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Abstract: This paper studies an initial boundary value problem for a one-dimensional
isentropic model system of compressible viscous gas with large external forces,
represented by vt - ux = 0, ut 4- (av~y)x = μ(ux/v)x + f(f*vdx,t), with (v(x,0\
u(x,0)) = (vo(x),uo(x)), u(O,t) = u(\,t) = 0. Especially, the uniform boundedness
of the solution in time is investigated. It is proved that for arbitrary large initial data
and external forces, the problem uniquely has an uniformly bounded, global-in-time
solution with also uniformly positive mass density, provided the adiabatic constant
y ( > 1) is suitably close to 1. The proof is based on L2-energy estimates and a
technique used in [9].

1. Introduction

In this paper we consider the one-dimensional motion of a general viscous isentropic
gas in a bounded region, with an external force. In the Lagrangian mass coordinate,
such a motion is described by the following system of equations:

υt-ux = 0, (1.1)

ut + p(υ)x = μ{ — ) +f[jvdx7t) , (1.2)
\ v Jx \0 J

where v, u, p, μ and / in the equations are the specific volume, the velocity, the
pressure, the viscosity coefficient, and the external force of the fluid, respectively.
We will assume that the equation of state, i.e., the function p is given by

p(v) = av~y (a > 0, y > 1 are the constants), (1-3)

and that the viscosity coefficient is a positive constant. After normalization, we may
assume without loss of generality that the fluid occupies the interval (0,1), whose



260 A. Matsumura, S. Yanagi

total mass is equal to 1. So we shall consider this problem in a fixed domain Q
defined by

Q= {(x,t)\0 < x < 1, t > 0} , (1.4)

together with the initial conditions

U(JC,O) = υo(x\ u(x,0) = uo(x) on 0 < x < 1 , (1.5)

and with the boundary conditions

u(0,t) = u(l,t) = 0 on t > 0 , (1.6)

where the above initial data satisfy

v0eHl(0,l), uo£H^(O9l), (1.7)

OΓ* = υo(x) = CQ for some constant Co > 1 , (1-8)

and

fυΌ(x)dx=l. (1.9)
o

Furthermore, for the external force / = f(ξ,t), ξ = f* vdx, we suppose that

fjξ and ft eL° ° ( (0 , l )x(0 ,oo)) . (1.10)

We are interested in the existence of an uniformly bounded global solution with
respect to time t. Here and throughout this paper, the term "uniformly bounded,
global-in-time solution" means the time-global solution which is uniformly bounded
and its density also being uniformly positive with respect to t.

In the case / = 0, the existence and uniqueness of the uniformly bounded,
global-in-time solution have been obtained by a number of authors including KaneΓ
[4], Itaya [3], Kazhikhov [5], Kazhikhov and Shelukhin [8], Kazhikhov and Nikolaev
[6,7], etc. under various conditions on the initial data, the equation of state p, and
so on. Among them, Kazhikhov's result [5] shows that for arbitrary large initial data,
our problem with / = 0 has a unique uniformly bounded, global-in-time solution. If
the external force vanishes sufficiently fast as time tends to infinity, we can extend
their results to obtain uniform estimates or the asymptotic behavior of the solution.
However this assumption is too restrictive to cover physically meaningful cases,
such as time periodic external forces or time independent ones. From this point
of view, Beirao da Veiga [1] proved the following result. For suitably small / , if
some norm of the initial data is bounded by some constant which is determined
by the L°°-norm of / , then a uniformly bounded, global-in-time solution uniquely
exists. Since the constant mentioned above tends to infinity as the L°°-norm of
/ tends to 0, there is no gap between his result and Kazhikhov's one. His result
also shows that for any fixed initial data, if the external force is sufficiently small,
then the uniformly bounded, global-in-time solution uniquely exists. However it
does not cover Matsumura and Nishida's result [9]: when the gas is assumed to
be isothermal, namely the equation of state is given by p = a/v, then there exists
a unique, uniformly bounded, global-in-time solution for an arbitrary large external
force and large initial data. From this point, our interest in the present work is to
make up for the difference between them. To do so, regarding y as a parameter,
we shall get the sufficient condition on the external force / so as to have uniform
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estimates on the solution, and study precisely how this condition depends on y. Of
course we expect that when y tends to 1, our goal will be achieved.

In what follows, we denote the norm in L°°,L2 and Hι by | |oo, || || and
|| | |i, respectively. The following is our main theorem.

Theorem 1.1. Assume (1.7)—(1.10), and 1 < γ ^ 2. Then there exists a constant

C(y), which tends to oo as y tends to 1, such that if E\(0) < ^ ( ΓΓT ) and

I/loo S C(y\ then the initial-boundary value problem (1.1)—(1.3) with (1.5), (1.6)
has a unique, uniformly bounded, global-in-time solution (v,u) satisfying

C'x S v(x,t) ^ C V ( * , ί ) e β , (1.11)

and

sup||(ι;,«)(/)||, g C , (1.12)

where E\(0) shall be defined in (2.8), and C(> 1) is a constant depending only

on α,μ,y,Co,||(ι>o5wo)||i, and |/|oo

Remark 1.1. The above constant C(y) can be chosen to satisfy C(y) ^ C(\og(y -
l)~ιΫ as γ —> 1 for any β satisfying 0 < β < 1.

Remark 1.2. Theorem 1.1 shows that for any fixed initial data and external force,
there exists a unique, uniformly bounded, global-in-time solution, provided the
adiabatic constant γ is suitably close to 1.

Finally, we shall mention the asymptotic behavior of the solution to our problem.
Let us decompose the external force / = f(ζ,t) into a non-stationary part and a
stationary part as

f(ξ,t) = Mξ,t) + foo(ξ), (1.13)

where fo(ξ,t) is a non-stationary part and foo(ζ) is a stationary part of the external
force. Let (^(^),0) be the stationary solution to our problem in the Eulerian coor-
dinate, then it must satisfy

^ = Λ o ( ί ) , ( U 4 )

Jη(ξ)dξ=\. (1.15)
0

For this stationary problem, we have obtained in [2,11] a sufficient condition that
ensures the unique existence of the solution to (1.14) and (1.15), which is expressed
as

max F(w)- min F(w) < -^— , (1.16)
w€[0,l] w€[0,l] 7 - 1

where F(w) is defined by F(w) = jζ foo(ζ)dξ. By comparing the order of C(y)
with the right-hand side of (1.16) as y —> 1, it is easy to see that there exists
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a constant γ0 > 1 such that if 1 < γ ^ y0 and \f\oo < C(γ), then the condition
(1.16) is satisfied. Therefore we have the following theorem

Theorem 1.2. Assume the same hypotheses as in Theorem 1.1. Let (v,u)(x,t)
be the unique, uniformly bounded, global-in-time solution to (1.1)-(1.3) with
(1.5),(1.6), and V(ξ) be defined by

( L 1 7 )

Then there exist constants γ0 > 1, δ > 0 and C > 0 which depend only on the

given data such that if 1 < y ^ γ0, Ex(0) < \ (jz\)2 , and \f\oo ^ C(y), then

the following estimate is satisfied for all t ^ 0 :

2

,t)~ V[Jv(xf,t)dxf ,0||2 S

(1.18)

Remark 1.3. Under the assumption that there exists a strictly positive solution η of
(1.14) and (1.15), Zlotnik [12] has obtained the asymptotic behavior of the solution,
for / nonincreasing with respect to ξ. Yanagi [11] showed in a Lagrangian mass
coordinate the stability of the solution around the strictly positive stationary one,
which was also assumed to exist, for / with fξ and itself being suitably small.
Recently, Straskraba [10] considered the case that zero density appears on a set of
positive measure, and generalized Zlotnik's result without assuming the existence
of the strictly positive stationary solution, for / which does not depend on t and
is nonincreasing with respect to ξ.

The proof of Theorem 1.1 is done in Sect. 2 by using energy estimates and the
technique found in [9]. Remark 1.1 is obtained by direct calculations in Sect. 3. In
Sect. 4, we shall show Theorem 1.2.

2. Proof of Theorem 1.1

In this section, we shall have some estimates for the solution to our problem
(1.1)—(1.3) with the initial and the boundary conditions given by (1.5), (1.6). In
what follows, we shall denote the letters Ci,C 2 , . . . by constants depending only on
the given data.

Let us begin with the following easy result. Integrating (1.1) over [0,1] gives

1

fv(x,t)dx=l, V / ^ 0 . (2.1)
o

Multiplying (1.2) by u and integrating it over [0,1] yields

x + μJ^dx = J
o v o

(2.2)
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where Φ is defined by Φ(v) = -z^(v~y+l - 1) -f a(v - 1 ) ( ^ 0). Using the relation

u = f* uxdx, we have the estimate \U\OQ S ί/0 ^fdxp , then the right-hand side

of (2.2) is estimated as

fufdx S |«U|/|oo S ξS^dx+^-lft,, (2.3)
o z 0 v zμ

from which one gets

0 2 } + ! j v Λ S 2 > ~ (2-4)

Dχ

Multiplying (1.2) by — and integrating it over [0,1] gives

d \ \ μ (vx\
2 uvx\ \ v\ \ u2 \ υx

~τ \ -^ (~) > dx + ay \ —±~ dx — — dx - —fdx . (2.5)

( v2 V
As the last term in the right-hand side of (2.5) is bounded by \f\oo ( /0 -f dx ) ,

we have

Multiplying (2.6) by —, adding it with (2.4), one shows that

where E2(t) and E\{f) are defined by

i Γ 1 2 μ

0 ^

Since the absolute value of the term fA/Lτuχ i s bounded by \u2 + fr ( —) , E2(t) can

be estimated as

/ * ( . ) Λ . (2.10)
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Now we would like to estimate isf(O from below and |/|oo ί JQ -^dx) from

above. To do so, we shall use some methods found in [9]. Let X and Y be defined by

1 v2 ι v2

0

Using Holder's inequality, one has

Then it follows from (2.9)-(2.l2) that

0

(2.12)

2ε

aμy7

2y 2y

y - l

2 ; - , (2.13)

for any ε > 0. If we determine ε that satisfies z- = - i.e., ε = ay2, then (2.7)
4 αμy2 2

is reduced to

± (2.14)

Next, it easily follows from (2.1) that there exists a point xo(0 £ [0,1] such
that I;(JCQ(OJO = l Therefore we have

\ogv\ S
x0

Ivl (2.15)

(2.16)

In order to proceed with this relation, we use the following lemma, without proof.

Lemma 2.1. Let g(x) be afunetion in C([0, oc)) satisfying g(0) = 0, and be mono-
tone increasing on some interval [O,Ao]. Let A be an arbitrary number satisfying
0 < A ^ AQ. Then the following inequality is valid for all B ^ 0:

from which one obtains the following relation between X and Y:

( y-1 1
X S \v\loY ύ YexplyX 2'< Y2?

AB <
g(x)dx + Jo g ι(x)dx for 0 g δ ^ θ(Ao),

1 g(x) dx + AQB - tf° g{x) dx for B Z g(A0).
(2.17)
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7+1

Putting A = X 2? , Ao =

(2.17), one shows from (2.16) that

, B = Y^ and g(x) = into
O - 1 + 1

for 0 ^ F ^ α(7),

2y exp 7
7 - 1

(2.18)

provided that X ^ J^y, where α(y) is defined by α(y) =

Let us consider the function

y+l

G(y) =

y exp \y\ζ ' g ι(ξ)dξ

y ) 2 exp (γ
7 - 1

for 0 ^ y ^ α(7),

for ; ^

(2.19)

Since the function G(y) is a monotone increasing one with respect to y, there exists
the inverse function y = G~ι(x), which has a following property:

#(*) =

exp I -

27 \ 5

I V 7 - 1

^ 1 ,

exp - 7
7 - 1

for 0 ^ x ^ G(α(y))

for x ^ G(α(7))

(2.20)

and H(x) is a decreasing function of x.

We are now in a position to estimate E\{t) from below. Assuming X ^ ^ j ,

we have from (2.9) and (2.18),

X
< Y <

aμy
2 (2.21)

or equivalently

H
X

JX~+\

X
(2.22)

Using the monotonicity of the functions H{x) and -τ=j > and the relation X g

(C2 = 16/μ2) shown in (2.10), one obtains from (2.22),

(2.23)
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namely

< ( ^ ) Λ 4 (2.24)
Ϊ + l) C2E\ - aμγ 2

Next we shall estimate Φ(υ). For the sake of the point xo(0? it follows that

= -a[-dx<aΓ-^dx. (2.25)

Thus

(2.26)

As we are interested in 7 which is near 1, we may assume 1 < y ^ 2, so it is
easily verified that the integration JQ v2~y dx is less than or equal to 1. Using (2.9),
one gets

2 ^ (2.27)

Therefore it follows from (2.27) and the property of H(x) that

/ CiE2 \ ι Γa~
H . 2 ι ί Φ(v)dx ^ 2J—E2 , (2.28)

ht.\ 0 v μy

Similar consideration as above yields

namely

(2.30)

Multiplying (2.24) by \ , (2.30) by \ and adding the results together with (2.29)
imply

. / C2E\ \ 1 2 / μ , 4 \ p2 , 3 2

v/cϊefTT/ μ2 \ay
(2.31)

where we have used (2.10). As the last term in the right-hand side of (2.31) is

bounded by c H τ—E%, easy calculation shows that
εμ5y

(2.32)
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for any ε > 0 and C3 = max [β β + f) , ψ* V Putting ε = \G

into (2.32), and substituting it into (2.14), we derive

267

- 1

fC2E\ + \

4C3

If £i(0) and |/|oo are sufficiently small so as to satisfy

1

. (2.33)

and

y-± G-i I _2±L

4C3 y+l

(2.34)

,(2.35)

then (2.33) shows that Ex(t) < {λ^Y for all t > 0, therefore

of the sufficient conditions on / that satisfies (2.35) is

\l/2

< ^ One

I/loo g min

4 C 3 o

n-λy-i)/ )

c 2y

r+i
2 \ —

(2.36)

V

7+1

/2γ(y-\)/ )

Izλ
y—1

We have already got the following result.

Proposition 2.1. Lei ίAe assumptions in Theorem 1.1 be satisfied.
conditions and the external force satisfy (2.34) and (2.35), then
estimates are valid:

If the initial
the following

^v(x,t)^C V ( i , ί ) e β ,

and

where C is a positive constant depending only on a,μ,γ, Co, ||(i?o>^o)

Let C(y) be defined by the right-hand side of (2.36). Then
Theorem 1.1 shall be completed if we estimate ||wx(/)||. Multiplying

(2.37)

(2.38)

Ί|i, and \f loo.

the proof of
(1.2) by - « „
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and integrating it over [0,1] yields

1 d x ι u2 ι

2 dt o 0 v o
VxUx UxVxUx . (2.39)

Using Proposition 2.1, we can estimate each term in the right-hand side of (2.39) as

C
S εfu2

xxdx+-,

Vx Ux dx
C

^ εju*adx+-- fυ2

xu
2

xdx,
o 0

uxx fdx
1 Q

^ ε j u2

xx dx H ,
o ' ε

(2.40)

(2.41)

(2.42)

for any ε > 0. Since u satisfies the boundary conditions (1.6), there exists a
point x\(t) G (0,1) such that ux(x\(t),t) = 0. Using this point, we have the relation

uχ = fx ~^~(ul)dx = 2f* uxuxxdx, which gives

^ ε2 J u2

xxdx + — J w2 J x , (2.43)

for any ε > 0. Substituting (2.43) into the last term in the right-hand side of (2.41)
implies

ux vx ur "X vx uxx

μ j — ax
o v

1 1 ]

,.2 J V , L Γ..2< C ε fu2 dx + -r fu2dx) . (2.44)

By choosing ε sufficiently small, we obtain from (2.39), (2.40), (2.42) and (2.44),

d ι ι ί ι \
— fι*1

xdx + Ju2

xxdx S C 1 + Ju2

xdx) . (2.45)
"t o o V o /

It easily follows from (2.7) and (2.45) that

( ^ C,

from which we conclude

Ju2

xdx ^ C.

(2.46)

(2.47)

This completes the proof of Theorem 1.1.

3. Estimation of C(γ)

In this section, we shall estimate C(γ), which is defined by the right-hand side of
(2.36), as γ tends to 1. By the definition of C(y), it is easy to see that

C( 7) - G- γ+
( ? - + ! ) • (3.1)
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Since

269

'27(7-1)
( 7 - 1 ) ,

it is enough to consider the function G(y) only for 0 ^ y ^
variable 77 = ^ - 1 ( O ^n (2-19) yields

7+1

7 I
1 -(7-l)»/ '- 1

0 ( 7 - i r

Another transformation τ — ψ^ in (3.3) implies

(3.2)

). Changing the

\

. (3.3)

I

(y) = jexp

= yexp

2 ( 7 - 1 ) ( τ + 1 ) 2

"/ ~ ι

'

Now we will show

or equivalently

g (7 - I)'2-' (log^)'V (7 - 1),

where y(y) is defined by y(y) = G= G ι ( 7 + 1 , and R is defined by

Λ = (y - l ) " ϊ (log(y -

(3.4)

(3.5)

(3.6)

(3.7)

for j8 with 0 < β < 1. We note that for y sufficiently close to 1, the right-hand
y 1

side of (3.6) is less than f _ i ) ' , therefore (3.6) is equivalent to

(3.8)
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which is followed by the following relations:

/ / ; - . r-i """

G i g U γ - 1) * l - τ r

x exp ( " 3 γ [ l " {(Ύ - OlogΛ + I}"1]

= C(log((y - l)-ϊ(log(r -

/ 2 7 ( 7 - l )
(3.9)

where we have used ( rzy) ~^ U (7 — l)logi? —> 0 and i? (;-i)iog/?+i ^ l as

7 —> 1. Therefore we have from (3.4),

G(y(γ)) S Cy(y)(γ-lΓl2(log(y-lTlΓ2β, (3.10)

for any y close to 1. Putting y(y) — G~x ( / / - 1 ) into (3.10) implies
\/2y(γl) J

, 1 Λ lΓ^log^-lΓ1)-2^, (3.11)
V2y(y- 1)

namely,

l)-1)2/* ^ j (y) . (3.12)

It follows from (3.1) and (3.12) that

C(γ)^C(log(γ-l)-ιf ( y - 1 ) , (3.13)

for any jβ with 0 < β < 1. This completes the proof of Remark 1.1.
We note that (3.8) gives the estimation of C(y) from above, as follows:

l ) - 1 ( y - 1 ) , (3.14)

which shows that the estimation of C(γ) from below, i.e., (3.13) is almost optimal.
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4. Proof of Theorem 1.2

In this section, we shall prove Theorem 1.2. In what follows, the letter C denotes
the universal constant which depends only on the given data. We note that by the
definition of V(ξ), it follows from (1.14) and (1.15) that

= f°o(ξ), (4 i)

Subtracting (4.1) from (1.2) makes

Noting that ί — 1 = ί — j ξx = (-—) v, (4.3) is rewritten as

Multiplying (4.4) by u(= ξt) and integrating it over [0,1] imply

d
(4.5)

o v o

where Ψ is defined by Ψ(v9 V) = ^{v~y+l - yV~y+] + (y - l)vV~y} ( ^ 0). Us-

ing the same estimation as (2.3), we have from (4.5),

^ / { \u2 + ψ(υ, n } ώ + ξ j ^ ώ g C|/o( , OIL (4.6)

Multiplying (4.3) by υ (= ξx) implies

υut H r (^~ 7 + 1 - V~y+l)x = μv ( — ) + / o ^ (4.7)
7 - 1 \v/χ

Multiplying (4.7) by JQ

X (f - l) Jx' and integrating it over [0,1] with respect to x
give

f f ( ^ ) > (4.8)
0 0 V F '
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where we have used (4.2). The calculation of the first term in the left-hand side of
(4.8) proceeds as follows:

1 x

fvutdxf l--l)dx>
0 0 Kf/ J

~}uu
0 0 v v ' 0 0

? (ux vuVΛ J ,

dxj (1 -

0 0

Combining (4.8) and (4.9), one obtains

(4.9)

0 0

1

0 0 0

0 0

By using Theorem 1.1, each term in (4.10) is easily estimated as follows:

)uuxdx)(~-\)dx'
0 0 X V '

J X

(4.10)

x ^ C\\v- V\\2 , (4.11)

^ c κ ι ι l l ^ - H I ^ β | | ^ - F | | 2 + c | |^ | | 2 , (4.12)

w||i ^ C | H | 2 , (4.13)

0 ^ 0

SΛvdxf ( ^ - l) dx>
0 0

,Oloo||» - F| | ^ ε||ϋ - F | | 2 + C\f( ,ί

(4.14)

(4.15)

(4.16)
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for any small ε > 0. Therefore, it easily follows from (4.10)—(4.16) that

— Jvudxjί- - \)dx' + v\\v- V\\2 ^ C(\\ux\\2 + | / ( , ί ) | ^ o ) , (4.17)
dtQ o \V /

for some v > 0. Multiplying (4.17) by θ ( > 0) and adding it with (4.6) yield

—El(t)+El(t) ύ C\f( ,i)lL> ( 4 1 8 )

where E2{t) and ^ ( 0 are defined by

l ( i x / 1 ; \ Ί

£3

2(O = / l-u2 + ^(u, K) + θt w/ ( - - 1) dx \dx , (4.19)

- 0 ) | | ^ | | 2 + ^ | | t ; - F | | 2 . (4.20)

We note that

0UM/ ( - - l ) dx1 S Cθ\\u\\2 + Cθ\\υ- F | | 2 , (4.21)

that Ψ(v,V) is equivalent to | | ϋ — V\\2, and that ||w|| ^ C||wx | |, so by choosing

θ > 0 sufficiently small, we conclude from (4.18),

j(EJ(t) + δE](t) ^ C\f( • , OIL , (4.22)

for some δ > 0, where E2(t) is defined by

E2(t)=\\u\\2 + \\υ-V\\2. (4.23)

The differential inequality (4.22) immediately leads to Theorem 1.2.
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