
Commun. Math. Phys. 176, 421-445 (1996) Communications ifl

Mathematical
Physics

© Springer-Verlag 1996

Invariant Measures for the 2D-Defocusing Nonlinear
Schrodinger Equation

Jean Bourgain
School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA

Received: 29 August 1994/in revised form: 23 May 1995

Abstract: Consider the 2D defocusing cubic NLS iut + Δu — u\u\2 = 0 with
Hamiltonian /(|V0|2 + ^|Φ|4) It is shown that the Gibbs measure constructed from

the Wick ordered Hamiltonian, i.e. replacing \φ\4 by : \φ\4 :, is an invariant mea-
sure for the appropriately modified equation iut + Au — [u\u\2 — 2(/ \u\2dx)u] — 0.
There is a well defined flow on the support of the measure. In fact, it is shown that
for almost all data φ the solution u, w(0) = φ9 satisfies u(t) — eltΔφ G C//s(R), for
some s > 0. First a result local in time is established and next measure invariance
considerations are used to extend the local result to a global one (cf. [B2]).

Introduction

Consider the Wick ordering HN = f \Vu\2 + \ f \u\4 - 2aN / \u\2 + a2

N of the 2D-

Hamiltonian f \Vu\2 + ^ / \u\4 corresponding to the 2Z)-defocusing cubic NLS.1 It
is shown that the solutions UN — u^ of the Cauchy problem

- PN(uN\uN\2) + 2aNuN = 0

UN= PNuN ,

converge weakly for all time, for almost all ω.2 Here {g«(ω) | n G Z} are indepen-
dent L2 -normalized complex Gaussians and PN denotes the usual Dirichlet projection
on the trigonometric system.

In fact, there is some s > 0, such that

* ' Λ + ' , (ii)
\n\<N n

1 u is a complex function.
2 We ignore for notational simplicity the problem of the zero Fourier mode in (i). This problem

may be avoided replacing \n\ by (\n\2 + /c)1/2, K > 0 (redefining the Laplacian).
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\9n(ω}\2 -

\n\<N

converges in HS(Ύ2), for all time t.
The study of (i) mainly reduces to the truncation independent equation

ut = Δu — \u\u\2 -2 ί\u\2dx
' i I J I i

L \τ2 >
(iv)

where the expression between brackets has to be considered as the usual cubic term
u\u\2 with suppression of certain square-terms (which are obviously divergent for
the data considered in (i) when N —> oo).

The main point is that (iv) is well posed for typical elements in the support of
the Gibbs measure, or, equivalently, for data φω = ̂  dn^)ei(x,n}^ a\mosι surely in

ω. Once a local result is obtained, one proceeds as in [B2], using the invariance
of the Gibbs measure e~HN^Πdφ for the flow of the truncated equations (i), to
get the results on solutions for all time. The limit flow for TV —> oo and the flow of
(iv) have the normalized Gibbs measure dμ = lirn/vwoo e~HN^Πdφ as an invariant
measure.

This problem was considered in the paper [L-R-S]. The present work extends
the one-dimensional result in [B2] to the 2£>-defocusing case.

1. Wick Ordered Hamiltonian for Cubic 2/)-NLS (Defocusing Case)

We first recall the process of Wick ordering the |w|4-nonlinearity (we are in the
complex case). This Wick ordered Hamiltonian will lead to the modification of the
cubic nonlinearity appearing in (iv) above. For the general theory of Wick ordering,
the reader may consult [G-J].

The Wick ordered "truncated" Hamiltonians are given by

,9 1
- / k|4 - 2aN f \uN\2 + a2

N ,

where

\n\<N N2

«ΦO

n

\n\<N \n\ L2(dxdω)

The corresponding Gibbs measure is

e~H»ΠdφN = exp ί-i / l^l4 + 2aN f\φN

2- 4 exp (-/ |V^ 2) ΠdφN .

Wiener measure

Denoting φ = φN, one has

(0)
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Fourier expansion yields

423

Σ yri
—T

Σ \9n
—\

2 Λl-n2+n3-n4=o
«l Φ«2' "4

\n\<N
(2)

(3)

Σ = Σ

hence

Thus (1), (2), (3) are finite a.s. in ω.
Also for N > NO, there is the following distributional inequality:

(4)

(for some ^ > 0).
To prove (4), one considers the different terms (1), (2), (3) and uses the standard

moment inequalities for linear combinations of products of Gaussians (obtained
from hypercontractivity estimates). The contribution of expression (1) above to the
difference in (4) is given by

Σ
gΛ3(ω) gΛ

nι 4=«2' "4
max I «/ 1 > NQ

Since these are products of 4 Gaussians, there is equivalence of the L2(dω)-norm

and the Orlicz norm L^(dω), with \l/(λ) — eλ — 1. Since the {g«(ω)} are inde-
pendent complex Gaussians, one clearly gets for the L2(ί/ω)-norm

|*ι|Γ2(l -X2

τ~1/2

The contribution of term (2) to the difference in (4) is

\gn(ω)\2-l\f ^ \9n(<o)\2-\
Σ Σ

Since / \gn(ω)\2dω = 1, the norm is estimated by (Σ||«ι>τv Ί
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Similarly, term (3) contributes for Σ|«I>ΛΓ j^pf ~ ̂ o~2 Estimate (4) easily

follows.
One deduces the following stability estimate (λ > 2)

/ \ΦN\2 - 4 > * ^ e~^λ . (5)

Proof. Choose 7V0 with (log TVo)2 < \. From (0) applied with N = NQ and (4), (5)
follows.

Hence, the renormalized Gibbs measure is a weighted Wiener measure with

density in Γ\P<0o
LP

2. Truncated NLS

<5 TT

) - 2aNuN = 0 .

Rewrite equation (u = UN) as

iut - Au + 2(f \u\2 -aN)u + PN(u\u\2 - 2u / \u\2) = 0 , (6)

where / \u\2 — a^ — Σ\n\<N ^2 ~! — CN(&) is time invariant, and converges to

Coo(&0 < oo a.s. in ω. Define UN = e2l€N^ω>)t VN, reducing Eq. (6) to

iυt -Av + PN(v\v\2 -2υf \v\2) = 0 . (7)

The nonlinear term is given by

M Σ »(ϊiι)^)»(«3)e'<"I~"2+"3 J C >} (8)
/I2φ«ι,«3

- Σ v(n)\v(n)\2 e^ . (9)
|n |<Λ^

3. Cauchy Problem

iut - Au + PN(uu\2 -2uf\u\2) = 0

[ u = PNu, u(0) =

on time interval [0,τ].

Proposition. The Cauchy problem

( iut - Au + (u u\2 -2uf \u\2) = 0

is well posed on [0, τ] except for ω in a set of measure ^ e *δ ( < 5 > 0 ) and the
solution u is the (distributional) limit of the solutions UN of (10) when N —» oo.
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In fact

is the limit in U£ 2 [ Q , τ ] of

ι ((*.n)+l/ι|20

425

for some s > 0.

Corollary. Solutions of

(12)

_
for t G [0, τ] flftd TV ̂  oo converge for ω outside a set of measure ^ e τδ . In
fact

converges in 2 0,τ]

\n\<N n

TV — > oc /or ί/ztfse ω.

Using invariant Gibbs measures e~HNΠdφ^ (forming a convergent sequence to
a measure μ ~ Wiener measure) and probabilistic considerations, one shows next
that a.s. in the ω solution UN = uN,ω of (12) converges on [0, oo[ and also (13)
converges in Hs for all t. The limiting flow leaves μ invariant since e~HNΠdφ^
is invariant under the flow of the truncated equation (12). The reasoning followed
here is completely analogous to the argument in [B2] for the 1 -dimensional NLS.

4. Estimates on (11)

Consider the integral equation associated to (11)

u(t) = S(t)φ + i / S(t - τ)[(u\u 2 - 2u / \u\2)(τ)]dτ ,
o

where S(t) = eltΔ. Consider the norm (space-time on [0, τ])

π|2|)|ίι(ιι,λ)|
1/2

(14)

(is)

Here u(n, λ) denotes the Fourier transform u, in the sense that

U(x9 0 = £ / dλ eί((n^+λt^u(n, λ) for (jc, t) e T2 x [0, τ]
n

(strictly speaking, u is not uniquely defined and (15) should be understood as a
restriction norm). The exposition below will be closely related to [Bl], which the
reader may wish to consult for more background and details.
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We will show that for ω outside an exceptional set of size < e ^ 5 the trans-
formation

u ̂  S(t)φ + ifS(t - τ)[(u\u\2 - 2u / |w|2)(τ)] dτ
o

defines an ||| ||^-contraction on the set S(f)</> + (||| |||5-ball).
Write, cf. (8), (9),

(16)

u\u2-: u2= Σ

n

The contribution of the second term in (17) is immediate. We consider the first as
a trilinear expression, replacing the M, M, u factors by MI, t/2, ^3 resp. We limit each
Fourier transform to a dyadic region nt\ ~ NΪ (i = 1,2,3). Denote w the first term
in (17). Since

f s ( t -
0

there is an estimate of

by (cf. pi])

25|

f dλ

If S(t - τ)w(τ)dτ
l o

+

eiλt _ ei\n\2t

(18)

where the denominator \λ— means — n|2 | + 1 (because estimates are local
in time).

For each of the M, (/ = 1,2,3), there are 2 possibilities,

\n\~Ni
f)el x' , (I)

I l k - I l l , < U (π)
decomposing as S(t)φ + (^5-ball).

Denote Nl,N2,N3 the decreasing ordering of {N\,N2,Nι} and ul

9u
2

9u* the cor-
responding Uir-factors. The estimates from [B] permit to bound (18) by

τc exp
logAί2

log log N2 (19)

This estimate appears in [Bl] in the discussion of the 2D cubic NLS. The
main underlying (Strichartz-type) inequality is inequality (26) below. The factor
exp Iθg°f0^jy appears from bounding the number of lattice points on a circle of ra-
dius < N.
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The exponent s will be a sufficiently small positive number. It follows from
(19) that the following cases are taking care of

(20)

(21)u\\l\ u\ll) and log TV2 - log N3 .

If I I H I I * ^ 1> we may clearly write v as

fdλ'(\λ'\ + l ) -

where aλ/(n) =

inequality,

'\)\v(n,n2 + λ')\2}
J

J((n,x)+t\n\2)

(22)

ΰ(n,n2+λ')
v l / 2 , hence Σ« n2s\aλ'(n)\2 = l Also be Holder's

( 2\l/2

\nn Vn'n ) °8
. (23)

Next, we aim to bound the range of λ1'. Observe that we may assume (restricting
ω) that say

T7 Σ 9n(ώ)έ(x>n) ^ c log N

for all TV. Hence,

/ o o if Wi is of type (I) .

(24)

(25)

Recall also the main estimate used in the Cauchy problem for the 2Z)-cubic NLS
(Strichart-type inequality)

\Π-ΠQ\<N L4(T3)
log log N

(26)

This Z/4 -inequality reduces to lattice point counting on circles and the exponential
factor bounds the divisor function. For details, see again [Bl].

Hence

Σ
\n-n0\<N

Z,4(T2x[0,l])

1/2

(27)
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To prove (27), write
\λ-\n\2\ <K

\Π-ΠQ\<N \λ-\n\2\<K

J. Bourgain

«ι, \n\\ < N and λ = \n\2 + λ\. Estimate for

L4(T2x[0,l])

^ / dλ,
\i\\<K

Σ
\nι\<N

<by(26)

L4(T2x[0,l])

1/2

1/2

This bound is conclusive, except if log AT > log TV. Now the range \λ — n\2 > TV20

may be trivially estimated, writing from the triangle and Hausdorίf-Young inequality
w.r.t. the ^-variable

L4(dxdt)

3/4

= Σ -\n-nv\<N [\λ-\n\2\>N2Q

f

This expression is bounded by 7V27V 5, from Holder's inequality, which estab-
lishes (27).

By interpolation, for 2 ^ p ^ 4,

\n-nQ\<N

<7Vε

LP(Ύ2x[Q,l])

1/2

(28)

Consider first a triplet (u\,U2,u^\ where w1 is (II) and hence u2 is (I) (otherwise
we are in case (20)). We estimate using duality (18) by

(NlYful u2 M3 v, (29)

where

\λ- n\
or v =

\λ- n
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with Σn$dλ\v(n,λ)\2 ^ 1 and ΣX«)|2 ^ 1- Applying (28) with
(24), estimate (29) by

\u3\ \Pjυ\ ^ (Nlγ

Σ

PVlb

1/2

1/2

.12 ΐ I γ*Z—/ / r f A μ -

1/2
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and

1/2

(30)

Here / denotes a partition of the set [\n\ ~ Nl] in intervals J of size ~ TV2 and
P/ is the corresponding Fourier restriction operator in the x -variable.

Thus the preceding estimate (30) is conclusive provided for some wz of type (II)
we consider the contribution of ffi\ [\^-\nt\

2\^>(N2)e]
or ^ tne denominator λ — n n

(18) satisfies \λ— \n\2\ > (N2)e. Hence we may in the estimate of (18) assume

\λ-\n\2\<^(N2)ε and \λ, ,- \nt\
2 <C (N2)ε if M/ of type (II) . (31)

It follows from (22), (23) that, up to introducing a factor logA/2 in estimating (18),
the Uj of type (II) may be taken of the form

where

\n\~Nj

and

(32)

(33)

Thus (18) with w the first term in (17) is bounded considering an expression of
the form

2\2(log7V2) Σ
n~n\ —rt

1/2

where

i=l,2,3),

l«'(«)l2 ^ i,

(34)

a\n) = ̂  or ̂  |«3(«)|2 ^
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Next, assume ul of type (I). Estimate by (24), (28),

(29)Z(Nlγ\\ul\\00\\t?\\3\\ui\\3\\v\\3

/ \1 / 2

(Σfdλ\λ-\n\2\-^+\υ(n,λ)\2} . (35)
\ n J

Thus the estimate (35) is conclusive provided for some w, of type (II), we consider
the contribution of w/ltμ,— ["/PX^1)7*] or ^ me denominator A — n\2 in (18) satisfies
\λ — \n\2\ > (Nl)ls. Thus in this case, (18) may be estimated assuming

|«|2| < (Nl)7s and \λt - \nt\
2\ < (Nl)7s if ut is of type (II) ,

μ

and hence is bounded by

n=n\ — «

ί I/2

Σ

' ϊ 1/2

j ( 1 / ι / l - Λ i ) , (36)

where |μ| < (TV1)75, α1^) = ̂  and α'(/ι) - ̂  or Σ I*'(ΌI ^ (Λ^1) for
i = 2,3.

Observe that for n = n\ — n2 + n3)

\n\2 ~(\n\\2 ~ l«2|2 + |«3|2) = 2{«2 -nι,n2 -n3) , (37)

hence the second condition in the summation in (34), (36) may be written

μ

2

If |/I2
(N2γ

| > 10(|«ι| + |«3|), \(n2 — n\,n2 — n $}\ ~ \n2\
2 and it follows from \μ\ <C

or \μ\ < (Nl)7s that thus \n\\ ~ N1 or |«3| ^TV 1 . Hence, we may assume
«ι =Nl, since the role of wι,ws is identical. We assume here s small enough
(s < 2

η\
Our next aim is for given n and μ to estimate

#< (wι,/i2,/i3) | k | ~^ and AI = ΛI -n2 + n3,(n2 -n\,n2 - n3} = - > . (39)

In the proof of Lemma 1 below, we will use some elementary facts about lattice
points on circles in the plane. First, on a circle of radius R, there are at most
exPiog°iSog/? ̂  R£ lattice points. As already mentioned above, this bound is an es-
timate on the divisor function (considering factorization in the ring of Gaussian
integers a + bί, a,b G Z). Secondly, if Γ is an arc on a circle of radius R and
\Γ\ < cR1^ ', then Γ may only contain two lattice points. Indeed, if there were 3
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distinct elements P\,P2,P3 in Γ Π Z2, then

431

I/Ί3

c—- > 2 area triangle (P\,P2,P^} = det
R

Π Pi
1 PI
l Pι

e Z\{0}

leading to a contradiction. This last argument is the essence of Jarnick's theorem
on the distribution of lattice points on strictly convex arcs (see [BP]).

Lemma 1.

(39) < min{#2

2(#ι Λ7V3) ε, N2N\N3)ε} .

(Recall that N\N2,N3 is the decreasing ordering of N\,N2,N3.)

Proof.

(i) Fix HI and write (n\ — n2,n\ — n) = — ^ as

(40)

n-
(41)

Thus (41) corresponds to the lattice points n\ on a given circle with \n\\ ~ N\. Their

number is bounded by exp ̂ f^ (distinguish the cases log N\ ^ log radius and

log N\ <C log radius; in the second case, the number is at most 2, by the triangle
argument). This gives the first bound in (40).

(ii) Write the equation as (n — n\,n — n3) — if and assume \n-$\ ^ \n\\. Write
n — n3 — r(a,b), with a, b relatively prime, i φO. It follows that

(n\,(a,b)) = h (n,(a,b)) . (42)

If fl,6Φθ, the number of solutions of (42) in n\ is at most 1 + id?

Consider the case a,bφ0, \n $\ > \a V \b\. Fix A,B, \a\~A, \b\

ber of «35s satisfying n — n3 = r(a,b), n-$\ > \a\ V \b\ is at most

spending number of «ι's is -̂ . This gives the bound A B A B

B. The num-

. The corre-

AVB ' AVB ~

Assume now n3 satisfies \n$ < \a\ V \b\. Fix 723, thus N2 choices and estimate

the number of «ι's by 1 + ια |v |6| < Λ^ Thus this contribution is bounded by N\N3.

If a = 0 (&ΦO), «3 is restricted to N$ choices (n,n3 with same first coordinate). The
first coordinate of n\ is arbitrary and the second defined by (n — n\,n — w3) = ^.
This gives again a bound by N\N3.

Hence there is also the estimate by N\N3 log^ ΛΛ^).
(iii) Write the equation as (n — ̂ 3,^3 — n2) — i f . Write n — n3 = r(a,b) with

rΦθ,α,Z? relative prime. As in (ii), the contribution of α,&φO, \n2 ,\n3\ > \a\ V \b\,
is estimated by N2N3 log(N2 Λ N $ ) . The contribution of \n$\ < \a\V\b\ < \n2\ is

bounded by N2j^ = N2N3 and the contribution of \n2\ < \a\ V \b\ at most TV2. For

a — 0 or b — 0, the number of possibilities is

This yields the estimate N2'N3 log(TV2 Λ TV3) +.
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2(7Vi ΛΛ^)ε,7Vι7V3(M /\ N3)
ε , N2N3(N2 /\N3)

ε + 7V3

2,
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From (i), (ii), (iii), it follows that

ε ε

 3,

(43)

In case {N2,N3} = {N2,N3} and N3 > N2, write W2

2(M Λ7V 3) ε ^ 7V2N| <
and similarly if {N2,N3} = {N2,Nι}.

This proves the lemma.

Lemma 2. Consider the set

S =

(i) For fixed m, #S(nλ ) <C N2N3(N2 Λ #3)
fi β/irf #S(/iι ) < 7V3

2Λ/|.
(ii) For fixed n2, #S(n2) < NιN3(Nι ΛN3)

ε.
(iii) For fixed n\,n2, #S(n\9n2) < N3.
(iv) For fixed m,n39 #5(wι,n3) < A |̂.

(i) Fix n\ and consider estimate (i) in Lemma 1, with n <->• n\9 n\ <-» n2, n2 <->•
w3. This gives the bound N2N%. Apply next estimate (iii) of Lemma 1 with n <-»
n\9 n3 <-> n2, n2 <-> n3, giving the bound N2N3(N2 Λ7V 3) ε + N%. In case N2 > 7V3,
use the N2N$ bound.

(ii) Follows from (ii) of Lemma 1.
(iii) Immediate,
(iv) Follows from lattice point estimate on circles.

We list the different (uι9u29u3)-cases to be considered in bounding (18). As
mentioned earlier, we may assume n\ = N1. Cases (20), (21) are already considered:

Case (a) : nλ = Nl(E), n2 = N2(l\ n3 = N\E).
Case (b) : n\ = AT1 (II), n2 = N3(E)9 n3 = N2(l).
Case (c): nλ = Nl(l\ n2 = N2(E\ n3 = N3(E).
Case (d) : nλ = TV1 (I), n2 = N\E\ n3 = N2(E).
Case (e) : n\ - Nl(E), n2 = N2(\\ n3 = N\l).
Case (/) : m = Nl(E), n2 = TV3(I), n3 = N2(l).
Case (g) : n, - N\\\ n2 = 7V2(I), n3 = N3(E).
Case (h) : n\ = N l ( I ) , n2 = N3(l\ n3 = N2(E).
Case ( i ) : m = TV1 (I), n2 = N2(E), n3 = N\l).
Case (j) : n\ = TV1 (I), n2 = N3(E), n3 = N2(l).
Case (k) : n\ = N l ( I ) , n2 = N2(l\ n3 = N\l).
Case (/) : m = Nl(l\ n2 = N\l\ n3 = N2(l).

Consider first cases (k), (1) depending only on the data φ — ]>

Thus we have to estimate (36), where «/(«/) = Έp, |«/| ~ fy. Assume ,

distinct. We may assume ω satisfying

Σ 9n2(<*>)
2

Σ
n=n\—|«ι| H l/is l

(43)
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the co-
bound
the ω-exceptional set being of size e c(7V ) . Summation of (43) yields for (36) the

1/2

(Nl)B(Nl)s< Σ N^N22Ni 2 <^(Nl)s~l/2+ε (44)
Γ

s< Σ
L/II φ/l2=M3,|«I |'~'Λ/r

J

applying Lemma 2, (iii) with n\ <-* n^. We take s < ^.

Next assume n\ = «3 =M2. The conditions « = 2«3 — «2, «2 — «3|2 = f yield a
number of terms at most (N2 Λ A/3) ε. Hence the (43)-bound is still valid. Thus (44)
gives a bound on (18) in cases (k), (1).

We analyze the cases (a)-(j). Some of them will require additional arguments.

Case (a). Use the estimate (34). The number of terms in the second summation is
at most N2N^+ε, by Lemma 1. Thus, by Holder's inequality, Lemma 2 (iv),

2 eί 2 -2+β 2\1'2

N2

1/2

^«7V2

ε-5. (46)

Observe that for N\ > A/2, the w-expressions corresponding to different dyadic val-
ues of N\ are orthogonal and hence the 1 1 1 1 1 s -norms of the corresponding contri-
butions to the nonlinear term add up in /2. This leads to a bound of the form
^ " " Ί l l w i l l l j I I I M 3 | I U if we restrict N2 > M. On the other hand, exploiting the
small time interval [0,τ] and the \λ — n\2\-factor in the definition of the ||| \\\s-
norm, one also has an estimate of the form M c τ^ | | |Mι | | | s | | |M3| | | S j using for in-
stance a straightforward L4 x L4 x L4 x L4 estimate (after projection) on (29) and
\\Ui\\4 < M1/4!1/4"!!!^!!! for / = 1 or 3. Consequently an estimate τ ^ l l l w i H ^ \\\U3\\\S

in (18) is obtained, for some δ > 0. We don't repeat those considerations again
later on.

Case (b). Use estimate (34). Applying the Holder's inequality in the inner summa-
T—"
2

1/2

tion w.r.t. the ^-summation, Σn |β2(«2)|2 < N2

 2s. This gives

n=n\— «

1/2

< NξN^s(N2N3N%N^2)l/2 < 7V"3

ε~" . (47)

Applying the estimate from Lemma 1 (i) (replacing n\ by ^3) and Lemma 2, (i).
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Case (c). Use estimate (36). Proceeding as in case (b), we estimate by

2, 1/2

Σ Λ3(/ι3)

<

1/2

( ΛΓ

~

applying Lemma 1 (i) and Lemma 2 (i) with n\ replaced by «3.
Next, we make another estimate using the Gaussians {0nι(ω)| \n\ ~ N\}. Ap-

plying Holder's inequality with respect to «3 in the inner summation, estimate by

Nϊ Σ
n—n\— «2+«3,«2^Λbw3 1^1 I

^2(12)

1/2

(49)

Fix «3, |w3 ~ 7V3. Define the matrix ^ = < ω̂ = (σW j W 2)|n |<^,π+n 3 by

if («3 -«,w2 -/ι3> = f , /

otherwise.

Estimate (49) by

and

«2
Σ

«φn' «2

The first term in (52) is bounded by N2N^2+ε. Write

Σ Σ

1/2

(50)

(51)

(52)

, (53)

which expression depends on the initial data φω. Observe that the Gaussian
2-products in the inner sum are at most repeated twice. Hence (53) may be es-
timated by

- ,

(54)

The condition (n^ — n,n2 — «3) = f allows pairs (n,n2), by Lemma 2 (ii).
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Next, since 722+^3, there are at most N\ possible choices for nf. The resulting
estimate on (54) is N^2N2+ε. Consequently, from (51) and the preceding

(49) — (55)

nCombining (55) with the previous bound (48), one easily gets the bound N^
Case (c).

Case (d). Same estimate applies as in Case (c).

Case (e). We have to estimate (34) with n\ £ J, where J is a subinterval of length
~N2 in [\m\ ~Nι]. Thus

H

V2

(56)

where (αι(wι))W ley satisfies ^w

the matrix ^ = ̂ ω = (σΛ,Λl )nej jΠ
by

^ 1 and J is a doubling of/. Define

Σ gn2(ω)gΠ3(ω), (57)

where the summation extends over indices
Estimate (56) by Λ/IH^^H1/2 and

Σ Σ

Since «2Φ«3 in the summation (57), we get

y^ i(τ P <*" ^ Λ Γ ΛΓ ^""^

assuming
Y^/
Z-/ J

where J^ denotes the (57)-summation.
Write explicitly

Σ
nή-n'

Σ * Σ Σ^«:(*)

1/2

(58)

(59)

(60)

, (61)
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where (*) refers to the set of (n \,n2 ,n3,n2 ,n'3) such that

3, n-n^n-n^ = μ

n' = n\ -n'2 +n'3, n'2^n\,n^ (nf - n\,nf - n'3) = μ .

Consider the following cases:

case (i). The indices n2,nι,n'2,n'3 are distinct.
case (ii). n2 — n'2 (n3 ή=n'3).
case (in). n3 = n'3 (n2ή=n2).
case (iv). n2 — n3 , 773 Φ^

(62)

case (v). «2Φ«3 > ^3 = n'2.
case (vi). n2 = n'3, n3 = n2.

Case (i). Denote Y,1^ the corresponding subsummation of Σ(*) Clearly each of

the order 4 Gaussian products in Y^^ can only appear a bounded number of times.
Hence we may assume

2

Σ1

(*) (*)

Hence, the corresponding contribution to (61) is bounded by

such that

\n'2\ 2, \n'3\

where S stands for the systems

n\ G /, |«2| ~

Hence

fixing n\ £j and applying the second estimate of Lemma 2, (i). Hence

(63)

(64)

(65)

(n2 - nι,Π2 - n3) = μ, (n'2 - n\,n'2 - n'3) = μ .

(66)

Case (ii). n2 — n'2 =$• n3 ή= n3 . Denote Σ(*> ^e corresponding subsummation of

Σ(,) Thus

(*)
9n2 9n3 9n'2 9n'3

where

Thus

ι , Λ 2 , Λ 3 J Λ 2 J W 3 ) satisfies (*)}.

, « = ΛI - n2 - n\,n - w3 =

(67)

(68)

(69)
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and the contribution of Σr*) to (61) is bounded by
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(70)

where now S consists of the systems (n\,n2,n3,n'3) such that (n\9n29 n3,ri2,n3) fulfills
(65). Hence clearly

#S^:N^N^N^N3 (71)
and

(72)

Case (in). n$ = n'3 =ϊ n2^n!2. Denoting ^^ the corresponding subsummation of

Σ(*)> we have

<r^3

fe 9"2 βn*9n'2 ̂
(73)

where

and thus

S(n,ri',«2,«2) = {(nι>"3)l («1,«2,«3,«2>W3) satisfies (*)} , (74)

(75)
\,n3)\n = n\ - n2 +nι9(n$ - n2,n - n3) = μ}

The contribution of ̂ ^ to (61) is bounded by

(76)

where S consists of the (n\,n2,n3,n2) such that (wι,«25^35«2'w3) fulfills (65). Thus

#S < N$NfNξ (77)

and

have

(76)«7V2-
2+ε7V3-

2. (78)

(iv). Π2 — n3, «3φ«2. Denoting Σ<» tne corresponding subsummation, we

(*)

(79)

where
S(n,nf,nι,n2) = {(n\,n2) \ (n\9n29n^9n29n2) satisfies (*)} , (80)

and thus

#S(n,nf,n3,n2) ^ #{(n\9n2) \n\ £j9n = n\—n2-\-n'$9(n — n\9n — n $)=μ} < N2 .

(81)

The contribution of Σ(*) °̂ (^^) ^s bounded by

(82)
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where S consists now of the («ι,«2> 7*3^2) sucn that (n\^n2^^,n'2, n2) fulfills
(65). Hence

#S<7V2

2+ε7V3

2, (83)

by Lemma 2 (i) and Lemma (2) (iv) and

(82) <^N~l+BN~2 . (84)

Case (v). n2ή=n'3, ^3 = n'2 : Same as (iv).

Case (vί). ri2 = n$9 n^ = «2. Denoting ]Γ̂  the corresponding subsummation, we
have

(*)

where
S(n,n') = {(nι9n29n3)\(nι,n29n39n3,n2) satisfies (*)} ,

meaning that w 1,^2^3 ar^ different and

n' = n\ — «3 + n2 (nr — n\,n' — n2) = μ .

Thus n + n' = 2n\ and #S(n,nf) < N3.

The contribution to (61) is thus

' Σ

where ^ consists of the pairs (n\,n2,n^) such that

(n2 - Λι,/ι 2 - ^3} = μ, («3 - n\9n3 - n2) = μ ,

hence
|/z2-«3 |

2 = 2μ.

Thus

#S^N^N^N2

and
(SSXΛζ-3^-1 .

Collecting the various bounds (66), (72), (78), (84), (92), it follows that

(61) < Nξ(N2N3Γ
l < ̂ 2~

1+ε

From (59), (93),

Hence

which is the bound on (56) and thus for Case (e).

(85)

(86)

(87)

(88)

(89)

(90)

(91)

(92)

(94)

(95)
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Case (/). By Lemma 1 and Lemma 2, (i) we get applying first Holder's inequality

1/2

(56)

Hence, if N2 < N3

 10°, we get an estimate N3

 30°, say. Otherwise the estimates

made above in case (e) will yield a saving of N3

 30° also.

Case (g). We use estimate (36)

nλ-n2ζ^n}

0/iι(ω)0Λ2(ω) 2\ 1/2

(97)

with Σ 1^3(^3)|2 < 3̂ 2s From Holder's inequality and Lemma 1, we get

1/2

(97) (98)

and from Lemma 2 (i)

(98) (99)

Thus we may assume ̂  > TV, 10° and we can use then the estimates from cases
(f), (e).

Case (h). Estimate (36) as in case (g) with the same result. Again if Λ^ >
the estimate in case (f) applies.

Case (0, (/)• Estimate (36)

i
" 100

n ]_n 2Σπ 2 φ n ι

{«-«!, n-«3)=μ

2x 1/2

(100)

1/2

(101)
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We may also apply the estimate from case (e), introducing an extra factor 7V| to
control u3 in Hs. This yields the bound

(102)

from (55). Thus it follows from (101), (102) that we may assume N2 > Nλ 10°
TV

/5

We next prove one more estimate, repeating mainly the argument from case (e).
Define 0 = ̂ ω = (σn^2) \n\<Nl by

(103)

Estimate (100) by

where

»2

2\ 1/2

(104)

(105)

By the condition (n — n\,n\ — n^} — μ, the number of summands in the definition
of σn^n2 is at most Nf. Hence the first term of (105) is bounded by

N
~lβ

(106)

since we assumed N$ >
We analyze again the second term in (105). Write explicitly

Σ - 4 Σ
(*)

where (*) refers to the set of (nι9n29n^9n(9n^) such that

3, n - n\,n - n3 = μ

( 9 n r

3 9 (n1 - n(9n
f - n'3) = μ .

(107)

(108)

Consider the following cases:

case (i): The indices n\9n39n(9n3 are different .

case (ii): n\ = n\

. case (iii): n\ = n'3

There are the symmetric cases. Observe that if n\ = n^ say, we get g^ and the

{g2

n} are still independent of mean zero, since the gn are complex Gaussians. Hence
this case does not require a separate argument.

Case (i). Denote Σ *ne corresponding subsummation. If the n\,n^,n\,n'^ are all
different, each of these order 4 Gaussian products only appears a bounded number
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of times in the summation and

Σ l
0«1 9n3 9n( 9n(

(*) l 3 (*)

Thus

where S stands for the systems (n\9n29n39n(,n3) such that

(n2 -n\9n2 -n3) = μ9 (n2 - n(9n2 - n'3) = μ .

Hence

and

#S

(110)<Λ T-W

Case (ii). Denoting Σ the corresponding subsummation,

2

Σ 0/11 0*3 0n' 0/1' Σ

where

Hence

S(n,n',n3,n'3) = {(nι9n2)\(nι9n29n39nι9n'3) satisfies (*)} .

ι, (n - m,n - n3) = μ}

and the contribution of Σ to (107) is bounded by
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(109)

(110)

(111)

(112)

(113)

(114)

(115)

(116)

where S consists of the (n\9n29n3,n3) such that (nι,n29n39n\9n3) satisfies (111).
Thus

#5 < N21

and
(116) N

~lβ

Case (in). Denoting Σ the corresponding summation,

2

Σ30«ι
(*)

(117)

(118)
«3,n

where

Hence

(n,nf,n^,n() = {(m9n2)\(nι9n29n39n'l9m) satisfies (*)} .

#S(n9n'9n39n() < N{ , (119)
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and the contribution of J^ to (107) is bounded by

(7Vι7V3)-χ+ε(^), (120)

where S consists of the («ι,«2,«3,«ί) such that ( w ι , W 2 > W 3 > « ί > « ι ) satisfies (111).
Thus

#5 < NfNJ NϊNi

and
(120)<7Vί7V3-

2 < N~lβ . (121)

Summarizing, it follows from (113), (117), (121) that (107) < N~\ thus by
(106)

\\99* | |<#f1 / 6. (122)

Hence

(36),(100) < N*-l/U i j f - J < JVί 1 2 ' 10° (123)

From the preceding, we get in case (i), (j) the estimate

N-& . (124)

This completes the analysis of the different cases (a)-(l).

It follows from this analysis that fixing an interval [0, τ], we have

(18) < cτδ (125)

for some δ > 0. Here w = u\U2"3 with ut e S(t)φω + (||| H^-ball), φω =
δ1

Σ H^^> anc* (125) will hold outside an ω-set ί2 of measure < e-1/τ , for

some δ1 > 0.
Observe also that if for one of the M, we consider Σ|nι>M l̂̂ Γ ^ϊ^/I'^+'/I' *\

there is an extra saving of M~δ, i.e.

(18) < cτδM~δ . (126)

The transformation T defined in (16) is a contraction, since

^ δ\\\ III /1 T7 \^ cτ l l l w - ί l l u . (127)

In this estimate, one of the w z 's equals u — v G Hs . Hence, for ω ίji Ω, Picard's
theorem gives a solution u to (11).

Let φ — φω be a "good data" as above with solution w, w(0) = φ. Let ψ G Hs ,
\\Ψ ~ Ψ\\s < H Consider the map T\v : S(t)ψ + i &S(t - τ)[(v\v\2 - 2v(\v\2)(τ)]dτ.
Writing TIV = Tυ + S(t)(ψ - φ), it follows that

|||Γn; - 5(00111, ^ I I Φ - |̂|, + \\\Tv - S(t)φ\\\s < 1 + τ^ < 1 .

Hence T\ maps 5(00 + (||| Ill^-ball) to itself and is a contraction, since Γι(ι?) —
T\(v') = T(v) - T(vf). Thus (11) has also a solution v for initial data υ(0) = ψ.
Moreover

|̂|̂  (1277)
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and also (cf. [Bl] or the discussion in [B2], Sect. 2).

\\u(t) - v(t)\\HS ^ C\\φ - ψ\\H, for \t\ < τ .

5. Comparison and Convergence of Solutions

Let us compare next the solution of the truncated equation (10)

f iuΉ

t - ΔuN +PN(uN\uN\2 - 2uN f\uN\2) = 0

n(
\n\

and the solution u obtained above for

ί iut - Au + (u u\2 -2u f \u\2) = 0
Π29")

u(0) = φω(X)=ΣβlffelM

In (128), UN e S(t)φN + ( || |||,-ball) and in (129), u€S(t)φ + (\\\ \\\s-bal\). Fix
0 ^ 5 ] < s. Analyze the expression

u\u\2 -2uf \u\2 - P^l^l2 -2uNf |*/f) , (130)

writing it as a sum of products v\ΰϊ f3 where for some /, either PN_VΪ = 0 or Vj =

u — UN . Taking (126), (127) into account, we get

\\\[u-S(t)φ]-[u"-S(t)φN]\\\Sl

g^ι-J+^-5 + cτ5|||[«-S(OΦ]-[ι^-S(0^]|IU. (131)

Here we perform the analysis of the nonlinear term in ||| \\\Sl. For PN.VΪ = 0, either

Vi appears in the ||| |||5-ball in which case there is an NSl~s bound in ||| \\\Sl or
vi = Σ\n\>% ^eί(^x^n^ in which case we invoke (126). Write

U-UN = (S(t)φ - S(t)φN) + [(u - S(t)φ) - (UN - S(t)φN)] ,

and apply again (126) if one of the ι>z 's equals S(t)φ — S(t)φN.
From (131), we get an approximation

|||(u - S(t)φ) - (UN - S(t)φ»)\\\sι ^ Ns^-s + N~δ , (132)

and also

\\(u-S(t)φ)- (1^-8(^)^00 (0,τ) ^Nsι-s+N~δ . (133)
2

δ

The conclusion is that for ω outside a set Ω of measure < e~l/τ , u% — S(t)φ%
will converge to uω — S(t)φω in Hs for some s > 0 and, more precisely

\\(uω - S(t)φω) - (t% - S(t)φ£)\\s < CN~δ for t G [0,τ] . (134)

Denote SN(t) the flow map associated to (128). Fix a large positive integer N and
~H~denote u ̂  the Gibbs measure e~~ΰΠdφ. Thus μ ̂  is invariant under the flow of
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(6) and hence of (10), thus SN(t). The solutions are indeed related by e2iCN(ω}t

multiplication, where cχ(ω) = Σ\n\<N \n\2 ~ anc^ ̂ us on^ depends on |0Λ(ω)|.
It follows from (134) that

[S (̂0 - S(t) - (SN(t) - S(t))PN]φ < CN~δ (135)

for N < TV, t G [0, τ] and φ = Pjjφ taken outside a set A of measure μj^(A) < e 1/τ .
Our next purpose is to extend (135) for t in an arbitrary interval. Consider say

[0,1], fix a small number τ > 0 and partition [0,1] in 1/τ intervals /α of size τ. We
will mainly repeat the invariant measure consideration from [B2].

Thus for φ $ Λ, (135) holds

[SW(t)-SN(t)PN-S(t)(I-PN)]φ\\s ^N~δ (f e[0,τ]), (136)

and thus, denoting φ\ = SN(τ)φ,

\\φι - [SN(τ)PN +S(τ)(I - PN)]φ\\s ^ N~δ . (137)

Assume φ\ is again a "good" data, thus φ\ φ A, hence

(/> ^ Λ U ̂ (τ)"1^) . (138)

Repeating (136), one gets again for TV ^ N, t G [0,τ],

[5̂ (0 - SN(t)PN - S(t)(I - PN)]φι II g TV-'5,
l U

thus _

llsV + OΦ-t^^ + ̂ x/-^)]^! =^"ό (139)

It follows from (137) that

\\S(t)(I - PN)φ{ - S(τ + t)(I - PN)φ\\s ^ N~δ , (140)

^N~δ. (141)

Since φ\ is a "good data", SN(t) acts in a Lipschitz way on PNΦI + (//5-ball),
ί ^ τ, and (141), (127") implies

||̂ (0^0ι - ^(τ + t)PNφ\\s ^ N~δ . (142)

Combining (139), (140), (142), it follows that for t G [0,τ],

[̂ (τ + 0 - SN(τ + t}PN - S(τ + t)(I - PN)Φ} ^ N~δ , (143)

and thus (136) holds for t £ [0,2τ], provided (138).
The continuation of this process is clear. One gets eventually (136) on [0,1],

provided

φ$Λ\J SN(τ)~l(Λ) U - U SW(τ)~k(Λ) (k ~ τ'1 ) , (144)

and since SN(τ) is μ^-preserving, the set Λτ defined in (144) satisfies

' (145)
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It follows from (145) that given σ > 0, there is a set Λσ, μ^(Λσ) < σ, such that
for φ $ Λσ and t e [0,1],

) - SN(t)PN - S(t)(I - PN)]φ ^ c(σ)N~ό for N ^ N . (146)

Since μ^ converges to the normalized Gibbs measure μ defined in Sect. 1, letting

N —> oc in the preceding shows that

- S(t)]PNl - [SN2(t) - S(t)]PN2)φ\\s ^ c(σ)(Nι /\N2Γ
δ (147)

for all f £ [0, 1], 0 ^ Λσ with μ(Λ.σ) < σ and any integers N\,N2.
We get in particular from (147) for N2 > N\9 φ (jl Λσ,

\\(PNlS
N*(t)PN2 -SNi(t)PNl)φ\\σ < C(σ)N~δ . (148)N l N 2 - N l σ < σ

Also SN(t)PNφ converges weakly to some S°°(t)φ E S(t)φ +BHs(C(σ)) (take
N2 = 0 in (147) and let NI -> oo). From (147), (148), for t G [0, 1], φ $ Λσ,

\\([S°°(t) - S(t)] - [SN(t) - S(0]^)0||, ^ C(σ)N~δ (149)

and
||(/VS°°(0 - ^(0^)011, < C(σ)N~δ . (150)

S°°(t)φ is the solution of (11) obtained in Sect. 4 and from (150), it easily follows
that μ is invariant under the flow S°°(t) (using again the invariance of μ^ for
SN(t)).

Coming back to Eqs. (6),

(151)

we have UN = elίc^^tSN(t)PNφ, where cN(φ) = cN(ω) = Σ\n\^N

Φ — Σ ^r^-el^n^ . Thus cχ(φ) converge μ-almost surely to some c^φ), and hence

the uN(t) converge weakly for N — > oo to e2*0^* S°°(t)φ for all time, μ-almost
surely in φ. In fact, from (150)

||̂ (0 - e2ίCN(φ}tPNS°°(t)φ\\s < c(σ, T)N~δ (152)

for φ G Λσj, μ(Λσj) < σ. In particular, (ii) converges in Hs for some s > 0.

References

[Bl] Bourgain, J.: Fourier restriction phenomena for certain lattice subsets and applications to
nonlinear evolution equations. Geom. and Funct. Anal. 3, N°2, 107-156 (1993)

[B2] Bourgain, J.: Periodic nonlinear Schrόdinger equation and invariant measures. Commun.
Math. Phys. 166, 1-26 (1994)

[L-R-S] Lebowitz, J., Rose, R., Speer, E.: Statistical mechanics of the nonlinear Schrόdinger equa-
tion. J. Stat. Phys. 50, 657-687 (1988)

[G-J] Glimm, J., Jaffe, A.: Quantum Physics. Berlin, Heidelberg, New York: Springer, 1987
[B-P] Bombieri, E., Pila, J.: The number of integral points on arcs and ovals. Duke Math. J.

59, 337-357 (1989)

Communicated by J.L. Lebowitz






