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Abstract: We present a unified framework for the quantization of a family of discrete
dynamical systems of varying degrees of "chaoticity." The systems to be quantized
are piecewise affine maps on the two-torus, viewed as phase space, and include the
automorphisms, translations and skew translations. We then treat some discontinuous
transformations such as the Baker map and the sawtooth-like maps. Our approach
extends some ideas from geometric quantization and it is both conceptually and
calculationally simple.

1. Introduction

Interest in the quantization of discrete dynamical systems on compact phase spaces
comes from the desire to understand the possible signature of classical chaotic
dynamics in quantum mechanics. Recall for example that it is expected and in
some cases proved that the asymptotic properties (h —> 0) of the eigenfunctions
of quantized systems depend on the degree of "chaoticity" of the corresponding
classical ones (see, for instance, [Sar] and references therein). The torus forms an
excellent testing ground for these ideas. Indeed, the simplest ergodic systems are
the irrational translations on the torus, whereas the simplest hyperbolic dynamical
systems are certain area-preserving maps [AA, CFS]. Among these, the best known
are the toral automorphisms, the Baker transformation and some discontinuous maps
such as the sawtooth map considered in [Ch, LW, V, Li]. It has been shown there that
their singularities do not destroy the ergodicity and mixing properties one expects
for hyperbolic maps.

One way in which the classical singularities will show up at the quantum level is
as follows. For the linear automorphisms the classical and the quantum evolution are
identical, as in the harmonic oscillator. The singularities will destroy this property,
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so that, to control the semiclassical behaviour of the eigenfunctions a non-trivial
Egorov theorem will be needed. Similarly, the statistics of the eigenvalues of the
quantum propagator should be more generic than in the linear case, where they are
determined by purely arithmetic properties. Clearly, before being able to address this
kind of problems, one needs to develop a quantization for the systems considered.
Since none of the above examples is obtained by evaluating a smooth Hamiltonian
flow on the torus at discrete times, the usual quantization schemes all fail and a
direct attack is needed.

In this paper we will show how to extend the most elementary part of geometric
quantization [Bl, GuSt, Ko, Sn, Wo] beyond its natural context in order to construct
a unified and simple framework for the quantization of all of the above systems.
Some of them had not been quantized before, such as the translations and certain
piecewise afϊine hyperbolic maps. It will turn out that the unitary matrices describing
the quantum evolution of each of those systems can be computed straightforwardly
and with relatively little effort in this way.

The toral automorphisms and the Baker transformation were quantized respec-
tively in [HB,DE,DGI] and in [BV] and they have been studied intensely ever
since, both numerically and analytically [Kel,Ke2,Ke3,DGI,Eck, Sa]. The methods
of quantization used in these papers look very different from each other. Our
approach reproduces the same results in those cases.

In order to get a more precise flavour of the ideas to be developed, recall
that in classical mechanics the dynamics of a system is obtained by integrating a
Hamiltonian vector field XH on a symplectic manifold (Af,ω). Here H e C°°{M)
and XH is defined by XH\ CO — dH. In quantum mechanics, the dynamics is given by
a unitary flow Ut on a Hubert space #?%. A quantization is a set of rules allowing
to associate to (M, ω) a Hubert space Jf^ and to each function / on M in a suitable
class # , a self-adjoint operator / on $?%. One then says that Ut = Qxp[(—i/h)Ht]
is the quantization of the classical flow of XH. Typical requirements [Be] are that
the map / H-> / is linear, injective, unital, i.e. that it satisfies 1 = I d ^ , and that

it is compatible with the natural involutions, (/)* = / . Moreover, one requires the

classical limit condition

When the classical evolution is not a flow, but a discrete map, this scheme
is clearly not sufficient. We extend here some of the simplest ideas of geometric
quantization beyond their natural range of applicability to obtain a unified framework
for the quantization of a reasonably large class of area preserving maps on the torus.
We will show that, in spite of its reputation, the essence of geometric quantization
is intuitive, simple and well suited for such generalizations. For that purpose, we
first present in Sect. 2 a revisited version of the geometric quantization on Γ*IR,
just to demonstrate how it permits to reformulate quantum mechanics for systems
having Γ*R as phase space and to quantize linear flows. At several points, we
shall use physical or intuitive arguments to motivate parts of the construction that
are usually justified in terms of very general geometrical objects. We then apply
this approach to the quantization of toral automorphisms in Sect. 3: the resulting
quantum propagators are identical to the ones obtained elsewhere by other methods
[HB,DE]. In the final Sect. 4 we shall obtain the quantization of translations, skew-
translations as well as of a class of piecewise linear hyperbolic maps such as the
Baker transformation and other maps studied, for instance, in [Ch,LW,Li, V]. Those
maps do not preserve the natural geometric structures associated with the torus, and
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therefore geometric quantization as such does not apply to them. The proposed
extension, however, will provide a definite answer.

2. Geometric Quantization on Γ*R

As usual we call (q, p) the coordinates of Γ*R = R 2 and choose the standard sym-
plectic form ω = dq A dp that gives the canonical Poisson bracket {q, p} — 1. Our
goal is to realize the space of the quantum states ffl% as a subspace of <9^(R2),
equipped with a suitable Hubert space structure, and to establish a correspondence
between classical and quantum observables, so as to be able to describe the phys-
ical properties of the quantum system. To this purpose we recall a first result, the
validity of which is easily checked by a direct computation: there exists a map
/ G C°°(R2) -> / € £ ( ^ ' ( R 2 ) , ^ ' ( R 2 ) ) , which is linear, unital and satisfies the
classical limit condition. This map is explicitly given by

f=-ihVXf+f, (2.1)

where Xf = (dpf)dq — (dqf)dp is the Hamiltonian vector field associated to / and
Vx —X — (i/h)X\θ denotes the covariant derivative with respect to the connection
form θ = \{pdq — qdp). Note that the use of Vx guarantees the local gauge invari-
ance of the construction (see [Wo, Sn] for details). It is moreover worth remarking
that, if / in (2.1) is replaced by —ihXf, then the unital property fails to hold,
thereby violating the uncertainty principle. In particular we have # = ihdp + q/2 and
/? = — ihdq -f p/2, so that, indeed, the canonical commutation relation [#,/?] = ^

is satisfied. The correspondence between / and / given in (2.1) is referred to as
prequantization [Ko].

We now need some conditions to choose the subspace 3tf% of ̂ ' ( R 2 ) and the
Hubert space structure it has to carry for it to correspond to the quantum Hubert
space of states. Note first that the equation ίhdt\j/t =fψt is easily solved on
Writing ψt = exp[—(i/fι)ft]φ, one has

exp \-ft\ ψ)(q9p)

= exp \~lUs Q(/>ω<?ω " q{s)p{s)) - f(q(s\p(s))^ ψ(q(t)9 p(t)) ,

where (q(s)9 p(s)) is the solution of the Hamilton equations q — δpf, p = —dqf9

with initial conditions (q, p). Note that the prequantized flow exp[(i/h)ft] makes
sense also when ψ e ^ ; ( R 2 ) .

The idea is then to try to pick Jf % in such a way that Qxp[(i/h)ft] is a unitary
one-parameter group for a suitable large class ^ of functions / . This allows then
for the interpretation of / as the quantized observable.

An a priori obvious choice would be L 2 (R 2 , - | ^ ) It is nevertheless not suitable
as the quantum Hubert space. Indeed it is easily seen that the spectra of ̂  and 'p are
not simple: actually, the generalized eigenspaces are infinite dimensional, which is
in contradiction with standard quantum mechanics on L 2 (R). Otherwise stated, ̂  (or
J)) is not a complete set of commuting observables on L 2(R 2, ^ p ) , or, equivalently,
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q and /? do not generate an irreducible algebra. To put this more precisely, recall
that the Heisenberg group is the group H = R 3 (as a set) equipped with the group
law (a,b, φ)(a', b', φ') = (a + a',b + b', φ + φ' + \(ab' - a'b)). H acts on R 2 by
(α, b, φ)(q, p) = (q + a9 p + b). The prequantized operators q, p generate a unitary
representation of H on L 2 (R 2 , -|^jf) given explicitly by

[U(a9b9φ)ψ](q9p) = exp I ~φ\ exp [-^(«P - bq)] ψ(q - a,p - b) . (2.2)

This representation is not irreducible on Z 2 (R 2 , - |^f).
There is a second problem with (2.1) which is worthwhile mentioning. It is easy

to see that, if H(q, p) = p2/2 + V(q), then H + p2/2 + V(q). It is then clear that
the correspondence (2.1) is far from reproducing the Schrόdinger equation.

Some conditions have to be imposed on the quantum Hubert space Jf^ C y ' ( R 2 )
in order to avoid the previous difficulties. For the irreducibility of the algebra gen-
erated by q and p we should require

(i) U(a9b,φ) restricts to a unitary irreducible representation of H on Jf^.
To reproduce the Schrόdinger equation we should impose:

(ii) 3ΠQ G N* 5 and a dense subspace D of J^% so that j5, j52, and qn (1 rg n ^ n0)

are essentially self-adjoint on D and J?2 = p2, *qn — 'q* on D.

Note that this is equivalent to requiring the correct form of the Schrόdinger equation
for all polynomial potentials of order at most ΠQ. We are however already asking
too much if we take HQ ^ 2, as we now show.

Proposition 2.1. Ifψ e 5^(R 2 ) satisfies ^p2\j/ = Jtψ and q2φ = q2\j/, then φ = 0.

The proof of this proposition is a simple calculation that we omit. In conclusion,
the requirements (I—ii) cannot be satisfied on any non-trivial subspace of ^ ( R 2 ) .
Hence we cannot even quantize in the proposed manner Hamiltonians with quadratic,
let alone general polynomial potentials. The best we can still hope to do is to impose
(i) and a weakened version of (ii), as we now explain.

Given w G R 2 , with w = (w\,W2), let v G R 2 such that ω(w, v) = 1, we define
the subspace

@w = {ψe ^ ; ( R 2 ) I Vwφ = 0} , (2.3)

where X^w is the Hamiltonian vector field associated to hw(x) = τwx = w\q + w-ip
and Vw := Vχhw Here and in the following x = (q,p). We then have

Lemma 2.1. Let w e R2 and v e R2 such that ω(w,υ) = 1. Then φ e @w if and
only if there exists a tempered distribution fv on the line such that

Φ(x) = Mhw(x)) exp [ - ^ A H - O O W * ) ] (2-4)

Proof We have Vw = (w2dq — w\dp) — (i/2h)hw(x). Consider the map (q9p)*-^
(y\iyi) = (hw(x),hυ(x)) which is linear and with determinant equal to unity. Vwψ = Q
becomes dy2η(yuy2) = -(i/2ft)yιη(yuy2), with η(yuy2) = ψ(q, p). Its general
solution is Yliyx.yi) = fv(y\)εxp[—(ί/2h)yιy2]9 thus proving the lemma. D
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Remark. If v' G 1R2 satisfies ω(w, vf) — 1, then υ1 = v + rw, with r G IR. It is easy
to see that fυ>(y) = exp[(i/2h)ry2]fv(y). We will therefore omit the indication of
the dependence of / on v. We then have the following lemma.

Lemma 2.2. Let φ e Sf'iβ?) and w G IR2. Then the following are equivalent:

(2) hn

wφ = h\φ, for all « G N ;

(3) φes/w:={ηe ^ ( R 2 ) I (VXw)
2η = 0};

(4) Let υeIR2 such that ω(w,v) = 1. Then there exist φo,ψ\ eff"(JR) such that

φ(x) = (hv(x)φ0(hw(x)) + cpι(hw(x)) exp \-^τK(x)hυ(x)\ .

Moreover, if u G IR2, then hus/w C J/W

Proof. A direct calculation shows h\ — —ihnh^~~ιVw + h^- Using [Vw,Aw(x)] = 0

to compare h!^ to (hw)
n, and the previous lemma, the result follows easily. D

The lemma suggests to weaken (ii) by imposing, (hw)
n = AJJ,, for some choice

of w. This would imply D c sfw. Now it is not hard to see that the eigenvalues of
q and p on s$w are doubly degenerate. In order to satisfy (i) it would be natural
to pick D in a subspace of s/w on which this degeneracy is lifted. It is easy to
describe all subspaces of s/w that are, like srfw itself, invariant under all AM, and on
which the eigenvalues of all hu are non-degenerate. Although there seems to be no
physical criteria permitting to select one such subspace, 3)w (see (2.3)) satisfies the
above requirements and it is customary in geometric quantization to construct Jfw

as a subspace of <3)w because of its geometric appeal. The condition Vwφ — 0 is
called a polarization condition in this context. Note that we can identify Q)w with
^ ( I R ) and that hw then acts as a multiplication operator while hv as a derivative
operator. A calculation as in the proof of Proposition 2.1 shows that if u G IR2 is

not a multiple of w, then h2

uQ)w Π Q)w = {0}, thus excluding a priori the quantization
of quadratic Hamiltonians, as already pointed out.

Let us now briefly show how one can nevertheless correctly describe the
quantization of quadratic Hamiltonians within the framework of geometric quanti-
zation (see [GuSt,Wo] for details). Recall that for a quadratic polynomial
f(q9 p) = (λ/2)q2 + μqp + (v/2)p2 the flow of Xf is linear and can be written as
τ(q(t\p(t)) = A(t)τ(q,p\ with A(t) G SL(2,1R) (τ denotes the transpose). The
prequantized flow then reads

exp
l-ft\ φ\ (q,p) = φ U(t) (q

p))' = (U(A-\t))φ)(q,p)

and the map A h-> U(A) gives a unitary representation of SL(2, IR) on L2(1R2, ^
We now observe that U(A) satisfies U(A)Sfw — @τA-ιw. We will explain below
that it is possible to equip a suitable subspace Jfw of Q)w with a Hubert space
structure and then to identify the Hubert spaces for different values of w by means
of unitary maps P^ : 3tfw •—> fflz. This is a particular case of a general construction
which allows to compare Hubert spaces corresponding to different real or complex
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polarizations (BKS kernels [Wo,GuSt, Sn]). The quantized linear transformation
V{A) is then defined by V(A) = DhPwτA-ιw o U(A) : JίTw -> J^w (see (2.8)).

We start by showing how to equip suitable subspaces J^w of the @w with a
Hubert space structure. Note first that (2.4) implies that if φ\,φi 6 @W9 then φ\,φι
is a function of hw(x). Moreover

[U(a,b, φyψi U(a,b, φ)ψ2](q, p) = fχfi{hw{x) - awλ -bw2).

This suggests defining a Hilbert subspace 3^^ of ^ w by

Jί?w = {φe@w\j \φ\2(y)dy < oo} , (2.5)

equipped with the obvious scalar product (φ\,φi)w '= JΨiΨiWdy. The choice of
the Lebesgue measure in (2.5) is dictated by the requirement that U(a,b,φ) be
unitary on J^w.

Let w = (w\,W2) and z = (z\,z2) be linearly independent and consider the
two corresponding Hilbert spaces J^w and Jί?z. We denote by v = (v\,v2) and
u = (u\,uι) two fixed vectors such that ω(w,v) = ω(z,u) = 1. Consider ψ G Jί?w

and φ G J^z. It is then easy to see that φφ belongs to Lι(K2,dqdp). The following
proposition then follows from a straightforward calculation that we omit [GuSt].

Proposition 2.2. Let w9z G 1R2 be linearly independent. Let A — ω(w,z). Then
there exists a unique continuous linear map P^ : ffly, —>• J»fz such that, "iφ G 3tfw

and Vφ G

f ^ (2.6)

Moreover, if D% G C, wzϊ/z |Z)^| = ^2πft|zl|, then D^P^ is unitary.

The proof of the proposition provides an explicit expression for

= — - ^

where S^ is the quadratic form

Note that P ^ extends to ^ w (see [Fo]).
The previous result allows to associate to any linear map A G SL{2, R ) and

to any given z G IR2 a well defined unitary operator, unique up to a phase, in
the following manner. Given A G SL(2, R ) and z G R 2 , it follows immediately that
Vι/f G Jfz of the form (2.4), we have

(U(A)φ)(x) =

where U(A) is the previously defined prequantum action. Hence U(A)J^Z = ^τA-\z

and we can define V{A) : Jfz -> jfz by

= DnPzjA-izoU(A). (2.8)
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V(A) is an unitary integral operator representing the quantum propagator associ-
ated to the classical symplectic transformation A. Indeed, to see that it agrees with
Schrodinger quantum mechanics (up to the choice of a phase), note that in the case

where z = (1,0) and A—[a ) , with 6φO, we recover the well known formula
\c d)

(u = (0,1), w = (d, -b\ v = (-c,a\ A = b) for the integral kernel of V(A), i.e.

The correct phase for V(A) is not obtained by the very simple approach we have pre-
sented. This can be done with a considerable amount of additional work [Fo,GuSt]:
this problem is however of no concern in the present framework, since a global
phase does not change the quantum dynamics of a single transformation.

3. Quantization of Toral Automorphisms

We shall now apply our previous construction to quantization on the torus
T 2 = R 2 /Z 2 , with canonical symplectic structure ωT2, such that dπ* ωΈ2 = dq Λ
dp, where π : ΊR2 —» TΓ2 is the usual covering map. In the first place, we need to
identify the quantum Hubert space. The periodicity of the system in q and in p
will be taken into account along the same lines well known in solid state physics,
namely by considering distributions on IR2 with quasiperiodic boundary conditions
both in q and p. This approach is calculationally convenient and we shall show
its equivalence with the geometric quantization procedure. It has the advantage of
being readily extendable to the geometrically non-natural situations of Sect. 4.

Let us introduce u{ = £7(1,0,0) and u2 = U(0,1,0) as in (2.2). Given ft G R +

and θ G TΓ2, we denote by ^(θ) the space of all the tempered distributions φ on
the plane satisfying the following conditions:

uιψ(q, p) = Qxp[2πiθι]φ(q, p% u2ψ(q, p) = exp[2πiθ2]ψ(q, p) . (3.1)

Computing (u\U2 — U2U\)\j/ using (2.2) and (3.1) one can easily see that this space
is non-trivial if and only if 2πtiN = 1 for some i V e N . We shall refer to this as
the prequantum condition and, from now on, we shall assume it to be satisfied. In
this case, Vw = (nun2) € TL1 and ψ £ 5^(0),

φ(x + «) = exp[-2πi(0i/ii + θ2n2)]exp — (qn2 - pm)\ exp - r τ -

[2h J L 2% J
(3.2)

where, as in Sect. 2, x = (q,p). Given now ψ(q, p) € ^(0) and wGΊR2, one
checks readily that Vwφ e ^(θ). We then define, in analogy with (2.3), the corre-
sponding space of linearly polarized sections @W(Θ,N) = &^(θ)n@w = {ψ e .5^(0)1
Vwφ = 0}. We will only consider polarizations of the torus for which w2/w\ £ Q.
This is equivalent to requiring that the flow lines of Xw are circles. In this case,
up to rescaling w by a constant multiple, we can assume w — (wi,w2) G Έ? with

Theorem 3.1. Let w = (w\9w2)eΈ2 as above, where g.c.d.(wi,W2) — 1. Then
@W(Θ,N) is a complex vector space of dimension N. Choosing v G Z 2 with
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ω(w, v) — 1, any ψ G ΘW(Θ,N) can be written uniquely as

Φ(x) = Σ ckQχp[-iπN hw(x)hυ(x)]δ(hw(x) - qk(w,θ)), (3.3)
kez

where
qk(w,θ) = k/N - (l/2)w{w2 + (l/N)ω(w,θ) , (3.4)

and \/k G Z, the ck G C

c*+# = exp[2π/αθ(//,w)]Q , (3.5)

with

aθ(N,w) = {NI2)υxυ2 + ω(υ,0). (3.6)

Conversely, any ψ € ̂ '(IR2) o/ ίAe form (3.3) wzY/z ί/ze c^'^ satisfying (3.5-6)
belongs to @W(Θ9N).

Proof Let φ G @W(Θ,N), then Lemma 2.1. implies that it is of the form

ψ(x) = f(hw(x)) exp[-iπNhw(x)hv(x)], (3.7)

where v G 1R2 is chosen such that ω(w, v) = 1. It will be convenient to take v eZ2.
Note that, since g.c.d.(wi,W2) = 1, such v always exists. Using (3.2) and making
the simple observation that

hw(a)hv(b) - hv(a)hw(b) = ω(α, 6) Vα, beWL2 , (3.8)

one obtains, for any n G Z 2 and ί G IR, that / must satisfy

/ ( / + K(n)) = exp[iπN(2thv(n) + /*w («)/*,(«))]

x exp[-/7EΛ^ΛiΛ2] exp[-2π/AΠ(θ)]/(0 . (3.9)

Choosing n = m, where m = (— W2,w\)9 and noting that hw(m) = 0, hυ{m) —
ω(w,v) = 1, hm(θ) = ω(w9θ), one concludes that / is of the form (c# G C)

/(0= Σ^0-?it(w,θ)), (3.10)

where the qk(w9θ) are given in (3.4). Therefore (3.9) yields

Σc k δ(t -qk + Kin)) =Σckεxp[2πiβθ(kn,N)]δ(t - qk),
kez kez

where

βθ(k,n,N) = Nqkhv(n) + ^hw(n)hv(n) - ^nxn2 - hn(θ). (3.11)

Note that βe(k,n,N) depends on k only through a term khυ(n) = Omodl. Clearly
we can drop this term and replace βe(k,n,N) by βo(n,N) defined by

βθ(n,N) = --wxw2hv{n) + ω(w,θ)hυ(n) + -(hw(n)hυ(n) - nλn2) - hn(θ).

(3.12)
Observing that qk — hw(n) = qk-mw(n) (see (3.4)), we find the following condition
on the ck, Vrc G Z2 and VA: G TL\

n) = exp[2πiβθ(n9N)]ck . (3.13)

We will show that the solution space of (3.13) is exactly TV-dimensional.
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First note that, for (3.13) to have any non-trivial solution at all, it is necessary
that

βΘ(n,N) = βθ(n,N) mod U (3.14)

whenever hw{n) = hw(n), i.e. whenever Ξ3r G TL so that n = n + rm, (m — (—w2,w\)).
To prove (3.14), remark first that V/i,w' G Z 2 ,

J5β(/ι + n\N) = βθ(n9N) + j8e(n',J\O mod 1 . (3.15)

This follows immediately from (3.11) upon using (3.8). Moreover, one has

βe(m9N) = N \--w\w2 + —ω(w,θ)\ + — wxw2 - ω(w9θ) = 0 modi .
\_ 1 TV J 2

This, together with (3.15) implies (3.14). We can then choose CQ,C\,...,CM-\ freely
and define ck for all other k using (3.13). To assure that the resulting solutions
satisfy (3.13) VA: G Z, and not only for k = 0,1,... ,N - 1, condition (3.15) is nec-
essary and sufficient.

Finally, to compute αρ(iV), note that <xo(N) = βθ(n9N) for any n G 1? such that
hw(n) = 1. If we take n = (t;2, -v\\ then *„(«) = 0, and (3.12) yields (3.6). D

Remark. In particular, if w = (1,0), it is easy to see that the corresponding space of
polarized sections contains all distributions of the form f(q) = ^2kCkδ{q — k/N —
Θ2/N), where ck+N = exp[-2π/0i]Q.

Given now w9 v G Έ? and θ G ΊΓ2 as before, the previous proposition allows us
to identify the space of sections Q)W{Θ,N) with <EN

9 as follows:

(cθ9...9cN-l) e(CN ^ ψ(q9p) E @W(Θ,N) , (3.16a)

where

Ml, P)=Σdc exp[-iπNhw(x)hv(x)]δ(hw(x) - qk(w9 θ)) . (3.16b)

Here, for k φ{0,...,7V - 1}, the ck's are defined by (3.5).
In analogy with the results of Sect. 2, we give ΘW(Θ,N) a Hubert space structure.

Here also, the choice of the inner product will be dictated by the requirement that
the Heisenberg group acts unitarily. We shall denote by ^fw(θ,N) the quantum
Hubert space thus obtained.

Setting m = (—w2,w\) and in — (vi,—v\) it is easy to see that m and rh form
a basis of R 2 and, in addition, that Vn G Z 2 , there exist unique (x,β<εZ such that
n = αm + βΐh. Moreover, by using (2.2), one computes, for all ψ G @W(Θ,N) and
for any oc,β G R as in (3.5),

(U(ocm)ιl/)(x) = Σ [U((xm)c]k exp[-iπNhw(x)hv(x)]δ(hw(x) - qk) ,
kez

(U(βm)φχx) =Σck exp[-iπNhw(x)hv(x)]δ(hw(x) - (qk + β)) ,

where
(U(oιm)c)k = Qxp[2πiNqk(x]ck .

From these results and Theorem 3.1, we see that U(a,b)@w(θ,N) c @W(Θ,N) if
and only if N(a,b) G Z 2 and then

f Γ ^ J J = c j k _ / . (3.17)
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The natural Hubert structure making U(m) and U(fh) unitary is given by

(ΨMw =NΣ dkck , (3.18)

where ψλ ^ (c 0 , . . . ,c N - λ ) , ψ2 = (rfo, ,^ΛΓ-I).
As in Sect. 2, we can construct a natural identification (or pairing) between

3^W(Θ,N) and J^Z(Θ,N) when w and z are linearly independent. We first introduce
the equivalent of the right-hand side of (2.6). If ifa G Jfw(θ,N) and φ2 £ 3fz(θ,N),
then ^2Άi c a n ^ e interpreted as a distribution on the plane. Indeed, although the
product of distributions is not defined in general, it makes sense in this case because
of the particular form of ψ\ and ψ2 δ(hw(x) — #/(w> θ)) and δ(hz(x) — q^(z, θ)) are
supported on transversal lines, so that we have no trouble defining their product.
Clearly, ψ2\l/\ is Ί?-periodic and, as such, passes to a distribution on TΓ2. Hence
Jχ2 Φ2Ψι ~iΛh m a ^ e s sense as the value of the distribution φ2φ\ o n the function
(2πh)~ι on TΓ2. We then have, in analogy with Proposition 2.2:

Proposition 3.1. Given w,z eZ2 as above with A = ω(w,z) > 0 and θ G T 2 ,
there exist a unique vector space homomorphism P^Θ.N): J^W(Θ,N) —>
3VZ(Θ,N), such that Wψ e J!fw(θ,N), Vφ G Jfz(θ,N)9

ψ^ (3.19)

Moreover, using the identifications defined in (3.16), the matrix representation of
Pzw&N) is

N A~x

Pzw(θ,N)kr = - Σ exp[2πmθ(N,w)p]exp[-2πiNSzw(qr(w,θ) + p,qk(z,θ))] .
Δ p=0

(3.20)

Proof That P^ is defined as a vector space homomorphism by (3.19) is clear. To
prove the rest of the proposition, we compute the right-hand side of (3.19). Recall
that this can be done by "integrating" φψ over any fundamental domain of the

torus. We start by describing a suitable choice. Let J = I 1 and define g\ =

V"1 V
(\/A)Jz, #2 = —(l/A)Jw. Then gι,g2 is a basis of R 2 dual to w,z since hw(g\) =
hz(g2) — 1, hw(g2) = hz(g\) = 0. The unit cell of the dual lattice has volume A~ι.
Taking L = (LUL2) e R 2 , define

T(L) = {x e R 2 \x = ocgi + j % 2 , Li ^ α < I i + Δ, L2 ^ β <L2 + 1} , (3.21)

which is the union of A dual unit cells. It is easy to see that T(L) is a fundamental
domain for the torus. Indeed, suppose that x = ocg\ -f βg2 and x' = OLrg\ + βrg2

belong to T(L) and that 3n e Z2 so that x' = x + «. Then, (3.21) implies that Γ (α ' -
α, j87 - β)= A(t)τ(hw(n),hz(n)). But - 1 < β' - β < 1 and Az(/i) G Z, SO hz(n) = 0,
which implies that Ely G R so that n = y(z2,—z\). Since g.c.d.(zi,z2) = 1, it
follows that y G Έ. Finally, this implies that ocf — α = hw(n) = yzl and, since
—A <ct! — a < A, y = 0, so w = 0. We will use T{L) with a suitable choice of
L to compute JjiΦΦ^^'

For that purpose, recall that ψ G J^W(Θ,N) is supported on the lines /zw(x) =
qι(w,θ), leZ and φ e Jίfz(θ,N) on the lines hz(x) = qk(z,θ\ k G Z, which
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intersect in the points {xki\k,l£Έ} defined uniquely by hw(xki) = qι(w,Θ),
hz{xki) = qk(z,θ). It is then clear that Xki = qι(w,θ)g\ + qjc(ziθ)g2, so that, \/r,s G
Z, Xk+rN,ι = Xki + rQi and Xk,ι+SN = Xki + ^ i As a result, for a suitable choice of L
the points **/ belonging to T(L) are {xkl \Q<*k<N -\, 0^1 < AN -I}. Taking
^ ( c o C J V - O G C ^ **jrw(θ9N) and φ ^ (rf o , . . . ,rf^_i) G C ^ ^ MTZ(Θ9N)9

(see (3.16)) we then readily obtain that

T 2

N N-lΔN-l _

T Σ Σ ^
N-l _ N-l Δ-\

r=0 p=0

x
N-lN-l

: Σ
k=0 r=0

Σ

where we wrote / = pN + r and used
conclusion, the matrix representation of

, 0)

= cr Qxp[2inae(N,w)p], (see (3.5).). In
(θ) is given in (3.20). D

The above definition of the pairing P^Θ.N) is a special case of a very general
definition in the context of geometric quantization [Sn]. It should be remarked
however that the general theory does not guarantee that the pairing is unitary: this
has to be checked in each case separately. We now turn to this task. Note that
the explicit expression of the matrix of P^Θ.N) is sufficiently complicated to
make a direct computation of P^W(Θ,N)PZW(Θ,N) difficult (except in the case when
A — 1, in which case it is trivial). We therefore develop a different argument which
uses the universal cover IR2 of TΓ2 and the known unitarity of the pairing there
(Proposition 2.2). This yields a proof for all P^Θ.N) at once. It would be nice to
have a direct geometric proof for each fixed θ.

Proposition 3.2.

(1) For any w G Ί? with g.c.d.(w2,wi) = 1, jfw ^ N1 jd2θ^w{θ,N).

(2) UfafyPw = PzwU{a,b) for any w,z G R 2 and V(α,6) G R 2 .

(3) Pzw=Nfd2ΘPzw(θ,N). Given D% G <C, \Dn\ = (A/N3)V\ IhPzw(θ9N) is
unitary.

Remark. Note that if w = (1,0), z = (0,1) and 0 = (0,0), then N
#AΓ. Here # # denotes that usual finite Fourier transform namely,

ΪL, e X P ΛΓ

k=0 L N

Ck

A G SL(2,Z) is now constructed exactly as in Sect. 2. Let A = and take

Before proving this proposition, note that the quantum map associated to any

\ d

ψ G &"n(β). It is easy to see that U(A)ψ = ψoA~ι defines a map from ^ ( 0 )
to ^ ( 0 ' ) , where θf = β(θ) = TAΘ+ \Nτ(ac, db) mod 1. Moreover, for any zel?
we have a natural map U(A) : J^Z(Θ,N) —> J4?τA-ιz(θf,N), as we can check by an
easy calculation. Its unitarity can be checked either by a direct computation or by

— N2 /0 fQ d2θ34?z(θ,N), and hence is alsoremarking that U(A) is unitary on
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unitary on Jίfz(θ,N). If θ has the property that β(θ) = θ, we can again define the
quantum propagator (up to a normalization factor) V(A): J^Z(Θ,N) —> J^Z(Θ,N)
by the formula V{A,Θ,N) = DhPzjA-ιz(θ,N) o U(A\ which is the restriction of
V(A) in (2.8) to Jfz(θ,N). This yields exactly the same propagators as in [DE]. A
particularly simple expression for V(A,Θ,N) is obtained when A is of the special
form considered in the following corollary (see also [HB]).

Corollary 3.1. If z = (1,0), θ = (0,0) and A = ( ^ ι \ e SL(2,Z\ (g > 1,

g e Έ) them

V(A9θ9N)ltk = - ^ exp \ψ(gi2 - ik + gk2)} .

Proof of Proposition 3.2.

1) Let υ £ Έ? with ω(w, v) = 1 and set m = —Jw, in —Jυ. We define, for

S(θ)=

It is then easy to see that S(θ) is a continuous operator from 5^(IR2) to ^'(IR2)
which extends uniquely to a map from ^'(IR2) to ^'(IR2). Moreover, a calculation
shows

exρ[-2π/θiα]C/(αm)) ί Σ exp[-2πίθ2β]U(βm)
) \βez

Qxp[-2πiθ2β]U(βm)
βeπ

and
U(oί'm + βfm)S(θ) = (-\)N«'β' Qχ^[2πί{θλ(x! + θ2β')]S(θ).

Since

= (
β') \w\ w2j \n2

for afm + jS'w = «, we have

UιS(θ) = (

W25(θ) = (-1)^2W2 eχp[2πί(ι^θi + w2θ2)]S(θ). (3.22)

As a result S(θ)^f(R2) c ^ ( θ ) » w i t h

0! = (JV/2)ι?iWi + [ι?iθi 4- wxθ2], 2̂ = (N/lfowi + [U20I + w2θ2] (3.23)

For ψ e @w as in (2.4), a simple computation using the Poisson formula yields

[S(θ)φ](x) = exp[-iπNhw(x)hv(x)] Σ dk(θ)δ[hw(x) - (* + θi )/JV], (3.24)
kez

where
rf*(^) = 77 Σ exp[-2π/)S02]/(^ + 0, )/# - β). (3.25a)
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Note that

dk+N{θ) = exV[-2πiθ2]dk . (3.25b)

Using (3.23), one establishes

(* + ΘX)IN = qk(w9θ) - (l/2)wxw2[v2 - ΌX - 1] , (3.26)

with qk(w,θ) as in (3.4), and

θ2 = -OLΘ(N9W) - (NI2)υλυ2[wx - w2 - 1 ] , (3.27)

with OLQ(N,W) defined in (3.6). Note that the relation w\v2 — w2v\ — 1 implies that
the last term in (3.26) and in (3.27) is an integer. Hence (3.24) becomes

[S(θ)φ](x) = cxp[-iπNhw(x)hv(x)] Σ ck(θ)δ[hw(x) - qk(w, 0)] , (3.28)

with cJt(θ) = rfifc+ΪWiWafe_ι;i_1](θ) satisfying (3.5), thanks to (3.25) and (3.27).

Hence (3.28) is written in the form (3.3) which shows S(θ)φ G @W(Θ9N). Recall
now from (3.16) and (3.18) that jfw(θ9N) = <EN. As a result

N2J J d2θjew(θ,N) ^ N2J f <εNd2θ ^ L2([0, l[x[0,1[; <£N,N2d2θ).
0 0 0 0

On the other hand, if / <E ̂ (1R) C L 2(JR,φ), then, using (3.25), and performing
a change of variables in the integral, using (3.23), yields

N2Jdθifdθ2

Nγ:\cr(θ)\2 = N2fdθιfdθ2

1Σ\cr(θ)\2 = J \f(y)\2dy .
0 0 r=0 0 0 r=0 R

Hence the map

/ κ+ (c o(θ),... ,CJV_,(Θ)) G L2([0, l[x[0,1[; €N,N2d2θ)

extends to a natural isometry on all of Z2(IR,Jy). It is easily seen to be onto and
hence unitary. Since L2(IR, dy) = J^Wi this proves (1).

2) V î G JfW9 ψ2 e J^z, we have

,dqdp-

3) We know from the remark after Proposition 2.2 that P^ extends from 3tfw

to a map from ^ w to 3)z. Moreover, in view of (2), P^Si^θ.N) c 22(Θ9N).
Hence, defining P^Θ.N) to be the restriction of P^ to @}W(Θ,N\ it follows that
Pzwiθ.N) : 3VW(Θ9N) -* J^Z(Θ,N) and consequently that P^ = N2fd2ΘPzw(θ,N).
By computing the explicit formula for P^Θ^N), we will show NP^Θ^N) ~
Pzw(θ,N), establishing the proposition. Taking φ £ @W(Θ,N) in the form (3.3), and
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using the definition of P^ in Proposition 2.2, we have

P (\/2πhA)cxp[-iπNhz(x2)hu(x2)]

, θ), hz(x2))], (3.29)

where S^ is given in (2.7). Letting k = /JΛT + r, / G Z and r e {0,..., AN - 1},
the r.h.s. of (3.29) reads

exp[-iπNhz(x2)hu(x2)]—
NΔ-\

Σ Σ

x expf-ΣπiΛΓS^^ + lA,hz(x2))] .

Since (l/2)ω(υ,z)l2A = (l/2)ω(v,z)IA modi, we have

^ ( i r + lA,hz(x2)) - S^ίίr,A2fe)) + l[qMυ,z) + hz(x2)]

so that

^ + lA,hz(x2))]

(^,A2(x2))] exp[-2π/JV(^rω(i;,z) + hz(x2)

This yields:

r=0

( exp[-2πiN(hz(x2)-A)l]

where
^ = -qr(w,θ)ω(v,z) - (l/2)ω(v,z)A + (Δ/N)<*Θ(N9W) ,

and where # r(w,θ) and oce(N,w) are given by (3.4) and (3.6) respectively. Note
that we can replace A by anything else modi, a freedom we will use in order to
get a convenient form for P^Θ^N). In particular one has

A = -(r/N)ω(v,z) + (M2)zxz2 - (l/N)ω(θ,z) mod 1

= q[-rω(Ό,z)](z9θ) modi ,

so that

keπ

= Qxp[-iπNhz(x2)hu(x2)]

NA-\

Σx 7 Σ crΣ

= Qxp[-iπNhz(x2)hu(x2)]

1 NΔ-\

^ r=0 /€Z
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Using (3.5) and comparing to (3.20), one sees that PZW(Θ9N) = (\/N)PZW(Θ,N).
Hence Pzw = N Jd2ΘPzw{θ,N\ D

To summarize, by applying the ideas of geometric quantization in their simplest
form, one can easily quantize linear transformations on IR2 as well as on T 2 . We
stress again that the construction is simple and calculationally very convenient.
Indeed, although the proofs of Propositions 3.1 and 3.2 are somewhat involved in
the general case, they reduce to trivialities when Δ = 1, as in Corollary 3.1 and in
the following sections. In that case (3.20) does not involve a sum and the unitarity
of Pzw is then immediate. We shall now show that the reformulation of geometric
quantization we have just presented allows for an immediate generalization to a
class of piecewise linear or affine linear transformations of the torus.

4. Quantization of Piecewise Linear and Affine Transformations

(A). Translations and Skew Translations. The simplest transformations on the torus
are undoubtedly the translations x — (q, p) ι-> (q -f α, p + b)moά 1. If a — r\js\ and
b — V2JS2 (with g.c.d^r/,^/) = 1, / = 1,2), then we can write (#,&) = (r/s)(— W2,w\)
for integer r,s with g.c.d.(r,s) = 1 , w e 2£2, and g.c.d.(wi,W2) = l Here s is the
least common multiple of s\ and S2, which is also the common period of all orbits
under this translation.

Taking k e N*, N = sk, we saw in Sect. 3 (see (3.17)) how to quantize this
translation. The expression of the quantum translation U(a,b) (i.e. (3.17) with
/ — rk) shows that its eigenfunctions are concentrated on the circles

ω(x, (a, b)) = (r/s)qi i — 0,..., ks - 1

and that they are k-ίo\ά degenerate. The quantum propagator is easily seen to have
the same period as the classical translation since

[ / W\ W2 \ Ί

2πi ί —Is + rω(w90)1 id jew(o,N)
It follows that, as in the multidimensional harmonic oscillator with commensurate
frequencies [DBIH], these degeneracies can be used to construct eigenfunctions of
U(a,b) that, in the classical limit (k —» oo), concentrate on any given classical orbit.

The approach of Sect. 3 does not a priori permit the quantization of translations
of the form (a,b) = α(r1/^1,r2/IS2)? α φQ, much less of ergodic translations, for
which a/b φQ. The reason is that the corresponding prequantized translations do
not preserve the spaces J4fw(θ,N).

Since the ergodic translations are undoubtedly the simplest ergodic dynamical
systems, it would be interesting to circumvent this difficulty and to nevertheless
construct a quantum analog for them. We will see that this can be done very
naturally within the framework of Sect. 3. The situation is actually very similar
to the one encountered when quantizing linear flows. Indeed, there we saw that
U(A)J^W(Θ,N) = Jί?τA-\w(θ,N) for a suitable choice of θ and then we used the
natural pairing between Jή?τA-\w(θ,N) and <#fw(θ9N) to construct V(A). Here we
will see that U(a9b)3Ί?w(θ9N) = 2tfJβ'9N) with & given in Lemma 4.1 below.
Although in this case we can never choose θ so that 0f = θ, we will construct an
identification DhPvw(θ,θ') between jfw(θ'9N) and Jfv(θ,N) in analogy with (3.19).
Since there is also a natural identification D%PWV(Θ) between J^V(Θ,N) and J^W(Θ,N)
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(Proposition 3.1), we define the unitary quantum translation Qw(a,b) by

Qw(a,b) = D2

nPwv(θ,θ)oPvw(θ,θ')o U(a,b): Jfw(θ,N) -> Jtw(θ,N). (4.1)

Note that this reduces to (3.17) when the translation has the required form, and that
the Qw(a,b) depend continuously on (a,b). On the other hand, the construction is
w-dependent and it is clear that the Qw(a,b) cannot generate a unitary representation
of the full Weyl-Heisenberg group.

Lemma 4.1.

(1) £/(α, 6)5^(0) = ^(θf), with (θ[,θf

2) = (θx -Nb,θ2+Na) mod 1.

(2) U(a,b)Vwφ = VwU(a,b)φ for any w G R2, (a9b) G R2, φe ^ ( R 2 ) .

(3) U(a9b) : 3tfw(β9N) -> J^w(θf,N) is unitary.

Proof Both (1) and (2) follow from a simple computation. That U(a9b) maps
J^W(Θ9N) isomorphically onto J^W(Θ\N) is an immediate consequence of (1)
and (2). To check the unitarity, let φ G Jt?w(θ,N) with

Ψte> P) = Σ ck exp[-iπNhw(x)hv(x)] δ(hw(x) - qk(θ,w)). (4.2)
keπ

For convenience, we write τ = (τ i ,τ2) = (a,b). N o w we introduce / = (l\9 h) G Z 2 ,
/1/ΛΓ —] _ 1 ? 1 [ a n ( i jg — (βλ,β2) G 7 ^ , uniquely determined by

τ, = /, /iV + ft Θ; = ft + (-ΪNβ^i e [0, l [,

with / = 1,2. A direct calculation shows that

[U(a9b)ψ](q,p) = Σ dkexp[-iπNhw(x)hv(x)]δ(hw(x) - qk(θ\w)) ,
keπ

where
θ » ^ ( τ ) - ^w(τ)^(τ))] . (4.3)

Recalling the identification ψ = (c 0,...,c^-i) and [U(a,b)ψ] = (d0, ? ^ - i ) , the
unitarity of U(a,b) is now immediate from (4.2). D

Given now U(a,b)φ = (do,...,d^-x) G J^w(θf,N)9 we can proceed in the spirit
of Proposition 3.1 to define Pυw(θ,θf): J^W(Θ\N) -» Jfυ(θ9N) as follows:

( W / ^Ύ (4.4)
[0,1 )x [0,1) Z π 7 1

A simple calculation then yields

[Pvw(θ,θ')φ]{q9p) = NΣ [Pvw(θ,θ7)^]/expPπίVM^)*,^)] KK(x) ~ qι(v,θ)),
/

where

[Pυw(θ,θ')ψ], = NNΣ dkcxp[-2iπNSvw(qk(w,#),q,{υ,θ))]

= N NΣ dk exp[-2iπNqk(w, &)q,{υ, θ)].
k=0
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N) = |Ml5rw ( β, NyIt is easy to see that \\DhPvw(θ, θ')U(a, b)^^N) = |Ml5rw(β, Ny w h e r e

\Dh\ =N-V\
When (a,b) is ergodic, the eigenfunctions of the Qw(a,b) can on general grounds

be expected to be equidistributed on the torus in the classical limit, in sharp contrast
to what happens in the periodic case.

Note that it is now easy to quantize skew translations of the form (q,p)^
(q + a, p + kq) which are ergodic if a is irrational and k a non-zero integer [CFS].
They are just the composition of a linear transformation and a translation.

(B). Piecewise affine transformations. A first class of piecewise affine maps studied

in [Ch] is the following. Take A = f * M e SL(2,Z), apply it to [0,1) x [0,1),

then cut the resulting parallelogram into strips along the direction (a,c) and shift
the strips around with translations parallel to (a,c). Combining Sect. 3 and Sect. 4A,
one can easily obtain a quantization for this class of transformations.

Let us now turn to another class of discontinuous maps described in [Ch, LW, V].

Consider the map A\ = I 1 , b G JR restricted to the strip 0 ^ p ^ 1 and

taken modulo 1 in q. This defines a map A\ on the torus, discontinuous on the
circle {/? G Z} if b φZ. Similarly, construct a map A2 on the torus by restricting

) , b G 1R to the strip 0 ^ q ^ 1 and taking p modulo 1. This map will
\b } J

be discontinuous on the circle {q G %} if b φZ. The map A =A2A\9 which is a
discontinuous hyperbolic area preserving map on the torus, is ergodic and exponen-
tially mixing, [Ch,Li,LW,V].

We now propose a quantization of Ai9 / = 1,2 in the spirit of Sect. 3. Call-
ing Vi the quantization of Ai9 we will define the quantum propagator V of A
by V= V2V\. We saw in Sect. 2 that U(A{)% = &.-uτ . If, however, a φZ,

then U(Aι)^(θ) φ5^(00 for any choice of θ and 0'. This situation is similar
to, but slightly more complicated than, the one of the previous paragraph, where
U(a9b)% = %9 but U(a,b)^(θ) = ^l(θf). So there is again no geometrically
natural definition of the quantum propagator associated to A\. This reflects the fact
that A\ is not a continuous automorphism of the torus. The approach of Sect. 3
nevertheless suggests an obvious way to quantize A\. For that purpose, note that
the image of [0,1) x [0,1) under A\ is

F\ = {(q,P) € 1R2 I O ^ p < I, bp^q<bp+l}9

which is again a fundamental domain of the torus. Let w = (1,0), v = (0,1). Then,
if ψ G J4?W(Θ,N) and φ G J4?V(Θ,N), it is immediately clear, because of the transver-
sality of the lines p = pk, q + bp = qu that φU(A\)φ still defines a distribution
on the plane.

As a result, there exists a unique map PU(A\) : 3^W(Θ,N) —> J^V(Θ,N) defined
by

% (4-5)

Here the right-hand side of (4.5) is to be understood as the value of the distribution
φU(Aι)ψ on a smooth characteristic function of F\. Explicitly, a simple calculation
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shows that, for any &, / = 0,.. . ,iV — 1,

[PU(Ax)]kl = NQxp[-iπNbp2

k]Qxp[-2iπNqιPk] ,

where qι = l/N + Θ2/N, pk = k/N - Θλ/N.
The resulting quantum propagator on J^W(Θ,N) is then, using the natural iden-

tification between jev(θ,N) and jew(θ,N):

Note that N~3/2PU(A\) itself is the product of the finite Fourier transform with the

diagonal matrix D\ with entries exp[—iπNbpk]. So

Vι=&ΰιoDιo&N. (4.6)

Remark that for b € Έ and for the appropriate θ this reduces to the result obtained
in Sect. 3, as is easily checked. Note furthermore that the map A\ behaves as a
completely integrable transformation with invariant circles p — const. This is per-
fectly reflected in the structure of V\. From Eq. (4.6) on sees that its eigenfunctions
are indeed concentrated on the invariant circles.

Finally, the construction of Vi is completely analogous, with the roles of w and v
interchanged. The resulting quantum propagator V — V2V\ on J^W(Θ,N) is readily
seen to be

V = D2 o &~x o D j o i v . (4.7)

Here D2 is the diagonal matrix with entries expliπNbq2]. The non-trivial structure
of V comes from the fact that it is the product of two non-commuting matri-
ces VUV2.

(C). The Baker Transformation. Given the matrix A—\ 1, we consider the
v ' J yo 1/2 y
piecewise affine map B defined on the unit square ( 0 ^ # <

fΛ*, 0^?<l/

where T(a, b)x = (q -f a, p -j- b). This map is called the Baker transformation, and
its dynamical properties have been studied in detail (see [AA,LW]). Note that it has
the same structure as the piecewise affine maps described above. First one applies
a linear map, then one slices the resulting rectangle and shifts the parts around.
There is one major difference, however, leading to some additional complications
for the quantization. The linear part of the Baker transformation does not send
[0,1) x [0,1) into another fundamental domain of T 2 .

Even though the Baker transformation is not continuous on the torus, the tools
we developed in the previous section can again be used to associate a corresponding
quantum operator to this map, as we now show. In particular, as in [BV, Sa], we
take the point of view that the correct quantum Hilbert spaces for this problem
are still the ones constructed in Sect. 3 (see below). It then suffices to mimic the
approach of the previous section, with some minor changes to account for the
discontinuities of the map. The resulting quantum operator is identical to the one
obtained in [BV, Sa] by completely different arguments.
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We shall first define a prequantized version B of B on distributions on Έ? with
support in the left or right half of the unit square. Suppose φ is a distribution
supported on 0 ̂ q < \, 0 ̂  p ^l. Then we define

) = U(A)φ(q,p).

Note that the support of Bφ is contained in 0 ^ q < 1, 0 ^ p ^ \. If, on the other

hand, φ is supported in \ ^ g < 1, 0 ^ /> ̂  1, then

(Bφ)(q,p) = [£/(-l, 1/2) o

and its support is now contained i n θ ^ # < l , \^ p^\.
Given AίGN, and w = (1,0), recall that ΘW{Θ,N) is the space of distributions φ

of the form:

Ψ(<1, P)= Σck Qxp[-iπNpq] δ(q - qk) ,
kez

where qk = k/N + Θ2/N and, in addition, ck+N = e~27li^ck for any k £ Z. Therefore,
because of the latter relations, no information is lost if we restrict φ to the unit
square, namely

Πq, P) = Σ ck exV[-iπNpq] δ(q - k/N - Θ2/N) χm](p) , (4.8)
k=0

where χ[o,i] is the characteristic function of the unit interval. We shall write H\(θ)
for the space of distributions of the form (4.8), equipped with the inner prod-
uct (3.18). This is the quantum Hubert space for the Baker map in the position
representation, which is realized as a space of distributions on the phase space
of the problem. Similarly, we introduce H2(θ), which is the space of distributions
%{β,N) with v = (0,1), restricted to the unit square, i.e., φ G H2(θ) iff

N-\
φ= Σ ψ Qxp[iπNpq] δ(p - pι)X[o,\](q) ,

ι=o

where pi = l/N + Θ\/N. H2(θ) is the quantum Hubert space of the Baker transfor-
mation in the momentum representation. We have a natural identification between
H\(θ) and H2(θ), given by the pairing of Sect. 3, which in this case is just the
finite Fourier transform (see the remark after Proposition 3.1).

We now observe that we have a natural decomposition H\(θ) = HL(Θ) 0 HR(Θ).
Indeed, each φ G H\(β) can be uniquely written as φ — φι -f ΦR, where

ΦL = Σ ck &φ[-iπNpq] δ(q - qk)X[θ,\](p) ,

ΦR = Σ °k Qxp[-inNpq] δ{q - qk)X[o,\](p) ,

have their respective supports in 0 ^ q < \, and \ ^ q < 1. We can now compute
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This gives

(BφL)(q, p) = 2 Σ ck Qxp[-2πiNqkp] δ(q - 2qk)χm](2p),

(BφR)(q, p) = 2exp[2π/(θ2 - N/Λ)] Σ ck exp[-2πiN(qk -

xδ(q+l-2qk)χ[0tl](2p-l).

Note that the support of Bφi is contained in 0 ^q < 1, 0 ^ /? ^ | , whereas the

support of B ΨR is contained in 0 ^ g < 1, \^ p ^\. It is clear that 2? ι/r obtained
in this way is not an element of H\(θ) (for any θ), not of any %{Θ,N). Hence,
we have no hope of applying the general results on pairing of the previous section
directly to define the quantum propagator. It will nevertheless turn out that we can
again define, in the spirit of (3.19), a natural projection PBφ of the distribution
Bφ onto H2(θ).

Proposition 4.1. If N is even and 0 < θ\9 Θ2 < 1, then there exists a unitary map

2-ι/2N~3/2PB : Hχ(θ) -> H2(θ), uniquely defined by:

(φ2,PBφι)H2{o)= I Φ2Bφι^~ (4.9)
[0,1 )x [0,1) z π / l

Specifically,

P(Bψ)(q, p) = NΣ (P(βψ)), exp[iπNqp] δ(p - pι)χm(q),
1=0

with, for I < N/2,
N/2-1

(P(Bφ))ι = 2N Σ ckexp[-4πiNqkpι],
k=Q

and for l^N/2,

{P{Bφ))ι = 2Nεxp[2πi(θ2 - N/4)] *Σ ckexp[-4πiN((qk - \/2)Pl)] .
k=N/2

Remark. We omit the proof, obtained by a simple computation. Let us point out
that the conditions on θ assure that φ2Bφ\ is a distribution on the plane, with
support in the unit square. They guarantee in particular that φ2 does not have
support on the line p = 1/2, which would lead to technical problems involving the
multiplication with PBφ\. The right-hand side of (4.9) is to be understood as the
value of this distribution on a smooth characteristic function of the unit square,
and is independent of its choice. The unitarity statement does not follow from the
results of Sect. 3, since PBφ\ is not a polarized section, as pointed out above. In
this sense, the unitarity of the construction is somewhat surprising. It breaks down
when N is odd, although the block diagonal structure of PB would permit us to
restore it by hand.

We now define the quantum Baker transformation Vβ in the spirit of Sect. 3 as
follows:

VB = 2~ι/2N-3/2^-λ oPB\Hx(θ) -+ Hι(θ),
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where we used the natural pairing between H2(θ) and H\(θ) described above. A

simple calculation now shows that if θ — (0,0), VB is exactly the operator obtained

in [BV]. If # = (1/2,1/2), VB coincides with the quantum Baker map of [Sa].

Although the value θ = 0 is strictly speaking excluded by the proposition, it can

be obtained in the limit. We mention that this construction can be immediately

extended to a more general class of Baker-like transformations [BV].

In conclusion, these examples show that the framework of Sect. 3 permits the

treatment of situations that are not geometrically natural and would therefore not be

tractable within the framework of geometric quantization as such. We remark for

example that, although the right-hand side of Eq. (4.9) makes sense, it is not geo-

metrically intrinsic, unlike the right-hand side of (3.19). Similarly, the identification

of the quantum Hubert spaces with <CN in Sect. 3 was merely a calculational device,

which is again no longer the case here. Nevertheless, it is clear that the phase space

formulation of quantum mechanics given by geometric quantization automatically

reproduces the clever intuitive arguments used to construct the quantized Baker

transformation in [BV]. In particular,,the prequantized map is very close to the

classical map: this is clear from the general expression for exp[— %]ft in Sect. 2.

As a result, it still has the "left to bottom," "right to top" structure of the classical

map. In [BV] this feature was built into the construction of the quantized Baker

transformation by assumption.
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