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Abstract: We consider the Schrodinger equation with a random potential

-yn+\ + (Qn - EI)yn - yn-\ = 0 ,

where Qn is a sequence of independent identically distributed random symmetric
m x w-matrices with real valued elements, yn £ Rm, — oo < n < oo, E is the real
parameter, and / is the identity matrix. We show that if the smallest Jordan algebra
of matrices containing the support of the distribution of matrices Qn coincides with
Jordan algebra of all (real-valued) symmetric matrices then for all but (maybe) a
finite number of values of E all the Lyapunov exponents of our Schrodinger equation
are different (and thus the spectrum of the corresponding Schrodinger operator is
pure point).

General Remarks and Main Notations

The study of spectral properties of random Schrodinger operators on a strip (the
well-known Anderson model [A]) was initiated in [G] in 1980. At that time, the
papers [GM1, GM2] did not yet exist and the case of potentials with singular dis-
tributions (singular potentials) couldn't be solved by means of the techniques used
in [G]. That is one of the reasons why localization has been proved there for op-
erators with potentials having continuous density distribution. One more reason is
worth mentioning. In [GMo, GMoP] localization has been understood for the first
time and for the strictly one-dimensional case. The main goal of [G] was to go
beyond the one-dimensional Anderson model and because of that the questions
concerned with conditions of existence of any kind of densities were considered to
be of much smaller importance compared with those related to the understanding
of the mechanism of localization phenomena.

In [Lal,La2] localization and exponential decay of the corresponding eigenfunc-
tions has been established under similar conditions. A better understanding of the
same phenomena was the main goal also for these works and the techniques used
in [Lal,La2] did not solve the case of singular potentials.



348 I.Ya. Goldsheid

After the appearance of [FS,FMSS] it became clear that, in order to prove
localization, it is enough to establish certain regularity of the integrated density of
states, to have some kind of weak dependence of potential values at different sites
of the lattice, and positivity of Lyapunov exponents (the latter is equivalent to the
exponential decay of Green's function). For the one-dimensional Anderson model
with a singular potential, the corresponding program has been carried out in [CKM].
At that time the basic obstruction for the extension of the proof given in [CKM] to
the case of the strip was the absence of any constructive conditions which would
allow one to understand the structure of corresponding Lyapunov exponents. But
as soon as this structure was described in [GM1], the preprint of [KLS] containing
the proof of exponential localization on a strip for operators with singular potentials
appeared. The same statement was independently announced in [GM3].

Today, as a result of this activity, in order to prove localization on a strip, one
needs to establish that all the Lyapunov exponents of the product of corresponding
independent symplectic matrices are different ([KLS]). In ([GM2]) this problem
was reduced to the calculation of the Zariski closure of the group generated by the
support of the distribution of these random matrices.

In the present paper, we provide a systematic approach for calculating Zariski
closures of certain natural classes of groups of matrices generated by random matrix
valued potentials. The description is complete for this class and is given in terms of
properties of naturally associated Jordan algebras. The examples include in particular
the so-called diagonal disorder (previously considered in [GM1,GM2]) and the new
examples of the off-diagonal disorder acting in the "crossing" direction. Thus we
indicate new classes of potentials for which exponential localization holds.

We do not give a proof of localization here. It follows directly from the re-
sults of this work about Lyapunov exponents and the corresponding theorems from
[KLS]. The following problem naturally arises in our context and remains unsolved:
to prove localization for the classes of systems where Lyapunov exponents have
multiplicity at least two. We indicate the corresponding classes of potentials and it
is clear that localization should hold because the smallest non-negative Lyapunov
exponent is strictly positive also in this case. It is clear in advance that the corre-
sponding eigenfunctions would also have multiplicity at least two.

Let us make several remarks about references. First of all, our list of them is
far from being exhaustive and the interested reader should use [BL, CL] for further
information. However, the papers [L2] and [KS] should be mentioned here. It is
shown in these papers that if the randomness of the potential is strong enough
(the so-called unpredictability condition) then the top Lyapunov exponent is strictly
positive for almost all values of energies. On the one hand this condition is much
less restrictive than the independence of potentials at different sites of the lattice. On
the other hand the methods of [L2] and [KS] do not provide the complete description
of all Lyapunov exponents whereas the methods of [GM2] do that for independent
potentials. The methods of the three approaches ([L2, KS, and GM1,GM2]) are
different and an interesting task is to combine these different techniques in order to
understand the complete structure of Lyapunov exponents for stationary potentials.

We give now the list of main notations which will be used in the sequel. The
corresponding definitions can be found in the text of the article:

^-closed set of m x m symmetric matrices; it arises as the support of measure μ.

G^r-the group generated by matrices A = ί j , where Q G 2Γ.
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G^r£-the group generated by matrices A = ί j , where Q G &~, E is a

real parameter and we usually write Q - E instead of Q - EL
,/jτ-the Jordan algebra of symmetric matrices generated by the set 3~.

G/^-the group generated by matrices A = ί j , where Q G &~rf~.

^ir-the generalized Jordan algebra of symmetric matrices generated by the set &~.
Γ£-the generalized Jordan algebra of symmetric matrices generated by the set

.Q€Γ}.
-the linear space of matrices generated by the set of products b\b^ where

b2 efyr.
Zc(G)-Zariski closure of the group G.
LG-Lie algebra of the Lie group G.
LZc(G)-Lie algebra of the Lie group Zc(G).
I-m x m identity matrix.

1. Introduction and Formulation of Results

Let (Ω,&,P) be a probability space, where Ω = {ω} is the space of elementary
events, J* is a er-algebra of measurable subsets of £2, and P is a probability measure
on the measurable space (Ω, ̂ ).

Consider the Schrodinger equation with a random potential

-yn+\+(Qn-E)yn-yn-\ = 0, (1)

where Qn = Qn(ω) is a sequence of independent identically distributed (i.i.d.)
random symmetric m x m-matrices with real valued elements, yn G IRm, — oo <
n < oo. E is the real parameter and Q — E is just a short notation for Q — El
with / being the identity matrix. By μ we will denote the distribution of matri-
ces Qn\

where Γ is any Borel subset of the space of symmetric matrices.
By &~ we denote the support of the measure μ which by definition is the largest

closed subset of the space of symmetric matrices such that the μ-measure of every
open neighborhood of every point of &~ is strictly positive.

Throughout this article we suppose that

Equation (1) can be rewritten in the form
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and, thus, the asymptotic behavior of the solutions of Eq. ( 1 ) is determined by the
asymptotic behavior of the product of matrices An,

S(n):=Aa Aι.

The aim of this paper is to give sufficient conditions under which all the Lyapunov
exponents of Eq. (1) are distinct.

We recall now several definitions and results related to our situation. Consider
the following Cartan decomposition of S(n):

S(n) = U(n}D(n)V(n) ,

where [/, V G O(2m), and D(n) = diag(</ι (w ),..., d2m(n)) with d\ ^ d2 ^ ^
d2m > 0. The £th Lyapunov exponent yk is defined by

yk := lim -logdk(n) . (3)
n^oo n

Existence of the limits (3) for almost every ω and their independence of ω are
guaranteed by the Subadditive Ergodic Theorem [Ki] and ergodicity of the underly-
ing dynamical system (which in our case is just a consequence of i.i.d. property of
the sequence of matrices Qn). The meaning of values yk is explained by Oseledets'
multiplicative ergodic theorem (s.f. [O]; more recent versions of the proof can be
found e.g. in [L1,GM2,R]). Namely, there exists a random basis /ι(ω), ...,/2W(ω)
in IR2m such that

lim -\o%\\S(n)fh\\=ykn^oo n

and for every vector x G IR2m there exists

lim - log \\S(n)x\\ = γ(x)
n-^oo n

with γ(x) = y^ if and only if x = a^fk + -\- 02w/2w> where \ak\ > 0.
We turn now to our special case. It is straightforward to check that matrices of

the form
Q-E --I \

o )
with Q = Q* satisfy the following equation:

A*JA=J. (5)

Here J is given by

The set of all real matrices A satisfying Eq. (5) with our specifically chosen J is
by definition the symplectic group Sp(m, IR). It follows from (5) that

Clearly, yk = -y2m-k+\, and

71 ^ 72 ^ ^ Ίm ^ 0 .
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We need one general result from [GM2] (it was first stated in [GM1]). The way we
formulate it here is most suitable for our particular case of the symplectic group.

Theorem 1.1. Suppose that An is a sequence of Lid. matrices belonging to
S/>(m, IR) and such that the Zariski closure of the group G generated by the
support of the distribution of An coincides with S/?(ra,IR). Then all the Lyapunov
exponents of the product Sn =An -A\ are different and the smallest non-negative
one is strictly positive:

7! > 72 > > Jm > 0 . (7)

We recall that the Zariski closure of a subset B C IRΛ is the smallest algebraic
variety which contains this set. In the sequel Zc(B) will denote the Zariski closure
of B.

It turns out that it is convenient to formulate our results in terms of the following
definition.

Definition. A linear space of symmetric matrices / is a Jordan algebra if it has
the following property:

if a,b G / then {a,b} := ab + ba E / .

Denote by /$- the Jordan algebra of symmetric matrices generated by the set
^Γ, that is to say, the smallest Jordan algebra which contains 2Γ .

We say that the spectrum of a symmetric matrix Q is exceptional if at least
one eigenvalue λ of Q is such that -λ also belongs to the spectrum of Q (let us
note that if λ = 0 belongs to the spectrum then the spectrum is exceptional).

Definition. We say that the real value EQ is exceptional // the spectrum of the
operators Q — EQ is exceptional simultaneously (!) for all Q E &~ .

Remark. It is clear that the number of exceptional points cannot be larger than
^m(m+ 1) because this is the maximal possible number of exceptional points of
one matrix. It is also clear that if the set £Γ contains at least two matrices it is
very "reasonable" then to expect that the set of exceptional points will be empty.
Nonetheless, the exceptional finite set of E's mentioned above may really exist. In
the last section we give an example of a distribution such that its support &~ is
irreducible but yλ —y2 for one particular exceptional value of E.

We are now prepared to formulate the main results of this paper.

Theorem 1.2. Suppose that the set 3~ is such that the Jordan algebra /$- co-
incides with the set of all m x m symmetric matrices, then for all but (maybe)
a finite number of the exceptional values of the parameter E the first m Lya-
punov exponents of the sequence of matrices S(n) are different and the smallest
non-negative one is strictly positive.

Let G^E be the group generated by matrices (4). It is clear that Theorem 1.2
is a consequence of Theorem 1 . 1 and the following result.

Theorem 1.3. If the set 3Γ is such that the Jordan algebra #& coincides with
the set of all symmetric matrices, then for all but (maybe) a finite number of the
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exceptional values of the parameter E

Zc(Gr,E) = Sp(m,yi). (8)

In turn, Theorem 1.3 is a consequence of the two following results.

Theorem 1.4. If the set 9~ is irreducible then for all but (maybe) a finite number
of the exceptional values of E

where G/^ is the group generated by all matrices of the form ( \ with

Lemma 1.5. Suppose that the set 2Γ is irreducible and /&• contains a projector
of rank one. Then /$- is the set of all symmetric matrices and

Remark. The irreducibility of the set SΓ means by definition that no nontrivial
subspace of Rm is invariant with respect to the action of Q on this subspace for all
Q £ y . In other words we suppose that there does not exist an orthogonal matrix
C such that simultaneously for all Q £ ^Γ

C*QC-(Q> °Q \ 0 Q"

with the sizes of blocks Q' and Q" independent of Q. It is easy to see that if
ZΓ is reducible then our system of equations (1) is equivalent to its two disjoint
subsystems of exactly the same structure. To see this, one has just to make the
following change of variables: y'n — Cyn. It is also clear that if ^Γ is reducible then
(8) is false; in this case Zc(G^r^) C S/?(wiι,]R) x S/?(w2,IR), where m\ and m^
are the corresponding sizes of blocks Q' and Q" . So, the irreducibility condition is
in a natural sense the necessary one.

All the new results formulated above contain the reference to exceptional points.
However in many cases, the exceptional points do not exist. The corresponding
classes of potentials have to be a bit richer of course. For applications, it suffices
rather often to use the following result.

Theorem 1.6. Ifjhe set 9~ is irreducible and there exist two operators Q, Q £ 3~
such that Q — Q is proportional to a projector of rank one, then /^ contains all
symmetric matrices and for all values of E relation (8) holds.

2. Calculation of the Zariski Closure of G& , E and Proofs of Results

In what follows, we denote by LG the Lie algebra of a Lie group G.
The plan of this section is the following one. First, we fix an arbitrary value of

the parameter E and for this E describe the Lie algebra of the Zariski closure of
Gy^E This description is the main technical result of the paper and is formulated as
Theorem 2.1 below. We show then that G^E is either a subgroup of G0 (where by
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GO we denote the connected component of the identity of ZC(G^E)) or belongs to
the subgroup GoUJGo which consists of two connected components of Zc(Gr^E\
These results hold under the only condition that the set 3~ is irreducible. After that,
under the additional condition of existence of a rank one projector in /$- we show
that LZc(G^EΪ — LSp(m^) and thus ZC(G& ,E) = S/?(/w,]R) for non-exceptional
values of E. Altogether this constitutes the proofs of Theorem 1.4 and Lemma
1.5 and according to the explanations given above proves Theorems 1.2 and 1.3.
Finally, we show that Theorem 1.6 also follows from Theorem 2.1.

2.7. Some Preliminary Calculations. First of all let us note that Zc(Gjr£ ) is a Lie
group. As far as Sp(m, R) is a connected group, to prove (8) it is enough to show
that Lie algebras of the groups Zc(G^z) and Sp(m,ΊR.) coincide:

LZc(G^E) — LSp(m,IR) . (9)

It is a well known and elementary fact that Lie algebra of Sp(m, R) consists of
matrices of the form

a b\

t>2 —a*

where a is an arbitrary m x m-matrix, and b\9b2 are arbitrary symmetric m x m-
matrices: b\ = b\,bι = b\. We have to show that for all but a finite number of
values of E all the matrices of this form belong to LZc(G^E\ In fact, we are
going to do more than that. Namely, we describe the Lie algebra of ZC(G^E) for
arbitrary E. For this description we don't need the properties like the existence of
rank one projectors (which were mentioned in our theorems). These properties will
only be used for descriptions of LZc(G^E) and Zc(G^^) for "typical" values of E.

Let us start with a remark which uses a simple property of Zariski closure.
Namely, if

then

(A,A7

:G*-,E (13)

Evidently matrices of form (12) and (13) constitute subgroups of G?,E and thus
T,E) contains the Zariski closure of these subgroups. So, we have

,0 /

where α is an arbitrary real number. It follows from (14) that

0 α(gι -Q2)\ _ _ _ . / 0

0 0
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2.2. Description of the Lie algebra LZc(G*r\ For a while, the fact that our group
is the Zariski closure of G,^E will not be used for the calculation of the Lie algebra
LZc(Gjr #). All that we need are properties (14) and (15), the irreducibility condi-
tion, and also the special form of generating matrices given by expression (4). We
are also not going to use the dependence of our matrices on the parameter E. Let

Λ (Q ^A=(ι o
where Q G &~ and let Gg- be the group generated by matrices (16).

Denote by $ the set of symmetric m x ra-matrices which is defined as follows:

- / Ύ° b\ (° °} ~ \
~ I \o o y G c an \b o) }'

Let <£ be the set of m x m-matrices such that

and I I G LZc(Gjr) > . (18)

Evidently, & and 5£ are linear spaces and it is clear from (15) that 0t is nontrivial.

Remark. The definitions of ^ and JS? are using the symmetric part of LZc(G^).
Had we known that our Lie algebra is symmetric, that is that from z G LZc(G^)
it follows that z* G ZZc(G^), we could have used simpler definitions like e.g.

Γ /O b
$ = < b : there exists z G LZc(G^) such that z = (

We will see later that in fact ZZc(G^) is symmetric. More precisely, we will prove
that J G Zc(Gjr). The symmetry property is then a consequence from the following
basic equation z*J -f Jz = 0 which is satisfied by the elements of our Lie algebra.
This equation implies that z* = —JzJ~λ G LZc(G^r) if z G LZc(G^).

We shall use several relations between linear spaces & and ̂ . These relations
result immediately from the application of the basic Lie operation to matrices

a 0 \ _ / O b\ _ / O 0

o -«*/' ^ " v 0 o/ z ~ \c o
Namely, the direct calculation of yz — zy and xy — yx shows that

if b, c G 9t then be G JS? , (20)

if a G J2?, b G 91 then ah + ba* G ̂  . (21)

Now, from (20), (21) it follows that

if b, c G 9t then bcb e & . (22)

Definition, ίfe soy /Aflί ίA^ linear space of m x m symmetric matrices & is a
generalized Jordan algebra (GJA) if it satisfies property (22).
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Remark. Let us check that a Jordan algebra is also a GJA. Indeed, if b, c G / then
{{c,b}b} = b2c + cb1 + 2bcb G / and thus bcb G /.

Let ^^ be the smallest GJA which contains ^~ and Ĵ > the smallest linear
space of matrices containing all the products of the form be where b,c G ffiy.

Theorem 2.1. If the set £Γ is irreducible then the Lie algebra LZc(G^r) consists
of matrices given by (10) with arbitrary a G =%r and arbitrary b\,b^ G &ίg-.

Proof. The following general statement can be easily checked by means of a direct
calculation. Suppose that J> and £? are linear spaces of matrices, J> satisfies property
(22), and & is generated by all the products of the form be where b,c G &. Then
the set of matrices (10) with arbitrary a £ <£ and arbitrary b\,b2 G J> is a Lie
algebra.

In particular this is also true if $ — 3%$- and «£? = J§?V. Let us denote this Lie
algebra LQ. Now we go back to our special ^ and JS? and show that in our case
M = $.3- and thus LZc(G^) = L0

We show first of all that $ D $3-. To do that we need several more properties
of 91 and &. It follows from (20) and (21) that

ifbe& then 62/7+1 G ,̂ « = 1 , 2 , . . . , (23)

i f Z ? G ^ then b2n £ £>, w = l , 2 , . . . . (24)

Next, the set ̂  contributes to the enlargement of ̂  (and thus also of Z£) in the
following way. If A and * are given by (16) and (19) then

, /-α* βα + β*ρ
^ c^-1 = ' ^ ^

0 α

1 G Z/Zc(Gjr), (25)

and thus
i f α e S?, <g G ̂  then d := gα + β*g G ̂  . (26)

Combining (21) and (26) we obtain

Lemma 2.2. If ZΓ is irreducible then I G $£.

f. Consider b G ̂ , Z?φO. Then

(28)

where all Λ, z 's are different eigenvalues of Z?2 and ^ are corresponding orthogonal
projectors. If A ? Φ O then evidently

Us = (b2/λs) π a-^r1^2-/,), (29)
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and us e & because of (24). Consider now the following projector:

u = Σ «« £ X . (30)
/ : / / φ O

Obviously, Rankw = RankZ? = RankZ?2. Thus u — I iff RankZ?2 = ra. In this case,
the proof is finished.

Suppose now that RankZ?2 < m. We will then use the projector u to construct
another projector v G & with the property Rank v > Rank u. This would obviously
mean that the maximal rank of projectors belonging to if is m and would complete
the proof of our lemma.

To construct v, let us substitute a = u into (27). We obtain then

+ uQ + Qu£ @ (31)

and thus
uQu G & , (32)

and
h:=uQ + Qu- 2uQu G ̂  . (33)

Let π denote the kernel of u and π^ be the subspace onto which u is projecting.
It is easy to check that h2 G <& and preserves π (and of course also π-1).

If φ £ π, then /&</> = wζλ/> and /*2φ = (/ — u)QuQφ. Using the relation uφ = Q
we obtain

(A2φ, </>) = (β«β<£, (/ - «)φ) = (wgφ, βφ) = ||wβ</>||2 . (34)

We choose now φ from π and Q G ̂  so that Qφ £ π. The latter is possible because
y is irreducible. Then (h2φ,φ) > 0. It is evident that Rank(/*2 + ύ) > Rank w and
h2 + u £ £*. Now we obtain i; from h2 + u in the same way we have already
constructed u from b2. Then Ranki; — Rank(/z2 + M). The lemma is proven. D

Corollary. Substituting I G & into (26) we obtain that

if Q G <T then β e ̂  . (36)

It is now a trivial consequence of (22) and (36) that ̂  D ^£jr and thus also 5£ D
y?y and

LZc(Gr) D LO .

We shall prove now that in fact the following equality holds:

LZc(Gjr) = LQ. (37)

To do that we use the fact that we are dealing with a Zariski closure.

Lemma 2.3. The matrix J given by (6) belongs to Zc(G^\

Proof. If A is given by (16), then it follows from (36) that ί ~ } e LQ and

therefore

-
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(We recall that GO is by definition the connected component of the identity of
).) But A G Zc(G,*r) by definition and thus

Corollary. LZ(Gjr) is symmetric. For proof, see the remark at the beginning of
Sect. 2.2.

Lemma 2.4. The Lie algebra LQ is algebraic (that is LQ is a Lie algebra of some
algebraic group).

Proof. Lemma 2.2 tells us that x = ( J G LQ and from (36) we know that

y = ( J G LO Evidently then xy — yx = 2y G LQ. Thus, it is clear that the

commutant of LQ contains all the matrices y with Q G 2Γ. This in turn means that
the commutant of L0 coincides with LQ because LQ is in fact generated as a Lie
algebra by matrices y, y* with Q G 3~ (we use here the fact that LQ is symmetric).
Consider now the standard complexification LQ of LQ:

LQ := {z\ + iz2 '. zι,z2 G L0,/2 = —1} .

Clearly, the commutant of LQ is again LQ. According to a well known theorem of
Chevalley (see e.g. [OV]) any complex Lie group is algebraic if the Lie algebra
of this group coincides with its commutant. Thus the group generated by LQ is
algebraic. But then the real subgroup of the latter complex Lie group is algebraic.
This proves that LQ is algebraic, because it is the Lie algebra of this subgroup. D

Let M be the group generated by LQ. Consider, next, Zc(M). Evidently,
Zc(M) cZc(G#-).

Theorem 2.5. Suppose that ^Γ is irreducible. Then

1. J G LQ implies Zc(G^) = Zc(M) and G*r C G0;

2. J £ LQ implies Zc(G^) — Zc(M) \JJZc(M) and G? C GO U JGo, where J
is the matrix given by (6).

Proof. Suppose first that J G LQ. Then for every real /,

/ cos tl — sin tl λ
exp(ί J) = . G M .1 ™ *τ cost I J

In particular,

exP I v7 ) =

but then using (38) we obtain that

and hence M D G.y and thus Zc(M) = Zc(G^).
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Suppose now that J £ LQ. As far as LQ is symmetric (by construction) so is
also M and Zc(M\ that is if g G Zc(M), then g* G Zc(M). Next, it follows from
(5) that if geZc(M\ then Jg~lJ~{ = g* and thus Jg~lJ~l eZc(M). Hence
JZc(M)J~λ =Zc(M). Therefore, the union Zc(M)(JJZc(M) is a group and
moreover this group is algebraic. By Lemma 2.3 J G Zc(G#-) and the same calcu-
lation shows that in this case A G JM. Theorem 2.5 is proven. D

Finally, from Theorem 2.5 it follows that LZc(G^ ) = LZc(M) = L0 which
proves (37) and thus also finishes the proof of Theorem 2.1. D

2.3. Proofs of Theorem 1.4, Lemma 1.5, and Theorem 1.6

Proof of Theorem 1.4. As explained in Theorem 2.1 and Lemma 2.4 the generalized
Jordan algebra $$- is responsible for the description of the Lie algebra LZc(Gr$-).
It is evident that if / G ̂ ry, then the generalized Jordan algebra is in fact a Jordan
algebra: 01$- — /$-. Thus, Theorem 1.4 is a consequence of the following simple
observation: for all but (maybe) exceptional values of E,

which in turn follows from the fact that / G @l$ ,E for all but (maybe) exceptional
values of E. We prove now the last statement. Let us fix E which is not excep-
tional. Then there exists a matrix Q G ̂  such that the spectrum h := Q — El is
not exceptional. As usual, we can write

where λt's are different eigenvalues of h ordered so that \λ\\ > > \λ^\ > 0 and
M/ are corresponding orthogonal projectors. The strict inequalities do have place
because the spectrum of h is not exceptional. As we know from (23) if h G
then h2n+l G ̂ , where n= 1,2,.... Evidently

n—+00

Then of course
lim λ^ln~λ(h — λ\ u\ )2/7+1 = U2 G

and similarly

lim λ~2n~l [h — Σ h
n^oo \ i=l

Evidently Σ/=1 M/ = / G ,̂̂ £ and thus ^r,£ = ̂  for all non-exceptional values
of£. D

of Lemma 1.5. The fact that J& contains all symmetric matrices is just a
general property of Jordan algebras. We give the proof of this result in the Appendix
(Lemma A3). But then the group G/^ is generated by matrices (16) with arbitrary
symmetric Q. This in turn means that the corresponding set ̂  = /r$-. Hence, the
corresponding J5f is the set of all m x m matrices and LZc(G^) = LSp(m^} and

,*R). D
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Proof of Theorem 1.6. It follows from the conditions of our theorem that / ^E
contains a one-dimensional projector for every real E. /r^E is also irreducible for
every real E. Thus by Lemma A4 (see Appendix) /^,E coincides with all symmetric
matrices and hence (8) holds for every E. D

3. Some Applications of Theorem 1.6

We will show now that Theorem 1.6 provides the existence of different Lyapunov
exponents in particular for the classical case of Jacobi matrices. The following two
lemmas are very useful for that. Denote by δt the m x m matrix which has the only
nonzero element (<5Z)// = 1.

Lemma 3.1. Suppose that 9~ consist of Jacobi matrices, i.e. if Q G 2Γ and qυ are
the matrix elements of Q, then

qtj = -1, if \i-j\ = 1 ,

fc, = 0, if \i-j\ ^ 2 .

Suppose also that one of two following conditions is satisfied:

a) There exist two matrices Q\,Qι G ̂  such that Q\ - Q2 = α<?ι, where the
real number αφO.

b) There exists /,(! ^ / < m) and matrices βι,β2?β3,£?4 £ $~ such that

Q?, - QA = ocl

Then 9~ is irreducible, and thus Zc(G^) = Sp(m,Έi) and inequalities (7) hold.

Proof. We need only to establish that 2Γ is irreducible. We consider only the
case b); in the case a) the proof is even simpler. Suppose that the statement of
our lemma is not true. Consider then a nontrivial subspace F (with άimF < m),
F C R"1 which is a common invariant subspace of the matrices Q G $~ . As far as
Q — Q* the orthogonal complement F^ has the same property: Q(F^) C F1- for
every Q G ZΓ . Thus from b) we have in particular δt(F) C F and δi+\(F) C F.
Obviously, vectors e, and e^\ of the standard basis of IRm are the eigenvectors of
operators δl and δl+\ with eigenvalues α/ and α/+ι correspondingly. The eigenvalue
α/ has multiplicity one and therefore either el £ F or β/ G F^ . The same applies to
ei+\. Without loss of generality we can suppose that β/ G F. The Jacobi structure
of our matrices gives then

Qet = βi-\ + qliel + el+ι G F .

Evidently, Qβi and βι+\ are not orthogonal and thus et+\ G F. But then et-\ =
Qβi — qaβi — ei+\ G F. Applying Q to e^\ and ei+\9 we see that β/_2 and el+2 G F
and so on. This procedure implies F = IRW and proves the lemma. D

The same result is true for multidimensional Jacobi matrices. By definition
this means that Q — (#/,) with / and j being multi-indices, i = (/ι,z'2,...,^), 1 ̂
is ^ ms(s = 1,2, ...,k) and |/ — j\ = Σs 4 ~ js\ The Jacobi property means that



360 I.Ya. Goldsheid

qtj = — I if / — 71 = 1 and q^ = 0 otherwise. Here are the conditions analogous to
a) and b):

a7) Denote by Ms := {i : is — ms}. Let s be fixed. We suppose that for any
i G MS there exist two matrices Q'(i\ Q"(i) G 2Γ such that

β'(0 - β"(0 = Xiδi where α, φ 0 . (39)

b7) Denote by Ms^r = {i: ίs = r}, where s, r are fixed and 1 < r < ms. We
suppose that property (39) holds for all i G Ms,r and for any i G MStr+\.

Lemma 3.2. If ^ is a set of multidimensional Jacobi matrices with properties a7)
or b7), ί/2£ft $~ is an irreducible set of matrices and thus Zc(G$-) = Sp(m,IR),
where m \— m\ m^ ms.

The proof of Lemma 3.2 is similar to the one of Lemma 3.1, so we omit it.

Remarks. 1) In condition a'), we can replace Ms by Ms := {i : is = 1}. Evidently
this does not change anything.

2) The condition q^ — 1 if |z — y| = 1 for the case of Jacobi matrices can be
replaced by the following one: "for any pair ij there exists Q G 2Γ with ^VΦO."
In this case the result will be the same.

Finally, we will show that Theorem 7.3 from [GM2] is a consequence of
Theorem 1.6. Let J> be a finite set of indices.

Theorem 3.3 ([GM2J, Theorem 7.3). Suppose that

(i) for every i G «/ there are Q'(i)9 Q"(i) G &~ such that (39) holds.

(ii)/or every pair of indices i,j there exists a sequence of matrices βo>βι> >

Qs G SΓ and a sequence of indices i\,...,is G </ such that the product q^q\lJ2

...qYJή=Q. Here q\j are the matrix elements of Qk Then the inequalities (7) hold
for every E.

Proof. All that we need is to check that the set ̂  is irreducible or, equivalently, the
algebra generated by &~ is irreducible. Suppose that on the contrary some nontrivial
subspace F c IRm is preserved by all Q G 3Γ. Pick then a vector x G F and z G J*
such that the scalar product (*,e/)φO (here β/ denotes the vector of a standard basis
of Rm). Then (5/jc = ce^ cφO and thus ez G F. Next, consider a matrix Q G «^~ such
that its matrix element ^π = g / r φO for some r,rφ/. Then <5rβ£/ = ^r/βr and hence
er G F. The condition (ii) allows to continue this process and to show that all
βj G F and thus F = Rm. D

4. Examples of Equations with Lyapunov Exponents of Multiplicity Two

We would like to discuss now two examples of the Schrodinger equation with
off-diagonal disorder.
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Example 1. Consider Eq. (1) with E = 0, m = 2 and matrices Q having the form

Q=(a, "}. (40)\b -a)

It is easy to see that the set of all these matrices is a generalized Jordan algebra
which we denote by .̂ This set is not a Jordan algebra and this is exactly the case
when E = 0 is the only exceptional value of parameter E (see the corresponding
definition given in Sect. 1 ). The interesting case is the one when the set ^Γ contains
at least two matrices. We suppose that the set HΓ is irreducible and then at least
two matrices from ^Γ are not proportional to each other. Thus

For further considerations it is convenient to introduce the following three matrices:

Let us describe now the Lie algebra of the group G,y. It follows from Theorem 2.1
that the Lie algebra of LZc(G^) consists of matrices given by

/ α / + 6/3 dl+dI2\

' V '

It is a matter of elementary calculation to check that if J = ( 3 ) then* v/3 o y

z*J + Jz = 0 for every z e LZc(G^) .

The last relation is equivalent to the following equation:

A*JA = J ,

which is satisfied by all matrices A G GO, where GO is the connected component of
the identity of Zc(G^). Now, the Lyapunov exponents have multiplicity two in our
example. To check this statement, one can use the evident fact that the diagonal

matrices from LZc(G^) are proportional to ί J and thus the diagonal part of

the Cartan decomposition equals ί -i )' w^ere <^ > 0. Hence, it follows from

(3) that 7! -72 = -7ι = -72-

Let us also indicate a simpler way to understand this fact. If _yπ is a sequence
of two-dimensional vectors satisfying the equation

-yn+\ +Qnyn-yn-\ = 0 , (43)

where Qn are given by (40), then the sequence of vectors zn = (— \)nl^yn also
satisfies this equation. In particular this means that if solution yn of (43) is expo-
nentially decaying at infinity then so does zw, and it is evident that these solutions
are linearly independent and \\yn\\ = \\zn\\.
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Example 2. We keep notations used in Example 1 . Consider now Eq. ( 1 ) with
arbitrary E, m — 4 and matrices Q having the form

(44)
bl-ch dl ^ J

It is easy to check that if parameters α, b, c, d are arbitrary real numbers, then the
set of all matrices given by (44) is a Jordan algebra /. It is not hard to show that
every Jordan algebra of 4 x 4 symmetric matrices which is irreducible and does not
contain any projector of rank one is equivalent to /. According to Theorems 2.5, 1.4
the group G$-,E belongs to the connected component of the identity of GO £ Zc(Gjr)
for all but a finite number of values of E. The group GO is generated by the algebra
LZc(G^) (Theorem 2.1). It is not hard to describe Zc(G^} by means of algebraic

equations. To do that, let us introduce the following matrix K := ( 3 ) . A direct
\ 0 /3 /

calculation shows that KQ = QK. It is now easy to see that if A is given by (4)

with Q given by (44) then A is commuting with K := ( ] and thus all the
\ o K /

elements of our group also satisfy the equation

AK=KA. (45)

Thus, our Zariski closure is the set of non-degenerate matrices satisfying Eqs. (5)
and (45).

Finally the structure of Lyapunov exponents of Eq. ( 1 ) in our case is the fol-
lowing:

7ι = 72 > 73 = 74 > 0 .

This can be deduced from the general results about Lyapunov exponents and the
structure of the Lie algebra of our group in the same way as it has been done
in the previous example. It is again useful to observe (analogously to what we
have done in the previous example) that if yn is a sequence of four-dimensional
vectors satisfying Eq. (1), where β's are given by (44) then the sequence of vectors
zn — Kyn also satisfies this equation. Thus, if a solution with negative Lyapunov
exponent is given then we are able to indicate another solution which is linearly
independent of the given one and has the same Lyapunov exponent. This proves that
the smallest negative Lyapunov exponent has multiplicity at least two. To prove that
it is equal to two, it is again necessary to use the general description of Lyapunov
exponents from [GM1,GM2].

Appendix: Several Remarks about Jordan Algebras of Symmetric Matrices

All the Jordan algebras (JA) and generalised Jordan algebras (GJA) considered
below are subalgebras of JA of m x m symmetric matrices. We need several simple
results about these algebras. One could certainly find them in [BK]. However, we
prove these results here which we hope simplifies reading this article for those who
are not interested in general theory of JA.

Let / be a JA, ̂  c / be a set of all projectors of minimal rank belonging
to /^ and ^/o be the linear subspace of / generated by 3F. By s we denote the
minimal rank of projectors belonging to /.
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Remark. A priori /$ is not an algebra.

Lemma Al. Let ζ be a projector and Rank£ > s. Then either ζ G J Q or it can
be represented in the form

C = ί + Λ ,

where ζ and A are projectors, ζ is orthogonal to /§ and Rank ζ > s, and A G /Q.

Proof. Lemma Al is trivial if ζ is orthogonal to /$. Let now A G /$ be a projector
with Rank A — s and ζA φO. Consider then a self-adjoined operator φ := ζAζ. Ob-
viously Rank φ = s, and hence for some real c > 0 the operator cφ is a projector
and cφ G /. On the other hand cφ is projecting on the same subspace that ζ (in
this case we say cφ C ζ). This implies that ζ\ := ζ — cφ is again a projector and
obviously Rankζj = Rankf — s. If ζ\ is not orthogonal to /$, we apply the same
procedure to ζ\ and obtain ζ2 with Rank £2 = Rank ζ — 2s. We repeat this procedure
up to the moment when we obtain some ζr with Rank ζr — Rank ζ — rs and Cr-LΛ
and ζ — ζr € /§ by construction. Moreover, it is evident that ζr C ζ. We put now

ζ = ζr and A = Q - ζ. D

Lemma A2. Suppose that / is irreducible. Then / — /§.

Proof. Suppose that the set Γ := {ζ} of those ζ G / which are orthogonal to /§
is not empty. It follows then from Lemma Al that / = /Q 0 Γ. But then the
subspace of Rm which is equal to /o^m is invariant with respect to the action of
/ . This contradicts the irreducibility condition and shows that /§ — / . D

Lemma A3. If / is irreducible and contains a projector of rank one then it
contains all self-adjoined operators.

Proof. We know from Lemma A2 that the one-dimensional projectors belonging
to / span / . Now, it remains to show that all one-dimensional projectors belong
to / . Let A\ and A 2 be two one-dimensional projectors which project onto lines
generated by vectors l\ and /2 correspondingly and suppose that these vectors are
not orthogonal, ( / ι , / 2 ) Φ θ . Then / contains all the projectors which project onto
lines belonging to a two-dimensional subspace generated by 1\,12.

Indeed, consider an operator

η = (Δ\- A2A\A2)A2(Aλ - A2AλA2) .

Evidently η is self-adjoined, Rank?? = Rankzl2 = 1 and η is orthogonal to A2 :
ηA2 — 0. The three operators η,A\,A2 form a basis in the 3-dimensional space of
self-adjoined operators in the subspace generated by vectors l\J2 and in particular
contains all projectors mentioned above.

To finish the proof of our lemma consider now a subset H C IRm such that for
every vector x G H there exists a projector Ax G /, which projects onto the line,
containing x. We have to show that H = IRW. Suppose that 7/φIRm. Then H is
not a linear space (otherwise this space would be invariant with respect to /).
Among all linear subspaces of H pick one with a maximal dimension. Let it be
//o? HQ C H. As far as 7/oΦ//, there exists a vector / G H\HQ such that / is not
orthogonal to //0 (here we use again the irreducibility condition). Now if x G HQ
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and (x, / ) Φ O then as we have shown above ax 4- bl G H. But H is (evidently) a
closed subset of IRm and therefore all the vectors of the form ax + bl, for every
x e HO and arbitrary real numbers a, b belong to L. Thus the hypothesis that //0 is
a subspace of maximal dimension is not true and hence H — IRm. D

We need the following result about generalised Jordan algebras.

Lemma A4. Suppose that & is irreducible GJA which contains a projector of rank
one. Then & is a Jordan algebra of all symmetric matrices.

Proof. It is clear that ^ is a JA if and only if / G .̂ We shall show that this
relation holds. Then the fact that ̂  contains all symmetric matrices is the statement
of Lemma A3.

Consider the set of all projectors of rank one belonging to M and let H be the
subspace of Rw spanned by the vectors belonging to the ranges of these projectors.
First of all, we establish that the dimension of H is equal to m. Suppose that, on the
contrary, dim// = s and s < m. Then pick a projector A with eigenvector x such
that there exists an operator Q G & such that Qx £ // (we use here the irreducibility
of ^). We put then η := QΔQ G ̂ . Consider the spectral representation of Q

where Vs are different eigenvalues of Q and M/ are corresponding orthogonal pro-
jectors. We choose one of the projectors, say ur, so that urx £ H. Then

(ηurx,urx) = (ΔQurx,Qurx) = λ*(Aurx9urx) + Q .

The fact that our scalar product is not equal to zero is a consequence of the choice
of ur, namely, urxή=Q and therefore not orthogonal to x. Thus we have that ηή=0.
On the other hand Rank 77 = 1, and hence η is proportional to a projector of rank
one which belongs to 0t. This latter projector by construction projects onto a line
which does not belong to H. This contradicts the definition of// unless H — lRm.

We can now choose m projectors Δ\,...,Δm so that the eigenvectors of these
projectors corresponding to the eigenvalue 1 form a basis in Rm. Consider the
operator h := X]w

=1 Δj. h is a strictly positive operator and h G 3ί. Applying to h
the same procedure that was used in Lemma 2.4, we easily obtain that / G ̂ . D
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