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Abstract: The quantum discrete sine-Gordon model at roots of 1 is studied. It is
shown that this model provides an example of an integrable quantum system in
an integrable classical background. In particular, the spectrum of quantum integrals
of motions in this model depends only on the values of integrals of motion of a
background classical system.

1. Introduction

The sine-Gordon equation is a nonlinear differential equation for a scalar function
¢ of two variables:

~p+ 2P =4sing. (1.1)

The Cauchy problem for this equation with initial data ¢(x, t)|,=0 = ¢(x), 0, P(x, t)],=0
= 7(x) can be regarded as an infinite-dimensional Hamiltonian mechanical system.
The functions (7(x), ¢(x)) are “natural canonical coordinate functions” on the phase
space of this system with Poisson brackets:

{n(x), ¢(»)} = 0(x — y). (1.2)

The Hamiltonian which generates evolution (1.1) on the phase space with the
Poisson structure (1.2) is

H = +foo (%n(x)2 + %(&cq&(x))2 +4(1 — cos d)(x))) dx, (1.3)

where we assume the convergence of the integral.

The Hamiltonian system (1.2),(1.3) is integrable. See [FT] for more complete
description of the sine-Gordon system.

The quantization of this model has been done in several steps. For a quasiclas-
sical analysis, which includes the quantization of solitons in Eq.(1.1), see [FK].
A phenomenological scattering theory with a factorized S-matrix has been con-
structed in [ZZ]. The Bethe-ansatz solution has been found in [FST].
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Since the sine-Gordon model has ultraviolet divergences, which are characteristic
of quantum field-theoretical models, it is important to have a regularized counterpart
of it. Ideally this should be a quantum field-theoretical model in discrete space-time.

The first integrable version of the sine-Gordon model with a discrete space vari-
able was found in [IK]. In recent works [FV,BKP,FV1], the results of [IK] have
been extended further and a local equation in discrete space-time, which approx-
imates (1.1) together with its quantum discrete counterpart, has been found. The
quantum sine-Gordon model depends on two parameters, K € R and ¢, |g]| = 1.

Here is a brief description of the quantum sine-Gordon model:

(i) The algebra of observables is a certain completion o/y(q) of the algebra
A n(q),q € C*, generated by invertible elements Q,,n =0,...,2N — 1, with the
determining relations

Q2n Q2n—l = qu2n—l Q2n )
020 Qi1 = ¢* Ot Oon - (1.4)

Here we assume that subindices are taken modulo 2N.
(ii) Let #(K?;U), be a solution of the difference equation

r(K* Ug*) = F(Ug*) ™ 'r(K% U), (1.5)
where , 1
K°+q7'0
= 1.6
FO) = {0 (16)
Assume that the following products are defined in the completion of .7y (g)':
N 5 B N—-1 2 .
(U) = [Ir(K50,"), U= HOF(K 5 Oonit) - (1.7)
n=1 n=
Here ¢, = 1 if n = 0(mod 2), ¢, = —1, if n = 1(mod 2). Some examples of solutions

r(K?,x) will be described in Sect. 4.
The evolution automorphism t: /y(q) — Zn(q) is defined as

w(a) = (((U)U)™'al(U)U . (1.8)

For the details see Sect. 4.

(iii) It is easy to deduce from the definition of t and r,(K?; U) that elements
O, 2t = T (Q2n), Oonat, 2001 = T (Qany1) satisfy the following nonlinear discrete-time
evolution equations:

On, 0420n,1 = F(Qni1.041)F (Qn1,141) - (1.9)

Notice again that here, the elements Q, , are defined only for n+ ¢ = 0(mod 2).
(iv) The algebra (1.4) has two Casimir operators

N—1 N
G=1105. G=1103, (1.10)
n=0 n=1

where ¢, are the same as in (1.7). The evolution automorphism t has N — 1 inde-
pendent nontrivial integrals Pj,...,Py_; with the generating function (5.19).
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In this work we will investigate the structure of the quantum discrete model
when ¢ is a roof of 1. We will show that the model in this case combines both
classical and quantum properties. The structure of the model in this case is sim-
ilar to the structure of quantum groups at roots of 1 [DCK,DCP,R]. This last
fact is not surprising since it is known that the sine-Gordon model is related to

quantum s/;.

This paper will follow a “quantum methodology.” First we will describe a quan-
tum model for generic g. Then a classical model and the models at ¢" =1 will
appear as special limits of the quantum models for generic g.

In the second section we will clarify what we mean by quantum systems with
discrete time, and the corresponding notion of integrability. The third section con-
tains an exposition of the construction of discrete time Lax-integrable systems based
upon inhomogeneous spin chains, a method dating back to the works [FR,FV-
FV2]. In Sects. 4 and 5, we describe the quantum discrete sine-Gordon model. The
main ideas and constructions of this section have their origin in [FV-FV2]. We
found it necessary to include this exposition since in the work [FV], the equations
of motion are given only in the light-cone form, not in terms of the algebra of
observables ./y(g), but in terms of the bigger algebra A?V. Also, because the
derivation of the discrete quantum sine-Gordon equation (1.9) given in [BKP] is
rather brief. Section 6 contains an analysis of the classical limit. The behavior of
the discrete sine-Gordon model at roots of 1 is studied in Sect. 7. In the conclusion
we discuss possible applications of the model at roots of 1.

We would like to thank R.J. Baxter, A. Connes, L.D. Faddeev, U. Pinkall, T.
Miwa, R. Seiler, V.O. Tarasov, and A. Volkov for stimulating discussions and re-
marks. One of us (N.R.) would like to thank the Department of Theoretical Physics
at the Australian National University in Canberra and the Technische Universitét
Berlin for their hospitality. The work of N.R. was partially supported by NSF grant
DMS-9296120 and by grant from the A. Sloan Foundation. The work of A.B. was
partially supported by the SFB 288.

2. Quantum Systems with Discrete Time

First let us make it clear what we mean by quantum discrete-time evolution equa-
tions. Let 4 be a complex algebra and / be a set. Consider an element

ar = {aj}e; € 4! 2.1

d
e P4 — g (2.2)

Consider an automorphism ¢ : 4 — A. We say that the element a; satisfies the
(nonlinear) discrete-time evolution equation P with respect to the evolution ¢ if

$(a,) = Pi(ar). (2.3)

The sequence
(a;) = P (a;), t=0,1,2,... 24)
is called a trajectory of ¢ with the initial condition at r = 0.
Equation (2.3) implies that

(@i )i+1 = Pi((ar);) - (2.5)
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We will say that the evolution ¢ is Hamiltonian if there exists an invertible
element U € A such that
$(a) =U"'alU . (2.6)

The element U is called the evolution operator. In many examples, U belongs to
certain completions of 4. In realistic physical models, the algebra 4 is given together
with a C-antilinear anti-involution *:

(Ja)* = la*, (ab)* = b*a* . 2.7)

In this case it is usually assumed that U* = U~!, that there exists an involution
o :1 — I with a = a,(,) and that this condition is compatible with (2.3).
By the analogy with the classical case, we will say that the element F' € 4 is
an integral of the map ¢ if
P(F)=F. (2.8)

Intuitively we can say that the quantum evolution is integrable if it has enough
integrals. We will not attempt to give a precise notion of quantum integrability
here.

3. Quantum Integrable Systems and the Yang—Baxter Equation

In this section we will describe a method for generating integrable discrete-time
models from solutions of the Yang—Baxter equations. This construction goes back
to works [FR,FV]. It is part of a more general scheme [R1], which provides a
quantization of the approach to integrable classical systems based on Lie—Poisson
groups. First let us specify the following data:

i) A vector space V and the function R(z) on C with values in V@ V.
i) We assume that R(z) is a solution to the Yang—Baxter equation

Ri(p)R13(y +2)Rp(z) = Raz(z)Ri3(y +2)R12(y) (3.1

which is invertible for all z € C, except for a finite number of points.
ii1) An algebra 4 and the element L(z) € End(V) ® 4, z € €, such that

Ria(WLi(y +2)La(2) = La(2)Li(y + 2)R12(y) - (3.2)

iv) An element R(z) € A ® 4, z € € (or of an appropriate completion of 4 ® 4)
such that

R(V)L(y +2) ®L(2)) = (L(z) ®L(y +2))R(») . (3.3)
Here & denotes the multiplication (End(V) ® 4)®? — End(V)® 4 ® A which is
the identity operation on 4 ® 4 and the usual multiplication in End(V) (see
[FRT, TTF)). _
Note that we do not require the Yang—Baxter equation for R(x).

Consider the algebra Ay = A®?Y for some integer N > 0 and the following
elements of End(V) ® Ay:

L5 [(2) = (id @ bon_1 ) L(z + 1)), (3.4)

LS(2) = (id ® o )(L(z — k). 35)
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Here x € € and

¢,,(a)=l®---®c’;®--~®l. (3.6)
Consider also an element
U= ]:I__Iolﬁznﬂ,zn(zh‘)a (3.7)
where B 3
Ront1,20(26) = (P2n41 ® P20 )(R(2)) (3.8)

and assume that R(2k) is invertible.
Define the automorphism of the cyclic shift {: Ay — Ay:

C(an) = dp41 5 (39)

where n is taken modulo 2N and q, is given by (3.6).
Define the following automorphisms:

14(a) = U™ (N a)U . (3.10)
Proposition 3.1. The following relations hold:

T4T = T_Ty, 3.11)

sl =0 (3.12)

These relations follow immediately from the definition of t4.

Proposition 3.2. The elements Lﬁf,)(z) € Ay, t = 0, are determined, using the fol-
lowing recursive procedure:

LS () = (L @), (3.13)

L) () = (L)) (3.14)
with the initial condition L\)(z) = Li"(z).

Important Remark 1. We will regard the variable ¢ as discrete time. At the point

t =0 the elements L\ are defined only for even n and the elements LY are
defined only for odd n. Therefore:

LE{,) is defined when n + ¢t = 0mod (2),

L") is defined when 1+ = 1mod (2). (3.15)
Important Remark 2. For the action of 7y, t € Z,., we have:
(a) = U (@)U (3.16)

where
(:‘:) C:I:tZFl(U) gﬂ:l(U)U (317)
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This gives the following explicit expressions for L,j,f (z) in terms of

La(z) = (id ® ¢, )(L(2)). (3.18)

For even ¢ we have:

_ —1 _

L) = US Loz =07 U, (3.19)
L5 ()= U Ly (2 + 19U (3.20)

For odd ¢ we have:

_ ~1 B
L) @) =U" Ly —)7'U, (321)
—1

LS2) = U Loz + 00U (322)

Theorem 3.2. The elements Li,f) satisfy the following quadratic equations:

L @LH @ =L @LD), (@). (3.23)

n—1,t+1 n—1,1¢

Proof. We must to prove the relation

T (L5 ENISL (2) = (L5, (LS, () (324)

From the definition of Lfﬁ,), it is enough to check it at r = 0. In this case, the
identity (3.24) is equivalent to

U Loni(z = 1) 'ULypii(z + 1) = U Lon(z + 1)U - Lyy(z — )", (3.25)
or to the identity:
Los1(z = 1)~ Rant1, 20(26)Lons1 (z + 1) = Lon(z + K)Rony1, 20(2K)Lon(z — 1),
(3.26)
which is the same as
Roni1, 20(26)Lani1(z + 1)Lon(z — €) = Lani1(z — K)Lon(z + K)Rons1,20(2) . (327)

This identity is part of our data. [J

The automorphisms 74 and relations (3.23) determine the evolution
T=1T,T_ (3.28)

of the algebra 4y and the nonlinear evolution equations for matrix elements of
L*(z). Notice that this evolution is Hamiltonian with the evolution operator {(U)U:

wa) = (U) - U)" - a- U) - V). (3:29)

This evolution is integrable in the sense of the definition in Sect. 2. The quantum
Lax operator can be easily constructed from Lf,?c,)(z).
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The system (3.23) can be regarded as the compatibility condition for the fol-
lowing recursive system in Ay:

@) = Ly @) (3.30)

@) = L) @) (331)
If we iterate this system twice in the n-direction we obtain a difference equation:
Uraa(2) = (L3 )7 LI EWE)
=L @@ @) (332)

Iterating the system (3.30), (3.31) twice in the z-direction we get

+2 _ () (=) gt
l//n —Ln~l,t+l Ln—l,rwn

=1 Ly (3.33)

n, t+1

For even ¢ and n, introduce the matrices

Ly =L )T L =00 @

n+1, ¢ n+1,t—1 n, t—1
—_ 7= g () (=)
%:1 - Ln, t+1 Ln,t - Ln——l,t+l Ln—l,! . (334)

Proposition 3.3. The matrices (3.34) satisfy the following relation:

L= M LMY (3.35)

The proof is an elementary consequence of relations (3.23). The relation (3.35)
is called quantum Lax equation for the evolution (3.29).
Consider the monodromy matrix of (3.32) at = 0 on the interval 1 < n < 2N:

T(z) = Lon(z — K)oy —1(z + K)Lon—2(z — k) -+ - Li(z + K) . (3:39)
The trace of this matrix over the space V is called the transfer matrix:
ty(z) = (try ®1d)(T(z)) . (3.40)

It is an element of Ay. We will keep the subindex V' and use it in case we have
transfer matrices corresponding to different auxiliary vector spaces V.
The relations (3.2) generates the commutativity of the family (3.34)

[ty(z), tr(z')] =0 (3.41)
for any z, z’ € C. The relations (3.3) imply
Wty(z)) = ty(2) . (3.42)

Therefore, #y(z) is a generating function for commuting quantum integrals of mo-
tions for the evolution (3.29).
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4. Quantum Complex Sine-Gordon Equation

Now consider an example of the procedure described in the previous section which
provides a quantum version of the discrete complex sine-Gordon model.
Let 4, be an algebra generated by invertible elements u and v:

uv = quu, (4.1

where g € C*.
Define the elements R(z) € End(C?®?), L(z) € End(C?)® 4 as

R(z) = (xg —x"'q " Yen ®@exn +en®en)

+x—x"")e ®epn+en®er)

+(g—q " Nen®ey + e Vern), (4.2)
u —x"ly7!
Lz ={ -1, ! . (4.3)

Here x = ¢°. From this point, until the end of this section, we will assume that
lql < 1.
These elements satisfy the relations (3.1),(3.2) [IK]. This fact has a simple

meaning in terms of the quantum universal enveloping algebra Uq(Z:), where b, is
a Borel subalgebra in s/l\z The matrices (4.2),(4.3) determine a “minimal” represen-
tation of Uq(s/l\z) (when ¢" =1 it is closely related to a minimal cylic representation
of Uy(sly) [DIMM]).

Consider the following matrices with coefficients in Zﬁ?\zz

Lix) = ( h "‘—l"f_l> , (44)

x~ 1y u;

where u, = ¢;(u),v, = ¢,(v),i = 1,2 and ¢, are as in (3.6). Let »(x; U) be a func-

tion and A,;@Z be a completion of A;@Z where the element r(x; vl'lvzul_luz_ ) is
defined.

Propeosition 4.1. [V] The element r(x,vl_lvzul‘luz_ Y satisfies the following relation:
r(x, 07 oauy uy DL Gey)La(y) = Li(y)La(ey)r(x, vy oouy 'uy '), (4.5)
if and only if the function r(x,U) satisfies Eq. (1.5).

Proof. After some simple algebra, one can reduce (4.5) to the following three
relations:

r(x, Dujuy = uyupr(x, U), (4.6)
r(x, U)oy oy = 07 'oar(x, U), (4.7)
o UV 4+qV - U)y=V +gxV - Uyr(x,U). (4.8)
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Here we denote:

V= ulvz”l, U= vl“lvzul_luz~1 .
Clearly relations (4.6,4.7) hold for these elements. The equality (4.8) is equivalent
to the difference equation

1 +gxU

gl = ( x+qU

) rouU). (4.9)

Let us describe completions 452 which will be used in Sect. 6 and 7. Denote
by go a primitive root of 1 of odd degree /. Assume g = goe”, where 4 is a formal

variable. Denote by A$? the algebra generated by U*!, ui!, us!, vf!, vf' with the

same determining relations between u-', 0! as in 42 and one extra:

v louTlu; ' = U (4.10)
1 1 W

As a linear space 4, consists of Laurent polynomials in u;,v, and power series in
hand U — 1.
Consider the element

2

Vis - _ -
—E) (=xU' g ) (—xUg4) 5 (4.11)

r(x; U) = exp (
in the space A?Z[[h_l]]. Here U! = exp(IP) and x is a nonzero complex number
and

(x59) = TT(1 —2¢").

The function (4.11) provides a solution to (4.9).

Let 4% be the algebra generated by U*!, V*! uF! vF! i =1, 2, 3, with the
extra relations:
_ 1 -
U=u, lvlu2 u; r
-

V:v;lvzu; uy

Uv =q¢*vu . (4.12)
As the vector space A5 consists of power series over 4, U/ — 1 and V' — 1,
and Laurent polynomials in u*!, v*!.

i >V
Define the element r(x, V') similarly to (4.11). Then, in A§3 we have the fol-
lowing identity:

rs Ur(xy; Vr(ys U) = r(py; Vr(xy; Uyr(x V) - (4.13)

For the proof see [BR](similar statements can be found in [K,V]). We will not
use the relation (4.13) in this paper but, in [BR] we show that it provides the
star-triangular relation for the chiral Potts model.

AThe remarkable fact about the expression (4.11) is that though it does not lie in
A§’3 the similarity transformation by r(x, U) and by r(x, V') provide automorphisms
of this algebra.
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Now K = exp k and choose
Rz)=r(&, v u o), (4.14)

where r(x, U) is a solution to (1.5) and the right side is considered in an appropriate
completion of Agm. Now let us construct the dynamics of the discrete sine-Gordon

model on the algebra A,‘?ZN . Define the evolution operator (3.7) using the R-matrix
(4.14):

N—1
U= [1rK? vy 15, v2atis,) (4.15)

n=0

where K = expk. Then formulas (3.10),(3.29) provide automorphisms 7,74 of
appropriate completion of A“?ZN (defined similar to the completions described
above).

Define the trajectories of uF', vF! inductively as follows:

ant1 01 = T+(an) (4.16)

where a := u¥!, vl

Proposition 4.2. The elements uf,t}, vf,‘ satisfy the following relations:

t-even:
Up—1,1 U2n—2,t = Udp—1, 141 U2n—2,1+1 »

-1 _ -1
Uon—t1,1 V2n=2,0 = Uy 141 V202,141 >
K vt K u;!
Uon—1,0 V32 4 2n—1,t Upp_3
=K u ! + Koy ! u;! (4.17)
= 2n—1, 141 Yop—2 141 2n—1,t+1 *2n—2, 141 > :
t-odd:
Udp,t Uon—1,t = Wop, 141 U2n—1,t4+1 »
~1 -1
vZn,t Un—1,t = vZn, 1+1 DVon—1,t41 5

-1 =1 =1 _ el -1 -1 1
Kugn, 103y K7 0y, ugy = K7 s 141 Vg g H KOy 0 Mgy gy -
(4.18)

Proof. These relations follow immediately from Eq. (3.22) if we identify L, (x)
as follows:

Un. 15 —K“lx"lv,z,l
s (4.19)

+ _
Ly ) = (K—l -1 —1

X Un, ts u,,, t
—1..— -1
_ Un,ts —Kx lvn,}
L, (x)= B , (4.20)

-1
Kx™ vy 4, Uy

where x = €.
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The physically interesting case corresponds to |¢| = 1 and K € R. The algebra

Ay in this case is regarded as the algebra with the antilinear antiinvolution * acting
as:

' =u ', =o' (421)

It is easy to check that in this case the coefficients of the generating function

(3.40) are *-invariant integrals of motion. We will consider in detail such cases

when ¢ is a root of 1. For the case when |g| = 1 but when it is not a root of 1,
see [F].

5. Equations of Motion and Integrals of Motion for the Quantum
Sine-Gordon Equation

In this section we will introduce the subalgebra of “sine-Gordon variables™ in the al-
gebra A9?V, and will show that the evolution 7, with U given by (4.15), determines
an integrable quantum system for this subalgebra.

For even ¢, define the following elements:

. -1 1
Uzn,t = Upp, e Van—1,1 Uy (Upy_1 4

o1 —1 —1 ot
= Vg g V2n—1,1=1 Uy 1 U1 1 = T(Uzn)
-1 -1 -1
UZn—l,t = U2n—1,t Uon—2,1 u2n—l,l u2n—2,t
-1 -1 —1 ot
= Uppp, 1 V2n=2, 041 Uy 11 Uog—n g1 = T (Uzn—1) - (5.1)

Here the second lines in the equalities follow from equations of motion (4.17),
(4.18).
Elements U, = U, o obey the following relations:

UnnUzn—1 = ¢ Uzn—1Uz
UsnUni1 = ¢ 2Uzps1 Uny (52)

and generate the subalgebra of A(‘?ZN which we denote .o/y(q). This algebra has a
center generated by the elements

N—-1

N
Ci= 1l Uns1, C=]]Un. (5.3)
n=0 n=1

Clearly the sequence of elements U, ,, t =0, 1, 2, ... is the trajectory of U, with
respect to the evolution t:

[]n,t = Tt(Un) . (54)

Theorem 5.1. Elements U, ; satisfy the following nonlinear evolution equations:

K+ ¢ "1, 14+ K%q - Uy
1 +K2q_lU2n+1,t K2 +q * U2n-—1,t

U2n,t+2 = U2n‘t > (5.5)

L+ K2 qUsn2,c K>+ g7 U,
K2+ qUpy2,s 1+ K2g-! U, '

Uzntt,i-2 = Uspyr,s (5.6)
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Theorem 5.2. The trace t,(x) of the quantum monodromy matrix (3.39), with
LE)(z) given by (4.19) and (4.20), depends only on the elements U},
n=1,..., N, and therefore belongs to the subalgebra </n(q) in A(‘?w. The
element t1(x) is the polynomial of degree 2N. Its coefficients determine N non-
trivial integrals of the evolution 1.

Let us first prove Theorem 5.1. One can do this in two natural ways. The first,
“the Hamiltonian” approach, is to use the definition of the evolution t and compute

the equations of motion directly from this definition. The second, the “Lagrangian”

approach, is to use the definition of U, , in terms of u,:,t}, v,,i,' Here we present

both approaches.

1. “Hamiltonian” proof of Theorem 5.1. Let us use the definition of the au-
tomorphisms 74 and the difference equation for »(x; U). We obtain the following
expressions for the action of 74 on Uy:

T4+(U2n) = Ugpi1 5
T (Uz2n) = Uzp—1 5
T (Uan—1) = F(Uzpy1)Unp F(Upy—y) ™',
T (Uznt1) = 7(Uzn—1) (5.7)
where F(U) is the same as in (1.6). From this we have for 1 = 1,7 = 1_7.:
©(Uy) = F(UZn-H)l/2nF((J2n—l)_1 5
W(Uzni1) = F(t(Uzns2))Uanst F(2(Uzn)) ™', (5.8)

which implies (5.5),(5.6).
2. “Lagrangian” proof of Theorem 5.1. Let us factorize the L-operator (4.3) as

follows:
u —x~Ip~! 1 0 1 0
L= <x“v u™! ) - <0 u_lv) udl (0 u vl ) (5-9)

%1:( ! _“lx_l). (5.10)

ax”q

where

Then, for the product of two L-operators we have:

_ 1 0
Lop—1,(xK)Low (xK ") = <0 (" V) t) uon—1,0M 1/x

1 0 1 0
(0 U2n—1,t> Uan—2,1 M (0 (u_lv_l)zn-z,z> '

(5.11)
The Lax equation (3.23) implies the compatibility condition

+ — + o — - + - +
°an-&—l,Pan,t“an—l,t’c’ 2n—2,t gfﬁn+l,t+1$2n,t+l$2n—l,t+l"g)Zn—z,t-H : (5-12)

"4
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Now, if we use the factorization (5.9) and the definition of U, ,, this relation can
be rewritten in terms of L,f,(z) defined in (4.19),(4.20), as

1 0 " W 1 0 "
0 @ ohnir ) VK0 Uy, )10

1 0 1 0
0 U2n,t> Upn—1, 1M 1)K <0 U2n—1,t> Udn—2,1

Y 1 0 _ 1 0 "
K 0 (“ﬁlvﬂl)2n~2,t 0 (u_lv)2n+1,t+l ntl 4l

1 0 Y 1 0 "
0 Unirs Udp, t+1-401 /K 0 Uiz 2n—1, t+1

1 0 1 0
My (0 U2n—l,t> Uon—2, +1M 1jk <O (u~1v~1)2n_2’t+1> : (5.13)

Moving all u, ;,uy (+1 to the left and cancelling by the factor

(Uang1 Uzn Uzn—1 Uan—2 i1 = (Udny1 Uy Udp—1 Upp—2)s »

one gets

1 0 1 0 1 0
_ M _ M _
<0 (u 1U)zn+1,t> I/K(O q ]U2n+1,t> K<0 q 1Uzn,t)
1 0 1 0
4 _ M .
7 l/K(O q 1U2n~1,z> K<0 (u'v l)2n—2,r>
1 0 1 0 1 0
= _ M - M -
(0 (u 1”)2n+1,t+1) K<O q 1U2n+l,t> 1/K<O q 1U2n,t+2)

1 0 1 0
Wk (0 q_lUZn—l,t> Hx (0 ) P > ' (5-14)

The element 11 of this equality depends on only U’s and yields
(K + 47 U1, 0 U o1 + K¢ Usior,)
(5.15)
=1+ qu_1U2n+1,t)U2n, H—2(K2 + q_l Uzn—1,1) -

In a similar way as for even ¢ in (5.12) we can obtain the following equation for
odd

(K* 4+ ¢ ' Usny2, )anit, 1-2(1 + K*q7 ' Usp )

=(1 +K2f]_1U2n+2,t)U2n+l,t(Kz + q_len,z)~ (5.15")
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Now let us prove Theorem 5.2. Direct calculation, similar to the one used in the
proof of the previous proposition, yields

T(x) = vy - (}, q_l(u‘llv)zN)F(x; U ... Un) ((1, q(v_lou-l)l> (5.16)

where

Lo 1 0
Fx;Uy, ..., Uyy) =M M _
(x; Uy W) K (O q~1U2N) 1K (O q 1U2N—l)
1 0
..//ZK (O q—lU2> %1/1(. (5.17)

Denote the elements of the matrix F(x;U,,...,Uy—1) by
(B B0)
One gets for the trace of the matrix (over C€?)
t(x) = uy_y ... ug{A(x; Us, ..., Usy)
+(u " 0)onD(x; Us, .., Uay )™ ' 0}
=wu_1...ug{A(; Us,..., Usy) + D(x; Us, ..., Upy—1,@ Uay)Us } . (5.19)

The product uyy,...,u; can also be expressed in terms of U,...,U,y (in an ap-
propriate extension of Ayn(gq) by VC; and /()

ua - ur =\ Ut Uy o U7 g (5.20)

which completes the proof.
It is easy to see from the structure of L(x) that #;(x) is a polynomial of degree
2N in x72. It is also a simple computation which shows that when x — oo,

h(x) = uay -y +“2_1\} ”1_1 + O(x‘2)
11 - 1.4 _ _
=(C1C; H2g" ™V + (G727 + 0 7).

Here, Cy and C, are defined in (1.10). All other coefficients do not lie in the center
of Ay(q) and therefore provide nontrivial integrals of the evolution 7. Although we
do not prove it here, it is quite reasonable to assume that they are algebraically
independent.

The arguments of Sect. 3 show that the discrete quantum sine-Gordon equation
(4.38) describes an integrable quantum system with a generating function #(x) for
commuting quantum integrals.

Denote by T(1(z) the quantum monodromy matrix (3.39) for the quantum sine-
Gordon model described in Sect.4. It is known that T')(z) corresponds to the
irreducible 2-dimensional U,(s/;)-module. Using the fusion procedure for the ele-
ments L(z) [KSR], one can obtain quantum monodromy matrices corresponding to
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any finite-dimensional U,(s/;)-modules. Denote by T)(z), (I = 1,2,...) the cor-
responding (/ 4 1)-dimensional representation. For an explicit description of the
fusion procedure which gives T')(z) via a certain algebraic operation on 7(1)(z),
see [KR]. The element 7()(z) € End(C'*') ® Ay has the following form:

TO(z) = LYK LY (2K) - Lk~ (zK) (5.21)

where Lg,l)(z) are obtained by an appropriate fusion of several copies of L(z) [KR].
Introduce the elements
1(z) = t(T(2)), (5.22)
where the trace is taken over €'*!, so that #)(z) € Ay. Represent the element 7(!)(z)
as a 2 X 2 matrix with elements from Ay:

TW(z) = (A(Z) B(Z)) . (5.22")
C(z) D(z)
Proposition 5.3. [KR] Elements t;(z) satisfy the following relations:
[t(z), tp(w)] = 0, (5.23)
for any 1l =1,2,..., z,w € C and the recursive relations
1@)(zg) = t41(2) +d(@) - 1-1(z4°) (5.24)
1(h(zq') =t (z2) + d(zg" -1 (2), (5.24")

where d(z) = A(zq)D(z) — B(zq)C(z) is a quantum determinant of T (z).
For the proof of this proposition see [KR].

Remark 5.4. Let o/ be the algebra generated by the elements A(z), B(z), C(z), D(z).
Topologically o/ can be regarded in several ways: elements in the complex plane
parameterize the generators of .o, or 4, B, C, D are generating functions like f(z) =
> =0 fnZ" (or in some other appropriate sense) with relations

R(2)T(zw)Th(w) = Th(w)T1(zw)R(z) . (5.25)
Proposition 5.3 holds in this, more general, situation.

Remark 5.5. For the monodromy matrix of the quantum sine-Gordon equation, the
quantum determinant can be computed explicitly

dz) =1 +z7 g KOV +z7 g ' K2V . (5.26)

The solution to the recursion (5.24) can be written explicitly as:

[1(z) 1 0 0 0 7
d(z) ti(zq) 1 0
0 d(zq) t(zg®) ... 0 0
t/(z) = det . ) . . ) _ , (5.27)
0 0 0 oo ti(zqg"?)
L 0 0 0 oo d(zq'?) iz |




392 V. Bazhanov, A. Bobenko, N. Reshetikhin

or, in terms of generating functions,

(1 =Xt1(z) + X%d(2))"' = S X'ty(2), (5.28)

120
where =

h(z)X = Xt(zq) ,
d()X = Xd(zq) . (5.29)

The coefficients of the polynomial #,(z) are integrals of motion of the evolution
(3.28). The coeflicients of the polynomials #/(z), / > 1, do not generate new inte-
grals because of (5.27).

Now define the discrete sine-Gordon variables Q, ,, which are defined only for
n+t = 0(mod 2):

Upi, n+t=0(mod 4), t-even
U,,f,l , n+1t=2(mod 4), t-even
On: = . (5.30)
Upi-1, n+t=2(mod 4), t-odd
U,/_\, n+t=0(mod 4), t-odd

We also assume that Oy, 1= Q24 0, Q2nt+1 := O2nt1.1-

There are several reasons to call these elements sine-Gordon variables. In the
continuum limit they approach exp(i¢(x)), where ¢(x) is a continuous Sine-Gordon
variable (see the next section). Another reason is that in the classical limit O, ; has
a natural interpretation in terms of angles between edges of discrete K-surfaces (see
the conclusion and [BP] for details).

If we associate the elements Q, ;, with the unshaded faces of a two-dimensional
square lattice (see Fig. 1) the evolution equations for O, ; can be written as

Q. = F(ONF(0)0; ", (5.31)

where u,l,r,d are the up, left, right and down unshaded faces surrounding any
shaded face.

Fig. 1.
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6. The Classical Discrete Sine-Gordon System

In the previous section we described a quantum complex sine-Gordon system
as a quantum mechanical system with a finitely generated algebra of observables.
From the point of view of quantum field theory it is a finite quantum mechanical
system.

The quasiclassical limit of the system (5.13),(5.14) corresponds to the limit
g — 1. The classical system which we recover in this limit has the phase
space My ~ T*?", where T is the (complex) torus. In natural coordinates in
My, the Poisson bracket between coordinate functions will have the following
form:

{O2m, Oont1} = 20210001 - (6.1)

All other brackets {Qn, On} vanish. The equations of motion (5.13) will become
Qn. t+2 Qn,t = Fcl(Qr1+1,z+1 )FC/(Qn—l,I-H ) s (62)
Fo(x) = @_ (6.3)

A N G '

They can be regarded as a symplectomorphism ¢ : Moy — M,y given by the for-
mula

©(0n) = Fer(Qni1 )Fer(Qn-1)Q; ! (6.4)

in natural coordinates in Mpy.
Taking the limit ¢ — 1 of the generating function for quantum evolution we
obtain the generating function for the symplectomorphism z.;:

1
tei(a) = exp(H) o a = ;);l—!{ff{m{f, at}}, (6.5)

with
H=H(Hp, H_). (6.6)

Here H(a, b) is a Campbell-Hausdorff function for the multiplication in Ay(e"):

a*bza-b+§{a,b}+0(h2), (6.7)
H(a, b) = hlog (exp (%) * eXp (%)) mod %, (6.8)
and
N
Ao = 5 i~k + L0 K) + Sl0g(Qu)). (69)

1 N
Hy = 5§(Liz(—an_1K2) + Lin(—05,1  K?) + %bgz(Qz,,_l)). (6.10)
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Here Liy(z) is the Euler dilogarithm

Lix(z) = —f—log(lx_x)

0

dx .

Here we assume that the limit # — 0 is taken in the completion of Ay(e") by
power series in K? and (Q, — 1). In this completion, the evolution operator (1.7)
is given by the product of the elements (4.11).

As for the quantum case, transfer matrix #,(z) generates classical integrals of
motion.

Let us demonstrate how one can recover the continuum sine-Gordon system
from the system (6.2),(6.3) in the limit K — 0.

Assume that K — 0, N — 00 as N = % for some fixed value of L, and

Oy = 0(nK), (6.11)

where Q(x) is some smooth periodic function on the interval [0, L]. Then if t = 2
there exists a limit

On:i— Qx,0), K—0, (6.12)
and the limiting function is the solution of the classical sine-Gordon equation
%((3,2)07") = (3007 =207 - 0). (6.13)

Indeed we can rewrite the system (6.2),(6.3) as

21 .
L+K0 0 1T+K00 4 . (6.14)

1+K20,-141 1 +K20041,041

-1 -1 _
On, 142 Ont Qn—l,t+1 Qn+1,t+l -

Taking the limit K — 0 with the assumption (6.11) we get (6.13).
In the coordinates Q = €', Eq. (6.13) looks more familiar:

2¢p—*p = —4sing. (6.15)

7. Quantum Discrete Sine-Gordon System at Roots of 1

Consider the discrete sine-Gordon system in the limit ¢ — go, where g} = 1. We
assume also that / is odd and g is a primitive root of degree /.
It is easy to establish the following properties of the algebra .o/x(qo):

e The center Z(.2/n(qo)) of the algebra .«7/x(qo) is generated by the elements Q.
e The following brackets determine Poisson algebra structure on Z(.</y(qo)) and
the Poisson action of the center by derivations on .7y (qo):

axb—bxa

{a, b} = 1iII(1) (7.1)
Here = is the multiplication in .&/y(e"qo) and at least one of a or b belongs to
Z(/n(e'qo)). We also assume an identification of the vector spaces .7y (q) for all
q (for example by choosing some normal ordering).
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It is easy to compute the Poisson brackets (7.1) between the generators Q' of
Z(+Zn(qo)) and their action on Q,:

201 ! ol —
{000} = {41 oG e m| b (7.2)
0, otherwise
21010, - — =1
(0L, 0} = { OO = =1 (73)
0, otherwise

Now let us consider the equations of motion for Q] ,.

Theorem 7.1. The evolution equations (5.13), (5.13") provide the following equa-
tions for Q. :

21 / 21 !
K5+ 0pi 1 K740, 4

I !
= . ) 7.4
Oni420ms LHKYQy 0y LHKYO, 74
Proof. From the commutation relations (5.2) we conclude that
F(Up-1,0G(Uns1,0U, = Uy F(@ Upm1,)G(q 5 Unrr,o) (7.5)

for any rational functions F(x) and G(x). Here we have pluses or minuses in the
r.h.s. depending on the parity of ».

Write Eq. (5.13) as
Onri2 = F(Onar,)F(Oni1,)0; )

where

K?+q 'x
g+ K?q~'x’
Then, if we will use the definition of Q-elements and the relation (7.5) we will
have:

F(x)= (7.6)

0! 112 = Fi(Que1,OF1(Oni1.00; (7.7)

where
Fy(x) = F(x)F(xq~2) - F(xg~20=Dy.

If go is a root of 1 of degree / with odd / we have

K2 4+ x!

B = e

(7.8)
Therefore, if we introduce new variables {Q,’, .} they will satisfy the classical equa-
tions of motion for the discrete sine-Gordon model. Thus, the dynamics of the
quantum sine-Gordon model at roots of 1 has the following structure:

o It determines the classical dynamics on Z(An(qo)) with the equations of motion
(7.4).

e The algebra Ay(qo) is finite-dimensional over its center and therefore we can re-
gard the quantum dynamics (5.13), as “finite-dimensional quantum fluctuations”
over the classical trajectory of Q.
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Let us consider the evolution automorphism for quantum dynamics at roots
of 1. First, let us determine the asymptotics of r(x,z) from (4.5) when g — gq.
The solution »(x,z) to Eq.(1.5) which is regular at x = 0 has the following
asymptotics when ¢ = gg e’ and 7 — O:
1=/

1427\ T
r(x,z) ~ const - exp< T ——L(x',z )> ( 1+ 20x >

14+ xz™ qo_ =1 _n
X — 0 __ |71+ 0()), 7.9
I:Io( 1+ xzg2"*! ( (%)) (7.9)
where
L(x', 2"y = Lir(— Z’xl)—f—Lzz(—z_’x’)—l— Iog . (7.10)

Taking the limit ¢ — go in the evolution automorphlsm 7, with R(2x) determined
by (4.14), we obtain the following expression for the action of 7 in the completion
of .oZx(qo) by the power series in K* and Q, — 1:

wa) = U "ta(a)U, (7.11)
where
U=rt(U)U_, (7.12)
H A
T(a) = exp ( [2+> o exp (T) oa, (7.13)
N -1 1 +K2Q2nl —2m—1 "
_ -7 7.15
nl;ll mI;IO < 1 +K2Q nqgmﬂ ( )
- N 1+ K? an lq*Z”’ A
U, = : (7.16)
i nl;ll ml;lo( 1+ K205, 193"

Here, exp(a)o b is the Poisson action (6.6) of exp(a) on b. Functions #°¢ are
determined by Egs. (6.10),(6.11):

HLUQ) = #(Q).
Notice that in the center of .«/y(qo) the map 7ty acts as a classical evolution auto-
morphism

L)"
(@)= Y (L{%d o a) ), (7.17)
n=0 n!
where #9 = H(#!, #), and H(a,b) is the Campbell-Hausdorff function (6.8).
Now consider integrals of motion for the evolution (7.11).
In Sect. 5 we described transfer matrices corresponding to (/ + 1)-dimensional
representatlons of Uy(sl) for the quantum discrete model (5.6) with / =0,1,2,.
It is known (see for example [L]) that the structure of U,(s/,)-modules is completely
different when ¢ is a root of 1. This is why in this case the transfer matrices cor-
responding to higher irreducible representations of U,(s/,) have a different “fusion
algebra” from (5.23). Let #,(z) be the transfer matrix (see Sect.5) corresponding
to (m + 1)-dimensional irreducible representation of U, (s/y) with go as above.
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Let #4(z;K; U,) be the classical limit (¢ — 1) of the quantum transfer matrix
(5.19). Consider the elements

AD(z) = A(z) - A(zgh"), (7.18)

D(z) = D(z)---D(zqh "), (7.19)
where A(z), D(z) are elements of the quantum monodromy matrix (5.22").
Theorem 7.2. 1.The transfer matrices t,(z) form a commutative family (n,m <
[-1)
[tn(2), ta(z")] = 0. (7.20)

2. If 1 £ n £1—1, the transfer matrix t,(z) can be computed via (5.26).

3. The elements AV(z), D)(z) are related to £§\(z) as:

AD(2) + DV(z) = £ K U = 10(z) . (721)
4. The following identity holds:
rhz) 1 0o .. 0 0
dz) t(zqo) 1 0 0
0 d(zqo) t(zq3) ... 0 0
1+ 6(z) +d%(z) =det | ‘ o . ' ,
0 0 0 ... flzqp?) 1
L 0 0 0 ... dzgh™®) n(zghh.
(7.22)

where d(z) = T])Zg d(zq}) = (1 + 27K YW(1 + 271K -2Y.

The proof of this theorem essentially follows from work [BS]. It is very technical
and we will omit it here.

8. Conclusion

In this paper we have studied the discrete quantum sine-Gordon model at roots of
1. From the physical point of view the main feature of this model is that it may be
regarded as an integrable quantum field theoretic model (as N — oco) with classical
background.

The discrete sine-Gordon model has an interesting geometrical application which
we briefly present here, for details of which we refer the reader to [BP]. The sine-
Gordon equation

(]55,7 = sin (f)

was first derived in the 19th century in the context of differential geometry to
describe surfaces with a constant negative curvature (K-surfaces). These surfaces
allow a Chebyshev net parameterization F(n, &),

F:R> > R3,
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which is an asymptotic line parameterization with ||F¢| = ||F,|| = constant. The
function ¢(&,7) describes the angles between the asymptotic lines.

This geometric picture can be discretized in a natural and elegant way. A discrete
K-surface is a map F : Z> — IR3 with the properties

(1) any four edges emanating from a common vertex F, , are coplanar,

(2) all the edges have a constant length.

In fact, this discretization has already been suggested in the 1950°s [W]. Starting
with this geometric definition one can derive an equation for the angles between the
edges of neighboring vertices (see [BP]), i.e. an equation with the same geometric
meaning as the one of the sine-Gordon equations in the smooth case. So it is
therefore not surprising that this equation turned out to be the discrete sine-Gordon
equation (6.2),(6.3), where O, » = exp(i¢n,m) and ¢, , is the angle between the
edges at vertex F, .

It would be interesting to find a natural geometric interpretation of the quantum
sine-Gordon system, i.e. to define quantum discrete K-surfaces.

The system can also be regarded as an example of a dynamical system in the
vector bundle. Indeed, the algebra .o/ y(go) can be regarded as a (nontrivial) vector
bundle over an N-dimensional complex torus with an /2-dimensional fiber. It is
known as a quantum torus [C]. The evolution operator (7.11) is an endomorphism
of this bundle which projects to the classical symplectomorphism (7.13) on the
base. It would be interesting to investigate this dynamical system in more detail,
for example, to compute its non-commutative entropy [C].

Another interesting physical application of our results is that the evolution oper-
ator (7.12) can be regarded as the transfer matrix for the chiral Potts model [BR].
The chiral Potts model, whose discovery was originated in [VGR, HKDN] and fi-
nalized in [B], has already been found in the center of various interesting results
[BS, BB, DJMM]. First, the Boltzmann weights of the model require high-genus al-
gebraic functions for their parameterization [B]. The second (related) feature of the
model is there is no a “difference property,” and therefore one cannot directly ap-
ply various methods used for other two-dimensional solvable models. In addition,
the chiral Potts model has a three dimensional interpretation and can be considered
as a particular two-layer case of the three-dimensional solvable lattice model of
[BB]. All these suggest that the integrability of the chiral Potts model of statistical
mechanics has a nature different from other known models. We hope that a new
interpretation of this model [BR] as a quantum discrete sine-Gordon model in a
constant classical background would lead to the further progress in this area. In
particular this interpretation opens the possibility of studying even more interesting
models like the chiral-Potts-type system in other classical backgrounds (e.g. in a
periodic background which might not in general be rational relative to the original
lattice).

We did not attempt here to describe the spectrum of the transfer matrix #(x) at
q = qo, although Eq. (7.21), regarded as a functional equation for the eigenvalues
of t1(z), describes possible eigenvalues as points on the corresponding algebraic
curve. We hope that it is possible to describe the spectrum even more explicitly,
particularly in the limit N — co. This problem is especially important because of
its relation to Chiral Potts and Hoffshtater [WiZ, FKa, Ku] models.
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