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Abstract: Affine Toda field theories in two dimensions constitute families of
integrable, relativistically invariant field theories in correspondence with the affine
Kac-Moody algebras. The particles which are the quantum excitations of the fields
display interesting patterns in their masses and coupling which have recently been
shown to extend to the classical soliton solutions arising when the couplings
are imaginary. Here these results are extended from the untwisted to the twisted
algebras. The new soliton solutions and their masses are found by a folding pro-
cedure which can be applied to the affine Kac-Moody algebras themselves to pro-
vide new insights into their structures. The relevant foldings are related to inner
automorphisms of the associated finite dimensional Lie group which are calculated
explicitly and related to what is known as the twisted Coxeter element. The fact
that the twisted affine Kac-Moody algebras possess vertex operator constructions
emerges naturally and is relevant to the soliton solutions.

1. Introduction

Affine Toda theories in two dimensions are integrable and possess an infinite number
of local conversion laws [1,2] whose charges generate what can be considered as
an infinite dimensional Poincare algebra,

09 (i.i a)

[K,P(M}] = ίMP(M} . (Lib)

The Lorentz boost, K, measures the Lorentz spin, M, of the "momentum,"
The values of the integers M for which the momenta P(M) are non-zero form the
set of exponents of the associated affine Kac Moody algebra whose root system
appears in the original equations of motion. The affine Toda field theory possesses
critical points with ^-symmetry and the symmetries (1.1) can be regarded as the
relics of this which survive when the critical theory is deformed in the appropriate
integrable manner.
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A remarkable but well known mathematical fact is that the underlying affine Kac
Moody algebra possesses a subalgebra called the "principal Heisenberg subalgebra"
which, when augmented by the "principal derivation," is precisely isomorphic to
(1.1) at level zero. Recent studies [3,4,5] of the classical soliton solutions of the
affine Toda field theories for imaginary couplings (thereby extending the familiar
theory of sine -Gordon solitons) have revealed a formulation in which the above
mentioned subalgebra does indeed act on the solutions as the Poincare algebra (1.1).
It is this coupling of space-time and internal symmetries which essentially explains
why so many of the space time properties of the particles and solitons of the theory
(masses, coupling and scattering matrices) possess a Lie algebraic nature [3-10].
However this formalism has so far included only the untwisted affine Kac Moody
algebras and not the twisted ones.

The untwisted algebras has been traditionally easier to understand and, up to
now, found more physical applications. The twisted algebras can, in any case, be
understood as subalgebras of the simple simply-laced untwisted ones. In fact there
are two natural but distinct ways of achieving this. One way has been well studied
in the mathematics literature [11] whereas the other has been found to be useful in
the physics literature dealing with affine Toda field theories [12, 13].

Here we shall find it worthwhile to relate these two hitherto distinct procedures.
From the mathematical point of view we shall illuminate the "twisted Coxeter ele-
ment" [14] which plays a role in the grading of the twisted algebra, as well as
the vertex operator construction which is valid for the twisted algebras despite the
fact that the Dynkin diagrams conventionally associated with them are not simply
laced.

More physically, the results will clarify both the spectrum and the coupling
of the particles of the twisted affine Toda field theories. Moreover the general
formalism for the soliton solutions will be found to extend in a straightforward
manner. Recent observations of Dorey [15, 16] will be understood better and set
in a more general framework. Part of the interest of the twisted theories is that
they constitute a different sort of integrable deformation of the conformal Toda
theories as compared to the untwisted theories, in the sense of Zamolodchikov
[18-20].

Section 2 reviews the usual classification of the twisted affine Kac-Moody
algebras and the Dynkin diagrams associated with them as explained by Kac in
his book. In the second construction these are obtained by "folding" an untwisted
simply laced extended Dynkin diagram zJ(g^) making use of a special symmetry
of 2(g(1)) which has the property that it can be lifted to an inner automorphism of
the finite dimensional Lie algebra g. Such symmetry forms the finite group [12,4]

^o(g) = Wfc) Π Aut/l (g(1)) * Z(G) , (1.2)

where W(g) is the Weyl group of g, and Z(G) the centre of the simply connected
Lie Group, G, whose Lie algebra is g. All twisted Kac-Moody algebras, except

A^ , can be so obtained in an essentially unique way. A^ is exceptional in having
a Dynkin diagram with three different root lengths and needs special treatment in
both approaches and so will be ignored, as we seek general arguments.

These folding procedures are also applied to the corresponding affine Toda
field theory equations and results concerning masses and solutions are immediately
deduced.

Section 3 presents the main ideas in rather general form. The lift of any element
τ G WQ, (1-2), to an inner automorphism of g is considered. Its fixed point set, gτ,
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is defined, and shown to be acted upon a natural way under conjugation by S,
the lift of the Coxeter element of g. Thus S acts as an outer automorphism of gτ

which will be related to the twisted Coxeter element of the semisimple part of gτ

when this is simple. It is further shown that if τ has order k, then Sk lies in the
Lie group Gτ itself and this observation provides a crucial link with the alternative
construction described by Kac.

Section 4 describes a concrete expression for the group element, S, conjuga-
tion by which yields the inner automorphism of G corresponding to τ in the cases
g is simply laced and τ is direct. From this is deduced the precise structure of
Gτ. As this has to have the same rank as G it is unclear how it is related to the
fold of A(g^). It turns out that Gτ is never semisimple as it possesses (k — I)
invariant C/(l) factors. When the remaining semisimple factor is actually simple,
we recognize a relationship to the twisted Dynkin diagrams appearing in the classi-
fication described by Kac [11]. The remaining possibilities are interesting but were
not considered in [11].

The construction of Sect. 4 has several geometrical features which are described
in Sect. 5 and used to view the root system of the simple part of gτ as being
acted upon by a twisted Coxeter element following from the action of S mentioned
above.

We then see how a basis for the twisted aίfine Kac Moody algebra can be
formulated in terms of a twisted principal Heisenberg subalgebra and the associ-
ated quantities ad-diagonalising them. Viewed this way, the basis for the twisted
algebra is simply a subset of the corresponding basis for g(1), the untwisted simply-
laced aίfine Kac-Moody algebra. As a consequence it is shown to inherit its vertex
operator construction.

In Sect. 6 we discuss the application of these results to understanding the pro-
perties of the particles and solitons in the twisted aίfine Toda theories. In particular
we find that there is a sense in which the energy momentum tensor is unchanged
by folding. As a consequence, the twisted soliton mass spectrum is a subset of the
spectrum of the unfolded g^ theory, in the same manner as for the spectrum of
masses of the quantum field excitations.

For completeness, we also discuss how our general results apply to the other
kind of folding, namely that which yields the untwisted non-simply laced aίfine
Kac-Moody algebras. Here the results for the two kinds of mass spectrum differ
and our method gives a simple explanation of this, thereby confirming previous
results.

2. Folding and Twisted Theories

The conventional notation for the twisted affine Kac-Moody algebra is the desig-

nation XH ,£ ^ 2. As explained in Kac's book [11], Xn denotes a simple, simply
laced Lie algebra of rank n endowed with a diagram automorphism (of the Dynkin
diagram A(Xn)) of order k. It turns out that the construction can be summarised by

the statement that the Dynkin diagram A(X^) has as Cartan matrix AΓ((YV)(1))Γ,
where Y is the subalgebra of Xn fixed by the automorphism of Xn which is the lift of
the diagram automorphism; Yv is its dual, that is the algebra with the roots and co-
roots interchanged. Thus ^((YV)(1))Γ is the transpose of the extended Cartan matrix
of Yv. Following Kac's book, Table 1 lists the possibilities with the exception of
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Table 1. Kac's notation for twisted affine algebras

1-2 l-l

0 λ 1 2 1-2 l-l ' I

0 1

A^ which has to be treated as a special case in both the conventional approach
and in ours which follows.

In Table 1 the vertices of Zl(X^) are numbered for future reference. Note that

the integer / is chosen so that the folded Dynkin diagrams Zl(D^+1) and A(A2l_l)
each possess precisely (/ + 1) vertices.

In considering affine Toda field theories, it has been found helpful to view
the diagrams in Table 1 as arising in a different way, namely by "folding" [12] the
extended Dynkin diagrams of simply laced simple Lie algebras. Thus, by virtue of a

symmetry of the extended Dynkin diagram ^(D^) it can be folded to A ( A . f l

) _ l ) by
identifying points related by the symmetry. It is sufficient to denote these symmetries
as a permutation of the tip points of the extended Dynkin diagram, namely those
symmetrically related to the vertex (0). Each diagram in Table 1 can be found as
indicated in Table 2. The symmetry to be used for the folding is specified in the last
column, using the numbering of vertices of Zl(g(1)) and the conventional notation
for permutations.

Notice that the automorphism of /l(g(1)) needed to obtain the diagrams of
Table 2 possess two important properties: they are direct (i.e. never relate two
linked vertices) and they are elements of £Fo(g)? (1-2). This means that unlike the
element of AutzJ(Xn) used in the construction of Table 1, as described by Kac,
these automorphisms of ^l(g(1)) can be lifted to inner automorphisms of the Lie
algebra g (as well as the corresponding Lie group G). This inner automorphism
will be important in what follows and will be constructed explicitly. It has been
shown that [12,4]

(2.1)

where Z(G) is the centre of the simply connected Lie group G whose Lie algebra
is g. The result (2.1) makes it easy to scan all the possibilities of elements of

when g is simple and simply laced. We find that two possibilities remain
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Table 2. Twisted affine algebras obtained by folding Δ(g(l}} by τ

g^ reW0(g)

0 1 2 3 4 5 6

(0,1,5)

1 2 3 4 5

beyond those in Table 2. JFoO^H+i) possesses an element of order 4 not listed
above. It is, however, not "direct" and so excluded from most of our argument.
The remaining case turns out to be of considerable interest,

_ι) ̂  ZN . (2.2)

If N = mn, we have τ £ WQ defined by

τ(ϊ) = i + n(modmn) , (2.3)

using the numbering of vertices in Table 3. As τm(i) = i + mn = z'? this has order
m. In this case, "folding" gives zl(An-ι(1)).

We shall now explain why the folding procedure of Table 2 is useful in affine
Toda field theory and deduce the form of the general soliton solution for the twisted
theories, generalising those of the untwisted theories.

Following the treatment of [4], let {/} denote the set of vertices of Zl(g^) related
to the vertex / by the action of τ G Autzl(g(1)), that is, its orbit. Then, if τ is direct,
so that no two points of {/) are ever linked directly,

(2-4)
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Table 3.

9(l} Λ(0(1)) τ e W0(g)

0 1 2 mn-3 mn-2 mn-l

defines a new, folded, Cartan matrix. This is the precise way in which the folded
diagrams of Table 1 were found by folding the diagrams in Table 2, using the
specific element τ listed in the last column. The set of coprime integers m^ defined
as Σ =o KijWj — 0, obviously fold according to

(2.5)

as Σ{7 )^{0(./)m{y} = 0, and the m^ remain coprime integers.
If we define the variables

φi = aί - φ, / = 0, l , . . . , r , (2.6)

where (α 0,αι,...,α r) are an extended set of simple roots, and

^=^,we have the relations

Σ^ = 0, Σ5% = 0. (2.8)
z'=0 αz ί=0 α/

The advantage of introducing a redundant variable is that the affine Toda field
equation of motion associated with the Cartan matrix Kij can be written

u2 r

82φi + ̂  Σ Kijmje^J =0, ί = 0, 1, . . . , r , (2.9)
P y=0

subject to (2.8), and that this version better displays the symmetry of the Dynkin
diagram whose Cartan matrix is K. This can be done whether the algebra is twisted
or not. Equation (2.9) can be linearised to

jΦj = ^ (2.10)
7=0

Thus the squared masses of the quantum particles excitations of the fields equal μ2

times the eigenvalues of the matrix C^ = K^nij which is similar to Cυ — w/A^, so
sharing the same eigenvalues (cf. [4]). Because of the condition (2.8), the eigenvalue
0 is excluded leaving precisely r values.
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The basic result concerning the folding of Eq. (2.9) via (2.4) is that if φφ is a
solution of the folded equation, with C / Λ / Λ replaced by C^ in (2.9), then

Φi = Φ(i) (2.11)

is a solution to the unfolded equation that displays the symmetry φt = φτ(i).
Conversely, all such symmetric solutions furnish solutions via (2.11) to the folded
equations.

In particular, the mass spectrum of the quantum field excitation particles of the
folded theory automatically forms a subset of the unfolded mass spectrum. These
results hold for any diagram automorphism τ G AutZl(g^^) as long as it is direct.
The group Autzl(g(1)) is actually a semidirect product of two subgroups Autzl(g)
and JFo(g) ([12,4]). Both these subgroups are relevant. Folding with τ G Autzl(g)
yields a non-simply laced untwisted affine Kac Moody algebra. Such τ can be lifted
to an outer automorphism of the Lie algebra g, preserving the principal SO(3)
subalgebra. All this was discussed as in detail in [4] and will not be pursued again
here. Instead, as explained above, we consider the effect of elements of ^o(g) These
can be lifted to inner automorphisms of g which do not preserve the principal SO(3)
subalgebra and fold to give twisted algebras.

In untwisted affine Toda theories, the quantum field particle excitations are in
one to one correspondence with points of the ordinary Dynkin diagram Λ(g). Mass
degeneracies reflect the symmetries of the diagram and are broken by foldings by
τ G Autzl(g). We have just seen that for τ G WQ a subset of particles survive folding
and one of our results will be to determine precisely which in terms of a simple
general formula. The surviving particles correspond to the subset of vertices first
found in the explicit calculations of Braden et al. [13], and rederived in Sect. 6
to follow.

The general soliton solution to (2.9) for imaginary coupling β can be written

e~βφ' = ft (Mjfv , (2.12)
7=0

where

Mj = (Λj\g(t)\Λj) (2.13)

is a tau function, namely an expectation value with respect to the /h fundamental
highest weight state of the algebra. g(t) is a group element constructed in a specific
way from the soliton data. For the untwisted theories (2.12) is derived by a simple
rearrangement of the general expression of [3]. We shall now show that, unlike the
formula of [3], (2.12) has the virtue of applying to the twisted affine Toda theories
as well.

First note that, if Mj symmetric in the sense Mj = M^ ), we can define M^ to
be equal to it and use (2.4) and (2.11), to indeed find

(2.14)

It will be verified in Sect. 6, as a result of our construction, that indeed Mj = Mτ(7 )
in the twisted Kac-Moody algebra.
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3. Action of ίFo(g) on the Principal Coxeter Element S

The first, and main, part of our argument is quite simple and general. It applies to
any element of τ G J^o(g)? (1-2), whether or not g is simply laced, and whether or
not τ is direct.

Recall that any element τ of ^o(g) is uniquely characterised by its action, τ(0),
on the vertex 0 of the extended Dynkin diagram, zl(g(1)), whose deletion yields the
ordinary Όynkin diagram /l(g) [4]. Moreover if τ φ l it moves each tip point of
J(g(1)). Suppose τ G FFo(g) has order k:

τk = l. (3.1)

Because Wo(g) C ^(g), the Weyl group of g, τ can be lifted to an inner automor-
phism τ of g:

τ(p) = TpT~\ p G g, T G H1 C G , (3.2)

where, as stated T lies in H' the maximal torus of G whose Lie algebra is the
Cartan subalgebra in apposition, h'. This is because

(3.3)
ί=0

and H' is the centraliser of E\. From (3.1) it follows that

Tk G Z(G) , (3.4)

where Z(G) is the centre of the simply connected Lie group G whose Lie algebra
is g.

The definition (3.2) of τ leaves some ambiguity in Γ, to be discussed later, but,
irrespective of this, it was shown that [4]

τsτ-ιs-ι =

where S is the principal element of G

(3 6)

and λ] — 2λi/v% is a fundamental coweight. The angular momentum Γ3 lies in the
intersection of the principal SO(3) subalgebra of g with the original Cartan sub-
algebra h of g. h(g) denotes the Coxeter number of g. As

Z(G) , (3.7)

conjugation by S grades g into /z(g) eigenspaces

1 2mm

g - g0 Θ g! Θ Θ gκg)_1? where SgmS = eh^ gm , (3.8)

and therefore
g0 - h; El G gl . (3.9)

The known form of the zero curvature potentials of the affine Toda field theo-
ries indicates that these eigenspaces are of crucial importance in understanding the
integrability of these theories.
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The group element z(τ) in (3.5) lies in Z(G). Thus (3.5) is a key equation,
stating that T and S almost commute, despite the fact that they lie in maxi-
mum tori in apposition. It follows from (3.5) that, for any pair of integers m
and n,

TmSn = z(τ)mnSnTm . (3.10)

Our first deduction is that z(τ) has precisely the same order, k, (3.1), as τ and that
k necessarily divides the Coxeter number h(g).

By (3.4) and (3.10), z(τ)* = 1, but if z(τ) had a lower order, £', then Tk/ would
commute with S, and so, by (3.2) and (3.8), would lie in the intersection of the
two maximal tori in apposition with each other, H and Hf. As this intersection is
simply Z(G), this would imply τ had order kf ', contrary to the hypothesis. It now
follows that k provides the smallest power of S that commutes with T. By (3.7) it
then follows that k divides A(g).

Now let us define Gτ, the fixed point subgroup of G with respect to τ,

Gτ = {0E G;TaT~l = a} . (3.11)

Since z(τ)k = 1, from (3.10) we see that Sk commutes with T and hence lies in
Gτ while S itself does not when k ^ 2. Nevertheless

SaS~l e Gτ for all a e Gτ (3.12)

as T commutes with SaS~l by virtue of (3.5) and (3.11). Thus conjugation by S
produces an outer automorphism of Gτ, with the property that its A;th power is inner.

The remaining argument is to relate this action of S to that of the so-called
twisted Coxeter element. The problem to be addressed is that Gτ necessarily has
the same rank as G as it contains H1 by virtue of by (3.11) and the fact that T
lies in H' . Thus Gτ would therefore not relate simply to the folded Dynkin dia-
gram which has fewer points than this as also does the rank of Xn in Tables 1
and 2.

The resolution of the apparent paradox will be that Gτ defined by (3.11) is
not semisimple. Rather it is composed of (k — I) invariant £/(!) factors times
a semisimple factor which relates straightforwardly to the folding when it is
simple.

To understand this we need to establish the structure of T, (3.2) in more detail.
As T G H',

where 7 is a vector to be determined and (h\,h29...,hr) denote an orthonormal
basis of the Cartan subalgebra in apposition h' namely that containing E\9 (3.3)
and generates H' . This basis is chosen to be conjugate to the basis of the original
Cartan subalgebra h, (Hι,H2,...9Hr),

hi=PHiP~\ i= 1,2,. ..,r, P e G . (3.14)

Using this we can write z(τ) in (3.5) also as

z(τ) = e~2πiλw'h9 (3.15)

remembering that z(τ) lies in the centre of G and therefore commutes with P. Since

SY hS~l = σ(Y) h, (3.16)
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where σ is the Coxeter element of W(g) in the form σ_σ+, [6], we can evaluate
z(τ), (3.15), in another way, using (3.5) and (3.13), and find

z(τ) = e-2πί(l-σϊγ'h . (3.17)

Comparing these two expressions, (3.15) and (3.17), we have

, (3.18)

where the element of the coroot lattice Λ^(gv) is undetermined.
As (1 — σ) never vanishes, it has a unique inverse. Further it maps the coweight

lattice of g into its coroot lattice [7] by virtue of the identity:

(3.19)

Therefore,

up to an element of Z(G) dependent on the undetermined element of the coweight
lattice of g. This undetermined factor is innocuous as it has no effect on the adjoint
action of Γ, (3.2).

Nevertheless we shall take advantage of this ambiguity in the following way:
replace λv

τ^ in (3.18) by w(/ί^0)), where w G W(g) is a Weyl group element. Then,
instead of (3.20),

where, by our previous comment, the dependence on w is carried by an innocuous
central factor. The point is that we shall find a choice of w, dependent on τ, which
simplifies (3.21) considerably.

4. Concrete Expression for T and the Structure of Gτ

We now add the assumptions that g is simply laced and that τ e JFo(g) is direct.
The latter condition excludes the element of order 4 in JF0(D2«+ι) — £4. The former
condition means that all roots can be taken to have length \/2. Then the fundamen-
tal weight λi and the fundamental coweight 2Λ//α? — λ\ are identical. With these
assumptions we shall verify that there exists a choice of w e W(<g) such that T is
given by (3.13) with

7 - (1 - σΓlwλτ(Q} = wY' = -w(/ίτ(o) + Λτ2(0) + + V_ι ) ( 0 )). (4.1)

With this we can determine the structure of Gτ, (3.11), and relate it to the Dynkin
diagram obtained by folding zf(g^) with τ.

Let us define
β1 = w~~ σw (4.2)

which, being conjugate to σ, is equally a Coxeter element of PF(g), but not the one
whose action is induced by S. Then (4.1) is equivalent to

Ύ' = (1 - σ'Γ1 Aτ(0) - -ατ(0) + /ίτ2(0) + + V-D(O)) (4 3)
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This will be proven by constructing σ' such that

λτPM = (1 + σ' + tf'2 + + σ'p~λ)λτ(^ p=l,...,k. (4.4)

Formally /ίτ/t(0) = λo = 0 and this is guaranteed by (4.4) if

(l-σ'*μτ(0) = 0. (4.5)

Unfortunately the verification of (4.4) and (4.5) has to be done on a case by case
basis and is therefore relegated to Appendix A. The case of g = SU(mn) and τ
given by (2.3) is particularly instructive and easy to verify. It follows from (4.4)
that

Λ τ(O) (4-6)

Summing from values of p running from 1 to (k — 1 ) yields

σ'Y' — Y' —

which confirms (4.3). Moreover, if we define

we likewise find

(4.8)

As (4.7) manifestly does not vanish, being composed of £ linearly independent quan-

tities, and as f - (^)j^ we deduce that the (*- 1) integers |,f ,...,
are all exponents of g. Combined with the statement that all the integers between
1 and (A(g) — 1) coprime to A(g) are also exponents, we have a economical means
of calculating the exponents of E6,Ey and Eg. Note that

(4.9)
p=l

The structure of Gτ, (3.11), can be determined by considering the isomorphic group
conjugate to Gτ within G

G( = W~lGτW

whose elements commute with

T' = w~lτw = e-
2πiγf h

 ?

where Y1 was given in (4.3). The generators of g'τ comprise the complete Cartan

subalgebra in apposition of g, and step operators F* for roots α; with respect to
this Cartan subalgebra:

which satisfy
-2π/y' H>-
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But by (4.3) and the fact that the weights /lτ/?(o) are all minimal so that for any
root β, λτpφyβ = 0 or ±1, we have

Y' βl ^ 1 - 7 < 1 . (4.11)
K

Hence the only solutions to condition (4.10) satisfy

y'.w~1α = 7 α = 0. (4.12)

If w~lot is positive this implies that it is orthogonal to each of the minimal funda-
mental weights /Iτ(θ),/lτ2(0), . . . ,A τ yt-i( 0 ). This, in turn, means that

1 , (4.13)

where G® is semisimple. As Gτ has the same rank as G

rank (Gτ°) - rank (G) + 1 - k . (4.14)

Furthermore, the semisimple factor G® has a Dynkin diagram, ^l(g?), obtained
by deleting from zl(g(1)) the k vertices 0,τ(0),...,τ^-1\0). Thus, referring to

Table 2, we see that deleting vertices 0,27 — 1 from ^(D^) yields Δ(A.2i-\\ delet-

ing vertices 0,1 from ^(D(^2) yields J(D/+ι), deleting vertices 0,6 from

yields ^(£5), while deleting vertices 0,1,5 from A(E6 ) yields Zί(U4). Thus, in
these cases, the Lie algebra g? is indeed isomorphic to Xn defined by the first
column in Table 2. In particular, we see that gξ! is actually simple in all cases
except the final one cited in Table 3 when deleting vertices 0, n, 2n,..., (m - 1 )n
from J(A^_j) yields m copies of zl(Aw_ι).

Notice also that it follows from (4.12) that if Fα is a generator of g^,

= 0, p= 1,2,...,*-!. (4.15)

Thus the roots of g^ are all perpendicular to the (* — 1) dimensional subspace
spanned by the (*— 1) eigenvectors of σ, (the Coxeter element induced by S)
corresponding to the (* — 1) exponents h(g)/k, 2 h ( g ) / k . . . . This was first observed
by Dorey [15] for the particular case of g = E6.

We shall now consider the action of S on G?.

5. The Twisted Coxeter Element from the Action of S on (7τ°

We shall now assemble the preceding results. In Sect. 3 we saw that the conjugation
by S acted on Gτ as an outer automorphism. In Sect. 4 we saw how Gτ factored
into a semisimple group G!̂  times an Abelian group of dimension (* — 1 ) with
generators

Because #(^-^ ) are eigenvectors of σ, S acts on the Abelian factor diagonally:
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As these eigenvectors are orthogonal to all the roots of g1^, (4.15), S acts directly

on g?. So
SF*S~l =Fσ ( α ). (5.2)

In fact, the roots of g? fall into complete orbits of /z(g) elements under σ. This is
because if one element of an orbit is orthogonal to the eigenvectors of σ mentioned
above then so are all the other roots in the orbit. If there are / such orbits then g^
has //z(g) roots. Thus

/A(g) - Kg?)A(g?) ̂  (Kg) + 1 - *)A(g?) (53)

equals the number of roots of g^ counted two different ways. This makes it clear

that the action of σ on the roots of g? differs from the action of its own Coxeter
element. This different action is that of the "twisted Coxeter" element. By the result
of Sect. 3, σk is inner as far as G® is concerned even though σ is outer. Thus
σ, being an automorphism of the g? root system, is composed of a Zl(g?) diagram

automorphism of order k times an element of JF(gJ). Furthermore, as it has the same
order as the Coxeter element of W(g), namely λ(g), it follows by the discussion in
Sect. 7 of the paper by Springer, [14], that σ is 7Γ(gJ) conjugate to his definition of
a twisted Coxeter element. Thus we can think of our construction as providing an
alternative construction of the twisted Coxeter element to that presented by Springer.

It can also be checked from (5.3) that, when g? is simple, the Dynkin diagram

Zl(X^) = zJ((gJ)^) has precisely (/+ 1) vertices so that our two usages of the
symbol / indeed agree.

By extension of the usual definition of an exponent, one can define the twisted
exponents of g^ as being those powers of exp 2π//A(g) which occur as eigenvalues

of σ applied to the Cartan subalgebra in apposition of gj. By our construction, the
twisted exponents are given by the set of exponents of g less the (k — 1 ) exponents
A(g)/&, 2λ(g)/&, . . . ,(& — 1 )h(g)/k associated with the abelian subalgebra of gτ, (5.1).
Again this agrees with the results described in [11].

The action of S applied to the Lie algebra g® furnishes a grading of order A(g).

It is precisely the grading (3.8) defined for g applied to the subalgebra g^. When

g^ is simple it coincides with the grading defined in book of Kac by a different

method and when g® is not simple (see Table 3) it provides an interesting new
possibility.

It is this grading, the twisted principal grading, which can be used to define

the twisted aίfine Kac-Moody algebra XJ^. In the present manner of construction,
the natural basis for the algebra is a subset of the basis of g^1^ written in terms
of its principal Heisenberg subalgebra EM (M equals an exponent of g(1)) and
the quantities F(α,z) ad-diagonalising the principal Heisenberg subalgebra. This
subset is

EM M — a twisted exponent of g^(mod/z(g)) ,

F(α,z) : for roots α of g satisfying α q ( — 1 = 0; p — 1, 2, . . . , (k — 1 ) .
\ k J

(5.4)

Since g(1) was simply laced, the roots, α all have the same length (\/2 say) and

this applies equally to X Thus, despite the Dynkin diagram (Table 1) not being
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simply laced, the algebra is nevertheless simply laced in the sense just described.
The most striking property of X^) that follows as a consequence is that the vertex
operator construction for g^) still applies to Xj^. This was originally demonstrated
by appealing to character formulae for the irreducible representations [11] but we
shall see how it follows naturally in our approach.

First we must consider how the fundamental highest weight representations of
X^ follows from those of g(1) via folding. What happens is that the inequivalent
fundamental representations of g(1) with highest weights Aj, Λτ(7> Aτ2^, . . . , become

identified as a single fundamental representation of X^ whose highest weight is
denoted A^. This is because X^ = Σίe<ι)^'» -*/ = £/>.//>*/ have the same ac-

tion on each of these states and they generate X^ Actually we expect the rest
of the principal Heisenberg subalgebra of g(1), namely EM for M = (n + | )/z(g),
n £ Z, p = 1, 2, . . . , (k — 1 ) to be represented. As πij — wτ(7 ) the level of Λ^ is the

same as the levels of Aj,Aτ(j),Λτ2^9... . Recall that as g(1) is simply laced

F(a,z)mJ+l =0 (5.5)

in the g^ irrep with highest weight Aj. This therefore remains true in the A^

irrep of X^ ' for the surviving F(α,z), namely those satisfying (5.4). Furthermore,
F(tt,z)mJ /mj\ is a vertex operator [5], that is a normal ordered exponential of the
principal Heisenberg subalgebra EM-

Without loss of generality we can replace α by y, the standard representative
on its orbit under the action of σ as explained in [3]. Then if F\z) = F(yi9z) in
the representation with highest weight Aj, we have the generalised vertex operator
construction [5],

Σ^V-yny

*• ' = e-2πiλ> ' λ> Y'Z' , (5.6)
«/!

where

= exp Σ - t z = eχp Σ _
M>O M M>0 M

In order to establish that (5.6) and (5.7) makes sense in XJ^ as well as g(1) we
need to check two things.

First consider the sum in the exponential. In g(1) the sum includes all the ex-
ponents of g^ but in X^ the sum should be restricted to the twisted exponents of
X^. This restriction is automatically guaranteed as, when Fl(z) lies in X^, yt satis-
fies condition (5.4). Thus the surviving Fl(z) e X^ are obtained by exponentiating
the twisted principal Heisenberg subalgebra ones.

The second point concerns the phase factor in (5.6) [5] which we know plays
an important role in determining the asymptotic behaviour of the soliton solution.
We have to show that this phase is unaltered if λj is replaced by Aτ(7 ) so that
it is independent of the representative Aj or Aτ^ chosen for A^. Consider the
expectation value

(F ( -2πiλi λτ(i}

=e
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Lifting τ to the outer automorphism τ of g^ expression (5.8) equals

Λj) (5.9)
mj\

But τ \F\z)) = F\z) precisely when F*(z) G X^}. Thus this expression equals
expression (5.8) with τ(y) replaced by j and the desired conclusion follows.

6. Particles and Solitons in Twisted Affine Toda Field Theories

We can now use the results of the preceding work to determine the mass spec-
trum (and other properties) of both the quantum particles and the classical soliton
solutions in the twisted affine Toda field theories. The results are quite simple and
further indicate that the twisted theories more resemble the simply-laced untwisted
theories than the non-simply laced untwisted theories despite having non-simply
laced Dynkin diagrams.

In the simply-laced untwisted theories based on g(1) with which we start there
is a one to one correspondence between the r = rank g species of quantum particles
and the same number of species of classical soliton solution. Furthermore the ratio
between the corresponding masses is given by

Mass(Soliton i) _ 4Λ(g)

Mass(Particle /) ~ \β2\hy* ' ( ' '

Therefore, for the simply laced theories, this number is universal in that it is inde-
pendent of the species i in question. This was discovered for An by Hollo wood, [21],
and later generalised to other untwisted theories [4,24,25]. When such a theory
is folded to give a twisted theory, subsets of the quantum particles and classi-
cal solitons survive preserving this correspondence. The same mass values sur-
vive unchanged, thereby maintaining the universal ratio (6.1), independent of /, but
with /z(g) equalling the twisted Coxeter number of g? = Xn.

On the other hand, when such a theory is folded to give an untwisted non-
simply-laced theory the result is somewhat different. Subsets of quantum parti-
cles and classical solitons again survive, and can still be put into correspondence.
However some of the soliton masses will change so that the mass ratio is still given
by (6.1) but no longer universal as the squared lengths of the roots yt differ. This
is the result of [4] which will be confirmed below by a simpler argument.

To see all this in greater detail, we recall that the quantum particle of species i
in the g(1) theory is associated with the orbit under the action of σ of the /z(g)
roots f , σ f , . . . through the corresponding step operators of the finite dimensional

Lie algebra g, Fyl, etc. A similar association applies to the classical soliton species
except that, according to the explicit construction, the correspondence is with

the generators of the affine Kac-Moody algebra, Fy (z\Fσ(-y \z) — Fy (ze~h~~)... .
Under the folding, the generators surviving to the subalgebra g? G g or to its aίfin-
isation are, by definition, those invariant under the lift of τ G ^δ(g). These are
determined by the result of [4]:
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and the fact that, if Fy survives, so do all the step operators for the roots on the σ
orbit of yl. Thus the condition for the survival under folding of either a quantum
particle of species / or a soliton of species / is exactly the same:

e~
2πιλι'λτ(0) — I ^

It is easy to evaluate this condition. Using the numbering of Table 2, the results
are

E< 1 } (τ(0)=l): ί = 3,6,

D<£(τ(0) = ! ) : / = 1,2,. . . ,7,

D^}(τ(0) = 27) : / = 2,4,..., 27 - 2,27 for 7 even

7 = 2,4,...,27 -2,27- 1 for 7 odd

and agree with the calculations of Braden et al. [13] for the quantum particles for
the twisted theories.

We saw in Sect. 4 that the condition (6.2) for survival could be written in
another way, Eq. (4.15) or (5.4). The significance of this presentation, namely
that the root to the surviving generators be orthogonal to the space spanned by
q(h(g)/k\q(2h(g)/k\..., is that the subset of surviving particles (be they quantum
particles or solitons) is closed, and hence self consistent, under the operations of

i. antiparticle conjugation,
ii. fusing.

(i) follows because the orbit associated with the antiparticle of species / consists
of the negatives of the roots in the orbit containing y/ and so if condition (4.15)
is satisfied by the particle it is satisfied by the antiparticle. (In fact, the surviving
species equal their anti-species.) If species i and j fuse to give k, then, by Dorey's
rule, jk can be expressed as the sum of two roots in the orbits containing y/ and
jj respectively. Evidently if orbits i and j satisfy (4.15) so does species k. Thus
the spectrum (of either quantum particles or solitons) of the twisted affine Toda
field theories will contain its own antiparticles and will still couple by means of
Dorey's fusing rule. This means that, in the quantum theory, the S-matrix in the
untwisted theory, restricted to the quantum particles states of the twisted theory,

will satisfy unitarity, crossing and bootstrap property, as argued in the case of D^
by Fring and Koberle [17]. However, as Dorey [9,10] has noted, there may be
doubt about the positivity properties. Certainly the quantum corrections to the same
quantum particle mass will differ in the two theories due to the different spectrum
of intermediate states allowed.

There has been much discussion of the proposal that the quantum twisted theory
be related to the untwisted non-simply laced theories whose Dynkin diagram is
obtained by reversing all the arrows [22,15,23]. It is tantalising that these two
theories do share isomorphic Poincare algebras (1.1) as their generalised exponents
coincide [11] (Corollary 14.3).

Whatever the kind of folding involved, as long as it is direct, it was shown in
Sect. 2, that the masses of the surviving quantum particles are unchanged in the
folding but we still have to check what happens to the classical soliton masses,
or indeed the multisoliton solutions more generally. First we need to consider the



Solitons and Vertex Operators in Twisted Affine Toda Field Theories 577

expectation values Mz and check how the condition M/ = Mφ ) of Sect. 2, needed
to define the corresponding quantities M^ — Mi for the twisted theory, is satisfied

whenever τ is a direct symmetry of ^(g^). Recall that for a multisoliton solution
of the g(1) theory

Mj = (Λj\g(t)\Λj) , (6.3)

where

V(t) =

From this we see that the symmetry condition M/ = Mφ ) is satisfied when-
ever the group element satisfies ΐ(#(0)) = 0(0), i.e. it is generated by the folded
algebra. If τ G $δ(g), this means that the species of F satisίy (6.2), or, equiva-
lent!^ (5.4).

If, instead, τ G AutZl(g), so that the folding leads to a non-simply laced un-
twisted theory, the condition is again satisfied but in a somewhat different way. In

this case it was shown in [4] that the surviving F l (z) were linear combinations of
the original ones:

F(ί\z)= Σ^ω (6-4)
/e«

We shall see that this implies that the single soliton of species (z) of the
folded theory will arise from folding a special |(/}| -soliton solution of the unfolded
theory.

We have been using the result of Sect. 2 whereby, given a "direct" symme-
try of the Dynkin diagram zl(g(1)), the symmetric solution of the unfolded theory
yields solutions of the folded theory and vice-versa. In order to understand the re-
sultant soliton masses we shall present a similar theorem for the Lagrangian and
for the energy momentum tensor: that a symmetric configuration for the unfolded
theory (not necessarily a solution) yields a configuration of the folded theory such
that the respective Lagrangian (and energy momentum tensor) assume identical
values.

In order to see this we first note that the folding of the Cartan matrix (2.4) is
satisfied by folding the roots as follows:

«</> = Σ r Γ T , (6.5)

where | (i) \ is the number of roots in the orbit of /. It follows that

2mt 2m(i} (6.6)

so that the constraint condition (2.8) is preserved. We now apply this to the inter-
action term in the Lagrangian (and the energy momentum tensor)

2 ± ^ ( e β Φ l - D (6.7)
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and see immediately that for symmetric configurations it equals

2μ ^m(i}fjφ(Λ 1 Λ ^ O x
-5Γ^-2-(^ω -!), (6.8)

which is the corresponding interaction term for the folded theory. The same result
applies to the kinetic terms dμφ dμφ and dμφ dvφ in the Lagrangian and energy-
momentum tensor, but the proof is more complicated and relegated to Appendix 2.
The main difficulty is to express the kinetic term in term of the variables 0/, (2.6),
in a way which manifestly respects the symmetry under Autzl(g(1)).

In particular, if we have a symmetric multisoliton solution of the unfolded the-
ory, it will yield a multisoliton solution of the folded theory with the same energy
and momentum. Nevertheless we cannot conclude that the solitons have the same
masses in the folded and unfolded theory as soliton number is not conserved and
necessarily preserved in the folding as we now see.

In the case that τ e ^o(g), so that the folded theory is twisted, a multisoliton
solution of species «(1),«(2), ...,n(k) satisfying (6.2) is symmetric and survives as
a soliton with the same interpretation. According to the result of [3], its energy and
momentum is given by

As this result applies to the folded theory also, by our theorem, the folded soliton
solution therefore possesses the same mass as the unfolded one. This is the result
mentioned at the beginning.

On the other hand, if τ G Autzl(g) so that the folded theory is untwisted but
non-simply laced, the symmetric solution could involve an exponential of (6.4),

X0<*) = Π eQ^(Z} β (6β9)

'Έ(ί)

The left-hand side would create a single soliton of the folded theory but the right-
hand side would create a superposition of | {/) j solitons of the unfolded theory all
with the same coordinate and rapidity. We have used the fact that the pieces in
(4.3) mutually commute since they have the same rapidity.

When we equate the consequent contributions to the energy and momentum
tensor of the soliton we have

V2P± = M(l}e
±η =

'•£</>

Hence we conclude that the mass of the soliton of species

(as MΪ = Mφ )). This confirms the result (6.1) of [4] with the bonus of a more
physical understanding. Note that this explains why MacKay and McGhee [24]
overlooked some of the soliton species in the untwisted nonsimply-laced theories.
They considered folding only single solutions and so ignored configurations such
as (6.9).
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Appendix A: Element T of G Corresponding to τ £ Wo(g)

The lift of the diagram automorphism τ e Wo(g) is provided by the inner automor-
phism (3.2) in which τ has the form exp(— 2πίY h\ (3.13). We shall now verify,
on a case by case basis, the existence of an element w, of the Weyl group, W(g),
such that Y has the form (4.1). It is instructive to start with the case g = Am w_ι
in Table 3. As this is the only case in which τ may have an order greater than 3,
namely m, it is the most complicated.

We recall that the mn — 1 fundamental weights λι can be expressed in terms of
mn unit vectors εz :

/ ^ mn
λι = Y] Si -- y* ε/, / = 1, 2, . . . , mn — 1 .

i=\ mn /=1

The Weyl group, W(Δmn-\)9 is isomorphic to the group of permutation of the unit
vectors, any element can be denoted by the standard permutation notation. The
following element cyclically permutes the mn unit vectors and hence is a Coxeter
element

σ' = (l9n+l92n+\9...9(m-l)n+l929n + 292n + 29...9(m-l)n + 29...9

n,n + n,...,(m — \)n + n) .

It is easy to check that σf satisfies (4.4) and (4.5) so that the desired result follows.
Now we turn to the four cases in Table 2. When τ has order 2, as it does unless

g = E6, all that has to be shown is the existence of a Coxeter element σ' conjugate
to a standard one σ satisfying

G Λ τ(O) = ~Λ,τ(0)

Let us now consider Dτ with its simple roots constructed out of the unit vectors
in the usual way

α/ = ε, -β/+ι, i = l,...,r- 1 ,

so that the fundamental weights are

Then it is easy to see that the Coxeter element σ" = σ\ 02 - - - or (with σ/ the reflec-
tion in α/) has the following action on the unit vectors:

* —s\ —> —ZΊ

ε, — > -εr .
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Hence as σει+εr(εr) = -εi,

v' = σει+εrσ"σBl+er

has the action σ'λ\ — —λ\. This is the desired result if τ(0) = 1 as in the second
line of Table 2.

If now r is even, equal to 2/, say, σ" also reverses the signs of εi — 82 + 83 —
84 H ----- h 627-1- Hence it reverses the sign of one half this plus or minus ε2/. But
this is a spinor weight Weyl conjugate to λ2ι or A 2/_ι according to the sign chosen.
This establishes the existence of σ' reversing the sign of λιι-\ as needed when
τ(0) = 21-1 as in the first line of Table 2.

For E6 let us consider the element of the Weyl group

w = σ/?σαι σαs, β = αi + 2α2 -f 2α3 + α4 + α6 .

One can check that

Wλ\ — —λ\ -f ^5 j wΛ<5 = — Λ<2 + ̂ 4

Now using the bicolouration such that ci = c5 = — 1 and the identities [7]

σλi_ = λt_ — αz _ , σ±α/rp — α/τ ~ ̂ ί^j^j > ^±α/± = — α/± ,

it can be proven that

wA5 , (1 -h σ + σ2)wAι = 0 ,

which correspond to (4.4) for τ(0) = 1.
Finally, for E7, let w = σβ, where j8 = αi + 2α2 + 3α3 + 2α5 -h α6 + α7. Then,

Now, like before, using the bicolouration such that €4 = c$ = CΊ — — 1 it is easy to
prove that

This completes the claimed result.

Appendix B: Folding of the Energy Momentum Tensor

Here we complete the argument of Sect. 6 and show that, for a field configuration
symmetric under τ e Autzl(g(1)), the energy momentum tensors of the folded and
unfolded affine Toda field theories are equal, providing τ is direct.

Given the Lie algebra g, we define the quantities

where λ\9 λ\,...,λυ

r are the fundamental coweighίs, pv their sum, while Λg vanishes.
The number
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If the long roots have length Λ/2,// denotes either the Coxeter number or twisted
Coxeter number, whichever is relevant. Then, because of the constraint (2.8), the
field φ can be written

ί . (B3)
/=o

The significance of this is that it provides the way of introducing all r + 1 variables
φQ,φ\,...9φr9 (2.6), which will respect the full symmetry of the extended Dynkin
diagram, Autzl(g(1)). To see this, first note that

* ft = δv ~ Jj-ji U = 0, l , . . . , r . (B4)

Since
τ(α, ) = ατ(0

defines the linear map τ, given τ G AutzJ(g^), we can easily check that

α/ τ(μy ) = α, μτ(j} , (B5)

and hence

μι μj = μτ(0 μτ(J} . (B6)

So the term dμφ dvφ in the energy momentum tensor can be written

r

Σ μ/ μjdμφidvφj , (B7)
/ y=o

a form which explicitly respects all the symmetries of the extended Dynkin diagram.
Using (6.5) one sees that H is unchanged by the folding if it is direct. Hence,

by (B4),

μ(j) = Σ ft (B8)

Hence, for symmetric field configurations, expression (B7) equals

Σ

The same argument evidently applies to the kinetic term in the Lagrangian,
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