and (5.3) by methods closely
analogous to those of Case 1 (we will investigate these cases more closely when
proving (5.10.10), when some interesting changes of sign occur).

Case 3: If e connects Ft to Xitk then by (5.3.2), M~ G

G = μ(p2

e)Ji(φ) - \θ(pe)\2

(5.10.14) where

q,,-,

φi(p) is the flow within graph G as in (3.1.5), and Bi is the ith band of G. On the
other hand, e(e) connects Fe(i} to X6(i)ίk so by (3.1.5),

Mf(e) = M(P:(e))2)Λ*(θ(^)(P*))l^P:(β))|2> (5.10.15)

where φ*^ denotes the flow within the graph Γ as in (3.1.5). As in Case 1 we have
/*(i) = fa and p*(e) = pe; so all that remains to be proved is that

#ω(P*) = &(P) - Σ q, (5.10.16)
«Gθ')eJ3i(G)

Now by (3.1.5),

^*ω(P*)= Σ Pe*'~ Σ Pe*'
ex\e(z) m Γ e'/M*) ΐn Γ

and by (5.9.3) the edges e \ e(i) in Γ are precisely those 6(e;/) with e/; \ i in G.
Moreover the e' / c(i) in Γ are the union of those e(e") with e" / i in G, together
with all 6j such that the special edge e3 of (5.9.3) Case 3 enters band e(ϊ). Hence,

P*(*)~ Σ P*(i)"

hence we obtain (5.10.16), and so we prove our result in Case 3. Thus (5.10.9) is
proved.
Proof of (5.10.10).

Case 1: If e connects Fi to Fj for some 1 < i < j < m, then by (5.3.3) and
(3.1.2),

M~ *G, = H(L/

e)μ((p/

e)
2)?J (-p/

e)^(p/

e)|^(7X)|2. (5.10.17)

Now e'(e) connects vertices Fe/(ί) and Fe/^ ) in Γ , and e7 is a decreasing function,
so by (3.1.2), since e'(j) < c'(i),

Now by (5.10.2-6), p*,(e) = p'e, /e*,(ί) = ft) #ω = ft and 7*,(e) = 7 .̂ So, (5.10.18) is
equal to

Since μ, g^ and ̂  are all real valued functions, this is indeed the complex conjugate
of (5.10.17).

Case 2: If e connects Fi to X j j k (j φ i), then by (5.3.3),(3. 1.3,4) we have
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-e _ίH(L'e)μ((p'e^gί(p'e)\θ'(Ί'ep'e)\\ i<jM G' ~ WDM(PD2)£(-P^'(7X)i2, i>j' ( }

Now the sign of e'(i) — e'(j) is opposite to that of ί — j by (5.9.1); so since e'(e)
connects F€f^ to Xe/(j) 1+s/_^, by (3.1.3,4) we have

)^«P:'(e)^ i < j,

= r HίL^μαp^^^ί-p^l^pDI2, i < j,
1 HίL^μίίp;)2)^^)!^?;)!2, i > j

by the usual substitutions of (5.10.3,4). Since ^ is real-valued, this is indeed the
complex conjugate of (5.10.19).

Case 3: If e connects Fi to Xτ^ then arguing as in Case 3 of (5.10.9), we find
that _

where ψ = <^(p') — Σδr (J^B^G')^^ an(^ 0i(P') is me fl°w within graph G' as in

(3.1.5), and Bi is the ith band of G'. On the other hand, e(e) connects Fe(ϊ) to -Xe(ί),fc
so by (3. 1.5),

where φ*^ denotes the flow within the graph Γ as in (3.1.5). As in Case 1 we have
Λ*Ϊ) = 9i By the special case of (5.10.3) we have p*,(e) = — pe. Note that the change

of sign doesn't matter- θ is a real valued function so \θ\ is an even function. So, all
that remains to be proved is that

Now by (3.1.5),

in Γ e'/V(ι) in Γ

and by (5.9.3) the edges e / e'(ί) in Γ are precisely those e'(e") with e;/ \ Hn G.
Moreover the ex \ tr(ϊ) in Γ are the union of those e(e/x) with e" / i in G, together
with all e^ such that the special edge βj of (5.9.3) Case 3 enters band t'(ϊ). Note
now that for all edges e" that we have mentioned, we have p*/(e//) = Pg//; because the
special case of (5.10.3) (where the sign changes and p*//^ = ~P/) involves an edge

/ = (Fi^X^k) of G' which is not in eχ(G') because it is internal to Band / of G' .
Hence, we find that

Σ

Σ
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and Case 3 is established.
Case 4: If e connects Xitj to Xk,ι with i < k then (5.3.3), (3.1.6) give us

which is a real number; and (3.1.6) gives us

which by (5.10.3,4) is the same real number.
Case 5: If e connects X^3 to X^i with j < I then (5.3.3), (3.1.7) give us

M~e

G,=H(L'e)μ((p'e)
2)\θ(p'e)\2,

and (3.1.7) gives us

which by (5.10.3,4) is the same real number. This concludes the proof of (5.10.10).
Proof of (5.10.11).

Case 1: 6G(i) is an external vertex Fj of G , and δG/(ϊ) is an internal vertex X^j

of G' . Then by (5.3.3) and (5.3.4), M ~ G

(ί) = H(Lt)^μ(q^)'fj(-qi) θ(-η^ and

M " G'(ί) = H(Li)vWqi) 0(-f?iq*) so the product M " G

ωM " G/ω is equal to

H(Li)μ(q?) |0(-τ?*%)|2. (5.10.20)

Now the edge a connects Fe(j) to Xe'(k)j\ certainly e(j) G (ra,ra + n] is greater

than e'(A ) G [l,m] so by (3.1.4), M^ = H(L*t)μ((p*t)
2)^0-/-p*t)|δ(-7*.p*.)|2 and

the usual substitutions obtained from (5.10.2-6) tell us that this is indeed equal to
(5.10.19).

Case 2: If the pair (δG(i)^δGι(ι)) consists either of two internal vertices, or two
external vertices, or a pair (Xk.it Fj) the opposite way round to Case 1; then similar
calculations give the result. This concludes the proof of Lemma 5.10.

Corollary 5.11. Let (G, 6G) £ &n,P and (G7, 6G,) G &m# with A(G) = A(G') = A.
Let sequences f, g, 7, 7', q and η be given as before. Then the first partial moments
M G,ι(fj 7) and M G',I(§O 70 exist for almost every value ofq G RΔ , and

M G,ι(f,7)[q,τ^M-σM(g,Y)[q,ιϊ]dq=MΓ>ι(Γ,7*), (5.11.1)

where Γ is the graph < G; G' > defined in (5.9), MΓ,I is the first moment as in (3.2),
and Γ, 7* are as in (5.10.2-6).

Proof . To establish existence of M <-,ι , let us momentarily substitute G' - G
in (5.10.1), so that we are temporarily dealing with a graph Γ =< G G >. Then,
let us multiply (5.10.1) by some delta-functions and integrate dp* = dpdp'dq so as
to obtain the first integrated moment M<G;G>,ι(f*,7*) °f me graph < G G >,
just as in (3.2). (here Γ temporarily denotes the sequence /n, ...,/ι,/ι, ...,/n)
We claim that the appropriate delta-functions are none other than the functions
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δ(φ ~ itj(G, p, 7, q, η)) and δ(φ ~ itj(G, p', 7', q, 77)), where the φ ~ tj are as in (5.5),
and all values i = 1, ....n, j = 1, ....sτ are used.

Proof of Claim. We are, by (3.2), trying to identify the product of all functions
δ(ψitj(< G G >,p*,7*)) for Xitj an internal vertex of < G G >.

The graph < G; G > consists of two copies e(G) and e'(G) of the graph G,
together with certain connecting edges joining vertices etfcW) to €'($0(1)).

Accordingly, each internal vertex of < G G > is either c(Xij) = Xe(ί),3 or
e'(Xij) = Xei(ϊ)^+Si-j\ for some internal vertex Xij of G.

Case 1: Consider an internal vertex X^j. The flow 0e(i)j(< G\G >,p*,7*)
may be calculated from (3.2.1) as the sum of all 7^pj such that edge / connects
Xe(ϊ)j to a vertex "above" it in the sense of (3.2), minus the sum of all the 7jpJ
such that edge / connects Xe(ί) j to a vertex "below" it. Now all edges of form / =
e< = (€'(ίσω),e(«σ(i))) tt = 1,' ..̂ ) as in (5.9(3)) have e'(δG(ij) "below" e(δG(i))9

because the former is in one of Bands 1 to n and the latter in one of Bands n+ 1 to 2n
of < G; G >. Also, if / = e(e) for some edge e, then since e is an "increasing" map
with respect to the ordering of (3.2) on G and < G; G >, we find that Ί^} is counted
towards ψe(i)j(< G; G >, p*, 7*) with the same sign as 7epe in ψij(G, p, 7). Hence,
if we make our standard set of substitutions as in (5.10.1-3), we have

V>€(i),j(< G\ G >, p*, 7*) = ψij(G, p, 7) - ^ ηk^k = Ψ ~ iί3(G, p, 7, q, Ή).

Well, that gets us half of the delta-functions required by our claim.
Case 2: Consider an internal vertex Xef^^ι+Si_j = c f ( X i j ) . Then the flow

counts positively each 7^pJ such that the edge f = a = (€.'(60(1)), e(6G(ϊ))). It also
counts positively each 7^p^ such that the edge / = e'(e) connects c'(Xij) to a vertex
"above" it in < G\G >, and counts the same quantity negatively for each edge
/ = e;(e) connecting e'(Xij) to a vertex "below" it in < G\G >. Now the map
e1 : G —>< G : G > reverses the ordering of all pairs of vertices involved in edges
of G, with the sole exception of an edge of form (Fk,Xk,ι) In this case only, the
ordering remains the same (with Xi}j deemed to be "above" FI). But in this case,
only, we find that (5.10.3) gives p^ = — p'e (whereas in all other cases, p^ = +Pg).
Hence,

</Vω, W -j« G; G >, p*, 7*) = -ψitj(G, p', V) +

Accordingly - δ being an even function! - we have

This gives us our second set of delta-functions and proves our Claim.
Let us therefore make our substitution G' = G in (5.10.1), multiply by our well

known set of delta- functions, and integrate. By (4.3) our integral is (absolutely) con-
vergent, so we have
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/ dp ί dp' I dqM~ G(f,p,7)[q,η]M~ G(t,p',-γ')[q,η]x
J ^(d+l)e(G) 7l(d+l)e(G) J^(d+l)Δ

, P, 7, q,

-L
Likewise, M G',ι(S> V) *s almost surely finite and square-integrable with respect

to q. Now, we may take (5.10.1) itself, multiply it by the product of the appropriate
delta functions (namely, all functions δ(φ ^-(G, p, 7, q, 77)) and δ(φ ^-(G', p', 7', q,
77))), integrate dpdp'dq, and so obtain (5.11.1). Thus our corollary is proved.

Corollary 5.12. The second partial moments M G,2(f)[q»?7] ana M G
exist for almost every pair (q, η) E UΛ (where "almost every" is in the sense of the
measure (dq x dη)Λ of (5.1)). Moreover, the integral

L ι < M G,2(f),M G',2(g) > = MΓ,2(Γ),
IUΔ

(5.12.1)
where the inner product is that of ^β/\. M G,2(f) is in

Proof . The fact that the integral over UΔ is the inner product in £&Δ is Definition
5.1. The fact that it is equal to Mr,2(f*) follows by integrating (5.11.1) with respect
to 7*, recalling that 7* is essentially the union of the three sequences 7 ,7' and 77
(see (5.10.6)). The details are rather simpler than those of (5.11) (no delta- functions
to worry about!) so we omit them.

Lemma 5.13. Let n > 0 and rn > 0 be fixed. For each graph Γ £ S^+m there is
a unique pair of graphs (G, G') such that there is any pair (6c, SGf) with (G, δc) £
S? ,p; (G', δGι) e 8?mtp and < G; G' >= Γ.

Moreover, the total number of such pairs is equal to

Δl ^ , (5.13.1)

where Δ = Λ(G) = Λ(G') is the number of edges of Γ that cross the (( great divide"
between Bands l...m and Bands m+ l...m + n.

Proof . The graph G must be isomorphic to the subgraph of Γ consisting of Bands
m + 1, ..., m + n; and it must be isomorphic via the map e : G — » Γ of (5.9). So there
is only one such G, likewise there is only one G7 but given Γ we can construct G
and G' from the two subgraphs, and a suitable pair (δct δcf) is tnen as follows: Let
the edges of Γ which cross from one of Bands l...m to one of Bands πi + l...m + n
be e*,...,e^ in some order, and let us say that e* connects vertex e(ι^) to e'(v{),
where e and e' are as in (5.9). If we then define δo(i) = Ui and δGι(ι) = Vi, then
the edge e$ of < G; G7 > given by (5.9.3) is none other than (e(ι^), e'(^)) = e*. So,
< G; G7 >= Γ with this choice of δo^Q/ because the "crossing edges" e*,...,e^
are faithfully reproduced according to multiplicity.
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Now any other pair (£G? CG') which replaces (£<-, δGf) and gives rise to the graph,
will have to do so by having the same value of Z\, and its special edges ei will be
e*(ϊ) for some permutation π on {1, ..., Δ} (so, Δl possibilities); we will then have

(Cσ,Cσ') = (βσoπ,5 σ /oπ). (5.13.2)

However, not all permutations π give rise to distinct pairs (Cα^Cσ7); if π nas the
effect of permuting multiple copies of crossing edges among themselves, it doesn't
change the pair (fc, (5^/). The number of distinct pairs ((G> CG') giymg rise to Γ is
therefore equal to Δl/Q, where

Q=
(u,υ) a crossing edge

(the edges we want are those that are in Γ, but not in either G or G'). Thus our
lemma is proved.

Corollary 5.14. The sum over all pairs ((G, SG), (G1 ', <5G/)) in &n,p x &m,p such that
< G, G' >= Γ , of the inner product < I G(f),I G'(g) > ^ equal to

. α(Γ) MΓ|2(Γ) = /Γ(Γ), (5.14.1)

where as elsewhere, f* is the sequence gm , #m_ i , . . . , gλ , /i , /2 , . . . , fn.

Proof . Let us begin by taking one pair and working out < I c(f)ιl G;(g) >•
(5.8) and (5.12) it is equal to Q2 - MΓ)2(Γ) where

Q2 = ( _ A ) I ^ H I . -a(G)a(G'). (5.14.2)
(jre!ϋre! ZA!

Now G^l is the product of d+(v)\ over v £ G. But this is none other than the product
of d(ε(υ))l over c(v) in Bands m + l...m + n of Γ, since by (5.10.7), d(e(v)) = d+(v).
Likewise the product (Gf)^\ is equal to the product of d(u)\ over the remaining
vertices u G Γ. So, (5.14.2) is

_g_(_λ)l^|+|GV| . λ_a(G)a(G>). (5.14.3)

But then again, \G& + |G^| is equal to \Γ&\ (the number of internal vertices of -Γ)
and α(G) - αίG*7) = α(Γ). So,

,/ G,(g) >= __^_(_λ)i^l . —a(G)a(G')MGί2(ff). (5.14.4)
e e

By (5.15.1) we have to sum Z\!Ge!G"e!/Γe! such terms, which by (5.14.4) are all
equal. The answer is therefore

-^- (-λ)|7>! α(Γ) - MΓ>2(Γ) =
J e

by (3.5). Thus the lemma is proved.
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Corollary 5.16. The inner product

>= Wn+m(#m,#m_i,...,#ι,/ι,/2,...,/n)

as in (5.1.1); for all sequences /ι.../n, #ι, -"dm in S^(Rd+l) with n > 0, m > 0.

The proof is now obvious; I think it is also obvious that (5.1.1) holds even when n
or m equals zero (no graph on one side of the great divide; no crossing edges; so
one sums over pairs (G, δc) (respectively (G', <$<-'))> with ^(G) (respectively Λ(G'))
equal to zero to get Wn or Wm). Having established (5.1.1), we bring §5 to a close.

6. Hermiticity

Lemma 6. We have Wn(f\ , ..., /n) = Wn(fn, fn-ι , .., /i), /or α// sequences /i , ..., /n

. By (5.1.1), the left hand side is < ΦM(/I, •••, /n)β> β > and the right hand
side is < Ω,φM(fι,. ">fn)Ω >•

7. Covariance

The object of this section is to prove the following two results:

Lemma 7.1. If f\, ,fn

 are in the Schwartz space, and g is an element of the or-
thochronous Lorentz group L | , then writing f( = fi o g~l (i=l...n) we have

Wn(/ι,...,/n) = Wn(/ί,...,/^). (7.1.1)

Lemma 7.2. /f/ι,...,/n are in the Schwartz space, and τx denotes a translation
y —» y — x in Mrf+1 then writing j( = fi o rx w^ αgα/n /zαv^

Wn(h,..., /„) = Wn(/ί,..., /;>. (7.2.1)

Together, these will ensure that we have a unitary representation of the Poincare group
on the Hubert space J%?°, where ̂ 7° is the closure of the vectors φM(f)Ω in H.

Proof of 7.2. Referring to (4.2.1) we find the graphical integrand Mc(f, p, 7) is equal
to

n

), (7-2.2)

where the only dependence on f is in the first term. The effect of translating by an

amount x is that for all q, //(q) = /^(q) - e~iq'x. Hence by (7.2.2),

n

Mσ(f, p, 7) = exp(-i ̂  &(P)' x)^c(f, P, 7) = MG(f, p, 7) (7.2.3)
i=l

because, of course, the sum of all the flows φi(p) contains one entry pe and one entry
—pe for each edge e G eχ(G), and is zero. Hence, the graphical integrals /c(f) and
I G ( f ) are all equal, so Wn(f) = Wn(f).
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Proof of 7.1. The effect of the substitution // = fa o g'1 is that

where g* denotes the transpose of the linear map g. Let us now consider the graphical
integrand M c ( f , p f , J f ) where we define

/ _ f Pe if e lies within a single band of G;
Pe - (^)-lp if e

and
Ί' = (7e)eeex(G) = (7e #*)eGex(G). (7.1.3)

We claim that when f , p and 7 are as above,

,7). (7.1.4)

For looking at Definitions (3.1.2-7) we note first that the Lorentz transform
does not change the value of p2

e, hence

(Pe)2 = Pee

for all e G e(G), and all factors μ(pg) are unaffected by the map p — > p;. Second,

all factors //(</>) have the fourier transform evaluated at φ = φi(pr). Every edge pe

involved in the flow into band i must, obviously, cross between two bands; hence,
(7.1.4) gives φi(pf) = (g*ΓlΦi<P) so

Λ'(^(P')) = £((0T Vi(P» = Λ(P) (7.1.6)

by (7.1.2). Thus, factors fτ(φi(p)) are unaffected by the substitutions f — > f , p — > p7.
Thirdly, all factors 0(q) in (3.1.2-7) are evaluated either at q = gepe for an edge

e G eχ(G), or at pe for an edge e lying within a band. In either case, the value of q is
unaffected by the changes we have made, the nontrivial case being when e G eχ(G)
so pe' = (g*)~lpe, but on the other hand, 7^ = jeg* so

Lastly, most of (3.1.2-7) have dependence on the sign of Le via the step-functions
H(Le); but the factors μ(pg) ensure that the contribution is zero unless pe is time-
like; in which case the sign of Le cannot be changed by any orthochronous Lorentz
transform g. This concludes the proof of (7.1.4), and the rest is easy:

We claim the first integrated moment

MG|ι(f,7/) = Mσ,ι(f,7). (7.1.8)

The only thing needing remark is that the delta functions of (3.3.1) are unchanged
by the substitutions we have made. For the linear functionals ψi,j(p) are linear com-
binations of momenta pe such that the edge e is internal to a particular band, and
momenta 7epe such that e G eχ(G) (see (3.2)). As we have already remarked, both
these quantities remain unchanged when p — > p7 and 7 — > 7'.

Next, we claim that the second integrated moment

(7.1.9)
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Proof. By (3.4) this is just a matter of integrating (7.1.8) with respect to 7 on the left
and 7' on the right, noting that the two forms of integration are the same because d^e

is always right-invariant Haar measure, invariant under any transformation 7e —> 7e#*
But now we need only take a finite linear combination of our results as in (3.5)

to conclude that Wn(ί) = Wn(f); on which happy note we conclude §7.

8. Spectral Properties and Vacuum Uniqueness

In §5 we defined vectors ΦM(/I, •••, /n) in a Hubert space 3@, whose inner products
are the Wightman functions of our theory. The vectors </>M(/I> •• ?/n) are certainly
not dense in 3$, so the time has come to restrict to a subspace of 3@ in which they
are.

Definition 8.1. Let 3$^ C 3$ be the closed linear span of the set {φu(j\ , ••• , fn)Ω '

Let us summarise our results (Hermiticity, Covariance) so far:

Theorem 8.2.
(a) For each f G ̂ (ld+1), the map f(φ) which sends φM(h, •••, fn)Ω to

ΦM(/> /i 5 ~"> fn)Ω extends linearly to a densely defined Hermίtίan operator on
whose domain of definition includes the vectors φM(ΐ)Ω.

(b) For each element g = hor in the Poincare group P (h £ L j, τ a translation on
md+1; the map U9 which sends φM(fι , ..., fn)Ω to φM(fι °9~lj2°9~l, ..Jn°9~l)Ω
(8.2.1) extends linearly to a unitary operator on J °̂ and the collection {Ug, g £ P}
is a unitary representation of the Poincare group.

Note, the presence of the inverses in (8.2.1) means we are picturing the Poincare group
as having its maps written on the right; the author prefers to picture a delta-function
/i moving up the positive time axis under positive time translation.

The proof of these facts comes straightforwardly from the results of §§6-7; for
the details, see the proof of the Wightman reconstruction theorem [SW1, p. 11 7]. One
of the known (see §4) properties of the Wn is that they are continuous functions of
/i j j / n °n Schwartz space; hence the representation in (b) is strongly continuous
because it is a fact that, as gτ — » g in P so /o^ — > fog in ^(Md+1) from which we
may infer convergence of various Wightman functions, and deduce strong continuity
rather easily. So looking at the subgroup of translations on Md+1 , we have a strongly
continuous unitary representation of M.d+l under addition; which must therefore have
an infinitesimal generator (P, P0) consisting of d + 1 densely defined and mutually
commuting Hermitian operators on J °̂ (here PO is of course the time coordinate,
the others being P\ . . . P^). We are now going to investigate the joint spectrum of the
Pi , and prove the following theorem:

Theorem 8.3. The joint spectrum 0/(P, PO) lies entirely in the forward cone PQ — P2 >
0,Po>0.

A closely related theorem which will also be proved in this section is the following:

Theorem 8.4. If Ω^ denotes the vector subspace of J °̂ consisting of vectors or-
thogonal to the vacuum, then Ω^ is an invariant subspace of <^&°, and the spectrum
of the restricted operator PO|^J_ is confined to the region PQ > IΎIQ , where TΎIQ is, as
previously, the lower end of the support of our probabilistic mass density μ .
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This theorem, once proved, ensures not only that our theories have unique vacuum,
but also the existence of a "mass gap" mo between zero and the first nontrivial
spectrum of the Hamiltonian P0

Proof of (8.3) and (8.4). The method of proof is to identify each component Pk with
the restriction to the subspace ̂ ?0 of a very well known operator Qk on 3@ . Recall
that H is the L2 direct sum of Hubert spaces 3&Δ where 3&Δ is L2((Wi+l x L)A).
On the space L2(0&d+1 x L)A} there is a densely defined Hermitian operator QA such
that for functions F(q, η) = F(ql,ηι;q2, η2\ ..., q^, ηΛ) (q» G Md+1, ηι G L) we have

> *7] = (2^ *i>' efc F[(*' ̂  = (L ςfi )^[q, ̂ ] (8.3.2)

(where e^ is the fcth unit vector). We will now write Qk to denote the densely
defined operator on H which coincides with (8.3.2) on each J^^(Z\ > 0) and is
zero on J^?o = C. We claim that P& is none other than the restriction to J^?0 of
Qk(i = 1, ....Δ) . It is enough to show that for all p G M, elpPk is equal to elpQk \^o.
Now eφFfc is Ur where r is a translation by an amount p in the e& direction.

Pick any sequence f = /ι,...,/n in ^(Md+1), any element (G, <$<-) of ^5?? ,
and any sequences p = (pe, e G e(G)) in M.d+l and 7 = (7e, e G eχ(G)) in L. Write
^ = Z\(G) and by (5.3.6),

n

M ~ G(f, p, 7)[q, η] = JJ£(0" ,(p, q)) T V " G(p, 7), (8.3.3)

where TV Q does not depend on f. When each fτ is replaced by fior (giving a
sequence f o r say), we therefore have

n

M ~ G(t o r, p, 7)[q, η] = M ~ σ(f, p, 7)[q, η] - exp(-ip]P(/>" ^p, q) - efe). (8.3.4)

Now each φ~ i is, by (5.3.2), equal to ^(p) - ΣδG(jKB.(G)q^ (8.3.5) where φi is
the flow into band i in the graph G. In (8.3.4), however, we are only interested in the
sum over all i; and certainly ΣILi^ίP) = 0 (8.3.6). Also, the sum

n A

Σ Σ % = Σ%Δ^J Z-^1 ^3 Z-^^τ

*=1 6G(j)eBt(G) i=l

because each 5cO') is in one and only one band of G. Therefore (8.3.4) gives

M ~ G(f o r, p, 7)[q, η] = e(ipΣtι&M ~ σ(f, p, 7)[q, r/]. (8.3.7)

Integrating up as in (5.5-7) we get

/" σ(f o r)[q, r/] = e(ipΣί=ι^)/" G(f)[q, ry], (8.3.8)

hence by (5.8), we may write φM(ΐ)Ω = c + Yhτ (c G C = J 0̂; Λi G ̂ ) and

° r)ί2 = c' + Σ^=ιh/i (c7 G C = ̂ b; A G ̂ ). We find that c' = c and for each
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h'Δ[q,η] = e([pΣf=ι&hΔ[q,η]. (8.3.9)

Hence,
φM(t°τ)Ω = eif)Q*φM(f)Ω, (8.3.10)

that is,
e^φMφΩ = eif)Q*φM(f)Ω, (8.3.11)

and our Claim is established. But it is now almost trivial to get (8.3,4). For the Qk are
only pointwise multiplication operators on the L2 spaces involved, so their spectral
subspaces are rather easy to identify; they consist of all functions supported on the
region where you are "pointwise multiplying" by a number in the given set.

Hence it is enough to establish (8.3), if for a set of elements ζ G ̂ ° whose
linear span is dense, we can write

00

C = c + £Vιt (ce<C,Λie^ i ) (8.3.12)
i=l

with every hΔ supported on the set {(q,T7): qf > 0, q® > 0; i = 1, ....Δ}. No prizes
for guessing our choice of set with dense linear span; of course, it's the ΦM(Ϊ)Ω. In-
specting (5.3.4), (5.3.5) we actually do rather better than (8.3.12); for each i = l,....Δ

there are invariably factors H(#?)μ(q?) in each M Q hence if ζ is a vector φM(f)Ω,
it can be written as in (8.3.12) but with all hΔ (Δ > 0) supported on

{[q,η] :q? >mg,g?>m 0 , i = !,..../!}.

This implies not only that P0 > 0 and PQ — P2 > 0 but also that the operator

^bl^Θ^θ^sθ... = ̂ olβ-L > TOO /, (8.3.13)

thus establishing (8.4) as well. Thus, §8 is brought to a close.

9. Locality

The aim of this section is to prove the following result:

Lemma 9. If /i, ...,/n are in the Schwartz space ^(]Rd+1), and if the supports of
the functions fj and fj+\ are spacelike separated, then

Wn(fι9...Jn) = Wn(fι9...JJ,ιJj+ιJjJj+2Jj+3,^Jn)' (9.0)

From this lemma we shall immediately obtain the corollary:

Corollary 9.1. If f and g are in the Schwartz space, and if the supports of f and g
are spacelike separated, then the operators </>M(/) and </>M(#) (as in (8.2)) commute.

For the proof of this given Lemma 9, see [SW1].
Since the local commutativity axiom is in fact the last of the Wightman axioms

that need verifying for our functions Wn , we then will immediately deduce:

Theorem 9.2. The functions Wn defined in §5, are indeed the Wightman functions of
a hermitian scalar field theory.

In Section 10 we will begin to discuss the nature of the theories we have discov-
ered.
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Proof of Lemma 9. We begin by "nibbling" at the problem as follows:

Lemma 9.3. In order to establish (9.0), it is sufficient to prove that (9.0) holds when-
ever the functions fj and fj+\ have spacelike separated compact supports.

Proof. The functions Wn(f) are continuous in their arguments (Lemma 4.3), and it is
a fact that the pairs (fj,fj+ι) in Schwartz space such that their supports are compact
and spacelike separated are dense in the set of all pairs (f3,fj+ι) with spacelike
separated (but not necessarily compact) supports. Thus (9.3) is established.

Another small bite is taken out of the problem as follows:

Lemma 9.4. In order to establish (9.0), it is sufficient to show that (9.0) holds in the
case when fj and fj+\ have compact supports which are u spacelike separated in the ei
direction, " that is, there is a v < 1 such that for all x G supp fj and x7 G supp fj+\
we have

XQ — XQ\ < v\x\ — x\ . (9.4.1)

Proof. [One might be tempted to say "by an elementary compactness argument"; but
at any rate, here is the compactness argument:] Write / = fj and f = fj+\. We may,
by (9.3), assume that / and /' have compact supports. For every x G supp f and
x7 G supp /', the vector x — x' is spacelike, (that is, there is a unit vector u with
zero time coordinate, and a speed v < 1, such that

\xv-x/

0\<v\(x-xf) u\. (9.4.2))

Now the set of points (x, x') such that (9.4.2) holds for given u and υ, is open in
M2(d+1). So, for some η > 0, (9.4.2) also holds if (x,x7) is replaced by (y,y7) with
||y — x|| < η, ||y7 — x'\\ < 77, [where || || denotes the positive definite quantity as
before]. Let us write B(x,xf,77) for the set

{(y, y') e M2(d+1) : ||y - x|| < r/, ||y7 - x7 | | < η}. (9.4.3)

The compact set supp f x supp f is therefore covered by open sets B(x,x',η/2)
(η = r?(x, x7) depending on x and x7) such that the following holds. For all (x, x') G
supp f x supp f there is a unit vector u = u(x, x') and speed v = v(x, x') < 1 such

that

l 2 Λ > - 2 / o l « Ί ( y - y ' ) u|, (9A4)

for all (y, y7) G J3(x,x7,τχx, x7)). There is therefore a finite subcover, say involving
balls B(xi^xt

i^ηi/2) (ί = 1,....M) , unit vectors u^ and speeds υ < 1. Define η =
min{ηi,ί = 1..M} and v = max{vl,i = 1..M}. Then for any (x,x7) G supp f x
supp f there is a unit vector u such that (9.4.4) holds, for any (y, y7) G £?(x, x7, τy/2);

for we just choose u = u^ , where (x, x7) G B(xl,x'i,η/2).

Now we can write / = Σf=\9iι f = Σf=\9i* where each gl(g'i) is supported on a
subset of supp f ( supp f) of diameter at most 77/2. Then, since

R Rf

and the analogous statement is also true with f3 and f3+\ swapped, gi and gf

k swapped,
and G1 replacing G\ we find it is enough to prove (9.0) in the case when fj and fj+\
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are supported on sets such that for some fixed unit vector u and speed v < 1, we
have

\XO-XQ\ < υ\(x-x')-u\

for all (x, x') G supp fj x supp fj+\. Our functions Wn are known to be covariant,
so they are certainly invariant under space rotations. Therefore we may assume u = ei
and this concludes the proof.

We now proceed to the heart of the matter.
We note that if an equation like (9.0) holds at all, it is more or less bound to hold

"graph by graph"; so we now make a specific assertion concerning which graph gets
"paired off with which.

Definition 9.5. With the notation of (9.0) let f denote the sequence f\ , ..., fn and let
f denote the sequence /i, ..., f j - ι , f j + ι , f j , f 3 + 2 , /j+3, •••, fn Thus,

Λ; = /ior, (9.5.1)

where r is the transposition permutation (j, j + 1) acting on the set {1, 2, .., n}.

The transposition τ is going to play a role similar to that of the map c in §5, only
less complicated.

Definition 9.6. Let G G &n be any graph. We define a graph G' as follows:
Gf has vertex set {Fi,ί = 1, ....n} U {Xij : ί = 1, ....n, j = 1, ....s^}; where

s'i = srm; (9.6.1)

and Si = Si(G) is the analogous sequence for the graph G. We define the natural map
r : G -> G' by

τ(Fi) = Fτ(i), τ(Xitj) = XT(i)tj. (9.6.2)

The edges of G' are the edges r(e) = (τ(u), τ(v)) such that e = (u, v) is an edge of G
(counted of course according to multiplicity).

The point of Definition 9.6 is of course the following:

Lemma 9.7. The map r defines a bijection &n — > &n and if the supports of fj and
fj+ι are compact and spacelike separated in the ei direction, then for each G G 8̂
we have

Mσ/>2(f ) = MG,2(f); (9.7.1)

where f, f are as in (9.5), and G' = τ(G).

In view of (3.4) and (3.5), Lemma 9 is proved once (9.7) is established.

Definition 9.8. Let /ι,...,/n,ι> be as in (9.4), with (9.4.1) holding for each x G
supp fj, and each x' G supp f3+\. The function 7 : M x M2 x Rd~l x M — > M is

defined by

7(α, x, £, p) = \p\f3+ι(xQ - p sinh α, xv + pcosh α, £2, 6? -» ξd), (9.8.1)

where x = (XQ? ^ι)ί ί = (£2 > £3 > £d) ^y convention fourier transforms of this function
will be done on the p - coordinate only; thus, we define

/ -
Ί(a,x,ξ,p)e-^dp. (9.8.2)
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Lemma 9.9. If (XQ,XI) is in the set of pairs such that there is a vector of form
(XQ, x\, ..., Xd) G supp fj , then the function

p -* 7(α, (zo, EI), €, P) (9.9.1)

w w ί/z£ Schwartz space J/^(M), w uniformly bounded as XQ,X\ and a vary, and is
zero for large enough \XQ\ + \x\\ + \a\ + \\ζ\\.

Proof . Concerning membership of the Schwartz space, the only doubtful thing is
whether we have infinite differentiability near p = 0. But if p = 0, (9.4.1) ensures that
the vector (XQ — p sinh α, x\ + p cosh α, £2, •-> ζd) is not in supp fj+\ , so 7 and all its
derivatives are zero on a neighbourhood of the point.

Concerning uniform boundedness, we note that actually x$,x\ only vary within
a compact set, and furthermore, 7 is zero for tanhα > v by (9.4.1). Since jfy+i is a
compactly supported element of the Schwartz space, the result follows.

We now rewrite the product fj(q)Tj+ι(q') (q,q' e ^(Md+1)) in the following
way:

Λ (q) Λ+ι(q') = / Λ WΛ>ι(€)exp(-i(q x + q7 OMx^ (9.10.1)
J supp f j X l & d + l

(— i(q x + q7 (XQ - psinhα, xi +pcoshα,ξ2 £d))|p|dαφd£ώκ? (9.10.2)

where E = [—tanh~lv,tanh~lv] x M x M^"1

(9.10.3)

where Ef = [— tanh"1 v, tanh"1 υ] x Md-1 x supp fj.

Note. We would like to substitute our slightly peculiar formula (9.10.2) into the
moments M^f, p, g) and Mc/(f p7g') (which, as the reader will recall, involve factors

fj(φj(p)) and fj+ι(φj+ι(p'y), where φj and φ'j+l denote the flows within G and G7

respectively; and we would then like to integrate up to get the second moments
MGZ* reversing the orders of integration freely along the way. This however is illegal,
because the multiple integral would not be absolutely convergent. So we take a slightly
different route:

Definition 9.11. For each speed u G [0, 1) we define a subset Lu C L as follows:

Lu = {±U ΛV : U is a space rotation, and Λv a velocity boost of speed at most u}.
(9.11.1)

We then define the subgroup I/0ι C L consisting of all Lorentz transforms (including
time reversal) which act on /m{eo,βι} and leave Zm{e2, ...,e^} fixed. The typical
element of Z/oi thus has matrix
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eisinhα 0 0\
oshc
0

0

x 0
1

0

0

0

1

... 0

... 0

* . o
0 I/

where e\ and €2 are signs. Also, we define Lu = {U τlv : U is a space rotation of
determinant +\, and Λv a velocity boost with ||v|| < u and v βi = 0}.

Now, let the graph G G &n be given, and let the edges which connect Bands j and
j + lofGbeeι... er. Let G' = τ(G) and write e( for rfe). We define ^u C Le^(G)

and^'u C Le*(G/) for each u < 1, as follows:

^u = {g = (9e)eeex(G) '-far each e φ {e\...er},ge G Lu\ and for some σ G L0ι
we have geι G L~ σ and gGτ G Lu - σ(i = 2, ....r)};

S%'u = r(3ξu) = {(^)eeeχ(G) :for some g£<&uwe have g'τ(e} = gefor every edge

e G G } .

Note that, because 3§~ involves a velocity boost with zero component in the ei
direction, the value of σ is uniquely determined by geι and thus, the σ$ (i = 1, ....r)
are uniquely determined by g.

Lemma 9.12. The set 32U is an increasing function ofu, and the union
Leχ(G\

The proof is obvious.
Now, let us take g G =Sίn, and rewrite geι G L~ - L0ι as

= σ\ - (±T

where σ\ G Lu ,T is time reversal, Z = 0 or 1, and
Then let us rewrite geί (i = 2..r) as gGχ = σ^ σ with
for g; G .̂  we write

(9.12.1)

= σ \σ' = ±T

is the velocity boost.
Lu (i = 2, ....r). Likewise

(9.12.2)

and
g'e% = σ( σ' with σ(
Note that our sets

i = 2, ....r).
split naturally into four "components" (from the

topological point of view, actually four unions of several components each) with
1(1') = 0 or 1 and the sign in (9.12.1)((9.12.2)) positive or negative.

Lemma 9.13. If we restrict Haar measure to 2%u it has form

Π • dz/(σ"ι,...,σ r) dβ

on each "component"; where v is a finite measure and dβ is Lebesgue measure on M.

Proof . The set ̂ u is invariant under the map which applies σo G LOI on the right
to each ^ (i = l..r) , and leaves the other ge fixed. Our measure was right invariant
Haar measure to begin with, so even when thus restricted it must be of form
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where d^ is Haar measure on L0ι . But this is just dβ on each component, as is
well known in the 2-dimensional case because the velocity boosts are a subgroup
isomorphic to (M,+) by the map sending Λtanhβ*λ to β . The fact that v is finite
follows because if β is restricted to a bounded set, the associated subset of <5?u is
precompact in Leχ(G^ and has finite measure.

Definition 9.14. Let u G (0, 1) be given. With the notation of (9.7-11) we define the
reduced second moments

£ 2 ( t ) = ί ί Mσ(f,p,g) Π
J&u Λ^+De(G) -̂  ̂  n

and

MG',2(f) = jci /(d+1)e(G)

 MG'<f, PΊ §') Π Wί,fc(P/))dp/dg', (9-14.1)

k=l]....sτ

Ψi,k(Ψ'ik) are the flows into vertices X^k of G(G') as in (3.2.1), and the sets

C Leχ(G\ ̂  C Le^(G/) are as in (9.12).

Lemma 9.15. The reduced second moments all exist, and for each /ι,...,/n in

lim Mg>2(f) = MG,2(f) ̂ d lim Af£/>2(f) = MG/>2(f). (9.15.1)

Proof . If the domains &u(&ύ) are replaced by Le^(G)(Le^(G)) in (9.14.1), then
we know by Lemma 4.3 that the integrals are convergent to MG, 2(f), ^GX, 2(^) By
Lemma 9.12 and the dominated convergence theorem, we have the result.

Definition 9.16. Returning to (9.10.3) we define

7+(α, x, £; q, q') = 7(0;, (XQ, zi), ί , qr (- sinh α, cosh α, 0, . . . , 0))x

exp(-i(q x + q' (x0, ̂ i , 6, - - , Cd))) (9.16.1)

= /

7^

(9.16.2)

^where as in (9.10.3),

Ef = [-tanh"1 v,tanh~lυ] x Rd~l x supp fr

Now, let us imitate the process involved in Lemma 4.3, by picking a spanning tree
Ti for each band of G, writing
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T( = r(Ti\ T = U^Ti and T' = U™ ̂ ' and as in (4.3.2-4) define maps

ryg : R

and

Cg = ryg o e

so that

^MG,2(I) = / / Π Λ(0i(e(q))) 7VG(Cg(q), g)dqdg (9.16.5)
^ ^vτ f=f V /

and likewise

(9.16.6)
/

Then, let us define the analogous maps for G'\

' (9.16.7)

(9.16.8)

and Cg = 7/g o e; so that

/-IβxίG)! /• n

= \ \ J]

^ ^^

i=\

Definition 9.17. Let then the function N3

G(ϊ, p, g) be

and let Nj

G,(ϊf,tf ,g) be

(9.16.9)
J ^τT=7V /

and likewise

" (9.16.10)

P7)). (9.Π.1)

These definitions may be substituted in (9.16.6,10), obtaining
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Mg2(f) = / / (fj(Φj(€(q)))fj+ι(ΦJ+ι(e(q)))}N^ (9.17.2)
J&u Jvτ \ J%u JVT

and

r &ύ r / \
£2(f) = / / (3(0X(qO))&ι(^

«/

/• /• /Λ ^ \
= / / (/j+ι(^(e'(q')))Λ (0 +1(e'(q'))))ΛΓ^(f,^,(q'),g')dq'dg/ (9.17.3)

J T

These definitions, though a little cumbersome, enable us to state our key lemma:

Lemma 9.18. For all u < 1, the integrals obtained by substituting (9.16.2) into
(9.17.2) and (9.17.3), namely

/<7 (x)7+(α, x, ̂  ^-(6(q)), ̂  +ι(€(q))dαd€dx dqdg (9.18.1)
US'

and

M£,2(f)= ί ί Λ^CgKq'λ
J&ί Jv^

/;(x)7+(α, x, ί; ^(e'ίq7)), ̂ +ι(e/(q/))dαdίdx dq'dg' (9.18.2)
J

in fact converge as multiple integrals on S%u xVτ><Ef and S%'u xV^x E' respectively
(here E1 is as in (9.10.3)). Furthermore, they are the same.

Proof . We consider the set E^ c (Mrf+1 x L)r consisting of sequences (qe.,#eί)J-ι ^

ld+1 x L such that (as in (9.12.1-2)) we have g&τ = σ* σ (9.18.3) with σi G
L~ , σ G LOI , σ^ G Ln(^ = 2, ....r). Then let Eκ,a C £ 3̂ denote the subset of sequences
such that, additionally, ||#e.qe.|| < K (ί= I, ....r) (9.18.4) and (for the given value

a G [- tanh"1 υ, tanh"1 v]) we have

r

|(^qe ι)-(-sinhα,coshα,0,...,0)| < K. (9.18.5)

<

Let us say σ = zbT^ Λ^^β^ where T is time reversal, β G M. Then, the elements

±σiTl (ί = l...r) are drawn from a compact set of invertible linear maps so there
is a KI (depending on u) such that if ||^e.qe.|| < K then P(tanh /3)Cl qe

(9.18.6).
Write

qβι = (μi cosh/3 - λ» sinh^, μl sinh/3 + λz cosh/3, ςij2, ̂ ,3, •-., ίi,d) (9.18.7)

and after applying the transformation yl(tanh/3)e1 we have vectors

= (βi cosh 2/3, μ^ sinh2/3 + λ i ? gz,2, ̂ ,3, •-, &,d)
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(z = l,....r). Hence, \μi < KKγ sech 2/3, ||fe,2,&,3, .-, 4^)11 < ##i and
μ tsinh2/3| < KKV so |λ*| < 2KKι (9.18.8). Also

.) (— sinhα,coshα,0, . . . ,0)|

r

i) cosh(α + β) + (J^μi) sinh(/3 - α)| < AΊ ,
i=l i=l

therefore

r

< #1 sech (a + β) + rKK{ sech (2/3) sinh(/3 - α).

But α comes from a bounded set so for a suitable

i - (K\K2 + rKKλK2) sech (/3). (9.18.9)

The Jacobian involved in the transformation sending qe to (λl? μ ϊ 5 3^2, ̂ ,3, . . . , ̂ ,d)
(^ = l..r) is (cosh2/3)r. So for fixed geι . . .^6r the volume of the cross section of
EK,& as the qe. vary is at most

(cosh2β)r - (2KKι sech 2β)r - vol{(\ι,..., λr) e [

|λι + ... + λr | < K2Kι(l +rK) sech β} (vol Ed_ι(0,.

(where vol ^_ι(0, K) is the volume of a ball of radius K in dimension d — 1, which
is the domain in which the vectors (^,2, Qί,3, - - •> Qί,d) are allowed to vary)

< (2KKι)r(4KKιY~l K2Kι(l + rK) sech β - (vol Sd-ι(0, /ί))r

<Kr(d+^K3 sech/3 (9.18.10)

shall we say, where 3̂ depends on r, v and u . Now the element of Haar measure
on the elements geι...ger is ώ/(σι...σr) d/3 where dz/ is finite (let's say \dv\ = K4)\
therefore by (9.18.10) we have

/

CO
Kr(d+l)K3K4 sech (/3) d/3 < 4K3K4K

r(d+l\ (9.18.11)
-oo

Now, the factor 7+(α,x,£;0j(e(q)), in our integrand (9.18.1), is

(— sinhα, coshα, 0,..., 0)|)~β)

for any given R > 0 (see (9.8.1), (9.8.2), (9.16.1)). Now if e is an edge of e(G)\T

there is a factor θ(geqe) in TV t which is o((l + llqJD"^ for any given R > 0 because
#e is only allowed to vary within a compact set for such e. For e = e\, e2,..., er we
can at least say that the integrand has a factor which is o((l + | |<7eqell)~Λ) f°r any R.
Hence, for each R > 0 there is a C = C(#) such that (9.18.1) is at most
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fJE'

\φj+ι(t(q)) (-sinhα,coshα,0, ...,

(9.18.12)

But φj+ι(e(q) is of form ΣΓ=ι<ϊei+Σ(β0me other edges) ±(Ie Since the other <ϊe already
appear in factors (1 + ||qe||)~β in the integrand (9.18.12), we infer there is a C'(R)
such that the integral is at most

C'(R)

v —R r

.) (~ sinhα,coshα,0, . . . ,0)| J - JJ
' ι=l

(9.18.13)
Fix K > 0, and let us integrate with respect to the gβι and qe.(i= 1, ....r) over the
region where

r

max{||0e.qej(i = 1, ....r), |(^qe.) (- sinhα,coshα,0, . . . ,0)|} G (K - 1,K].
i=\

By our estimate (9.18.11) on the volume available, we get at most

c'(R)d + ||€IΓΛ

eee(G)\T\{eι,...,er}

If R > r(d + 1) + 1 then summing from K = 1 to infinity we have a finite answer, at
most

eee(G)\Γ\{eι,...,er}

where 64 = C^R^v^u) is a constant. So (9.18.1) is at most

CΛ

e6e(G)\T\{eι,...,er}

Π
Xeeex(G)\{eι...er}

where _

Now it is only ξ and the remaining qe that are integrated over a noncompact region;
the integral is finite for R > d + 2, and uniformly bounded in the other variables,
so we know that the multiple integral (9.18.1) converges absolutely, for each fixed
u < 1. In the same way, the multiple integral (9.18.2) converges absolutely, and the
"large square brackets" of (9.18.1) and (9.18.2) may mentally be removed.
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We now prove that the multiple integral (9.18.2) is equal to (9.18.1), by an ap-
propriate substitution. In fact, we fix an a G [— tanh"11;, tanh~lv], and we make the
following substitutions among the other variables.

Definition 9.19. Given a fixed a, we make the substitutions

f, ife = τ(f), f φ {eι...er}
•^c*q/5 ίfe = τ(f), f = Cifor some i = 1, ....r

and
I Π f 1 T P ~~ T( T\ T (+- 4 Pi P >/ i y T Ί v i & — ' \ i j Ί i \tι i c i « « > o r f

s-,' — J JJ I J V«/ ' ' J Γ^ I A ' J
e ~ \ 0 / o T α , if e = τ(f), f = ei for some ί = l,....r '

where Ta is time reversal in a frame of reference with time direction
(coshα,sinhα,0, ...,0).

Note that since Ta G LQI , this substitution sends the one domain of integration onto
the other; and our measure is invariant under it (9.13).

Lemma 9.20. With these values o f g ' , q;, we have

N 3

G , ( f , Cg'(q7), g7) = N3

G(Ϊ, Cg(q), g). (9.20.1)

Furthermore,

(φ3+ι(p) - φ'j(p')) (-sinhα,coshα,0...0) = 0 (9.20.2)

and

arι,6,...,ω = ̂ +ι(P/) x+^(p') (a:o,xι,ξ2,...,ω (9.20.3)

Proof. Now the orientation of the edge e = (u, v) (i.e., the question of which of the
two vertices is "above" the other) is reversed by the map e —> ef = τ(e) if and only
if e G {eb...,e r}.

Write then ζ = Cg(q) and ζ' = Cg/(q') We define a vector τ(ζ) E ffi(d+1MG') rather
as in (9.19), by

-{
C/, if e φ { e i , . . . , er}, where e = τ(f)
~Taζf, if e G {e i , . . . , er}, where e = τ(/).

We claim that r(ζ) = ζ'. Considering the matter edge by edge, and using (4.3.2-4) we

see that τ(ζ)e is obviously equal to ζ'e if e φ T because both are equal to q;

e/. Now
the whole point about (4.3.2-4) is that Cg(Q) wiU be the unique vector extending q
from ]R(d+D(e(G)\T) to ffi(d+i)e(G) in such a way that ̂ (Q, ζg(q), g) = 0 for all i, j. But

then, the vector r(ζ) will extend q' from j^+De^ΛT7

 to ^(d+DeίG7) in such a way

that ψij(G', τ(ζ),g;) = 0 for all i and j; for the functions ψτj count products geζe

positively or negatively according to their orientation (3.2); and in view of (9.19),
(9.20.4) we have negated our products (that is, obtained geζe = —gr

e,(r(ζ))eι) precisely
in the r cases when the orientation changes. Therefore, τ(ζ) = ζ'.

Let's now establish (9.20.1). The functions Nj

G,(f, Cg/(q7), g') and Nj

G(t, Cg(q), g)

depend on values fa for i not equal to the special values j and j + 1 (9.17.1), which are
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certainly unchanged when we replace G with G' and ζ with £', because for crossing
edges other than the special ones {ei, . . . , er}, we just have ζe = qe = q'e, = ζ'e/. The

functions 7V^(f, ζg(q), g) and N^f(?,ζf,(q'),g') are apart from that dependent only

on Nc(ζg(q),g) and N G f ( ζ ' , ( q ' ) , g f ) . These are, by (4.1.2), products of the functions

NQ (respectively, N^,\ which we claim are equal if, as usual, we have e' = τ(e).
Proof of Claim. For (4.1.3-6) show us that the NQ have only the following depen-
dencies.

They are zero unless all the ζe are timelike. They depend on the quantities H(Le),
where Le is the time coordinate of ζe. Looking at (9.20.4) we see that - since Ta

involves a time reversal - these quantities are unchanged when we replace e by τ(e)
and ζ by ζ' because we have at most changed ζe by acting with an element of L |,
namely —Ta.

They depend on quantities μ(Ce) which are unchanged when we make the substi-
tution for the same reason. ^

Lastly, they depend on factors \θ(geζe)\2. By (9.19) and (9.20.4), geζe has at most
a change of sign when we make the substitution; but of course, θ is a real valued

function so \θ\ is even. Thus (9.20.1) is proved. In order to prove (9.20.2) we point
out that writing p = Cg(q)>P' = Cg/(q')» we have

φj(p) + φj+ι(p) = φfj(pf) + Φ'j+l(p')

=(total flow out of bands j,j + I of G (or G')).
Also,

φj =(flow out of Band j of G' from other than Band j + 1 )+Σ[=ι^/

e/

=(flow out of Band j+1 of G from other than Band j )+X^=1q'e/

+ q e ) = Φj+ι + ί-T^e + q e )

Hence, φj(p') — φj+ι(p) is in direction (cosh α, sinh α, 0, 0, ..0). Likewise, <//+1(p') —
φj(p) is in direction (cosh α, sinh α, 0,0, ..0). This proves both of the last assertions
because we obtain the last line (9.20.3) from (φj + φj+\) x = (φj + Φ'3+\) x and

(φj+l - φr

3) - (0, 0, 6 - α?2, 6-0:3, ..-, ξd ~ xd) = 0.

Corollary 9.21. If we substitute for q',g' as above, we find that for each fixed a G
[—tanh~lv^tanh~lv] the integral

JE<
f, Cg(q), g) Λ (x) 7+

(9.21.1)

X M^"1 X T^τ X ̂ u

and
E6 = supp fj x ll^-1 x Vj x
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Consequently, when we perform the final integration with respect to
a and obtain (9.18.1,2), we find that Mg 2(f) = Afg, 2(f)

Proof . The reader may verify that if one integrates (9.21.1) with respect to α,
one obtains (9.18.1) on the left and (9.18.2) on the right. By (9.16.1) the func-
tion 7+(α,x, £, 0ι, 02) has a dependence on φ\ and φi only in terms of φi -
(—sinhα,coshα,0..0) and φ\ x + φ2 (£o>#ι>£2> ...,ξd) (9.20.2,3) are therefore
exactly what we need to declare the two versions in (9.21.1) equal. The NG functions
are equal by (9.20.1), and the result follows. Thus we conclude the proof of (9.21),
hence of (9.18).

Corollary 9.22. When the functions fj and fj+\ are spacelίke separated, the Wight-
man functions Wn(/ι,...,/n) and Wn(h>— >fj-\,fj+\,f3,fj+2,fj+ι>.. >fn) are in-
deed equal.

The proof is now obvious; take the limit as u /* 1 of the identity MQ 2(f) =

M£fj2(f), and we have MG,2(f) = MG/ j2(f), which establishes (9.7). Multiply this
identity by the constant given in (3.5), and sum over all G G &n as in (3.6), and we
have the result for the case when supports of fj and fj+\ are spacelike separated in
the ei direction. This is, by Lemma 9.4, enough to establish the general case. Thus
we bring §9 to a close.

10. First Steps with the New Theories

Well, we have arrived; the functions Wn(/ι,..., /n) defined back in §3 are indeed the
Wightman functions of a Hermitian scalar field theory. We have found a fairly natural
and explicit Hubert space of quantum theory states (*̂ ° C 3@ as in §§5 and 8); and
we have found that there is a mass gap rao, where mo is the lower end of the support
of the smeared "mass density function" defined back in (1.1). At this point we were
going to make optimistic comments about possible nontrivial scattering amplitudes;
but in view of the "Rehren decomposition," [Rehl], we certainly should not do so.
We are, however, cautiously optimistic that some of the ideas in the construction
may prove useful. I think the main problem with this construction is that Locality
was added last, and in doing so, we gave the theory one too many symmetries - too
much "smoothness" - and paved the way for the Rehren decomposition. I think we
ought to try something broadly similar starting from a family of linear maps that was
transparently local to begin with.
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