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Abstract: In this paper we consider a one-dimensional model of interacting par-
ticles in a bounded interval with (possibly not homogeneous) diffusive boundary
conditions. We prove that, when the number of particles N goes to infinity and the
interaction is suitably rescaled (the Bpltzmann-Grad limit), the one-particle distri-
bution function of the unique invariant measure for the particle system, converges
to the unique solution of the Boltzmann equation of the model, provided that the
mean free path is sufficiently large.

1. Introduction

One of the most important problems in nonequilibrium statistical mechanics is the
analysis of stationary nonequilibrium states. For instance one can couple the system
under consideration to thermal reservoirs which are maintained at different constant
temperatures. After an initial transient time, the system is expected to approach a
stationary state in which there is a steady flux of energy from the hot to the cold
reservoir.

Such a state can be described at various levels: macroscopically by means of the
hydrodynamical equations, mezoscopically, through the kinetic (Boltzmann) equa-
tions, microscopically according to the basic Liouville equation. The three levels
of descriptions are related by various scaling limits some of which (see for in-
stance [1] as regards the deduction of the stationary hydrodynamical solutions from
the Boltzmann equation) have been successfully investigated. However very lit-
tle is known about stationary nonequilibrium states in the microscopic description.
Namely what we know about stationary solutions of the Liouville equation for
realistic systems with a non-constant profile of temperature on the boundary is, at
most, existence and uniqueness (see e.g. [2]), without any additional property which
could allow to go further in analyzing the scaling limits. Even worse is our know-
ledge as regards the Boltzmann equation: we have only partial existence results (see
[3-5]) for stationary nonequilibrium solutions. In this situation a rigorous analysis
of the Boltzmann-Grad limit seems hopeless, that is a derivation of the stationary
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Boltzmann equation from the stationary solutions of the Liouville equation under
a suitable scaling. Therefore a careful analysis of simplified models is useful, in
which some of the features of more realistic systems are maintained and for which
the problem can more easily be settled.

In this paper we want to study a one-dimensional model of interacting particles
proposed by Ianiro and Lebowitz in [6] for the study of the stationary solutions of
the corresponding Boltzmann equation. We prove that, under suitable assumptions
and for large values of the mean free path, the stationary solutions of the Liouville
(Master) equation, converge in the Boltzmann-Grad limit, to the (unique) solution
of the Boltzmann equation.

The basic ingredient of our proof is a cluster expansion technique used by
the same authors of the present paper for the time dependent problem (see [7])
on the whole line, which allows us the control of the interaction, combined with
a mixing property of the free (Knudsen) flow. The full use of this last property
makes necessary a lower bound for the allowed velocities which is, probably, only
a technical restriction.

The paper is organized as follows. In Sect. 2 we introduce the model. In Sect. 3
we establish some preliminary results and the technical setup necessary for the proof
of the main result. Here we introduce the f-functions, a sort of truncated correlation
functions (see [8,9] and references quoted therein), which play an important role
in the convergence proof presented in Sect. 4. Two technical Appendices conclude
the paper.

Some final comments are in order. After Lanford's result [10], it is well known
that the Boltzmann equation can be rigorously derived, for short times, in terms
of the classical particle dynamics (see also [11] for further comments and results).
Even proving the validity of the Boltzmann equation for arbitrary times (but this
seems much beyond our present knowledge) it is strongly doubtful whether such a
validation could work uniformly in time, for general situations. As a consequence,
even knowing the trend to a nonequilibrium stationary state for the Boltzmann dy-
namics (which is, incidentally, not known) we could not conclude anything about
the approximation of the nonequilibrium stationary state in terms of the correspond-
ing invariant state for the microscopic dynamics in the Boltzmann-Grad limit since
we are not authorized to commute this limit with t —> oo.

In this paper we approach the problem differently for the simplified model under
consideration. We evaluate the distance between the invariant measure for the par-
ticle system and the stationary solution to the Boltzmann equation (which both are
known to exist), in terms of the ^-functions and find that the time invariance condi-
tion on a scale of time sufficiently large to take advantage of the mixing property of
the free flow, and sufficiently small to control the interaction (for a sufficiently large
mean free path), gives rise to a contraction property which allows us to achieve the
proof.

To our knowledge this is the first result in this direction for a non-trivial model.
Our assumptions allow us to work without knowing much about the microscopic
invariant state and we believe that extensions including more realistic models are
indeed very difficult. Our analysis is essentially perturbative, therefore it works for
a large mean free path. One can ask whether the present result can be extended
for arbitrary mean free paths. A preliminary problem to solve is then to prove
(or disprove) the uniqueness of the stationary solution to the Boltzmann equation
without any smallness assumption. This problem has not yet been solved even in
our simplified model (see [6]).
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2. The Model

Let us consider a system of N identical particles in the interval [0,1]. Denote
by ZN = (XN,VN) = {X\V\,...,XNVN} a state of the system, where xt and vt are
the position and the velocity of the zth particle. ZN e AN = [0, l]N x yN, the phase
space of the system, where y — [—2,-1] U [1,2] is the set of all possible velocities.
A collision between two particles is defined in the following way. Denoting by v\,v2

and by v[,v2 the ingoing and the outgoing velocities respectively, then

υ[ = -v2, v2 = -vι if s g n θ i ) + sgn(ι;2), (2.1.1)

υ[ =v\, v'2 = υ2 if sgn(t i) = sgn(^2). (2.1.2)

Notice that, due to the fact that the particles are identical, the above collision rule
is equivalent to a specular reflection of each colliding particle. However we prefer
a labelling for which the direction of the velocity does not change in the collision
because this will simplify some technicalities later on. Moreover, according to (2.1),
collisions between particles travelling in the same direction are not considered.

Notice also that the relative velocity is preserved during the collision:

\vi-Vj\ = \v--Vjl . (2.2)

The dynamics of the system is stochastic. The particles move freely up to
the first time in which two of them arrive at the same point. Then they collide
(independently) with probability ε and go ahead with probability 1 — ε. Moreover
each particle is stochastically reflected by the boundary {0} U {1} according to
two given probability distributions, Ho and H\, for the outgoing velocities from
0 and 1 respectively. Namely, if a particle hits 0 (obviously with negative veloc-
ity) it is reflected with positive velocity υ distributed according to the distribution

//o [1,2] —•> R + with Jj dvHo = 1. The negative velocity outgoing from a col-
lision in 1 is distributed according to the distribution H\ : [—2,-1] —> 1R+ with
jl = 1.

The distributions HQ and H\ play the role of the Maxwellians of the walls and
mimic two reservoirs at possibly different temperatures.

The stochastic process introduced above defines a semigroup P*N in the following
way. Let Vo = vo(ZN) be a symmetric probability density. Then v(ZN,t) = PjyVo(Z#)
is the time evolved measure defined by

fv(ZN,t)φ(ZN)dZN = Jvo(ZN)Έφ(TtZN)dZN , (2.3)

where φ is any smooth test function, TιZ^ is the N-particle stochastic process
starting almost surely from ZN and E denotes the expectation. It is easy to see that
P*N acts isometrically from L\(dZu) into itself. Formally v satisfies

(dt + ΣVidΛ v(ZN,t) =UΣ δ(xi -xMU)\vi ~ Vj\{v(Z'N(iJ\t) - v(ZNj)} ,
\ i=\ J l iφj

(2.4)
where <3; is the derivative with respect to JQ, δ( ) is the ^-function centered at zero.
χ(Uj) = 1 if sgn(f/)φ sgn(fy) and 0 otherwise,

9...,XiV'i9...,XjVj,...9XNVN)
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if

U . . . ,XiVi,. . . 9XjVj,. . . ,XNVN)

Equation (2.4) must be complemented by the initial condition

v(ZN,0) = vo(Z/v),

and the boundary conditions which we are going to make explicit. To this purpose
it is convenient to introduce

F\ = {ZN e ΛN\Xi = 1} .

Then for (XN, VN) e ^ 0 with vt > 0, VN = {v\,...,vN} we have

v(XN9VN,t) = -Ho(Vi) f wiv(XN9vl"-wi"-vN,t)dwi. (2.5)

wt<0

For (XNi VN) e 3F\ with vt < 0 we have

v(XNVN,t) = Hx(Vi) J WiViXNtΌi Wi VNtOdwi. (2.6)
w, >0

The above boundary conditions are written in terms of Ho and H\. They are
related to the Maxwellians 77o and ί i by a constant, in such a way that

that is /7o,i = Hof\/Jυ>ovHot\dv. In this way the conservation of the probability is

guaranteed.
It is a consequence of general arguments from the theory of Markov processes

(see [2]) that P*N has a unique invariant measure, denoted by μN, which is also the
(formal) solution of the equation:

Σ Vid^N(ZN) = \ε Σ δ(Xi ~ XjMU)\Vi ~ Vj\{μN(Zf

N(ίJ)) - μ(ZN)} . (2.7)
i=l Z i*y

In this paper we are interested in the behavior of the stationary solution μN in
the limit N —> oo, ε —>• 0 in such a way that the combination εN = λ is constant. We
call this limit the Boltzmann-Grad limit. The expected result is that the measure μN

is going to factorize in this limit (propagation of chaos) and that the one-particle
distribution function approximates a solution of the stationary Boltzmann equation
relative to the model under consideration. This is given by

vdxg(x,v) = λf dvλ\υ - Ό\\{g{x9υ')g{x9v\) - g(x9υ)g(x9vx)} , (2.8)

where the integral is on the set sgn(fi)φ sgn(f), with the boundary conditions

0(0,ϋ) = -H0(v) f wg(0,w)dw , v > 0 ,
w<0

a n d

g(l9v) = Hι(v) J wg(l9w)dw9 v<0.
w>0

We also fix the total mass equal to one:

Jg(x,v)dxdυ = I . (2.9)
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The solutions to the above Boltzmann equation have been investigated by Ianiro
and Lebowitz in [6] by rather explicit computations. In particular they obtained
existence of bounded solutions and uniqueness for λ small.

To give a formal idea of how to get the Boltzmann-Grad limit for this system,
it is convenient to introduce the y-particle distribution functions for the measure
μN and introduce a hierarchy of equations (the BBKGY hierarchy of the model)
as for the time dependent case (see [7]). Then assuming the propagation of chaos
(indeed this property must be proven), one can check that the formal limit holds.
This heuristic derivation is standard and absolutely identical to the time dependent
case so that we omit it here.

3. Definitions and Preliminaries

For a fixed N, we denote by Ik = {1,2,..., &}, k ^ N, the set of the first k integers
while /,/, etc. will stand for any subset of indices of /#. We will use also the
notation Z/ = {x/,f;}/e/ and |/| for the cardinality of/.

We denote by KSZi the Knudsen process, that is free dynamics of the group
of particles with indices in /, starting almost surely from Z/, with the diffusive
boundary conditions described in the previous sections. In other words KtZ1 is the
same as TZj for ε = 0.

Associated to Kf we also introduce P 7 the (Knudsen) semigroup defined by

{P\f9φ) = JfiZ^ΈiφiK'Zj^dZj (3.1)

for / G L\ and φ G Loo It is easy to see that PI acts isometrically from L\(dZj)
into itself.

We now establish an important asymptotic property of the free flow Kι which
will be crucial in what follows.

Proposition 3.1. For all η > 0 there exists to > 0, such that for all t > to and all
u G L\(dZj) such that

fu(ZI)dzi = 0, i e l 9 (3.2)

then

\\P\u\\, ^ rfWuWx , (3.3)

where j = \I\ and || ||i denotes the L\ norm.

Proposition 3.1 follows by a careful analysis of the Knudsen flow carried out
by Arkeryd et al. in [12]. Notice that, in proving (3.3) we actually need the con-
dition \v\ ̂  c > 0. For further comments, see Appendix A where the proof of
Proposition 3.1 is sketched.

We now discuss the second preliminary result which we need later on. Let gj
denote the /-fold product of solutions of the stationary Boltzmann equation (2.8), i.e.

j

gj(xivi -xjvj) = Π 9(xi,Vi). (3.4)

Denote by gf(t) the y'-particle distribution function of the symmetric measure

^ , that is

jΌji t) = Jdxj+ιdVj+ι rf*tfrft>^&v(*it;i -XNVN) (3.5)
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Setting

•gj, (3.6)

we have:

Proposition 3.2. There exist positive constants A,B and D such that if

λ\\g\\ooτ ̂  Ae~Bτ, (3.7)

then

sup ||rf(O||i ύ y (3.8)

The proof is based on a Lanford type argument (see [10,11]) and will be proven
in Appendix B.

Notice that the stationary solution g found in [6] obviously depends on the
parameter λ. However from [6] we also argue that ||#||oo is uniformly bounded for
λ in a neighbourhood of the origin so that (3.7) is certainly satisfied for λ small.

We now introduce the important notion of cluster which will play an important
role in the sequel. With this scope, as in [7], we find it convenient to give a partially
explicit representation of the stochastic process T* in a suitable sample space. Define

rN(N-l)

Ω = {0, 1 } — Ϊ — , (3.9)

where r is a positive integer. Then ω G Ω, ω = ω(/,y;α) = ω(jj oc), i+j, where
α = 1... r, is a function defined on the set of all pairs of particles and all integers
less than or equal to r, taking values 0 and 1. Define the stochastic process

T^'.ΛN-* ΛN; t S T-=^- (3.10)

in the following way. T'ωZN is the free motion with diffusive boundary conditions
(that is the Λf-particle Knudsen flow) unless at time t two particles, say / and j , are
at the same point with opposite velocities. Suppose that in the time interval [0,0
they have met, with opposite velocities, α — 1 times. Then if ω(ij\ α) = 1, the two
particles collide according to the law (2.1), otherwise they keep their free motion,
up to the next collision. In other words Tι

ω is deterministic as regards the collisions
among the particles and stochastic as regards the collisions with the boundary.
Notice that, due to the boundedness of the velocities, each pair of particles can
meet at most r times up to the time t ^ ^̂ -k

Pω is almost everywhere defined with respect to the Lebesgue measure on ΛN.
Indeed it is not defined on the sets of all ZN's which deliver triple collisions and on
the set of configurations for which, for some ij G N9 it is xz = x7 ,sgn(i;/)=t=sgn(ί;7 )
and ω(i,j; 1) = 1, being, in this last case, not possible to distinguish between pre-
and post-collisional configurations. However these sets have measure zero so that
we disregard them.

Notice also that Pω is not a Markov process because to know whether a collision
between two given particles takes place, we must know how many times the two
particles have met in the past.

We define the probability of a single event ω G Ω b y

P(ω) = UIl β ω ( i J ; α ) (l - εγ-ω{ίJ'A), (3.11)
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where Π/y denotes the product on all pairs. {Ω, p} is a probability space and we

can write:
' ^ (3.12)

where φ is a test function, ΈB denotes the expectation with respect to the distri-
butions of the outgoing velocities after the collisions with the boundary and ΊEQ is
the expectation with respect to {Ω,p}.

Given ω G Ω, we denote by ch(z) ("chain" starting from /) any set / C /#// of
indices such that

ω(i,iι;oίi)ω(hJi\oc2) ω(ik-Uik;cck) = 1

for some ordering z'i,...,ik of the set / and some sequence αi α ,̂ α, = 1 r.
The union of all chains starting from the particle i will be called "cluster of z" and
denoted by

cl(i) = Uch(/). (3.13)

Notice that the index i is not included in cl(z) Moreover we denote by

cl(7) = U cl(i)//, (3.14)
iei

the cluster of the set /. Notice that cl(/) is the set of all particles which can influence
the dynamics of the set / (excluded the set I itself).

Finally we define
/ι(/)= E S UP ω(/,y;α), (3.15)

that is the number of the active (interacting) pairs among the particles in /.
We conclude the notational part of this section by introducing the so-called

^-functions.
We define (for |/| = j):

fN(Zj) = JμN(Zj,ZlN/I)dZlN/I (3.16)

the j -particle distribution function of the symmetric measure μN, the unique in-
variant measure of the process T*. We shall also use the equivalent notation
fN(Zj) = ffiZj) = fjN(Zj). Moreover, let

g(ZI)=Y[g(zi), (3.17)
iei

be the product of stationary solutions to the Boltzmann equation (see (3.4)). We
set

vN(Zj) = Σ (-l) | y |fif(Zy)/^(Z / / y), (3.18)
/

JCI

where Σyc/ m ^ a n s the sum over all subsets of/ (including /) , assuming also that

ϋ"(0) = 0(0) = / " ( 0 ) = 1 . (3.19)

Notice that ΣJCΛ~^J^ = 0 if / is not the empty set and 1 otherwise. Thus
we have

fN(Zj) = Σ g(Zj)vN(Zjμ). (3.20)
JCI
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If fN would factorize

then:
vN{ZI) = \[{f{zi)-g{zi)). (3.22)

iei

The i -functions defined in (3.18) give a measure of the deviation of ff from
Qj. Indeed if υf —> 0 as N —> oo, for all y ^ 1 (as we shall prove for λ = εN small
enough), then also / / -> gj for all 7 = 1,2,..., as follows by (3.20) and (3.19).
As we shall see later on, it seems more convenient to estimate the u-functions in
place of the differences fF — gj (roughly speaking the product of the differences
rather than the differences of the products). Indeed by the property

fvN(ZI)dzi = 0 i e i . (3.23)

(which follows by the definition) and by Proposition 3.1, we have that

\\Py\U ϊ ηj\\vN\\u \I\=j, (3.24)

while the same arguments of Proposition 3.1 give nothing better than

WP'Λff - βj)h ^ iJlKfj1 - 9j)h • (3.25)

Therefore ||-P/t^||i decays, for fixed t andy large, much better than f /
and this will be essential in the proof of the main theorem in the next section.

4. The Main Result

In this section we establish the main result of this paper, namely the convergence
in the Boltzmann-Grad limit of the y-particle distribution functions associated to
the stationary measure μN to the y-fold products of the stationary solution of the
corresponding Boltzmann equation.

Theorem 4.1. For λ = εN sufficiently small:

lim | | t ; / | | i=0 (4.1)
N—*oo J

and, consequently:

lim \\ff -gλ\\ = 0 . (4.2)

Proof We use the shorthand notation:

(g*vN)(ZI) (4.3)

for the right-hand side of (3.20). Accordingly

ιΛ(Z7) - (g1- * / * ) ( Z / ) , (4.4)

where

(4.5)
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By the time invariance condition we have

(fi*>Ψj) = JdZNμN(ZN)Έ(φ(TtZN)) , (4.6)

where ψj — ψj(Zj) is a smooth test function, j = \I\ and we use the notation
φ(Zκ) = φJίZI)forICK.

We now expand the expression in the right-hand side of (4.6) in clusters:

(f"><Pj)= Σ fdZIusfN(ZIUS)Έ(φ(TtZIUS)χ(c\(I) = S)). (4.7)
sciN

sm=0

Here χ(something) denotes the characteristic function of the event something.
The right-hand side of (4.7) follows from the fact that, if χ(cl(/) = S) = 1 then

φ{T'ZN) = φiT'Zjus) (4.8)

since, by definition of cluster, the dynamics of the particles with labels in (/ U S)c

cannot influence those with labels in /.
Defining //(f) by

Σ fdzIusf
N(zIUS)

SCIN ύp ύy:

sni=Φ L J . c . - c

(4.9)

where Si• = {i} U Si and n is given by (3.15), we have

N ί } (4.10)

with

with some Ci > 0 for λr sufficiently small.
The decomposition (4.10) and estimate (4.11.1) is analogous to those given in

[7] (see (5.3) and (5.24)) which we shall comment later on, after estimate (4.31) of
the present paper. For the moment we proceed algebraically. We operate on gN(t)
the same decomposition as for fN:

g?(t) = g1

N(t) + R2

I(t), (4.12)

where gf is given by the analogous expansion (4.9) (here gN replaces fN) and
where

(gf{t\ Ψ]) = J dZN gN(ZN)Έ(φ(T'ZN)), \I\ =j. (4.13)

Then

vN(Z,) = (g± * fN(tmZj) + (g1- * R\t))(Z,)

= (Fit)1- * fN(t))(Zj) + (g1- * R\t)){Z,)

* Γ(t)){Z,) + (R2(t) * fN{t)){Z,). (4.14)
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Notice that the expansion (4.9) is done in terms of disjoint clusters with a
minimal number of interacting pairs and that the remainder Rι is negligible. Again
from [7] we can prove

\\RJ(t)hύ^r. (4.11.2)

Thanks to estimates (4.11) and to the identity /^(O = 0, / = 1,2, the sec-
ond and the fourth terms in the right-hand side of (4.14) vanish in the limit
N —» oo in the L\ sense and the same does the third term by Proposition 3.2.
Thus we concentrate ourselves on the first term. Define vN(t) by the following
expression:

j)= Σ Σ Σ(-i) μ ι

S<ZIN SySy. JCI

sm=0 ( j . Sj=s

f dZluSlE(<p(T'ZluS) Π Z(cl(«) = St)χ(n(S,) = \S,\))
iei

fN(zMwj1)g(ZjUS{j)), (4.15)

where

S(K) =\jSi. (4.16)

As we shall see at the end of this section, the difference

R]{t) = gfit^ * /f (0 - vf(t) (4.17)

is vanishing as N —» oo, so that the essential part in the right-hand side of (4.14)
is just ϋN(t) which we are going to estimate. To this purpose we introduce the
norm

11^11, = sup e-*W\\υ? ||, (4.18)

with α to be determined later on.
In (4.15) we write

fN (ZiusmjgiZjusv)) = Σ vN(ZM)g(Zius) (4.19)
7

 MCIUS(I/J) \ M /

and interchange the sums:

Σ Σ ( - i ) μ ι = Σ Σ ( - i ) μ l = Σ , (4-20)
JCI Ajrr-IUS{I/J) MCIUS JC—J— MCIUS

- MC j - ^ M U / ( M ) MU/(M)D/

where

I(M) = {i e I\i φ M , SiΠM + Φ}. (4.21)
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We now make explicit, in the expansion (4.15), those clusters 5/ which are
empty:

(4.22)
J

£=0 κci
\K\=k

Σ
s^j-k

Σ Σ
SCIN/I sΣ Sj Σ

MCIUS
MUM(/)D/

ll/l

Π;

Π χ(|cl(i)| > 0)

Notice that, since M U Af (/) 2 / then m = \M\ ^ j and K CM. Indeed if / G /,
either i € M or ^ Π M φ f ) . Moreover

- (φy (PZK, T'ZψYj (4.23)

and, by Proposition 3.1 we can choose an arbitrary small η, to be chosen later, and
a sufficiently large t (and hence r), such that

I M I I I ^^iKl l i , 1̂1 = *• (4-24)

Therefore, from (4.22) we have the following estimate:

Σ Σ Σ
^j-k si'~*j m=j

ί! „ Λ/Π /Ar\ ^ ,^3ί ^ (4.25)

Indeed the sums over the subsets give rise to the above combinatorial coeffi-
cients. To control the expectation

Π Z(d(i ) = St)χ(n(Si) = s,)) (4.26)

we use the same argument as in [7]. The probability of having ω(i,j\ a) = 1 for
some α — 1 . . . r is bounded by rε. So that (4.25) is bounded by (rλ/N)s times the
number of ways we have to construct j clusters with s\--Sj given particles. Such

a number has been estimated in [7] by J]/=i sί^s (see (5.12) and (5.13) of [7]).
From (4.25):

ύ \\υN\\. Σ ηk ({)e«je>2J £ se«se4s2s(λr)s . (4.27)



(N)-<ι Σ 1 ^

74 S. Caprino, M. Pulvirenti

The above estimate follows by the elementary inequalities:

(4.28)

(4.29)

m=j

Notice that the condition ΠieKc χ(|cl(z)| > 0) = 1 implies that s ^ j — k.

Finally, for λr < e~^+^\

st

J ~^~J \ ^ Λ + 5

- ^ " ^ l | β 1 I r e ^ (η + λre6+X)J • ( 4 3 0 )

We now fix all the parameters but α. Choosing t (and hence r) so large that

η = £γ- and, consequently λ such that λr ^ ^e~~2(6+α), we have

||i^(0llα S 2e-2\\vN\\(χ. (4.31)

We are now in position to comment on the estimates (4.11). In proving estimate
(4.31) we have implicitly seen that the probability for a given particle to have an
interaction cluster of large size is exponentially small, for λr small. Moreover each
cluster is, with large probability, minimal, that is it is constructed by a minimal
number of links. Finally the clusters are, with large probability, disjoint, since for
an extra link we have to pay a price proportional to N~ι. This explains the meaning
of estimates (4.11). For further details see (5.3) and (5.24) of [7].

Let us analyze now the term R] (see (4.17)). Notice that

<(/Λf(0*^(0-L)/,^> = Σ ( - i ) | y | Σ Σ Σ Σ
JCI SCIN/J Sγ Sn: RCIN/(I/J) RyRm-

SrnSk=θ,r + k RrΠRk=θ,r + k

ίdZ/usuRf (ZIJJR )g(Zj[js)Έ\]E2[φf [ [TIZIUR ) \{T{ZJUS)J I (4.32)
V j / \\ J /I/J I

iei/J

where Tf,i= 1,2 are two identical independent copies of the same process Tι'.
ΈiJ = 1,2 denote the expectations for the processes and n = \J\, m = \I/J\.

The difference with the expression (4.15) which defines vN is twofold. In the
expansion (4.32) RUJ and SU(I/J) are not disjoint. Furthermore the product of
the expectations E i E 2 replaces the expectation E. Following [7] we can control
(see estimate (5.35) for the details) the contributions in (4.32) due to the terms
with RUJΠSU(I/J) + Φ. This contribution is bounded by Cj/N. An analogous
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estimate holds also for the difference between the product of the expectations and
the expectation of the product. In conclusion:

Notice that the constants appearing in (4.11) and (4.33) are independent of t and
the parameters of the model. From (4.11), (4.33) and Proposition 3.2:

+ T7 ( 4 34)

for λ small and a suitable constant C3 > 1. Finally, choosing α = log C3 we have

ll^llα ύ 2β-2 | |ι; i V | |α + ^ (4.35)

by (4.30). The proof is now complete since 2e~2 < 1. D

Appendix A

Proof of Proposition 3.1. Since

K'Zj = {K'zi (A.I)

is a collection of independent one-particle stochastic processes, it is enough to prove
that, for all η > 0, there exists to such that, for t > to, for all u = w(z), W G I I ,
satisfying f udz = 0, then

||P'iι| |i g i IHl! . (A.2)

Let /? be the invariant probability measure for the Knudsen process, that is:

h(x, v) = aH0(v) for v > 0 ,

h(x,v) = aHx(υ) for υ < 0 (A.3)

(α being a normalization constant). Then (A.2) will be a consequence of the
property:

lim | |P 'λ-A | | i = 0 (A.4)
t—»oo

uniformly in all initial probability densities A. Indeed, denoting by u+ and u~ the
positive and negative part of u respectively, setting

α = (A.5)

we have

| | P ' H | | I = | | P ' H + - P ' ! Γ

< α — - A -h

ύ 2ocη S (A.6)

for ί sufficiently large.
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To prove (A.4) we follow Arkeryd et al. [12] and check that, whenever there
is a cutoff on the low velocities, the convergence (A.4) (proved in [12] for general
Maxwellians) is indeed uniform in the initial datum h.

Notice that (A.4) cannot hold, in general, uniformly in h. Indeed if hn is a
sequence of mitial data approaching δ(x — \/2)δ(v) as n —> oo, we suddenly realize
that the limit (A.4) is achieved with increasing difficulty as n —> oo.

By formula (2.9) of [12]:

^ fdx J dvh(x-vt,υ) + fdx J dvH0(υ)J
0 x/t 0 0

1 0 1 2

+ /dx f dυHx(v)J + /dx J dvH0(v)\J + J-(t - τx,v)\
0 -x/t 0 (x+l)/t

+ /ax) ' dυHλ(v)\J - J+(t - τx,υ)\ , (A.7)
0 - 2

where

J = ~2 ^ (A.8)

fH0(v)dv+ J Hx(v)dυ
1 - 2

is the flux of the stationary measure h, J-(t) and J+(t) are the fluxes in 0 and 1
respectively and τXiΌ = - ( 1 / 2 ) ( 1 ~ s g n ι ; ) ~ x is the time of the free flight from the bound-
ary to the point x.

Note that for t > 2 the first three terms in the right-hand side of (A. 7) are
vanishing. To analyze the last two terms we use the following representation (see
Appendix A of [12]) for the fluxes:

J±(t) = ±A ±(0 ± / β(dτ)A ±(t - τ)
o

±fβ([0,τ))dτA±(t-τ)9 (A.9)
o

where β(dτ) is a suitable measure on [0, oo), independent of h, and A±(t) are
given by:

where

iΛ
φ+(t)= Jvdvh(l -vt,v), (AM)

o

0

φ-(t) = - J vdvh(-υt,υ), (A.12)
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For t > l,φ±(t) = 0 and A±(t)*0 only for t < 2. Therefore, for t > 2:

J±(t) = ± / tβ(dτ)A±(t - τ)
t-2

± J β(lO,τ))dτA±(t - τ). (A.14)
t-2

The last term is bounded from below and above by β([0, t — 2)) and by β([0, t))

respectively (because of JQ dtA±(t) ^ 1). Since

JtN(t)dt\ = J, (A.15)
o J

j8([0,oo)) =
L 0

where N = v+ * v_ is the distribution density of the random time of flight from 0
to 0 (or from 1 to 1), we have

o
\J±(t)ψJ\ = f tβ(dτ)A±(t - τ) + ω(t), (A.16)

t-2

where ω(t) does not depend on h and ω(t) -^ 0 for t —> oo.
Therefore for t large, after a suitable change of variable (see [12] (2.10)), the

4th term in the right-hand side of (A. 7) is bounded by

where

B+(τ)= JdvHo(υ). (A.18)
o

Finally

1 1 ί-τ 1

fdτ\J-(t-τ)+J\B+(τ)^cfdτ J dσβ(σ)A+{t - τ - σ) + cjdτω(t - τ)
0 0 f-τ-2 0

1

g c(jS[0,/-3)) + c/rfτω(/-τ) (A. 19)
o

and the right-hand side of (A. 19) goes to zero and is independent of h. The last
term in (A. 7) is of the same nature and can be handled analogously. D

Appendix B

Proof of Proposition 3.2. To prove Proposition 3.2 we use the standard series
expansion technique for the short time validity proof (see [10,11]). The main dif-
ference here is that, due to the diffusive boundary conditions, we do not have the
conservation of the L^ norm with respect to the free flow and this makes the proof
a little more tricky.

We fix a time τ and r the smallest integer for which r ^ 4τ + 1 (see (3.10)).
In the sequel we shall assume that t ^ τ.
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We first derive an L^ estimate for gf{t) which satisfies the following integrated
version of the BBKGY hierarchy associated to Eq. (2.4):

gf(Zj, t) = (PJgjXZj) + ε(N - j) J dtiPf'" ^jj^gf^Zj,h), (B.I)
0

where Pj is the semigroup associated to the j -particle stochastic process T*Zj (see
(2.3)) and

x {g?+i(x\vu -.Xiv'i,...XjVJ9XiVj+l)

-gf+λ(X\Ό\,...XiΌh...XjΌjiXiΌj+ι)} . (B.2)

Moreover

) . (B.3)

For the Markov semigroup Pj we have the following representation (see (3.12)):

PJgj = ΈΩ[PJ(ω)gj], (B.4)

where

{Pj(ω)gj, Ψj) = JEB (J φj(TlZj)gj(Zj)dZj) . (B.5)

On the other hand we have

P}(ω)gj(Zj) = gj(T-'Zj)χ(t < τ(Zj))

+ (Pj~τ^\ω))gj(T-τiZj)Zj)χ(t > τ(Zj)), (B.6)

where

τ(Zj) = sup{s ^ 0\T~sZj e A) = (0, l)j x rN} (B.7)

is the (deterministic, once ω is fixed) time of the first collision with the boundary
in the past.

Notice that for Zj E A® the process Ts

ωZj is deterministic for a short positive or
negative time (before the first collision with the boundary in the future or in the
past respectively).

Since T~τ{zj\Zj) e ^f for some / G Ij9 (B.6) becomes

PJ(ω)gj(Zj) = gjiT-'ZjMt < τ(Zy ))

+ χ(t > τ(Zj))Ha(Vi)Jdv'iυ'iP
t

j~
τ{Zj\ω)gj{{T-τ{Zj)Zj)') , (B.8)

where {T~τ^Zj)r is the configuration on the boundary in which the outgoing
velocity t;, is replaced by the ingoing one υ'i9 and α = 0,1, depending whether
particle i is in 0 or 1 respectively. The expression (B.8) can be iterated developing
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again Pj τ J (ω), so that we arrive to write:

PJ(ω)gj(Zj) = Σ Pj(ω;k)gj(Zj), (B.9)
k>0

where Pj(ω;k) is the contribution to Pj(ω) due to the term with k collisions with
the boundary. It is easily seen by (B.8) that

(B.10)

for some positive constant M.
Coming back to (B.I) we have

t tn-1

Xfdti-. J dtnPf
0 0

«^0 k\~ kn

x /Λ, • "]λdtnpj-h\kuω)Cjj+1P^'2\k2,ω) •
0 0

x <:,•+„_!,,•+„/>;;„(£„, ω)gJ+n{Zj) • (B.I 1)

Notice that the operator C/,y+i acts by joining a new particle, say j + 1, in the
same position of one of the group /y , without changing any position of the particles
of such a group. As an important consequence we realize that the right-hand side
of (B.I 1) is vanishing whenever Σί=i ^> ̂ na^ ̂ s m e ^ °^ n u m b e r of collisions with
the boundary, is too large. Actually Σ * ...*„ i s subjected to the constraint

Moreover, we also have the obvious estimate

l|CΛy +iflfy +i||oo ύ 2j\\gj+ι\\oo

Therefore, from (B.ll), reminding that r ^ At + 1:

(2tY

^ Σ A" Σ -̂T-yO + i) 0' + » -

S (2Me)Γ||flf||ooy Σ ((eMYrλγWgW^ . (B.14)

Thus for (eMJrλWgWoo < \:

We now prove, by using the bound (B.15), the convergence of gf{t) to gj in
the limit N —> oo. Putting
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after some elementary algebra, we obtain

Af(Zj,t) = ε(N-j
o

o

where Pj = P}., is, as usual, the Knudsen semigroup and

GjQjiZj) = Σ \vi ~ vh\χ(i9h)δ(Xi - xh)(gj(Zj(Uh)f) ~ 9J(ZJ)) (B.18)

(see (2.4) to recall the notation).
Iterating (B.17) we obtain

j ' J ' V P ^ - ' 2 Cj+n-uJ ^ Cj+n-u+n

0 0

x J
o

~n

tn-1 Gj+ngf+n{tn+ι)dtn+x .

Thus to estimate ^ ^ ( 0 we are led to control:

Ij(t) = JP'r'Gjgfis). (B.20)
o

For P* we have an analogous representation as (B.8) in which Tι

ω is replaced by
the free s t ream St ( i .e. S*(xiVi -XjVj) = (x\ — υ\t,V\,...Xj — Vjt,Vj)):

j < τ(Zj))

+ χ(t > τ(Zj))Ha(Vi) f dv'ύP'Γ^iGjgjXiS^Zj)'). (B.21)

Using the obvious inequality

t

J δ(xt - VίS -xh + vhs)\υi - υh\ds g 1 (B.22)
o

by (B.21) we obtain

||/7 (0l|oo ύ j2M* sap l^/ωlloo . (B.23)

The term j 2 in (B.23) arises from the sum appearing in the definition of G,
while the factor Mrj is due to the collisions with the boundary, whose maximum
number is bounded by rj.

Inserting estimate (B.15) in (B.23), we have

sup \\Ij+n(s)\\oo S 2{j + «)2((2M6θ2ΠM|ooy+w (B.24)
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By (B.19) we can estimate Aj as g^ and, thanks to (B.24), we finally obtain

lK(OIU ύ ε(2(Me)ry Σ ((Afe)'rλ)" sup ||/
nSO sit

ί ε2j2((2Meγr\\g\\ooy Σ^Meγ

^ ε4j2((2Meγr\\g\\ooy (B.25)

for r/l||^f||00M
3r sufficiently small. Hence the proof is achieved. D
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