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Abstract: After a preliminary review of the definition and the general properties
of the homogeneous spaces of quantum groups, the quantum hyperboloid qH and
the quantum plane qP are determined as homogeneous spaces of ^q(E(2)). The
canonical action of Eq{2) is used to define a natural ^-analog of the free Schrodinger
equation, that is studied in the momentum and angular momentum bases. In the first
case the eigenfunctions are factorized in terms of products of two ^-exponentials. In
the second case we determine the eigenstates of the unitary representation, which, in
the qP case, are given in terms of Hahn-Exton functions. Introducing the universal
/"-matrix for Eq(2) we prove that the Hahn-Exton as well as Jackson #-Bessel
functions are also obtained as matrix elements of T, thus giving the correct extension
to quantum groups of well known methods in harmonic analysis.

1. Introduction

The fundamental role played by homogeneous spaces in harmonic analysis and
in applications to physical theories cannot be overestimated. Apparently different
mathematical problems, like the definition of special functions and integral trans-
forms, from the one side, and the classification of elementary Hamiltonian systems
by means of coadjoint orbits and their quantization according to the Kirillov the-
ory [1], from the other, find their unifying leitmotiv in homogeneous spaces. Also
the fundamental wave equations of mathematical physics have their natural origin in
the study of homogeneous spaces of groups with kinematical or dynamical meaning,
such as the Euclidean or the Poincare group: more specifically, they are determined
by the canonical action of the Casimir of the corresponding Lie algebra on spaces
of functions on these homogeneous manifolds.

With the development of the theory of quantum groups and just after the first
steps in the study of their structure, it seemed extremely natural to investigate the
analogs of homogeneous spaces in this new quantum framework. As the notion of
manifold underlying the algebraic structure is obviously lacking, the right approach
starts from the injection of the algebra of the quantum functions of the homogeneous
space into the algebra of the quantum functions of the group. After the pioneering
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work of Podles on quantum spheres [2] and the generalization to the quantum
framework of some relationships between groups and special functions [3-7],
the program of extending harmonic analysis to quantum homogeneous spaces has
been undertaken and results have been found for quantum spheres [8, Ch. 14] and
Uq(n-l)\Uq(n)[9].

Still more recently, the geometry of quantum homogeneous spaces has received
increasing attention: fibered structures on them have been coherently defined and
have made possible the geometrical setting for gauge theories, leading to the study
of the quantum counterpart of the Dirac monopole [10]; the duality aspects between
^-functions and ^-deformed universal enveloping algebra have been introduced into
the subject and have led to an efficient way of analyzing and determining quantum
homogeneous spaces [11, 12].

The explicit calculations have been made, almost always, starting from compact
groups and especially for quantum spheres. However, for the purpose of physical
applications, we should as well consider quantum groups arising from deforma-
tions of kinematical symmetries, as for instance the Heisenberg or the Euclidean
groups [13-16]. This paper deals with the two dimensional Euclidean group, whose
^-deformations have been deeply analyzed by many authors [17-25]: the novelty
of the present approach is that we shall show how different aspects previously con-
sidered can be unified by an appropriate use of quantum homogeneous spaces of
Eq(2), which are recognized as "quantum planes" [26, 27] and "quantum hyper-
boloids" [28]. Since the Euclidean quantum algebra acts canonically on the latter,
the action can be used to recover a quantum analog of many results of the classical
theory and, in a certain sense, to establish the defining automorphisms of a concrete
model of noncommutative geometry. It has also been shown [18, 19] that the notion
of Haar functional makes sense for Eq{2) and can thus be transported to homoge-
neous spaces, so one could mimic the construction of induced representations and,
tentatively, look also for some kind of physical interpretation along the usual lines
of wave mechanics.

The plan of this paper is as follows. In Sect. 2 we give very shortly some
preliminary notions on classical and quantum homogeneous spaces. The method
used is very "didactic": we start in a Lie group context and we express the rele-
vant definitions on homogeneous spaces only by means of algebraic properties of
the functions on them. In this form they are easily realized to be independent
of the commutativity of the algebra and can therefore be extended to a quan-
tum group framework. Some duality aspects will prove to have a practical use
for doing explicit computations. In Sect. 3 we apply the general theory to the
determination of the homogeneous spaces of the two-dimensional Euclidean quan-
tum group, namely quantum planes and quantum hyperboloids. We also specify
a canonical action of Eq(2) on these spaces: this will be used in Sect. 4 to de-
fine an eigenvalue equation for the Casimir of Eq(2) that constitutes the ^-version
of the free Schrόdinger equation. The diagonalization of the action on linear and
angular momentum bases can be defined in a canonical way. In particular, the
angular momentum states are determined by series reducing to Bessel functions
in the classical limit q -» 1. In the case of the quantum plane the Hahn-Exton
functions are recovered. The last section recalls the construction of the "universal
Γ-matrix" [31,23] and provides a new perspective for studying ^-special func-
tions. We calculate the matrix elements of T, recovering the Hahn-Exton functions
and we propose a definition for the zonal and associated spherical functions that
in the case of Eq(2) are written in terms of Jackson ^-Bessel. We thus extend to
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quantum groups those well known methods that have proved to be so fruitful for
Lie groups.

2. Preliminaries on Classical and Quantum Homogeneous Spaces

In order to make the treatment reasonably self-consistent, in this section we give
a short discussion of the principal definitions and properties concerning quantum
homogeneous spaces according to the main lines developed in [11, 12]. For the
sake of clarity we shall first recall the classical definitions and then, by means
of a pullback on the algebra of functions, we shall express them in a form which
maintains its validity also in the quantum case, being independent of commutativity.

Let G be a Lie group and m : G x G —» G its composition law. Let M be a
(left) G-space, with action a : G x M -> M. Let then A : J^(G) -> J^(G) ® #XG)
be the comultiplication and δ : #"(M) —> #XG) ® J^(M) the pullback of the action,
or coaction. From the associativity of the action, a o (id x a) = a o (m x zd), we get
at once the coassociativity for the coaction,

(zV/®(5)o(5 = (J®/rf)o(5. (2.1)

If {e} Q G is the trivial subgroup and j e : {e} c-> G the canonical inclusion, then
y* : #XG) -> #X{<?}) Ξ C is explicitly given by j*f = f(e\ so that ye* is the
counit ε of the Hopf algebra 3F(G). By identifying {e} x M with M, the uni-
tal property of the action reads a o (ye x id) = id \ M -* M and its pullback gives
the equality

(ε (8) W) o δ = W (2.2)

of maps of J^(M) into itself, after the obvious identification of C ® !F(M) with

Consider next a point p E M and the inclusion y'̂  : {/?} <—> M, with pullback
/ ^ j*pf = f(p) #-(M) -> ^{{p}) = C. It appears that y* Ξ ε is an evaluation
and therefore a character of the algebra tF{M)\ ε(fg) — ε(j)ε(g). Since we are
willing to study homogeneous spaces, we first study the action of G on the orbit
Θp through the point p, which gives rise to a map ao (id x jp) : G -* M under
the natural identification of G x {p} with G. The pullback reads then (id (g) ε) o <5 :
J^(M) —> J^(G). It is immediately checked that the associativity of the action is
written as a o (m x jp) — a o (/J x α) o (/J x id x j p ) , so that, if we define Ψ =
(id ®ε)oδ, we get the relationship

Aoψ = (id®Ψ)oδ, (2.3)

showing that, on the orbit Θp, Ψ intertwines the coaction δ with the comultiplication
A. For what concerns the unital property, the map (e, p) ι-> p : {e} x {p} —> M
gives (ε 0 ε) o δ : ϊF(M) —> C which satisfies (ε 0 ε) o ^ = ε, or, equivalently,

ε = ε o ^ . (2.4)

Moreover, if the coaction δ is assigned, it is clear that (2.3) and (2.4) provide
a bijective correspondence between the characters ε of J^(M) and the *-algebra
homomorphisms Ψ : #"(M) —> J^(G) intertwining zl with δ.

Once these properties of the action on an orbit have been established, they can be
used as a model for a general definition. A manifold M is a homogeneous G-space
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whenever the action a is transitive, i.e. whenever the map a o (id x jp) : G —• M is
surjective for some p G M. Similarly, we shall say that a coaction δ is transitive if
there exists a character ε of ^(M) for which the corresponding Ψ : <F(M) —» #XG)
is injective. In fact the main properties of homogeneous spaces can be very briefly
summarized by observing that, according to the definition, the image Ψ(^(M)) is
a subalgebra of #XG) and that, by Eq. (2.3), Ψ(^(M)) is a left coideal in #XG),
since A(Ψ(f)) G 3F{G) <g> Ψ(^(M)) for any / G #"(M). The explicit requirement
of the existence of at least one "point" ε makes the present definition somewhat
less general with respect to those of other authors, [2, 9]: the former, however, is
connected with the intertwining character of Ψ, which makes possible the use of
the duality we present below. We refer to [11] for further details.

Let us give a more precise definition of the subalgebra J^(M) in terms of
invariance properties. It is well known that a homogeneous (left) G-manifold M
is diffeomorphic to the quotient G/H, where H is the isotropy subgroup of any
point p G M. We can then identify the functions on M with the functions on
G which are constant on the //-cosets, namely with those / G #XG) such that
f(xy) = f(x), for x G G, y G H. Denoting by j H : H^ G the canonical inclusion
and by po '. G x H —» G the projection onto the first factor, the //-invariance of /
reads: Δf o (id x jH) = f o pG. Therefore, letting / ι-> p*G(f) = / Θ 1 : ^(G) ->
#"(G) 0 #"(//) and π^ = 7^ : #XG) -> #"(//), we see that

Λ = {f\(id®πH)oΔf = f®\} (2.5)

coincides with #XM). Moreover, by applying (ε (8) zc/) to both sides of the above
condition, we also find

, feJί. (2.6)

Some observations are here in order, although all of them are rather obvious.
In the first place, it is easily seen that π// is actually a morphism of Hopf algebras,
so that its kernel, XΉ, is a Hopf ideal, i.e. an ideal and two-sided coideal that is
invariant under the antipode map S of J^(G) into itself, Sf(x) = f(x~ι), (x G G).
Secondly, #"(M) is not a Hopf ideal of ^ ( G ) : however, as already observed, it is a
subalgebra and, besides that, J^(M) is also a left coideal of J^(G). Indeed an easy
calculation shows that, for an / satisfying (2.5), one gets (id <g> id 0 %H) O (id 0
Δ)o Δf = Δf ® I, which is the very same condition that defines the elements of
#"(G) 0 #XM), thus proving the statement. A third observation we want to make
concerns the possible existence of an involution endowing J^(G) with a *-Hopf
algebra structure. By this expression we mean that the involution * is an antilinear,
antimultiplicative mapping, compatible with A and ε: this implies, in particular,
that (S o * ) 2 = id. If then Jf// is a *-invariant Hopf ideal and π# the projection it
determines, a straightforward calculation shows that <///, as defined by (2.5), is a *-
subalgebra and an S2-invariant right coideal. Finally, as a last point on the subject,
we shall remark that, once the fundamental relations of the theory have been cast
in the form (2.1-2.6), they do not depend any more on the commutativity of the
initial Hopf algebra, so that they can bona fide be assumed as the defining relations
also for homogeneous spaces of quantum groups.

In the remaining part of this section we shall give an "infinitesimal" version of
the arguments so far treated, starting once again from the classical situation and
assuming that J^(G) is the algebra of the representative functions.

If / G #XG) satisfies f(xy) = f(x) for x G G, y G //, then it satisfies also
Y / = Dtf(xetY)\t=0 = 0 for any 7 G L i e # . Now, using the standard " ( / ) "
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notation for the comultiplication, [29], we see that we can write the action of
any Xe LieG as Dtf(xe'x)\ι=0 = DtΔf{x,etX)\t=0 = £ ( / ) / ( D M A / U K ^ U ,
namely

(2.7)

where the map (X,f) H-» {X,f) = Dtf(etX)\t=o can be extended to a canonical and
nondegenerate duality pairing ^(Lie G) x @*{G) —• C. Conversely, once we are
given a nondegenerate duality pairing of Hopf algebras J f i x J^2 —• C, it is a
simple matter of computation to verify that (2.7) defines an action of 2tf \ on 3tf2,
independently of the commutativity of these algebras. It is therefore natural to call
an element / G Jf 2 "infinitesimally invariant" with respect to an element X G Jf7!

Let us now return to the *-subalgebra and left coideal Jί C <F(G) that we
have previously defined and consider the subset Kj( C ̂ (Lie G) of those elements
for which ^# is infinitesimally invariant. Letting τ = * o S, it follows from the
definitions that Kjg is a τ-invariant two-sided coideal and a left ideal in ^(Lie G).
The converse of this statement is relevant for applications. Observe that if K is a
τ-invariant two-sided coideal,

Jiκ = {fe^(G)\K f = 0} (2.8)

is a *-subalgebra and left coideal, and hence it defines a homogeneous space for
the group G. As observed above, this formulation does not depend upon the com-
mutativity of #XG) and will explicitly be used in the next section to produce the
homogeneous spaces of

3. Quantum Homogeneous Spaces of Eq(2)

Let us begin by reviewing the principal facts about the quantizations of the functions
and of the universal enveloping algebra of the Euclidean group E(2), [22].

(3.1) Definition. The Hopf algebra generated by v, v, n, ή, with relations

vn = q2nv, υή = q2ήv, nn = q2ήn,

ήϋ = q2vή, nϋ = q2ϋn, vv = ϋv = \,

coalgebra operations

Aυ = v®v, Δv = ϋ ® v, An — n (8) 1 + v ® n, Δή — ή^l-Vv^ή,

ε{υ) = ε(ϋ) = 1, ε(n) = ε{ή) = 0

and antipode map

will be called the algebra of the quantized functions on E(2) and denoted by
\ Assuming from now on a real q, a compatible involution is given by

v* = ϋ, n* = ή.
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The quantized enveloping algebra °llq(E(2)) = Eq{2) is generated by the unity
and the three elements P±, J, such that

and
ΔJ =J <g> 1 + 1 <g> J, AP± = q~J <g> P± + P±

with vanishing counit and involution

J*=J, P±=PT.

Since J is primitive in Eq(2), q±J are group-like and P± are twisted-primitive
with respect to q~J.

We finally recall the duality pairing between Eq{2) and tFq(E{2)), whose explicit
form is given by [21-23]

(P+,ifrfrit)=qrδStoδttι. (3.2)

We shall now consider the following two different left actions of Eq(2) on
[6, 7, 32, 25]: for X e Eq(T) and / G &q{E(2)\ we let

ί{X)f = (id
(/)

λ(X)f = (S(X) 0 id) °Af = Σ (S(X),f(i)) /(2), (3.3)

where it is evident that in the classical case and for a group-like element X = x e
E{2), / is the multiplication to the right of the argument of / by x and λ the
multiplication to the left of the argument by c"1.

For future convenience, we also recall the most usual definitions of some q-
combinatorial quantities:

[«], = (<f - <rα)/(<? - q~x). W = M« [*-!]»••• M*.

( α ; < 7 ) ί = Π ( l - < r 1 « ) , (3.4)

with s e N , while α can be chosen in Eq{2).

(3.5) Lemma. We have the relations [25]

<f(q±J)υrnsή' = q*rvrnsn',

rnsή' = [t] qr+2s+t-χ \f-χ
ί(P+)vrnsή' = [t]g q
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and

λ(q±J)vrnsήt = 4± ( r + 5-° υrnsfί ,

vrrfr? = [s]q qrJrt-2vrns-χή\

+Wrfrί = -[t]q qr+s+ι ifrfff-1 .

Proof. Taking into account that, for X, Y e Eq(2\ f,ge ^q(E(2)) we have

ί(XY)f = ί{XY(Y) f, λ(XY)f = λ(X)λ(Y) f

and

= Σ t(Xίi))MXί2))g, λ{X)fg = Σ λ(x{2))fλ(x{l))g,

the result follows by using the duality relations (3.2). D

Let us now study some homogeneous spaces of tFq(E(2)) by the procedure
based on "infinitesimal invariance," as explained at the end of Sect. 2.

(3.6) Lemma. Let p e (0, oc). Define

XP = p[J]q+P++qP- , Xip = ip[J]q+P+ - qP- .

Define also

For each p e (0, oo] the linear span of the element Xp or Xip constitutes a τ-
invariant two-sided coideal of Eq(2), twisted-primitive with respect to q~J.

Proof A straightforward calculation shows that the elements of the form A\(q~J —
qJ)+A2P+ +A3P- form a two-sided coideal twisted-primitive with respect to q~J.
After an obvious rescaling that allows to eliminate inessential parameters, the stated
form of Xp and X\p is obtained by the τ-invariance. D

We now present the main result of this section, which consists in determining the
algebras of the functions on the quantum homogenous spaces of tFq(E(2)) solving
(2.8), namely £{Xp)f — 0 and {{Xi9)f = 0. For a swifter exposition we define a
parameter μ that can assume the values — p and ip. We define then

xμ = -fi Uλq +P+ + q (β/μ)P-

(3.7) Proposition. For \μ\ G (0, oc] consider the pair of elements z and z defined
as follows:

z = v + μn, z = ϋ+μn, (|μ| < oc),

z = n9 z = ή, (|μ| = oo).

Then (z9z) satisfy the relations

(qH) :Zf = q2zz + (l-q2),

(qP) :zz = q2zz
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for |μ| < oo and |μ| = oo respectively. Moreover they are connected by the invo-
lution * and generate the ^-invariant subalgebra and left coideal

of !Fq(E(2)). They thus define quantum homogeneous spaces respectively called
quantum hyperboloίd and quantum plane (see [28]). The explicit forms of the
coactions read

(qH) : δz = v®z + μn®\, δz = ϋ®z + μn®\,

(qP) : & = D(8)z + / i 0 l , <5i=iJ®z + w<g>l.

Proof The proof is much easier for the case of the quantum plane. Indeed, if we
look for polynomials / = Y^MriSftv

rnsήt (r e Z; s,t G N) that solve the equation
^C^oo)/ — 0, it is immediately realized that the space of solutions is formed by the
polynomials in n and h~, thus reproducing a well known result (see, e.g., [26]).

Let us discuss the case |μ| < oo. We define x — vn and y = vή, so that
we can write ^q(E(2)) = φ ^ e Z Ad, where Ad is the linear space spanned by
{vdxayb}a,beN. Since ί(Xμ)Ad C Ad, we also have B = @deZ Bd, with Bd = B Π
Λ/ We solve in Bd the equation ί(Xμ)fd = 0 for polynomial elements of the form
fd — vd Σs teN Q^t^Ϋ- The recurrence equation we deduce results in

fi[d + t-s]qgs,t + [/ + \\qd~s+ι gSίί+1 - (μ/μ)[s + 1 ] , / - ' - 1 ^ + 1 , , = 0. (3.8)

The content of (3.8) will be discussed according to the following strategy. In the
first place we determine the two spaces of the solutions depending on v and x only
and on v and y only respectively. We then show that the space B is generated by
these solutions.

In the former case the recurrence equation (3.8) simplifies to

μ[d- s\qgSto = [s + l]qq
d~ι gs+h0 .

If we choose, without loss of generality, 00,0 = 1? using the combinatorial identity

and the standard definition of the #-hypergeometric function χφQ [8], we find

fa = vdΣ , 2 Vs (^q2xy=vdM<i-2d;<i2>-M2x).

s=o (q q )s

Since (q~2d\ q2)d+\ vanishes for d ^ 0, we get

where we have used the standard notation for the ^-binomial coefficients (see, e.g.,
[33]). We therefore conclude that for d ^ 0 the polynomial solutions independent
of ή are proportional to zd. In the very same way it is found that for d ^ 0 the
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polynomial solutions independent of n are proportional to

fd = vd

 {φ0(q~2d; q~2, ~μq~2 y) = (v + μn)~d : = z w .

We now observe that zdχzdl G Bdχ-dl and we define Bd, (d ^ 0), to be the linear

subspace of Bd generated by {zd+m zm}m^o We will show that indeed Bd —Bd.
For this consider again the general Eq. (3.8). As we are looking for polynomial
solutions fd G Bd, we shall define so = degx fd and to = deg fd to be the highest
degrees of fd in x and y respectively. Take s = so- It is easily seen that there exists
an integer 7 ^ to such that gSQ,t + O only for t ^ 7 and such that d + ? — so — 0.
Analogously taking t = to there exists 7 ^ so such that gs^ tQ + 0 only for s ^ ? and
d -f to —7— 0. From this we deduce that to + so = t + ? and therefore Ίs = so and
7 = to. Hence ^5o, ί0 is nonvanishing and so = d -f ίo.

Take now in #</ the linear subspace B^ = {fd G Bd\άQgy fd ^ ô} Since

degx z
d+t° zto = d + to and deg zrf+ί°fίo = to, for any /^ G J5^ we can determine

α G C(^) such that

fd = αz^+'of/0 + / , with / G 4 0 " 1 .

Due to the fact that the solutions in B® are multiple ofzd, it turns out that Bd = Bd.
Repeating the same argument for d < 0, the result B = φ ^ e Z Bd follows.

It is now straightforward to calculate the relationships between z and f as well
as the coactions on these generators and to check that they are of the form (qH)
stated in the proposition. D

4. Free ^-Schrodinger Equation

In this section we shall write the canonical action of the Casimir of Eq(2) on the
homogeneous spaces so far determined,

λ(P+P_)ψ=Eψ. (4.1)

This will constitute the natural ^-analog of the free Schrodinger equation for the
functions on the plane and we shall discuss its solutions by diagonalizing the Casimir
in two bases which are the natural ^-counterparts of the plane wave and of the
angular momentum bases.

By virtue of (3.5) the following relations hold for the (qH) case:

λ(q±J)zjzm =q^-m^zjzm , λ(P_)zJzm = μ [m]q q-J-2zJzm-{ ,

?zm = -μ [j]q q~m+ι zi-χzm . (4.2)

The analogous relations for (qP) are simply obtained from (4.2) by letting μ = 1:
we shall adopt this convention for what follows. The A-action of the Casimir P+P-
on a formal series φ is therefore

j , m
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so that, when substituted in (4.1) with the position $ = —E/(μμ), yields the recur-
rence relation

q-J-"-2 [j + i ] f [m + i ] ? c.+um+, = sCjιm. (4.3)

(/) The plane wave states. We begin by investigating solutions of (4.1) that are
factorizable in the variables z and z. This means that we look for coefficients of
the form

c j 9 m = * ' f Ί | q-*U'm\ (4.4)

where k and k are quantities to be determined while g^ 7' m ) is required to factorize
in its arguments.

A first relation for solving the problem can be written by substituting (4.4) in
Eq. (4.3). We get

In order to obtain more information we shall now choose a second element to be
diagonalized in addition to the Casimir. This procedure is completely analogous
to the classical one, where we take one component of the momentum or both, as
they are mutually commuting. However, by making the apparently straightforward
extension to the ^-framework and diagonalizing P+ and/or P-, we do not find any
result in the wished direction. The right choice is instead that of diagonalizing the
two commuting operators b- = —q~JP- and b+ = P+qJ: the reason for this fact
has to be searched in the duality properties that have been explained in [21-23] and
that will be resumed in the next section, when dealing with the universal Γ-matrix.
Consider therefore the eigenvalue equation λ(b-)φ = βφ. Expanding φ in powers
of z and z and performing the usual computations, we find that the coefficients of
the expansion satisfy the relation

-μq~m-2 [m + l]q c,- w + 1 = βcj-m. (4.6)

From (4.4-4.6) we deduce the system

ΰ(j\ m) — ΰ(j + 1, w + 1) — j — m — const\,

ΰ(j\m) — ϋ(j\ w + l ) - m = consti,

where, up to an inessential rescaling, the two constants can be fixed to zero. The
factorization requirement previously made, yields the solution

#U,m) = - j A/ - 0 - j m{m ~ 1 } '

and finally, from (4.5),

S = kklq2.

From $ < 0 we have kk < 0. We can therefore formalize these results as follows.

(4.7) Proposition. The eigenvalue equation (4.1) is satisfied by the states

Ψk£ = Eql[{\ - q2)kz] Eq2[(l-q2)kZ],

where E = —μμkk/q2 and Eq(x) = oφo(—', —',q, —x) denotes a q-exponential [30].
φk£ are also eigenstates of λ(b- ) with eigenvalue —μk/q2 and of λ(b+) with eigen-
value —μk.
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Proof. The only thing we still have to prove is that the actual expression is given
in terms of ̂ -exponentials. However, collecting the results so far found, we have

which just gives the stated result once (3.8) is accounted for. D

(zϊ) The angular momentum states. Instead of diagonalizing λ(b-) as in item (z),
we shall now discuss Eq. (4.1) with the additional diagonalization of qJ. From (4.2)
it appears that a solution φ of the eigenvalue equation for qJ has an expansion in
terms of z and z whose coefficients cjt m satisfy the condition m—j = ±r = const,
r > 0, so that the eigenvalue is q±r. Letting c^m = δm-j,±rdj, Eq. (4.3) reduces
to

and it is solved by

We therefore state the result as follows.

(4.8) Proposition. The eigenvalue equation (4.1) is satisfied by the states

,/, _ 9 ώ τ{q) r Λ I _ Q & -r τ(q)

ψr - M ^ Jr z and ψ_r - w z Jr ,

where

4q) = Σ n , Λ r 1 | qK1+l)Wy?z>. (4.9)

Moreover ψ±r are also eigenfunctίons of qJ with eigenvalues q±r. The series (4.9)
reduces to the Bessel function Jr(zz) for q —* 1.

(4.10) Remarks, (i) The expression Jr can be written in terms of the variable
zz. For the case of the quantum plane, we observe that 2zi — q~^J~ι\zz)J, so that

oo aJ'U-l)

4q) = Σ (-)\2 z w ^ i ) 2, [q2\l-q2)2EV(q2zzy

namely the Hahn-Exton ^-Bessel function [18, 30].

(iί) For the (qH) case we have the following relation:

z>z>=(l-zz;q-2)j.

This can be proved solving the functional recurrence relation

zzPn^(q-2zz + (1 - q~2)) = Pn(zz),
obtained by means of the normalization Pn(zz) = znzn and by the use of the iden-
tity zz(zz)1 = z(zz)ιz. It is therefore immediate to give a formal expression for
Jr m terms of a g-hypergeometric function: however, contrary to the (qP) case,
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the expression zz appears now in a parameter rather than in the argument of the
hypergeometric.

Let us refer to [18, 19] for a detailed discussion on the Haar functional for the
quantum group ίFq(E(2)). Here we will be concerned with the standard orthonor-
mality relations between the \j/r.

(4.11) Proposition. The states ψr give rise to the unitary representation of Eq{2\

λ(J)φr = rψr, λ(P+)ψr =Rψr+\ , KP-)Ψr =Rψr-\ ,

where R = μSxl2.

Proof. The result is obtained by a direct calculation using (4.2) and (4.9). D

5. Universal J-Matrix and Special Functions

In this final section we want to connect the previous analysis with what is known
as the "universal T-matrix" [31,23]. To our knowledge the procedure we are going
to present is a novelty and it has at least two interesting features. Indeed from a
theoretical point of view it shows that important concepts in Lie group representa-
tions can be extended to a quantum group context, provided that the method used
for the extension is "proper," namely it is only based on canonical objects of the
theory. From a practical point of view our construction is very transparent, since it
permits an explicit definition of most ^-special functions and a study directly related
to the quantum symmetry in a completely close analogy to the classical case.

Let us briefly recall the construction and the main properties of the universal
Γ-matrix [31]. Consider two Hopf algebras in nondegenerate duality pairing that
we shall assume as the quantization of the universal enveloping algebra of a Lie
group G, ^ ( L i e G), and the quantization SFq{G) of the algebra of the canonical

coordinates of the second kind of $F(G). Let {XB} and {x^} respectively be two
dual linear bases, with A and B running in an appropriate set of indices, so that
{x*,XB) = δj. We define the element T e &q(G) <g> ^ ( L i e G ) as

If we want to illustrate the construction on the explicit example of a compact Lie
group G, denoting by Xk , (k = 1,...,«), the generators of LieG, a basis of the
universal enveloping algebra is of the form X& = X^X^2 X£n- The dual elements
xΛ € J^(G) are then r 4 = x^x^2 -x^n/(a\\a2\ an\), where xt are the canonical
coordinates of the second kind of G and (xk,Xj} = 3^-. Therefore the universal T
matrix results in

an\

It appears therefore that the evaluation of T on an element of a neighborhood of
the identity of the group G reproduces that element expressed by means of the
exponential mapping, so that the universal matrix can be regarded as a resolution
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of the identity mapping of G into itself. Moreover, if we choose a representation
of the Lie algebra, we correspondingly obtain matrices whose entries are expressed
in terms of special functions: this property extends to the quantum case, despite
the fact that the xA are now elements of a noncommutative algebra. Indeed if we
consider a representation M of ^ ( L i e G) the elements tξ = ((1 0 3L)T)rs e #^(G)
satisfy the usual definition (tξ, X) = 01{X\S for every X e ^ ( L i e G).

In the following we shall explicitly treat the case of Eq(2). As already antic-
ipated in Sect. 4, we define J, b- = —q~JP-, Z?+ = P+qJ as the generators of
tflq(E(2)) and π, π± the corresponding canonical coordinates of the second kind

of &g(E(2)). Introducing the ^-exponential eq(x) = J2%o xJ/(q',q)j = ^ ( 0 ; -;q,x)
as in [30], the following result is proved by a direct calculation.

(5.1) Proposition. We have the duality relations

where π, π± form the Hopf algebra specified as follows (q = ez):

[π+, π_] = 0, [π, π±] = -2z π±

and
Δπ- = π_ (g) 1 -f e~π®π- , zJπ+ = π + ® e~π + 1 0 π + ,

^ ( π . ) = - e

π π_ , 5(π+) = - π+eπ,

with π a primitive element. We therefore find the universal T-matrix

The algebra ^q(E(2)) is obtained as a subalgebra of J^(£(2)) by letting

v = e~π, n = π_ , « = e π π + .

The matrix elements obtained in a natural way from the universal Γ-matrix using
the representation (4.11) are precisely the matrix elements t^s: this will give a clear
connection of our theory with the approach described in references [17, 18].

(5.2) Proposition. The matrix elements ((1 0 λ)Γ) are given in terms of Hahn-
Exton q-Bessel functions.

Proof. From the the expansion of eq(x) and using (4.11), after some lengthy but
straightforward calculations we have, for s > r,

-<32rs~r

ns~rvs

 2 ( ί _ Γ

(q2;q2)s-r

x ' ' 9

An analogous result is obtained for s < r. O
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(5.5) Remarks, (i) We see a perfect agreement with the results of [18], provided
that the identifications v = α2, v = δ2, n = —q~ιl2βa, ή = qι/2δy, r = — z and s = —j
are done.

(ii) We can make a comparison of our results with those of ref. [34]. The q-
exponentials appearing in the latter paper are defined in the universal enveloping
algebra by a method based on appropriate choices which are not connected with
any canonical construction. However they prove to be efficient tools to calculate the
matrix elements of the representation.

We shall conclude the paper by proposing a definition of spherical elements
based on the use of the Γ-matrix and in close analogy with the classical theory
[35]. We shall then specify the result to the case of Eq(2).

(5.4) Definition. Given a τ invariant two sided coideal Kjt in %q(LieG), consider
a unitary representation 01 of ^ ( L i e G ) and suppose there exists an element
ξ spanning a one dimensional kernel of KJI in the representation space of 01.
Denoting by ( , ) the scalar product of 0ί, we define the zonal spherical function
*zon °f ^ e rePresentation M with respect to Kji as follows:

We then call associated spherical functions the elements

where {ξk} is a basis of the representation 01.

(5.5) Lemma. For any Y e Kj? the zonal spherical function tfon satisfies

λ(Y)tm = 0 , ί(Y)tM = 0 .
v ' zon ? v ' zon

For the associated spherical function tf we have ί(Y)tf — 0, for any Y G K-je.

Proof We will prove the first relation only. The proofs of the other statements are
similar.

From the definitions of the action λ and of the universal matrix T, we have:

where we used the τ invariance of 7 and the unitarity of the representation 0i. D

In the case of Eq(2) the kernel of Xμ in the representation (4.11) with R —

iy/E(μ/\μ\) has been calculated in [18]: it is given by

where JΓ

(2) are the Jackson g-Bessel functions and σ = 2q(q — q~ι)\/E/\μ\. Using
this result and our definitions of the spherical functions it is straightforward to prove
the proposition that follows.
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(5.6) Proposition. The zonal spherical function of the representation given in
(4.11) with respect to Xμ defined in (3.6) is

zon -̂—' " ^
r, 5

αrc<i the associated spherical functions are

(5.7) Remarks. In this final remark we shall compare our presentation with the one
given in ref. [18]. In [18] the (s,t) - spherical elements are defined as the elements
a e &q{E{2)) such that ί{Xs)a = r(Xt)a = 0, where r(X)a = Σ ( α ) ( X , a(l)) a{2y

We can easily relate our definitions to the (s,s) - spherical function: indeed it
can be observed that if a is i and r invariant, then r(q~J)a is £ and λ invariant.
Therefore our definition implies the same calculations in order to determine the
zonal spherical function: still we consider it useful for the more transparent analogy
with the classical theory and for the simple extension to the case of the associated
functions.
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