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Abstract: Although the WKB approximation for multicomponent systems has been
intensively studied in the literature, its geometric and global aspects are much less
well understood than in the scalar case. In this paper we give a completely geometric
derivation of the transport equation, without using local sections and without assum-
ing complete diagonalizability of the matrix valued principal symbol, or triviality
of its eigenbundles. The term (unnamed in the previous literature) appearing in the
transport equation in addition to the covariant derivative with respect to a natural
projected connection is a tensor, independent of the choice of any sections. We give
a geometric interpretation of this tensor, involving the contraction of the curvature
of the eigenbundle and an analog of the second fundamental form with the Poisson
tensor in phase space. In the non-degenerate case this term may be rewritten in an
even simpler geometric form. Finally, we discuss obstructions to the existence of
WKB states and give a geometric description of the quantization condition for WKB
states for a non-degenerate eigenvalue-function.

1. Introduction

In its original analytic form, the so-called WKB method for obtaining asymptotic
eigenfunctions for linear partial differential operators involves writing a trial approx-
imate eigenfunction for an operator H in the form ψ(x) = elS(x^ha(x\ Expanding
Hψ — Eψ in powers of h leads first to a nonlinear first order partial differential
equation (the eikonal, or Hamilton-Jacobi equation) for the phase function S and then
to a linear homogeneous first order partial differential equation for the amplitude a
(the transport equation).

A geometric version of the WKB method was developed by Maslov [16] and
Hδrmander [10], in which the phase function is represented by a lagrangian subman-
ifold L in classical phase space, and the amplitude by a half-density α on L. This
geometric approach makes it possible to extend the WKB method to cover in a natural
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way the so-called caustic points, which are inevitable in bound-state problems, and
which lead to singularities in the analytic approach. We refer to [1, 7, 9] for extensive
treatments of this "geometric WKB" theory.1

Much of the work described in the preceding paragraphs was carried out originally
for equations in a single unknown (complex-valued) function. Since many interest-
ing equations in mathematical physics involve several functions (or even sections of
nontrivial vector bundles), it has been of interest to extend the WKB method to such
multicomponent equations. Much progress has been made in this direction, both in
pure mathematics and in mathematical physics (see for instance [5, 6, 11, 12, 171). For
the physical approach, we refer especially to [14], which contains extensive references
to earlier work, and which was the starting point for our own study. The cited authors
have extended the analytic version of the WKB method to the case where the symbol
matrix of the differential equation at hand has an eigenvalue of constant multiplicity.
Their results are general enough to cover the local theory in the presence of caustics,
but a completely geometric description has not been achieved, in particular for the
transport equation.

The aim of this paper is to present a geometric formulation, with a coordinate-free,
gauge-invariant derivation, of the transport equation for multicomponent systems in
terms of a linear connection on the eigenvector bundle of the principal symbol matrix
of a system of linear differential operators. We compare our results with those of
[14], showing in particular that the term which "has no name" in their formulation of
the transport equation can be interpreted in terms of the curvature of the eigenvector
bundle and its complement. More precisely, the connection involves a contraction of
the curvature with the Poisson tensor on phase space. This same contraction appears in
Kahler geometry [13], where it is known as "mean curvature" and appears to involve
more structure; we note here that it really depends only on the Poisson structure
associated to the Kahler form and therefore call it "Poisson curvature." Its importance
in the context of symplectic geometry is only now becoming apparent. (See [20].)

The ultimate goals of our study go beyond the scope of this paper. One is to clar-
ify the semiclassical quantization conditions in the multicomponent setting. Another
is to deal with the extremely important "level-crossing" problem in which the eigen-
values of the symbol matrix have variable multiplicity. We hope that our geometric
methods will facilitate work on these difficult problems (see [4] and [15] for recent
contributions), even though we do not attack them here.

2. Projection Matrices over the Moyal Algebra

Our basic strategy will be the same as that used in much of the previous work-to
begin by breaking off from the given operator a piece corresponding to the eigenspaces
in question, and then to consider the reduced system, whose principal symbol is a
multiple of the identity matrix by a scalar function. In this way, we reduce the problem
as far as possible to the scalar case. Interesting geometry arises from the fact that the
natural domain of this reduced system is a vector bundle over phase space which is
locally "twisted." When the phase space has non-trivial topology, this bundle can also

1 We would also like to mention here the paper of Einstein [8], which may be the first publication
in which lagrangian submanifolds in phase space are used to represent quantum states. Since this paper
was written in the time of the "old quantum theory," there is no question here of WKB approximations.
Nevertheless, the lagrangian submanifolds appear clearly as generalized multiple valued solutions of the
Hamilton-Jacobi equation.
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be globally nontrivial. (Even when the original phase space is topologically simple,
we may have to remove points at which the multiplicity of the eigenvalue increases,
leaving behind a topologically complicated space.)

Our treatment will differ from that in [14] in that we do not attempt to put the
operator in question into block diagonal form (which requires a choice of eigenvectors
which depends smoothly on points in phase space); instead we follow [5, 11, 12] by
putting the emphasis on projections onto the eigenspaces. These latter objects are
completely canonical.

As in [14], we will use the calculus in which operators are represented by matrices
whose entries are formal power series in a small parameter (we use h instead of their
e) whose coefficients are C°° functions on classical phase space. The operation of
these functions on phase space will be by the Weyl ordering, so the appropriate
multiplication of the matrix entries is by the Moyal product. We will need to make
explicit use of only the initial part of the development of this product,

α *ft b = ab + (ih/2){a, b} + 0(fi), (1)

so that although the Moyal product itself applies only to the phase space M2n, the
results in this section of our paper will be applicable whenever we are dealing with
a phase space carrying a Poisson bracket satisfying the usual axioms [19]. Note that
the commutator bracket [α, &]* = α */j b — b *^ α is asymptotic to ih{a,b} as h —> 0.

Before going further, let us fix some terminology and notation. We denote by
A the algebra of functions on phase space, with the usual pointwίse multiplication.
A [[ft]] denotes the algebra of formal power series in h with coefficients in A, with
multiplication given by the Moyal product. MTV denotes the algebra of TV x TV matrices
with coefficients in A. Its elements can also be thought of as matrix-valued functions
on phase space, with the multiplication given by pointwise matrix multiplication. We
will often write M for M/γ when it is not important to specify the dimension of the
matrices. Finally, MAT [[ft]] (or M[[ft]] for short) denotes the space of formal power
series with coefficients in MAT, with multiplication given by thinking of its elements
as matrices with entries in A [[ft]]. This multiplication is also given by a formula
like (1) above, where the first term is ordinary matrix multiplication, and the Poisson
bracket of matrix-valued functions is defined by {α, b}i3 = Σk{aίkι ^kj}

The hamiltonian H which we will consider will be an element of M[[ft]]. Given
any such element A = AQ(X) + HA\(x) + , we call the matrix-valued function AQ(X)
the principal symbol of A. A scalar function λ(x) will be called a regular eigenvalue
function for H if λ(x) is an eigenvalue for H0(x) with multiplicity independent of
x, and if the null space and range of H$(x) — λ(x)J are complementary subspaces
for each value of x. (The latter condition is satisfied automatically if the values of
HQ are hermitian matrices.) There is a well-defined projection matrix πo(x) onto the
λ(x)-eigenspace along the range of HQ(X) - λ(x)/, which depends smoothly on x.
The images of the πo (the family of eigenspaces of the H$(x)) form a vector bundle
over phase space which we denote by E\ and call the λ-eigenbundle of HQ. E^ will
denote the family of null spaces of the π()(x). It is a complementary bundle to E\\ it
really is an orthogonal complement when the HQ(X) are hermitian operators and the
πo(x) are consequently orthogonal projections.

For spectral theory, we will need a π G M[[ft]] which is a projection in the sense
that π *;-, π = π and whose principal symbol is πo. Such a projection always exists
and can even be chosen to commute with H, according to the following proposition:
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Proposition 1. Let X be a regular eigenvalue function for H, πo the corresponding
projection onto the eigenbundle E\ along Eχ. Then there is a unique projection π G
M[[/ΐ]] whose principal symbol is TΓQ and which commutes with H.

Proof. We first show that we can modify πo by adding higher order terms such
that it becomes a projection with respect to the *-product. To see that, we use an
induction argument and suppose that we have chosen elements π\ , . . . π^ of M such
that π(fc) = πo + fιπ\ + + Hkπk G M[[ft]] is a projection through order k, i.e.
(π(/c))2-π(/c) = hk+lak+ι+O(Hk+2). We wish to choose πk+ι so that π(/c+1) = π (/e)+π fc+ι
is a projection through order k + 1. This requires us to solve the equation

or equivalently

Now the operator p ι— > πop — p(l — πo) = πopπo — (1 — πo)p(l — πo) maps all
matrix valued functions to those which are block diagonal with respect to the splitting
determined by π0 (i.e. those commuting with πo), and annihilates the matrices which
are strictly off-diagonal with respect to this splitting. So it suffices to show that ak+\
commutes with πo. But α^+i is the principal symbol of ft~(fc+1)((π(/e))2 — π(/e)), which
commutes with π(k\ hence a^+i commutes with the principal symbol πo of π(/c). Thus
we can always choose a suitable (non-unique) π^+i, and, by induction, there is always
a projection with principal symbol π0.

To prove our proposition, we use a second induction argument. Suppose that we
have chosen a projection π(/c) so that [H, π^]* = O(/z(/c+1)). (To start, we take an
arbitrary projection with principal symbol π° , as constructed above.) Then there is a
unique F G M such that

We will choose the next approximation to have the form (exponentials are with respect
to the Moyal product)

which is automatically a projection for any A G M. Expanding the exponentials gives

so
(H, π(fc+1)]* = [H, π(/c)L + Hk+] [H, [π0, A]* ]* + O(Hk+2),

which equals hk+l(F + [H0, [π0, A]]) + O(Hk+2). So we must choose A as a solution of
the equation F + [//"0? t^o, A]] = 0. This is possible as long as F is off-diagonal with
respect to the block decomposition given by πo, i.e. if πoFπo and (1 — πo)F(l — πo)
vanish.2

But these matrix functions are nothing but the principal symbols of the operators
π(/c) *ft [H, π(k}]* *Λ π(fc) and (1 - π(/e)) *^ [£Γ, π^]* */,. (1 - π(fc)), which vanish just
because π^ is a projection.

2 To see this, one needs only to use the invertibility of Q — XI, where Q - (I — π^H()(I — π0) is the
compression of HQ to the range of HQ — λ/.
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The uniqueness of π is proven by a similar stepwise argument, using the two
requirements that it should be a projection and commute with H.

D
We remark that, if we have several regular eigenvalue functions λμ, then the cor-

responding projections πμ G M[[/i]] will all commute with one another. In particular,
if all the eigenvalues of HQ are regular, we have a complete decomposition into "po-
larization sectors." We would like to stress, though, that this complete decomposition
is not as essential for the study of a single eigenvalue function as it may appear to
be from some formulas in [5] and [11].

The projection ΈQ in M has been chosen so that (HQ — A/)πo and TΓQ(HQ — XI)
both vanish. As a result, for the projection π in M[[/ί]] constructed in Proposition 1,
the elements (H - XI) *^ π and π *^ (H - XI) of M[[/i]] are both of order h, as is
π */j (H — XI) */j π. Since π */j (H — XI) *^ π commutes with π and is annihilated by
left or right multiplication by (/ — π), its leading order term has the same properties
with respect to TΓQ.

Let us compute it: the coefficient of h in π */-t (H — XI) *^ π is

i

2

All but two of the terms vanish, and we can always add extra factors of TΓQ on the
outside, so we conclude:

π *ft (H — XI) *£ π = hπo(H[ + -{TΓQ, ί/o ~ A/})πo + O(h ).

Notice in particular that π\ has disappeared entirely from this expression.

3. WKB Approximation

We will seek a WKB eigenfunction for // which is in the image of the projection π
found above. Specifically, we choose a lagrangian submanifold L in phase space on
which the eigenvalue function A has the constant value E, and a "principal symbol"
u on L, which is a section of the tensor product of the half-densities on L with the
vector space Cn. The Maslov procedure associates to this data an /ϊ-dependent wave
function φ for which u is called the principal symbol. For instance, if L has the form
p - dS(q) for a phase function 5 on configuration space, we can take q as a coordinate

on L and write u in the form a(q)^/\dq\, where α is a vector-valued function. The

associated wave function is then φ - e*s^a(q)\/\dq\.
What is important is not so much the specific form of the WKB ansatz but the

fact that, when we apply an operator A to such a φ, the result is again associated
to L, with the principal symbol AQu. In the special case that AQu = 0 and AQ is a
scalar function multiple a^I of the identity matrix, Aφ is of order h, and h~[ Aφ has
principal symbol A\u — iΉχa u, where the second term is — i times the Lie derivative
of u by the hamiltonian vector field of αo (This vector field is tangent to L because
L is a lagrangian submanifold on which the function αo vanishes.) We also note
that the Moyal product on M[[ft]] is consistent with its operation on wavefunctions:
(A */i B)φ = A(Bφ).

In particular, by applying the projection π to wavefunctions associated with L,
we obtain (all the) wavefunctions which are in the image of π and thus candidates
for the approximate eigenfunctions which we are seeking.



706 C. Emmrich, A. Wcinstein

Suppose then that πψ = ψ. Since H commutes with π, we have Hψ = Hπψ =
= πHπψ. Therefore, by the main result of the previous section, Hψ = (πλ/π +

+ ^{πo,Ho - A/})π0>0 + O(h2). This means that, as far as its action on
ψ is concerned, the operator H can be replaced by one whose principal symbol is
the scalar multiple XI of the identity, and we can apply the standard analysis in this
special case.

Now let E be a candidate for an eigenvalue for H. The order 0 part of (H — EI)ψ
is then (λ - E)φ, which we can kill by choosing φ to be associated with a lagrangian
submanifold contained in the level surface for the value E of the eigenvalue function
λ, which now plays the role of a scalar hamiltonian for our purposes.

The transport equation for the symbol u of φ is the requirement that the principal
symbol of h~l(H - EI)ψ be zero. This principal symbol is

plus the principal symbol of h~lπ *^ (λ — E)ψ.
Modulo O(ft2),

π *£ (λ - E)ψ = (πo + ftπi) *Λ (λ - E)ψ

Since (λ - E)ψ is already of order ft, this reduces to (πo */> (λ - E))ψ, in which the
coefficient of ft is ^{πo,X}ψ. After further application (always permissible) of the

projection πo, this becomes zero, since πo{πo, λ}πo = O.3

We can now write the transport equation for the symbol u, a half-density on L
with values in the λ-eigenbundle:

((-!/2)π0{π0, HQ - Λ/}π0 + iπQHιπQ)u = 0. (2)

4. Geometric Interpretation

In this section, we will give a geometric interpretation of the terms in the transport
equation in the language of connections on vector bundles and their curvature.

If we write the symbol u as α 0 v for a complex-valued half-density z/ on L and
a section α in the λ-eigenbundle over L, the first term of the transport equation (2)
becomes:

πoJ^χλu = a ® 3§x^ v + DXλa 0 z/,

where L> is the covariant differentiation on sections of the λ-eigenbundle defined
by Dζ = πo^C f°r an arbitrary section ζ. D is the covariant differential associated
with the connection on E\ naturally associated with the trivial connection on the
trivial CN bundle over phase space (having d as its covariant differential) and the
projection πo from the trivial bundle to the eigenbundle. It was observed by Simon
[18] that such projected connections, which are standard in differential geometry,
especially the geometry of submanifolds (see for example [3]), are just the ones
whose holonomy in certain situations of physical interest is popularly called Berry's
phase, after [2]. The corresponding expressions in the transport equation which appear
when a local trivialization of the eigenbundle is chosen are named "Berry" terms in

3 The argument is as follows, {πo, λ} = {π^, λ} = {πo, λ}πo +πo{πo, λ}. Multiplying on the left and

right by ττ0 gives π0{π0, λ}τr0 = 2π0{π0, λ}π0, so πo{τr0, λ}π0 = 0.
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[14]. In our treatment, these terms are invisible when the projected connection is
viewed intrinsically.

We turn next to the matrix-valued function in the second term on the left-hand
side of (2). It corresponds to the terms with "no name" in [14], but we will denote it
by AC and call it the curvature term, for reasons which will become clear shortly.

The curvature term may be rewritten as follows:

AC = 7Γo{πo, HO - λ/}πo = 7r0{π0, λ(τr0 - /)}π0 + 7Γ0{π0, HO - λπ0}π0

= λπo{7Γo, TΓoJTΓo + 7Γo{7Γo, HO — λπoJTΓo. (3)

We remark that both terms on the right-hand side of (3) behave tensorially when
we multiply HQ(X) (and at the same time its eigenvalue function X(x)) by a function
f ( x ) . For the first term this is completely obvious; for the second term it follows from
(Ho - λπ0)π0 = 0.

To give a geometrical interpretation of these tensorial terms, we compute the
curvature F of the projected connection D. If we consider D as a co variant exterior
derivative, F is the 2-form with values in the endomorphisms of Eχ for which D2ψ =
Fψ for an arbitrary section ψ of E\. Since D2fφ = πod(πod(πoψ)) = πo(dπo) Λ
(dπo)πoψ, we find that F = πo(dπo) Λ (dπo)τ^o Hence, we see that the first term in
(3) is simply λ < 77, F >, where < 77, F > denotes the contraction of the Poisson
tensor with the curvature 2-form.

To describe the second tensorial term geometrically, we first introduce an analog
of the second fundamental form for embedded submanifolds: It is a 1-form with values
in the vector-bundle homomorphisms from the λ-eigenbundle E\ to the kernel Eχ
of -/TO defined by Sζ = (I — πo)dζ for an arbitrary section of E\. Since

and (/ — 7Γo)τro = 0, we have S - (I -πo)(dπo) which indeed takes values in the vector-
bundle homomorphisms. It measures the extent to which the "trivial" parallel transport
defined by d tends to move a vector out of the λ-eigenbundle into its complement,
i.e. the discrepancy between the connections d and D when applied to sections of
Ex.

Similarly, we can define a 1-form with values in the homomorphisms from Eχ
to Eχ by

S*η = -

for a section η of Eχ. As the notation suggests, S and 5* with the above choice of
sign are adjoint to one another if πo is an orthogonal projection on a hermitian vector
bundle (e.g., if HQ is hermitian).

Using S and 5*, we can define a 2-form with values in the endomorphisms of
E\ as S* Λ ((HQ — \πo)S), where HO — λπo is considered as an endomorphism of
Eχ (where it is just the restriction of HQ). This 2-form can be contracted with the
Poisson tensor to yield the missing term in the transport equation. Indeed:

, HQ — λπoJTΓo =

πo) Λ (H0 - λπ0)d(7 - π0)π0

- π0) Λ (HQ -

Thus the curvature term is a sum:
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AC = X < 77, F > - < 77, 5* Λ (770 - Aπo)^ > . (4)

In general, the curvature term will be an endomorphism of an m-dimensional
vector bundle (represented with respect to a local basis by an m x m matrix), where ra
is the dimension of the λ-eigenspace, and it is not possible to simplify further the terms
in the transport equation. However, in the special case that the eigenvalue function
is non-degenerate (i.e., the multiplicity is 1), we can simplify them by observing that
AC is uniquely determined by its trace (here, we can compute the trace on the whole
vector bundle, not just on the eigenbundle, since both give the same result!) and using
the in variance of the trace under cyclic permutation of factors. (The trace operation
does not act on the form part, so we just have to remember signs when we cyclically

change the order of forms.) We find that AC = A^ΊIQ, where the scalar Λ^ is given
by

= < 77, trί Λπ0((i7Γo) Λ (dπG) - π0d(I - π0) Λ (770 -

= < 77, tr (λπo(dπo) Λ (dττ0) - πo(dπG) Λ (770 - λπ0)(dπ0)J >

= < 77, tr (λτro(dπo) Λ (c/π0) - (dπ0) Λ (770 -

= < 77, tr(770F) > ,

where F = dπo Λ dπo. (In the second term we first used the cyclicity to get rid of the
projection at the end, then <7ττo = TΓQ^TΓO + (<7πo)ττo.)

F is simply the curvature of the new connection D on the trivial bundle defined
by

Dξ = π0d(7ΓoO + (7 - π0)d((I - π0)ξ)

for an arbitrary section ξ. This adapted connection (see [3]) preserves both the
subbundles E\ and E χ , its restriction to E\ is just D\ in particular F is simply the
λ-block of F.

In order to compare our expression with those given in the literature, and in
particular that in [14], we assume that our hamiltonian is hermitian so that TΓQ is an
orthogonal projection onto the one-dimensional eigenbundle Eχ, in which we choose
a normalized local section r. Then TΓQ = rr^, and a straightforward calculation4 (using
r^dr = — d(τ^)τ9 which follows from T^T = 1) yields

F = τ(dr^ Λ dτ)τf + dr Λ dr] - [dr Λ dr\ τr f j + ,

where [, ]+ denotes the anticommutator. If we multiply by 77o and take the trace, the
anticommutator term vanishes, and we finally get

which is exactly the result in [14].

4 We have borrowed here from some notes of Jim Morehead.
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5. Existence of Quasiclassical States

In WKB theory for the scalar case, one seeks quasiclassical eigenstates as suitable vec-
tor valued half-densities on lagrangian submanifolds L of phase space. In attempting
to extend this theory to the multicomponent case, one encounters three difficulties: the
presence of the curvature term AC', the fact that, even if the curvature term vanishes,
the quasiclassical states are required to be covariantly constant along hamiltonian tra-
jectories with respect to a connection which is generally not flat; and finally the fact
that the holonomy of this connection, even when it is flat, takes values not in C* or
£7(1) but in GL(πι) or U(m) (the latter if the projection π0 is orthogonal), where rn
is the multiplicity of λ.

The curvature term presents a problem mainly in the case of a degenerate eigen-
value function λ. In the non-degenerate case it is simply a scalar multiple of TΓQ, and
hence can be replaced by a scalar, ^-dependent part of the scalar hamiltonian; this
is obviously not possible in the degenerate case. Even in the non-degenerate case,
the presence of the curvature term means that the scalar hamiltonian is ^-dependent
even if the matrix valued symbol is /^-independent, which leads to the necessity of
admitting /?-dependent lagrangian submanifolds [14].

The non-flatness of the connection makes it impossible to impose a naive analog
of the Bohr-Sommerfeld quantization condition, since the parallel transport around
cycles depends on the cycles themselves, not just on their homotopy classes.

Whereas the two first problems might be avoidable by a suitable modification of
the geometric description of a quasiclassical state (admitting ^-dependent lagrangian
submanifolds and symplectic structures, and possibly making use of a suitable ex-
tended phase space), the third problem is a real obstruction to the existence of
quasiclassical states in the case of a degenerate eigenvalue function. If we admit
ft-dependent lagrangian submanifolds L(Γ?) as in [14], the transport equation (2) will
be modified, but only by an additional [7(1) phase. Hence, if we write the symbol u
as α 0 v for a complex-valued half-density v and a section α in the λ-eigenbundle
over L = L(0), then the transport equation for the corresponding section [α] in the
project!ve λ-eigenbundle will be independent of h. Hence, we have to find a section
in the projective eigenbundle which satifies this transport equation. Due to the U(m)-
holonomy, such a section will not always exist, even if the eigenvalue function λ
is integrable. If the flow on the corresponding invariant torus is only quasiperiodic,
it can come arbitrarily close to a given starting point without the correspondingly
transported point in the projective eigenspace being close to its starting value.

This argument shows that the integrability of the eigenvalue function λ is not a
sufficiently strong condition for the existence of a global WKB state, and in order to
find an analog for the quantization condition for scalar systems one has to formulate
a suitable strong notion of integrability for the classical limits of multicomponent
systems.

In spite of the problems just listed, quasiclassical states can be shown to exist
in certain cases, the easiest one being that where the underlying phase space is only
two-dimensional [11] and H is hermitian. In this case, L is one-dimensional, so
problems with the non-flatness of the connection do not arise. A suitable section [α]
in the projective eigenbundle always exists. To construct it, one simply chooses a
point p on L, computes the holonomy around a loop based at p, selects for [α](p)
the ray corresponding to one of the eigenvalues of the holonomy (which is always
diagonalizable as it is unitary for hermitian H), and defines [α] by the transport
equation. Hence, in this case a quasiclassical state exists, and the only effect of the
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non-trivial connection and the curvature term is an additional scalar phase which
modifies the Bohr-Sommerfeld condition and is of the same order as the Maslov
correction.

In [11] the existence of quasiclassical states is shown for certain other examples
as well, where the obstructions above are avoided by assuming either that either
phase space is two-dimensional, that the fibers of the eigenbundle are only (complex)
one-dimensional, or that the curvature term vanishes and that there is an "adiabatic
connection"5 - i.e., a subbundle of the eigenbundle which is invariant and flat under
the projected connection.

In the non-degenerate case, where the λ-eigenbundle is simply a line bundle, there
does exist a general method for deriving a quantization condition. Such a method is
given in [14] for this special case, using local sections, diagonalization, and "non-
canonical coordinates." (In a somewhat different context, a similar result has been
obtained in [11].) In purely geometric terms their method for a phase space T*M
with its canonical symplectic structure ω can be described in the following way.

If we include the factor elS/h in the geometric description, the quasiclassical
states are half-densities on a submanifold of phase space with values in the tensor
product of the standard trivial prequantum line bundle over a cotangent bundle and
the λ-eigenbundle. (We neglect the Maslov correction for the moment.) In the non-
degenerate case this bundle is again a line bundle, and we can identify its curvature
with a two-form on phase space. Since the connection on the prequantum bundle
has curvature jrω, the curvature of the tensor product bundle is ^ω + F. Hence, if
we equip phase space with the modified symplectic structure ω^ = ω + HF, then the
curvature vanishes on the pullback of the line bundle above to any submanifold L^
of T*M which is lagrangian with respect to ωh. Hence, parallel sections exist at
least locally on Lh. In particular, WKB states correspond to fz-dependent lagrangian
submanifolds contained in level sets X^l(E) of the h dependent scalar hamiltonian
function λ^ obtained by including the curvature term.

Since the curvature 2-form vanishes on L/-λ, we can formulate a quantization con-
dition for cycles in the usual way (including the Maslov 'correction), which only
depends on the homotopy class of the cycle. Lh will tend in the limit h —•> 0 to a
submanifold L0 which is lagrangian with respect to the unmodified symplectic struc-
ture cj, and the Maslov correction can be computed from the corresponding Maslov
indices of LQ. Thus, in the non-degenerate case it is possible to give a completely
geometric description of quasiclassical states using globally defined objects.

The approach just described appears to apply only in the non-degenerate case.
Nevertheless, we expect that the purely geometric derivation of the transport equation
can serve as a guideline to a formulation of a quantization condition in the general
case.
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