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Abstract: We extend to hyperbolic flows in all dimensions Hugh's results on the
meromorphic continuation of dynamical zeta functions. In particular we show that
the Ruelle zeta function of a negatively curved real analytic manifold extends to a
meromorphic function on the complex plane.

In this paper we address a problem Smale poses in his survey article on dynamical
systems ([Sm], II. 4): given an isolated, compact, hyperbolic set Ω for a flow φ on a
manifold M, find a meromorphic function on C which admits the product expansion

for Rez ^> 0, where y runs over the periodic trajectories in Ω of multiplicity 1 and
/(y) denotes the period of y. The theorem in Sect. 7 does this for φ a Cω (real
analytic) flow.

In fact we meromorphically extend any "zeta function in one variable for (Ω, φ)"
to C. A precise definition is given at the end of Sect. 6, with a discussion which
shows how it includes all the usual examples. In particular we treat Selberg's zeta
function S(z) for a cocompact Fuchsian group Γ, where Ω = Γ\,P<57(2,R) and φt

is given by right multiplication by the one parameter group diag (V/2,e~//2), and
where S(z) is defined as

S(z) = R(z)R(z+l)R(z + 2)... .

In [Se], Selberg uses his trace formula to meromorphically extend S(z). Hence
R(z) — S(z)/S(z +1) also has a meromorphic extension in this case, which moti-
vated Smale 's problem.

This paper combines the methods of a seminal paper of Ruelle with an inno-
vative idea of Rugh. Ruelle 's paper [Rl] concerns the case where the stable and
unstable bundles ES

9 Eu of φt\Ω extend to Cω bundles on a neighborhood of Ω.
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He employs the Markov partitions of Sinai and Bowen and a combinatorial argu-
ment of Manning and Bowen to produce a finite sequence of trace class operators
Lm(z\ m = 0, 1, 2, . . . ,z G C, such that

.e~^\ R e z » 0 ,

where γ runs over all periodic trajectories in Ω, Sy is the stable summand of the
linear Poincare map of y and μ(y) is the multiplicity of γ. Ruelle's transfer oper-
ators Lm(z) are defined by the action of real analytic contraction maps on spaces
of holomorphic functions associated to the partition. This product formula furnishes
the meromorphic extension of the right-hand side, which we define to be the Sel-
b erg function of (Ω,φ). For (Ω,φ) as in the preceding paragraph, Sy — e~^y\

l/det(/-Sy) = Σ^0e-^ and exp-Σy^~(z+*Kω=^ + £) so the Sel-

berg function is just S(z). In this way Ruelle gives a dynamical construction of the
meromorphic extension of S(z), independent of Selberg's trace formula.

Unfortunately the analyticity condition on ES

9 Eu holds in rather few examples.
For instance, our theorem applies to the geodesic flow on the unit tangent bundle
Ω = UQ of any connected, closed Cω Riemannian manifold Q of negative curvature.
These bundles are only known to be Cω when Q is locally symmetric, that is the
quotient of F-hyperbolic rc-space by a discrete group of isometries, with n ^ 2,
F = R, C, H or n = 2, F = O. For Q of dimension 2 or 3 the only known examples
with Es, Eu analytic have constant sectional curvature.

A way around a similar problem is due to Rugh. Given a hyperbolic analytic
map on a rectangle I\ x /2, he introduces a space of holomorphic functions of
2 variables, one in a neighborhood of 72 in C, and the other in the exterior of a
neighborhood of I\ in C and a corresponding transfer operator [Ru]. Since the points
of geometric interest lie outside the domain of these functions, the significance of
the eigenfunctions of his transfer operator is obscured.

Recall, however, that there is a pairing between forms f(z)dz holomorphic on
the disc \z\ ̂  1 and functions g(z) holomorphic on the disc |z| g: 1 in the Riemann
sphere CP1, given by

(g(z)\f(z)dz) = ~§g(z}f(z)dz .

For / §; 0, j ^ 0 we have (z~ *~l\zldz) — δ^ . This shows that Rugh's function
space combines a function space in one variable with part of the dual of a space
of holomorphic forms in the other variable.

In Sect. 2 we consider 2 regions (closures of bounded open sets) in complex
space W C Cu and Z C Cs . We define A(Z) as the uniform limits of polynomials on
Z and V(W) as the forms φ(w)dw\ Λ Λ dwu with φ(w) G A(W). Then we define
K(W, Z) as the Banach space of linear operators from V(W) to A(Z) that are norm
limits of finite rank operators. This space of "kernels" replaces the holomorphic
function spaces of Ruelle and Rugh.

In Sect. 1 we formalize the notion of hyperbolic correspondence / by parametriz-
ing the correspondence as the graph of a certain cross map c. If / goes from
X x 7 to X' x 7', c takes X' x Y to X x Y' . For / hyperbolic, c is a contrac-
tion. Passing to small complex neighborhoods, we extend a Cω c in Sect. 2 to a
holomorphic contraction C : W' x Z — > W x Z' that is the cross map of a hyper-
bolic correspondence F from W x Z to W ' x Z'. Then F defines a kernel transfer
LF :
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Given r, ad x d matrix over K(W' ', Z), there is an analogous operator Lr^ on
^-tuples of kernels. In the split case, where C is the Cartesian product of a contrac-
tion C\: W — » £F and a contraction C2:Z — > Z', Z,r>/τ pulls back a d-tuple of kernels
to K(W , Z) using C2, multiplies it by r, and then pushes this d-tuple of kernels
forward to K(W, Z) using Ci. In general, Lr,F is constructed as the partial adjoint
in the first factor of an operator on d -tuples of holomorphic forms that involves
pullback by C. Lr^F is well approximated in norm by finite rank operators, hence
of trace class.

These linear operators are dual to the nonlinear graph transform operators
of hyperbolic dynamics. For provided we identify V(W) with A(W\ a function
f'.W^Z with f ( W ) CC Z and / a uniform limit of polynomials defines a linear
functional on K(W, Z) by k ̂  Tr(kf*\ where kf*:A(Z) -> A(2\

In Sect. 3 we show that kernel transfer behaves well under composition of cor-
respondences. For W1 = W and Z' — Z, the trace of Lr^F is calculated in Sect. 4. In
these 2 sections we use the holomorphic fixed point formula of Atiyah-Bott instead
of the explicit contour integrations of [Ru]. In Sect. 5 we calculate the Fredholm
determinant det(7 — L) for Z a block operator whose entries are of the form L^F,
in terms of the periodic points of a finite system of hyperbolic correspondences.

Given a complex vector bundle ξ over Ώ, the various lifts ιj/t : ξ — > ξ of φt\Ω to
flows of bundle morphisms form a parameter space. For ψ sufficiently contractive
we use the trace Xγ(ψ) of the holonomy of ψ around closed orbits γ to define the
zeta function of this lift:

where v = Tr^ψf is the flat-trace of the pullback operator ψt* on sections of ξ.
Then we show that each example in the literature of a zeta function of the variable
z associated to (Ω,φ) is a ratio of 2 functions of the special form ζ(ψza). Here ψza

is a curve in our parameter space, parametrized by z G C :

t
\l/za(v) = exp[-z / a(ψsv)ds]ψt(v) ,

o

where a is a given function on ξ, constant on fibers, with positive real part. For
a = 1, we define ζ(ψz) = T^(z) to be the flat-trace function of the lift ψ. Taking

the ratio of pairs of flat-trace functions, we obtain any Ruelle or Selberg function
and also any of the torsion functions Zα(z) that arise in Lefschetz formulas for
(Ω,φ).

We show in Sect. 7 that ζ(ψza) is a finite alternating product of Fredholm
determinants, where each factor det/ — Lm(z) involves a holomorphic family Lm(z)
of operators associated to a system of holomorphic correspondences. This gives a
meromorphic extension of ζ(ψza) to C.

In Sect. 7 we formulate 2 conjectures, one concerning Lefschetz formulas for
geodesic flows on negatively curved manifolds and the other concerning the ana-
lyticity of ζ(ψza).

Our combination of holomorphic function spaces and their duals is seen most
clearly in a naive example, given as I. in Sect. 8, where we treat hyperbolic toral
automorphisms without Markov partitions. The particular operators used in Sect. 5
are illustrated in Sect. 8, II, where we give a complete spectral analysis of a certain
example with u = s = 1 .
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In Sect. 9 we study the length spectrum of a Cω basic set in terms of the divisor
of its Ruelle function. This leads to an asymptotic statement with a sharp error term
for the averaged length distribution.

In Sect. 10 we derive a Lefschetz formula for a nonsingular Smale flow (i.e.
an Axiom A-No Cycles Cω flow with one-dimensional nonwandering set and no
stationary points), relating the local properties of its closed orbits to the ambient
topology. This takes the form of finding R-torsion as a special value of a certain
zeta function.

Consider any Cω metric g of negative curvature on Γ\//2, where Γ is a cocom-
pact Fuchsian group. As in Sect. 6, the resulting geodesic flow φ on Γ\UH2 =
Γ\PSl(2,R) has a Selberg function S9(z) that equals S(z) for the metric go induced
from H2. Since the unstable bundle for g is not Cω in general we cannot expect
to meromorphically continue S9(z). However, we can write S(z) = ΓL(z)/ΓL(z),

where ψ+ and ψ~ are certain lifts, and this ratio defines a meromorphic function

S (z) on C for any g. The order of S (z) is at most 3, by the theorem in Sect. 7.
However Selberg showed that the order of S(z) is 2, and we seem to have an

explosion of order when going from S(z) — §g°(z) to S9(z). It would be interesting
to verify this phenomenon numerically. We expect the instant creation of many
nearby pairs of zeroes and poles for g near g$.

Since this paper was written, Rugh has extended his results to hyperbolic flows
in dimension 3 [Ru2] and Kitaev has made progress on the case of nonanalytic
diffeomorphisms [K].

We are pleased to dedicate this paper to Steve Smale, whose bold suggestions
have stimulated a generation of researchers in dynamical systems.
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Section 1. The Iterates of a Hyperbolic Correspondence

Let X,X',Y and Y' be complete metric spaces and / C (X x 7) x (X1 x 7') a
closed correspondence from X x Y to X' x Y'. We write f(x, y) for the projection
to X1 x Y1 of / Π ({(x, y)} x (X1 x Y')). If for each x1 G X' and y G Y there is
a unique x G X and y' G Y with (x1', y f ) G /(jc, y)9 we say / admits the cross
map c: X' x Y —> X x Y' with c(x'', y) — (x, y'). Then this map c determines the
correspondence / by the rule

(*', y) € /(*, y) ̂  (x, y') = c(x', y ) .



Meromorphic Zeta Functions for Analytic Flows 165

Y x X1 is a homeomorphism and / is parametrized byHere the projection /
(X, y) H-* (cι(*'5 7), j/,*',^*', 7)).

If the components cj : X' x 7 — » Jf and c2 : Xf x Y -^ Y' are uniformly con-
tracting in x' for >> fixed and in y for x' fixed we say / is a hyperbolic correspon-
dence. In most applications, / is (the graph of) a homeomorphism from a subset
of Λf x Y to a subset of X' x 7' which expands in the first factor and contracts in
the second. However we allow other situations, such as when c is constant. In this
case, if (jt0, y'Q) is the value of c then

f(χo,y)=xfχ{y'o}, = 9 for

This correspondence is the acme of hyperbolicity since it contracts infinitely in y
and "expands infinitely" in x.

In [Ru] the case where X,X' , Y and Y' are compact intervals and c is real
analytic was discussed. There the components c\ and c2 were called "pinning co-
ordinates." There are advantages to combining them into one map, as will be clear
in Sect. 2.

To find the inverse correspondence /"' from X' x Y' to X x Y we switch 2
pairs of coordinates in /, whereas the graph of c is found by switching only 1 pair.
Hence c is a "partial inverse" of /. When c\ depends on xf alone and c2 depends
on y alone we say / (or c) is split. In this case, f(x, y) = cj~]{jc} x {c2(^)j so

/ is the Cartesian product of c^{ and c2.
The composition h — g o f of 2 hyperbolic correspondences / : X x Y — > X'

Y' and g:Xf x Y' — > X" x Y
correspondence. Namely (x" ',

admits a cross map and is frequently a hyperbolic
) G /&(*, j) if for some (xf, y') G X' x 7',

c(x', >0 = (x, /) and d(x"9 /) = (*', /') ,

where c and J are the cross maps for / and g, respectively. Thus

x' = d,(X",c2(x',y)) and y' = c2(d,(x", y'),y) .

Since d\(x"9 — ) and c2(— , j) are contraction mappings for x" and y fixed, Λ7 and
y' are uniquely determined by these equations. On the other hand, as X' and Y'
are complete we can use the contraction mapping theorem to define x1 ', yr in terms
of x" , y by these equations. We obtain a cross map e for /z, with

X x Y 1

X x Y =

X ' x Y 1

X ' x Y

Fig. 1. A hyperbolic correspondence / and its cross map c.
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To check whether h is a hyperbolic correspondence, we introduce contraction
constants αc for c\(—, y), βc for c\(xr, — \yc for C2(—, 7) and £c for c2(x', —), good
for all .x' G JF', y £ Y. We refer to βc,yc as minor constants and αc, £c as major
constants. Likewise we define contraction constants α</, βd, yd, δd and Lipschitz
constants ote, βe, ye, δe. We estimate the latter from above, as follows.

Lemma 1.

<
- βdyc)

 l

- βdyc)~l
δcδd(l - βdyc

Proof. We will bound ye, the other cases being handled similarly. Suppose X",XQ G
X11 and y G Y. Then

where y is as above and y'0 = C2(d\(xQ, y'0), y). (To simplify notation, we assume
our metric spaces are isometrically embedded as subspaces of some normed vector
space.) We have

^ yc(\dι(x", y') -

so that

Thus

^ \d2(x" %, y')\ %, y'0)\

Using our bound on \y' — y'0\ we obtain the desired estimate on ye.
Clearly h is a hyperbolic correspondence whenever the 4 matrix entries on the

right in this lemma are less than 1. To apply this criterion to a composition of a
large number of hyperbolic correspondences, we will suppose that they are nearly
split as follows.

Suppose that for z = 0,1,2,... we have complete metric spaces X(l\ 7(/) and
hyperbolic correspondences /(ί):^(l) x Y&-> χ(*+V x Γ^1) with cross maps C(/):
^0+1) x 7(0 —> jf(0 x yO+i) and contraction constants oc,β,y,δ that are independent
of z. Then if the minor constants β and 7 are small compared to the major constants
α and <5, the following proposition asserts that each composition f(m~1^ o o /^°^
will be hyperbolic. For motivation, note that the composition of split hyperbolic
correspondences is obviously split hyperbolic and split is equivalent to β = 0 = y.

Proposition 1. The composition of a sequence of hyperbolic correspondences is
hyperbolic provided the major constants are bounded by some constant σ < 1 and
the minor constants are bounded by some p < 1, with p a positive function of σ.



Meromorphic Zeta Functions for Analytic Flows 167

Proof. Let p — max{β, y},σ = max{α, δ} and choose r positive with r2 < 1 -
σ. We define p,, σ, for / ^ 0 by σ0 = σ, σ, +ι = σ?(l - r2)"1, p0 = p, Pι+\ =
p/(l + σ/+ι). Our choice of r shows that σl is a decreasing sequence and the
series J^ σ/ is summable. Clearly p/ is an increasing sequence. Assuming

we find that p/ < r for all z. In particular σ/ < 1 and p/ < 1 for all z.
Now we use (*) to show by induction on £ = 0,1,2,... that any composi-

tion /(''+"- 0 o . . . o /(<), 1 ^ m ^ 2*, / ^ 0 is hyperbolic, and that for / ^ 0 and
2k~λ ^ m ^ 2k the minor constants are no more than p* and the major con-
stants are no more than σ#. For £ = 0, this is our hypothesis on the /^ com-
bined with the definition of cτ0, po Assume it holds for k ^ 0. Then if 2k ^
m ^ 2^+1, we write m — m\ -\- m^ with 2^-1 ^ m\, m2 ̂  2k and apply Lemma 1
to g = /(''+*-1) o . . o /0'+W2) and / = /</+m2-i) 0 . . . o /('). Using the induction
hypothesis to estimate the constants on the right-hand side of Lemma 1 gives

βoje ^ Pk + Gkpk(l - pk) < pk+\ ,

since pk < r. The proposition follows.

Section 2. The Transfer Operator for a Cω Hyperbolic Correspondence

Let u, s be nonnegative integers and let X, X' (respectively 7, Y') be regions in
Rw (respectively R5), where by region we mean a compact set with dense interior.
Suppose / is a hyperbolic correspondence from X x 7 to X' x Y' such that the
cross map c is real analytic, i.e. given by a convergent power series near every
point of X' x 7. We will attach Banach spaces to X x 7 and X' x 7' such that /
defines a compact operator between them.

Consider first the case u = 0, treated first in [Rl]. Then / = c is a contraction
mapping from 7 to Y'. We choose regions Z and Z' in C5 that are neighborhoods
of 7 and 7' such that the power series defining c gives a contraction mapping
C:Z -» Z' with values in int(Z'), that is C(Z) CC Z'. Let Λ = A(Z) denote the
Banach subalgebra of #(Z) generated by the coordinate functions zι,...,z.y, that is
the uniform closure of the polynomial functions on Z. If the component functions
zϊ o C, i— \,...,s, are in A(Z) we define C * : A ( Z f ) —> ^4(Z) by C*α = <z o C.

Provided Z is sufficiently small each z/ o C will lie in ^(Z), so C* is defined.
Indeed we have

Lemma 2. If Y is a compact subset of W and h is holomorphic near 7, then
on any sufficiently small neighborhood Z of Y in C*, h\Z is a uniform limit of
polynomials on Z.

Proof Y is polynomially convex in C5, that is for each z G C5, z ^ 7 there is a
polynomial p with \p(Y)\ ^ 1, \p(z)\ > 1 (for z G R5 one uses the Weierstrass
approximation theorem, for z/ ^ R one uses a polynomial in the /th variable).
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It follows ([H], 2.7.4) that every neighborhood of Y contains a polynomial
polyhedron (also called a Weil domain) D, where for some polynomials p\9...,pn

in z ι , . . . ,Zy,

D = {(zl9...,zs): \p,(z)\ £ I , / = l , . . . , / ι } .

But D is a Runge domain, i.e. every holomorphic function on Z) is a uniform limit
of polynomials ([H], 2.7.7), so the lemma follows.

Now choose Z0 a compact neighborhood of c(Z) in int(Z'). Then the restriction
operator A(Z') —* A(Zo) is s-compact in the sense of [F2], i.e. it can be approxi-
mated by operators of rank ^ ns with an error whose norm decreases exponentially
in n. This is shown by truncating power series expansions in Λ(Z') after n terms
and estimating the error in terms of the gap between Z0 and int(Z'). Since C*
factors through this restriction operator, C* is also s-compact. This is the result for
u — 0 that we must generalize.

We review some functional analysis that helps to handle functions on a Cartesian
product space. Note that for compact regions W in C", Z in Cs the image in
A(W x Z) of the tensor product A ( W ) ® A ( Z ) is dense, since it contains all the
coordinate functions. This defines a certain norm on A(W) 0 A(Z) whose completion
is A(W xZ).

One has, in fact, a norm on any tensor product B\ 0 B2 of Banach spaces that
generalizes this example and leads to a Banach space completion B\B2 of B\ ® B2.
In the literature, where various other norms are used, this norm on B\®B2 is
called the infective norm and B\B2 the infective completion (it is variously denoted

B\(&B2, B\(&&B2 or B\®B2\ Quite simply, we regard an element b\ ®b2 as defining
a bounded continuous function φ(b\ ®b2) on the product U\ x U2 of the unit balls
Ut in the dual Banach spaces B*> i.e. φ(b\ ®b2)(u\,u2) — (u\\b\}(u2\b2}. Then φ
extends to a linear embedding B\ ®B 2 —^^(U\ x U2) which defines our norm and
completion B\B2 c #(ί/ι x U2).

We have <g(W)<#(Z) = ^(W x Z), indeed this holds for any pair of compact
metric spaces ([Tr], Ex. 44.2). Also if oci:Al ^ BΪ are bounded linear operators
then there is a bounded operator &\&2.A\A2 —> B\B2 extending a\ ®&2:A\ ®A2 —>
B\ ®B2. Such an operator from A\A2 to B\B2 is called decomposable. If αi and
α2 are embeddings onto a closed subspace, so is (x\oc2 (hence the name "injective
completion"). In particular if At is a closed subspace of BΪ then A\A2 C B\B2 is a
closed subspace ([Tr], Prop. 43.7 and Cor.). From these facts follow the relation

A(W x Z) = A ( W ) A ( Z ) ,

which we will use to separate variables.
We note, however, that the evaluation functional A®A*-*C, a®a*^>

(a a*), does not extend continuously to a map AA* —» C for A a Banach space
of infinite dimension. For if k E BA* then the operator a H-» b = (k\a), A -^ B is a
norm limit of finite rank mappings. Indeed \\k\\ is the operator norm of a ι—» b and
any operator in the norm closure of finite rank is determined by such a kernel k.
Thus the evaluation A 0^* -> C corresponds to the trace on finite rank operators,
which is not norm continuous since dim A = oo.

An operator λ:B -^ A is integral if there is a bounded functional BA* —> C,
called the valuation functional relative to λ, with b®a* ̂  (λ(b)\a*). If λ is n-
compact for some n > 0 then λ is integral (using [Tr], Prop. 49.5).
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Now we make our constructions for all u. With X, X' (respectively 7, 7') as
above we choose compact neighborhoods W, W1 of X9X

f in C" (respectively Z,Z'
of Γ, Ύ' in Cs) such that c extends to a holomorphic map C\ W x Z — > £F x Z'
with values in the interior of W x Z' and such that the components C\ ,€2 of C are
uniformly contracting in each variable. Thus C defines a hyperbolic correspondence
F from W x Z to W x Z7.

We first define the action C of C on horizontal volume forms

C(φ(w, z)dw\ Λ Λ ί/wM) = J(w, z)(/>(C(w, z))dw\ Λ Λ ί/wκ ,

where J = det ( -̂7 J C\ is the partial Jacobian of C in the horizontal variables.

Note that C is the usual pullback of forms followed by the projection that deletes
all components containing a dzj. We assume that W' and Z are chosen so that
w7 o C and z, o C belong to A(W ' x Z) for / = 1, . . . , M, and 7 = 1, ... ,5-. Then we
find φ £ A(W x Z') => J(C*φ) G A(W x Z). Separating variables, and passing to
the space V(W) of volume forms φ(w)dw\ Λ Λ dwu, φ G A(W) we obtain a
bounded operator

C: V(W)A(Z') -> V(W')A(Z) .

As C(JF' x Z) C int (£F x Z'), we can factor C through a restriction operator to
show it is (u + s)-compact.

Our transfer operator Lp will be obtained as the partial adjoint of C in the first
factor (or in the horizontal variables), that is

LF: V*(W)A(Z') -> V*(W)A(Z)

will satisfy the partial adjoint formula

(v LF(v* 0 a)) - (ϋ* \C(v 0 α)}

for each υ* G V*(W)9 a eA(Z') and t; G V(W\ Clearly this formula defines LF

on V*(W)®A(Z') and we need only verify continuity. This can be done simply
if C can be expanded as an absolutely convergent series Σi ζtfi °f decomposable
operators. Then | | ξ / f / , | | = | |ξ/| | | |^ | | = I I ^ Γ ^ I I so Σi^ni ^s bounded, and defines Z,/r

In general we produce Lp as follows. We choose compact regions WQ and WQ
in CM with ^0 CC ^F and ̂  CC WQ such that C analytically continues to WQ x Z
with values in int (WQ x Z'). We denote this extension by C as well. The restric-
tion operator V(W) — > F(PΓo) is w-compact, hence can be represented by a kernel
k G F(^o)^*(^) Consider the composite operator Z,

V*(W')A(Z') -> V*(W')A(Z')V(Wo)V*(W)

in which (aside from permutations of the factors) the first arrow corresponds to
multiplication by &, the second arrow corresponds to ICI, and the third arrow to
the evaluation functional relative to the restriction map V(WQ) — > V(W). Then L
is clearly continuous and
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for k = ]Γ) vt Θ ι>*, X] || u/ 1| || vf || < oo. Thus

since ΣX^bΓ)^ *s me restriction of t; to WQ. This shows L—Lp on F*(FF7)®
A(Z'\ hence that (*) defines LF.

We denote V*(W)A(Z) by /sΓ(^,Z). As elements of K(W9Z) are kernels (of
finite rank operators V(W) — > Λ((Z) and their norm limits) we call LF:K(W'9Z') — >
K(W,Z) the kernel transfer of F. Choosing ZQ CC Z' so that C extends to a map
from jPΓό x Z to mt(W x ZQ), we can factor LF through a natural operator on kernels

Here εp decomposes into a w-compact extension operator ε: V*(W) — » F*(H7

0

/) and
an ^-compact restriction operator p : A ( Z f ) —* A(Z$). Clearly εp is (w + -s ̂ compact,
hence LF is also (u + ,s)-compact

Now suppose r £ A(W x Z) and consider the operator rC: V(W)A(Z') -^
V(W')A(Z\

(rC)(φ(w,z)dwι Λ - - Λ dwu) = (Jr)(w9z)φ(C(w9z))dwι Λ - Λ dwu .

Then we can as above form the partial adjoint of rC in the first factor, which we
denote

LrίF:K(W',Z')-+K(W9Z).

Finally suppose given a positive integer d and a d x d matrix r over A(W' x Z).
Then we can combine the transfer operators for the entries of r into a block operator
on ^/-tuples of kernels that we denote

Lr^F\Kd(W',Z') -> Kd(W9Z) .

Section 3. Functoriality of Transfer

Suppose / (respectively /;) is a hyperbolic correspondence from X x Y to X' x Yf

(respectively from X' x Y' ^X" x Y") for X9X'9X" regions in Ru and Y9Y'9Y"
regions in R5. Suppose the cross maps c and c' are real analytic and that we have
complex neighborhoods W9W',W" oΐX9X'9X" in Cu and Z9Z'9Z" of Y9Y'9Y" in
C5 such that c and c1 extend to maps

C:W' xZ ^W x Z', C': W" x Z' -> W' x Z" ,

which are uniform limits of polynomials, whose components contract in each vari-
able and with C(l>(^ί+1> x Z<'">) CC W(l"> x Z<1+1), / = 0,1. Then as in Sect. 2, the
corresponding hyperbolic correspondences F^ from W^ x Z(/) to W^i+^ x Z(/+1)

define operators LF(lγ.K(W(i+l\ZW>) -> ^(^(/),Z(°). Also H = Ff oF admits a
cross map £: ̂ /; x Z -̂  ̂  x Z" as in Sect. 1, with E(W" x Z) CC W x Z/;. We
can then define LH:K(W",Z") -> K(W,Z). We will prove

Proposition 2. Z,// = L/7 oZF/.
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First we introduce W^ CC W(l"> a neighborhood of X^ such that our cross maps

take values in W^ x Z^\ where (ij) = (0, !),(!, 2) and (0,2) for F,F' and H

respectively. We set F0

(0 = V(W$}) and A(i) = Λ(Z ( / )) and define operators C,c',E

from F0

(/)Λω to F0

ωΛ(/) as in Sect. 2.

The proposition will hold if Lp o LF/ is the partial adjoint of E in the first
factor. Using formula (*) of Sect. 2, we let Σkυ'k®v% G VόV*(W) be the kernel
of the w-compaet restriction operator V(W) — » V§ and we must show that for any
VQ G FO, α" £A" and v* e (F0")*?

where α'k = (v* \c' (υ'k ® α" )) .
We next eliminate ϋ* from this formula. Switching the factors in the domain of

C,C',E gives operators

Then the proposition reduces to

E(α" 0 vQ) = Σ(VC o Cfl)(α ®υ'k

where 1C: V'^A'V^ -* V'^V'^A and C'l : ̂ F^Fo -> FQ^'FQ. Note that F0

7 is the mid-

dle factor in the domain and range of 1C o C'L This version of the proposition can
be described as follows:

E is the partial trace of 1C o C'l in the middle factor .

We now calculate this partial trace. We pass from volume forms φdw\
Λ Λ dwu to functions φ so as to replace our Banach spaces by Banach algebras
of the form A(R). Then with these identifications

CΊ:A(WQ x HO' x Z") -> A(W0 x Z' x Wg),

φ(w,w',z") ^ det

IC:A(W0 x Z7 x FF0

/;) -> ^(Z x ̂  x fF0

7/),

^(w,^,^7') ̂  det ( -^-Ci ) ιA(C(w7,z),w/7) .
\ί7W7 /

Thus ICoCΊ = yμ*, where 7 is the product of the 2 Jacobian factors and

μ : Z x fFό x ^o" -» ^o x ^o x z" is the holomoφhic map

(zW) ̂  (C1(w/,z),C;(w//,C2(w/,z)),C7(w//,C2(w/,z))) .
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Note that μ2(z, — ,w;/) is the composition of C2(— ,z) and C{(w"9 ~ ), hence defines
a holomoφhic contraction map of W$ with values in int (W^).

We are now in the following general situation. We are given a holomoφhic map
v: W x Z\ — » W x Z2 with values in int (W) x Z2, where fΓ,Zι and Z2 are regions
in complex space and v is uniformly approximable by polynomials. Then for any
function δ G A(W x Z\) the operator

has a partial trace in the factor W9 which is an operator Trw(δv*):A(Z2) —> A(Z\).
We are given, moreover, that vι(— ,z) is a contraction of W for all z G Zi. The
fixed point />(z) of this contraction gives a map /? : Z\ — > W that is uniformly
approximable by polynomials. Then we have the following formula for the partial
trace, in terms of (p,id):Z\ — > W x Z\ and the components of v:

Note that when Z2 is a point, this is just the Atiyah-Bott fixed point formula ([AB],
see also [R1,F1]) for a family of holomoφhic contraction maps with parameter
space Zi. In general we can reduce to this case by evaluating both sides on a fixed
element of A(Z2).

Now we apply this partial trace formula to our example. We have p: WQ x
Z —» WQ with

CίO", C2<y,z)) = w' for w' = Xw",z) .

The function (p,zW)*(y/Det(7 — -5^-7/42)) *s Jus^ detί -^-jjE\ ), as follows from
UW V OW /

Lemma 3. Given w" £ WQ and z £ Z,

wAm? w' = CίO",C2(M/,z)) αwrf z; = C2(C((w//,z/),z).

Proo/ By definition, Eλ(w",z) = C\(wr,z). Thus 7^1 =
tyvv

We differentiate w' implicitly with respect to w" to get

dw' _ dC( fdC'Λ (dC2\ ( dw'
~ ~~ — ~ r~ ~\ I i ~ I I ~ι r I I T ~"

•o

Solving for

δw/x δw;/

gives

V & V V^V \dw"

dw"
I - dC^dC^

~dz7~d^J) ~d^" '

and the lemma follows.
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Finally we see that E(w" r,z) = (μ\,μτ))(z, /?(w",z), w"), that is E — V2 o (pjd).
Substituting into the partial trace formula gives

which implies the proposition.
Now we suppose given r G A(W' x Z) and r' e A(W" x Z'). We define t <E

A(W" x Z ) by
φΛz) = r(w',z)r'(wV),

where w' and z' are as in Lemma 2. Then the following result generalizes
Proposition 2.

Proposition 3. Lt,H = Lr^F o Lr/tFr.

The proof is quite close to that just given, with C,C',E replaced by rC,r'C',tE
throughout. The function γ used above is multiplied by the factor r(w/,z)r/(w//,
C2<V,z)). If we call this factor τ(z,w',w")9(p,id)*γ is multiplied by (p,id)*τ = t,
and the proposition follows.

Finally, we note that when r and r' are d x d matrices over A(W' x Z) and
A(W" x Z') then the formula for t defines an d x d matrix over A(W" x Z). The
resulting transfer operators on d -tuples of kernels still satisfy Proposition 3.

Section 4. The Trace of the Kernel Transfer

Suppose in Sect. 2 that W' = W and Z' — Z. Then for any square matrix r over
A(W x Z) the kernel transfer Lr^ is (s + w)-compact and so has a trace. The cross
map C contracts W x Z and so has a unique fixed point p. Thus p is also the
unique fixed point of F.

Proposition 4. Tr(Lr^) = ( — l ) u T r ( r ( p ) ) / Ό e t ( I — DpF) when F is a holomorphic
map near p. Otherwise Tr(L^F) = 0.

Clearly this reduces to the case d = 1, r G A(W x Z). Since Lr^ is the par-
tial adjoint of rC, it follows that 7>(L/;/r) = Tr(rC). By the fixed point formula
of Atiyah-Bott [AB], cited in Sect. 3, Tr(rC) =J(p)r(p)/Όet(I - DPC), where
J = -^rC\. Thus the proposition reduces to

Lemma 4. (-l)wDet(7 - DpC) = J(p)Όet(I - DpF) when F is a holomorphic
map near p. Otherwise J ( p ) = 0.

Proof. From F(Cι(w;,z),z) = (M/,C2(M/,z)), the chain rule gives

/δQ acΛ / / o \
DF \ dw' dz = ^C2 aC2 so (I-DF)

V o / y Vaw 7 az y
-/
0

and we take determinants to get the desired equation. If/(/?)=)= 0, then DPF is
determined by the above formula so, by the holomorphic inverse function theorem,
F is a holomorphic map near p.
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Section 5. Zeta Functions for a Cω System of Hyperbolic Correspondences

We suppose given integers u ^ 0 and s ^ 0, regions Xj in Ru and Yj £ R5, and
hyperbolic correspondences // from Xa(ι) x J^o) to ^Γω(/) x ^ω(/> whose cross maps
cl are Cω, where the vertices j and the arrows z* run over finite index sets V
and A and α,ω :^4 — > AT. We choose ε > 0 and let JF7 (respectively Z7 ) be the
closed ε-neighborhood of Xj (respectively Yj) in Cw (respectively Cs). For ε suf-
ficiently small, cl extends to a holomorphic map C/ : fFω(/) x Zα(/) — > JFα(/) x %ω(i}
with values in int (fΓα(/) x Zω(/)) whose components C/ι,C/ 2 contract uniformly
in each factor. Thus C/ is the cross map of a hyperbolic correspondence F/ from
fFα(ί) X Zα(ι) tθ J^ω(/) X Zω(l).

In order to iterate this system of correspondences, we suppose that the cl satisfy
the hypotheses of Proposition 1 . For ε sufficiently small, the C/ will also satisfy these
hypotheses so Fin o - - - o Fi{ is hyperbolic whenever ω(i\ ) — α(z'2), . . . , co(in-\) —
oc(in).

Fix d ^ 1. Suppose for each / that we are given a d x d matrix r/ of Cω

functions on Wω(^ x Zα(/). For ε sufficiently small, each rl extends to a d x d
matrix rl £ Md(A(Wω(t) x Zα(/))), as shown in Lemma 2. Then for each i we have
the z'th transfer operator

We set K = ®jKd(Wj,Zj) with the sup norm. Then for each i we let L{ be
the operator on K which has the block form consisting of the z'th transfer operator
in the block at (α(z'),ω(z)) with other blocks zero. We define L = ΣieA ̂  to ^e

the kernel transfer for the system of correspondences F, and weights n. Clearly
L depends linearly on these weights and L is /i-compact, n — u -\- s. Accordingly L
has a Fredholm determinant, which we can estimate using [Fl], Lemma 6:

log|det(/-I)| ^ c(l+log+Cy+ 1 ,

where
oo

L = E*iϊ, \(x'\xΐ)\ ^ Cexp(j3^/) ,
/=!

and c depends only on β and n. Factoring our L through a restriction operator, we
see that we can take β independent of the weights rl and C a constant times the
sup norm of these r/, so we have shown

Lemma 5. log |det (/ — L)\ ^ c(l + log+sup/||r/||)w+5+1 for some positive constant
c independent of the rt.

We can calculate this Fredholm determinant det (I — L) provided \\L\\ < 1, using

oo I

det (/ - L) = exp - Σ -Tr(Ln), Tr(Ln) = £ Tr(Li{ o . . . o Lin) .
n=\ n A"

We suppose the "arrows" i\,...,in form an n-loop, that is ω(z'ι) = α(z*2 ),...,
ω(in-\) = oί(in) and ω(in) — α(/Ί), since the trace term vanishes otherwise. We
then use Propositions 1 and 3 to write Liλ o o Lin — Lt,H, where H = H(i\,. . .,/„)
the hyperbolic correspondence Fln o o Fl{ and ί is a certain d x d matrix over
A(Wj,Zj), j = α(z'ι) = ω(zw). Then by Proposition 4,

o . . o Lt n) = (- 1 )uTr t(p)/Όet (I - DPH)
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if H is a holomorphic map near its fixed point p = p(i\,...,in\
 and = 0 otherwise.

We make the convention that the determinant is oo when H is not a holomorphic
map near p, so this formula continues to hold.

We calculate t(p) as follows. Let tk = rlk(p(ίk,. . . , / n , / ι , . ..,4-0) for k =
!,...,«. Then from the definition of t in Proposition 3, we find

t(p) = t\o otn.

We let Λn, n = 1,2, . . . , consist of the rc-loops (/i , . . . ,/„) e An. We define the mul-
tiplicity μ of such an w-loop to be the largest divisor of « such that ik = /> for
k = /(mod-). Thus an n-\oop of multiplicity μ is the "μth power" of an (n/μ)-

loop of multiplicity 1. We let Λ'n C Λn be the prime rc-loops, i.e. the ft-loops of
multiplicity 1.

Now we consider a prime n-\oop i = (/i , . . . , /„) and its cyclic permutations and
their powers and assess their contribution Z^ to det (I — L). We obtain

oo

det(/-L)= Π Π ZΪ9

«=1 Γe<

where /t" C Λ'n and every prime «-loop is a cyclic permutation of just one element
of Λ'. Then

Zr= exp - Σ -
m=\ m

with p and t(p) = t\ o > - o tn as above. In deriving this expression we use that
Ύτ(tk o - o tn o t\ o - o tk-\ ) = Ύr(t(p))m for all k, and a similar observation for

the determinantal factor. The cyclic permutations of the mth power of / contribute
then n equal terms, and the factor ^ arises as n(~). We summarize this as

Proposition 5. For weights r/ with \\L\\ < 1,

d e t ( / - L ) = Π Π m

Observe that the product on the right is absolutely convergent for \\L\\ < 1. Note
that the r/s only enter linearly into L, so the left-hand side is an entire function on
this space of weights. So we have analytically continued this product to all choices
of weights (r/) G ̂ i^AMd(A(Wω(^ x Zα(/))). Note also that the terms on the right
are independent of our choice of complex neighborhoods.

Section 6. Zeta Functions for a Hyperbolic Set of a Flow

Suppose that M is a manifold with a C1 flow φt:M —> M, and Ω C M is a compact
invariant set. If φ has no stationary points in Ω, there is a line subbundle Ec C
TQM invariant by the lifted flow Dφt: TΩM —> TΩM, such that a section of Ec is a
multiple of the vectorfield that generates φ on Ω. We say Ω is a hyperbolic set for
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φ if TQM/EC is the direct sum of 2 continuous invariant subbundles, one contracted
by Dφt for t ^> 0 and the other contracted by Dφt for t <C 0. Then we find a
continuous invariant splitting TΩM = Eu 0 Es Θ Ec, where Es is contracted by Dφt

for / » 0 and Eu is contracted by Dφt for ί <C 0. Given δ > 0, the metric on
TΩM can be chosen (take any metric and average it over a long time interval
[—τ,τ]) so we have uniform contraction for t ^ δ or t 5Ξ —δ, respectively. We set
u = dimEu and 5 = dimEs

9 so u -f 5 + 1 = dim(M). One calls Ec\EU and £5 the
center, unstable and stable bundles in TΩM.

Suppose that we are given a (real or complex) vector bundle ξ over Ω with
projection π: ξ —>• Ω. A continuous flow ψt:ξ —> ξ with π o \j/t — φt o π such that

:̂ π"1^) —> π~l(φtq) is a linear map for all # G Ω and t e R is called a ή// of
0. We call a pair of lifts (ι/^+,^~), relative to a pair of vector bundles (ξ+,ξ~)
over Ω, a virtual lift ψ^ of </> to the virtual bundle ξ^. Setting ξ~ = 0, £+ = ξ and
ψ+ = ψ WQ identify any lift i/f with a corresponding virtual lift (^,0).

Now we consider any periodic orbit γ of φ in Ω, determined by a point q e Ω
and a positive number / with φf(q) = #. Of course (q, f ) and (φt(q\£) determine
the same y, for all t G R. If the smallest t > 0 with </>/(#) = # is £/μ we say y has
period I — /(y) and multiplicity μ — μ(y). If μ(y) — 1 we say y is prime.

Given a lift ψ of φ\Ω we define the holonomy of i/f over y to be the similarity
class of the transformation ι/^(y) : ξq —» ζq, and the y-character χy(ι/0 to be the
trace of this transformation. Clearly this trace does not change when q is replaced
by φtq, t e R, so χy depends only on y. Given a virtual lift i/^, we define ^/(i/^) =
Xγ(Ψ+) ~ Iy(Φ~\ The linear Poincare map Py is the holonomy of the natural lift
of φ to TΩM/EC = Eu Θ Es. Clearly Py = Uy Θ Sy, where Uy is a linear expansion
of Eu and Sy is a linear contraction of Es'.

Consider the series

Σ
y My)|Det(/-P y) | '

where y runs over all periodic orbits of φ\Ω. Provided φ^ are sufficiently contrac-
tive as t —» -f oo, this series is absolutely convergent for the following reason. The
number N(t) of y with /(y) ^ t satisfies lim sup^ooylogA/XO ^ h(φ\\Ω) < oo,
where /z denotes topological entropy. The growth rate of a lift I/A is gr(ι^) =
lirn^oo supylogll^H < oo, where the choice of fiber metric on ξ is irrelevant since
Ω is compact. To estimate the denominator, we write

|Det(/-Py)| - |Det(/-5y)||Det(/- Uy)\ = |Det(£/y)|(l +o(l))

and note that limy inf^rlog|det Uy\ ^ |^|, where g ^ 0 is the growth rate of the

natural lift Λu(Dφ-t\Eu) of the time reversed flow φ_t to the line bundle ΛU(EU). If
gr(ι/^) < \g\ — h(φ\ \Q) then, breaking the sum over y up into a sum over n G Z and
over those y with e""1 rg /(y) < e", we see this series is absolutely convergent.

For ι/^± with gr (ι^±) < \g\ — h(φ\\Ω) we define

We regard Ω9φ, and ξ^ as fixed but the virtual lift ^± as a parameter. In
particular, for ξ a complex vector bundle any lift ^ of φ to £ determines a family ι/^z
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of lifts involving one complex parameter z with φz = e~tzφt. As gr(φz) ^ gr (φ) -
Re(z), φz lies in the domain of ζ if Rez is sufficiently large. We define the flat-
trace function

where on any compact subset of the halfplane

Rez >

the series in y is uniformly convergent. Thus Γb is holomorphic on this halfplane.
Clearly Γb(z) = 7^(z)/Γ^(z), where r£(z) and 7l(z) are defined using χy(φ+) and

χy(φ~) in place of χ7(ι^±). If necessary, we write 7^(z) or ΓJJ±(z) for Γb(z).

We define the flat- trace of the operator ι^* of \l/t on continuous sections of ξ to
be the following atomic measure on (0, oo) concentrated on the lengths of periodic
orbits

(cf. [Gu, GS]). To understand the sense in which this measure is a "trace", at least
for C°° flows and lifts, see [GS], Chapter 6. In brief, even though the averaged
operators J0°° (x,(t)\//*dt for α(ί) continuous with compact support do not have con-
tinuous kernels, one may introduce a many-parameter deformation of φt, φt to obtain
averaged operators with continuous kernels. Their traces define a measure on the
parameter space which restricts to the flat-trace.

The relation of 7 ( z ) to the flat-trace of φf is clear (cf. [F3], Sect. 5):

where j£f(v):z H^ J0°° e~tzdv(t) denotes the Laplace transform of a measure v on

the ray t > 0. In some formal sense, Γ?(z) is a Fredholm determinant for the in-

finitesimal generator Xψ of φ* . Indeed consider the definition for the zeta-regularized
determinant of an elliptic operator A with positive symbol and no zero eigenvalues
on a closed manifold:

detrzl = exp --
ds

where
1 00

Δ~s = —— f ts-le~tAdt, Re s < 0 ,
Γ(s) o

and where Tr A~s is analytically continued to s = 0. If the underlying manifold has
odd dimension then Tr A~S\S=Q = 0, so

detczJ = exp - / ^"]Tr e~tΔdt
o s=Q
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Replacing the generator — A of e~tΔ by the generator Xψ — z of (φf )*, and trace by
flat-trace, we make the definition

More precisely, the generator of (ψf)* is Xψ ~ zE, where E denotes the Euler vector
field on ξ which is tangent to the fibers and generates the dilation flow υ ι— > e*v on
ξ, so one should write here detζ(zE — Xψ).

For a virtual lift, we let Tr*\l/f'* = Tr*\l/+'* - 7rV,~'*> so T\z) =
exp — y(t~lTr^\l/t '*). Most of the dynamical zeta functions in one variable that
one associates to φt and its hyperbolic set Ω are of the form Γb(z) for some choice
of ξ± and \l/f. Consider, for example, the Ruelle function and the Selberg function

R(z)= Π (1 -*
γ:μ(γ)=\

where y runs over the periodic orbits of φt\Ω. To write 5(z) = Γb(z) we find ξ±,
so that for any y

Let εy = sgndet(I — Py). Then this equation reduces to

I °°
) = fiy dCt(7 - Uγ) = βy Σ(~\)J

The natural lift Λj(Dφt\Eu) of φt\Ω to yl^" has holonomy Ίr(ΛjUy\ On the other

hand εy = sgndet(-Uy), since (/ - U7) = -Uy(I - U~{) and det (/ - U~{) > 0.
Thus (— l)wεy = sgndεtUy is the holonomy of the flat unstable orientation line
bundle w of Eu for its flat lift. We choose

where Λ+ξ and Λ~ζ denote the direct sum of the exterior powers ΛJξ over j even
and j odd. If i/^ is the tensor product of the lifts on each factor then χy(ίA±) has

the desired form, so S(z) = T*±(z).

Next we note -log^(z) = ̂ 7 W)e~zf(y} To arran8e ^(z) = rb(z) we find

^±,ι/^± so that for any γ

We find that
^± =(yl±(-1

with the natural lifts ι/^± does the trick.
If we are given a lift pt of φf to a bundle η, we define the corresponding Ruelle

and Selberg functions

= exp -
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To choose ξ± and ̂  for which Rp(z) = Γb(z) or Sp(z) = Γb(z), we tensor the
bundles and lifts used for R(z) or S(z) with η and p. In particular, we are interested
in Rp(z) for η a flat bundle of degree d on M with flat lift p and holonomy given
by α : π ι M - » Gl(d,C). Then

y:μ(y)=\

The torsion function of such a representation α is

1

Zα(z) = exp - ^

Here we choose simply ξ± = η <g) Λ±(TM/EC), with the natural lifts ι/^± (flat on
the η factor and induced by Dφt on the other). These are the dynamical zeta func-
tions that carry topological information about the flow. It is so named because of
the cases where the value of Zα(z) at z = 0 can be defined by analytic continu-
ation and identified with the Reidemeister torsion τα(7V, 7VL) for a certain pair of
spaces (7V,7V_) (here Ω is isolated, N an isolating block and N- its exit set, see
[F3,F4,MS,S]).

The relationship between Ruelle and Selberg functions was worked out in [Fl],
Proposition 2:

Rp(z) = Sp+(z)/Sp-(z)9

where ρ± = p <g> Λ^Dφ^E5). The above expansions of Rp and Sp as Γ^+(z)/Γb (z)

are quite analogous. We tend to regard the flat-trace functions Γ?(z) as building
blocks and functions such as R(z) ana Zα(z) as the zeta functions of primary interest.
However, even the case ξ = Ω x C, \j/t trivial, leads to the correlation zeta function

which is of special interest in statistical physics [Ru].
The class of zeta functions Γb(z) can be widened when one is given a continuous

weight function a on Ω with Re(0) > 0. Then a given lift ψ can be deformed to
ψza with

( t \ψza(v) = exp -zfa(φsp)ds } \ l / v 9

V o /

where p = π(v)9 v e ξ. One has

/ AT) \
χy(^) = exp - / a(φsp)ds\χv(ψ)9

V o /

where γ passes through p.
When given a virtual lift ψ^ we set

Of course for a = 1 we recover the function Γb(z). For a = log Ju\9 where Ju is
the unstable expansion of φt relative to some fiber metric on TQM, we obtain the
differential zeta function of Parry [Pa].
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While the zeta functions we know of in the literature are all of this form
ζ(-φ±^za), one can define a more general class, as follows. A zeta function of
one variable for (Ω,φ) is the ratio ζ(ψ+ (z))/ζ(ψ~ (z)), where V^+(z) and ψ~~(z)
are lifts of φ\Ω depending holomorphically on a parameter z G C such that ||I/Ί+(Λ;)||,

II^ΓCOll -* 0 as x —» +°°? * £ R. Then this zeta function is holomorphic on some
ray [c, oo).

Section 7. Meromorphic Extension of Γb(z) and ζ(ψ)

There are two sorts of obstructions to extending Γb(z) to a meromorphic function
on C.

The first is topological. Suppose φ is the suspension flow of the Smale horseshoe
f:S2 —> S2 with return time 1. Let Ω be an invariant set in the suspended invarient
cantor set so u = s = 1. Then the corresponding Ruelle function

R(z)= Π (1 -^(7))| _ -z = ίβ'

where the power series £Ω(JC) is the Artin-Mazur generating function for f\(Ω Π S2).
It is possible to find invariant sets in the horseshoe whose Artin-Mazur function
is a rather general subproduct of (β(jt), hence does not extend meromorphically
beyond some radius (e.g. \x\ — 1 in [BL], p. 47, as follows from the Fabry gap
theorem, cf. [B]Π, p. 296).

We avoid this difficulty by restricting to the case when Ω is isolated, i.e. Ω —

Π-ro Φt(U) for some open set U C M. An isolated hyperbolic set if a basic set in
Smale's terminology.

For Ω basic, there is still an obstruction - the smoothness of the flow. If φ is
not Cr for some r < oo then there is sometimes no meromorphic extension to C
[Ga,P,PP]. Examples can be constructed on suspension flows of horseshoes with
variable return time. Accordingly we must assume ψ,φ are C°°. By analogy with
the well-understood case of expanding maps, this should be enough ([T, R2,F5])
but the case when they are Cω should be simpler ([Rl, Fl]).

We now fix a Cω flow φ and a compact basic set Ω for φ. We assume also
that (ξ±,ψ±) is a Cω virtual lift, with ξ± complex vector bundles over Ω.

Theorem. Γb(z) extends to a meromorphic function on C of order at most
dim(M).Moreover ζ(ψ+)/ζ(ψ~) is a meromorphic function of ψ^ and every zeta
function of one variable for (Ω9φ) extends meromorphically to C.

Referring to the examples of Sect. 6, we see that for ξ, ψ of class Cω, the Ruelle
function Rψ(z) extends to a meromorphic function on C. (On the other hand, we
cannot continue the Selberg function Sψ(z)9 or even S(z\ using this theorem unless
the stable bundle is Cω.) We apply this to the case when M = UQ is the unit
tangent bundle of a closed manifold Q with a Cω Riemannian metric of negative
curvature, φ is the geodesic flow on M and Ω = M. In this case we obtain a result
in which no flow is mentioned.

Corollary. For a closed Riemannian manifold Q of negative curvature, the product

R(z) = Π 1 - e~z^\ Re z > 0 ,
y
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where y ranges over all prime closed oriented geodesies on Q, extends to a mero-
morphic function on C. Similarly, the Ruelle and torsion functions of a matrix
representation α : π\(UQ) — > Gl(d C)

and

ZΛ(z) =

have meromorphίc extensions to C. Here σy = 1 or — 1 as y preserves or reverses
the orientation of Q. These functions have order at most 2(dimg) — 1.

This corollary opens up the possibility of exploring the special values of these
functions, which were previously only known to exist for Q locally symmetric. In
particular, if there are no α-twisted harmonic forms on UQ (i.e. no nonzero ί/-tuple
of harmonic forms on the universal cover of UQ is α-equivariant) we conjecture

Z»(0) = τΛ(UQ) ,

where τα is the Reidemeister torsion of the manifold UQ. This is a sort of "Lefschetz
formula" relating the periodic orbits of the geodesic flow over Q to the topology
of Q [F3]. It is known when Q is R-hyperbolic, i.e. of constant negative curvature,
and α unitary ([F6, F7]). Note that our condition on harmonic forms implies that α
is acyclic but the converse only holds for unitary α-see [F4] for some pathological
situations where this distinction seems to matter.

In other examples, the special value of a ratio of Selberg functions is of geo-
metric interest. For Q hyperbolic with dim Q = 2k -f- 1, Millson expressed eπιη, η
the eta invariant of Q, as the value Sp+(z)/Sp-(z)\z=k, where p± are the natural lifts

of the geodesic flow on UQ to the spin bundles ξ± with £+ 0 ξ~ = Ak(TpQ/Rυ)
for υ G UQ, p = π(v) [M]. For Q C-hyperbolic (i.e. Kahler with constant negative
holomorphic sectional curvature) the holomorphic torsion invariants of Ray-Singer
are expressible as such special values of Selberg functions [F8]. One may hope to
generalize these results to variable negative curvature using our corollary.

Proof of the theorem. Clearly we may reduce to the case of a Cω lift (ζ,ψ). For
some small neighborhood U of Ώ, ξ extends to a Cω bundle on U and ψ to a Cω

family of bundle maps ζ\unφ-tu —* ζ\ur\φtu> which we will also denote (ζ,ψ).
Since φ has no stationary points in Ω and Ω is compact, we can choose a finite

number of small transverse compact disjoint Cω discs Dk of codimension 1, such*
that for every p E Ω there is a t G (0, 1) with φtp G \Jk int(D^). We choose a basis

of Cω sections for ξ Dk, so ξ\Dk = Dk x Cd , d = rank (ξ).
Now we fix δ > 0 so that if p,φtp G \Jk Dk and t > 0 then t > δ. We choose

a Cω Riemannian metric on U and a constant σ < 1 so that

\\Dφδ\Es(Ω)\\ < σ, \\Dφ-δ\E"(Ω)\\ < σ .

Consider a point p G βΠint(D^) and the Cω coordinates (x\,...,xu+s), \\x\\ <
1, on Dk. Choose an ordered orthonormal basis for TpDk Π (Ec

p 0 Eu

p) and TpDkΓ}
(Ec

p Θ Es

p ) and use an aίfine coordinate change that takes p to 0 and these bases
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to the standard bases for Ru 0 0 and 0 Θ Rs. When t0 > 0 is chosen with φtQ(p) G
int(/V) and p' G A:' is near φtQ(p) we choose coordinates in this same way on
Dkι. Let r > 0 be a constant small relative to the distances from p to the boundary
of Dk If p' is sufficiently near φtQ(p)9 the return map for φt gives a hyperbolic
correspondence in local coordinates on the product Bf x Bs

r of balls of radius r,
more precisely from B"(p) x Bs

r(p) to Bu

r(pf) x Bs

r(p'). We can arrange that the
major constants of this correspondence are < σ and the minor constants are smaller
than any given positive p, by choosing r small enough and p' near enough to φtQp.

Now we use [Bl] to find a fine Markov family of section Rj with each Rj C
Ω Π int(Dk) for some k = k(j). If the Rj are sufficiently small then for any choice of
Pj £ Rj and any Markov transition / from α(z) to ω(/), the Markov correspondence
from R^i) to ^ω(/) extends to a hyperbolic correspondence // from X^) x 7α(/)

tθ Xω(z) X ΓcoO) with fi = //Mo fθΓ ^ = ^"(O and ^7 = Bΐ(Pj)> YJ = Br(Pjϊ We

arrange that the major constants for the cross maps c/ are < σ and the minor
constants are < p, where p is the positive function of σ given in Proposition 1.

Next we associate a system of weights r/ to our lift φt. Fix / and choose
x* eXωW and y G 7α(0 and let (x,y') = ct(xf

9y). Then (*',/) = φt(x,y) for
ί = //(jc/,j;) a positive Cω function, the return time for the zth transition. Then
φt ζ(χty) ~* ζ(χ',y'} is represented, using our trivialization of ξ\(\JkDk)> by an invert-
ible d x d matrix n(x'9y).

Thus our Cω product neighborhoods Xj x Yj of the Markov section R7 and our
Cω trivializations of ξ\Dk define a system of Cω hyperbolic correspondences fl

and Cω weights rl9 indexed by the Markov transitions. As in Sect. 5, this system
defines a transfer operator L. Provided ψt is sufficiently contractive as t —> H-oo, so
that the series in ζ(ι^) coverges absolutely and ||£|| < 1, we will compare ζ(ψ) to
det (/ - L). ̂

Suppose f = (/ i , . . . , /„) G /l« is an n-loop with multiplicity μ(ΐ). There are «/μ(Γ)
distinct elements of Λn obtained by cyclically permuting Γ and altogether these
contribute a factor

exp-

Since Fin o - o F^ has a fixed point, p is real and

Det(/ - Dp(Fln o - - - o F f l)) = Det(7 - Dp(fin o - - - o /M )) = Det(7 - P y),

where γ is the periodic orbit through p determined by /. Moreover (t\ o o tn)(p)
is the holonomy of φ around y, so

The terms in - log det(7 — L) and — logζ(^) corresponding to Tare then

1 (~iy%(*A) d * Xγ(Φ)
μ(f)Det(7-Pγ) μ(γ) |Det(7 - Py)| '

Here μ(Γ) divides μ(y) and the second factors differ a sign (-1)% = sgndetUy9 i.e.
the holonomy of the unstable orientation line bundle ω for the flat lift.
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For simplicity we consider the case dim Ω = 1, such as holds for a suspended
horseshoe. Then we may choose the /?7's disjoint so that μ(ι) = μ(y) for all i and
y's correspond 1-1 to loops modulo cyclic permutations. Then we have shown

det(7 - L) = ζ(φ 0 w).

Now we vary φ over some family of lifts with a compact parameter space. We
choose the complex extensions Wj x Z7 so that our transfer operator is defined for
all parameter values. For a family φza for instance, with a Cω, we require that the
function

t,(χ',y)
f g(φsp)ds, p = (Ci(x',y)9y)
o

on Xω(i) x YΛ(i) extends to fΓω(o x Z^ (and we can take all of C for our parameter
space). Then the expression det (/ - L) defines an analytic function of these pa-
rameters, so ζ(φ 0 w) is an analytic function of φ. As (φ 0 w) 0 w = φ we deduce
that ζ(φ) is an analytic function of φ. Moreover ζ(φza) is an entire function of z.
In particular 7^(z) is entire. Also any zeta function of one variable for (Ω, φ) is

meromorphic.
For general Ω, we follow Bowen's form of the Manning counting argument for

a Markov partition ([Ma, B2]) as adapted to flows in [Fl]. For m ^ 0 there is a
directed graph with vertex set Vm and arrow set Am such that a loop in Am defines a
periodic orbit y which passes at all times through at least m + 1 Markov flowboxes.
One has the inclusion-exclusion formula

where f runs over loops in Am representing y and ε(Γ) = ±1, see [Fl], Proposition 1.
For m = 0, VQ and AQ consist of the Markov vertices j and transitions i respectively,
and ε(z) = 1 for all i. We set

where i runs over loops in Am and ψt is sufficiently contracting as t — > H-oo. Then
ζ(ψ) is a finite alternating product

As above, ζo(^ ̂  w) = det (/ — L). By the construction of the Am and Fm in [Fl],
one can easily imitate the construction of L for any m ^ 0 to obtain kernel transfers
Lm, m = 0, 1, 2, . . . with LQ = L and

Cm(^0w)= det(/-Z,w).

The Zw depend linearly on d x d weight matrices that in turn depend holomorphi-
cally on \l/t, so this formula extends Cw(Ά ̂  w) to an analytic function of φ. Taking
the alternating product over m, ζ(φ 0 w) is a meromorphic function of φ. Hence
ζ(φ) is meromorphic in φ, and we have the required meromorphic extensions of
zeta functions of one variable.
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The weight functions for ψz are exp(— zti)rl with δ < tt < 1 on Xω(ι) x Fα(Z).
We may assume the Wj and Z/ are chosen so that f / | < 1 on JF"ω(/) x Zα(/). Then

z ne

and Lemma 5, applied to L§,L\,Lι,... shows that for some positive C

log I det/-Zw(^)| ^C|z| d ι m M,

proving the theorem.
Note that the same bound holds for log |C(ι/^α)|, so ζ(ψza) also has order ^

dimM for any Cω function a.
We wish to correct a misstatement in [Fl]. The inequality on p. 507, 6 lines

from the bottom should use ea\z\ instead of e~
a^Q(z\ All the assertions concerning

order of functions are unchanged but those concerning right order (i.e. bounds on
halfplanes Rez ^ σ) are in doubt. Theorems 3 and 4 should be amended, with
"right order" replaced by "order."

We showed above that ζ(ψ) is analytic in ψ when dim Ω — 1. This implies
that Γb(z) is expressible as a ratio of entire functions independent of the choice of
Markov sections:

We conjecture that ζ(ψ) is analytic for dim Ω > 1 as well as suggested by the
formalism ζ(ψ) = det^(— Xψ). One approach to this would be analytic sheaf co-
homology, cf [R2] and example II in Sect. 8. Another would be to develop a C°°
theory of kernel transfer, comparable to the results of [R2, F5] for expanding maps.
For u = s — 1 Rugh has recently proven that ζ(ψza) is entire for ξ the trivial bundle
and ψ the trivial lift.

Section 8. Examples

I. We first illustrate our use of generalized functions in an ad hoc example. Let G =
Tn be the rc-torus and G = Zn. Given any positive weights wχ, χ e ZΛ, we consider
the weighted Hubert space H(wχ) of Fourier series Σχcχχ with Σ|cχ |

2wχ < oo.
We first let wχ = exp(2e^=1 |χ,|) to obtain a space Hε. Clearly HQ = L2(Tn). For
ε > 0, //ε consists of functions holomorphic on the ft-fold product of annuli Rε —
{(ZI,...,ZΛ): \Zf , |z~ ! | < exp(ε)} with L2 boundary values. For £ < 0, HE consists
of generalized functions in the dual of H\ε\.

Suppose A: Tn — > Tn is a hyperbolic toral automorphism with dual automorphism
A G G7(/7, Z). Provided wχθA/Wχ is bounded above, A acts on H(wχ) by a bounded

operator A*. We introduce the splitting ofG®R = Rn = U($S and norms on U,S

that are contracted by A and A, respectively. We let H denote the Hubert space
H(wχ) with

wχ = exp(||χj - ||χw||), for χ = χu + χs,χu G U,χx G S .

If we take β> 1 with ||^|5|| ^ 1 - \ogβ and \\A~~ Vl l ^ (1 + log ̂ Γ1, then with
\\ή = hull + hsl

WXOA/WX ^ β~M -
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It follows that for the orthogonal projection πr to χ's with ||χ|| ̂  r, πr : H — > //,

Since rank π, = O(rn) we see that A* is an ^-compact operator on H.
For some ε > 0, H(. c // C //_e. However // is neither a space of analytic

functions nor the dual of such a space but rather some mixture of the two.
Considering the action of A* on jc's, it is clear that Ύr(A*) = 1 and the only

nonzero eigenfunctions of A"" are constants.

II. Suppose n = 2 and A = ( j j is the Fibonacci automorphism of Z2. Then

A : T2 — > Γ2 admits a Markov partition with 2 rectangles [AW], which we parametrize

by R\ = [0, 1]2 and Rp = [0,ρ] x [-p,0],ρ = ^F1 such that the Markov correspon-
dences are

f\p(x,y) = (ρ~]x,-py) from R} to Λp, 0 ^ JT ^ p2,0 ^ j; ^ 1 ,

/pi (*,>>) = (p~1*,-p.y) from ^p to R} ,

and

/Π(^j;) = ( / 9- 1

Λ ;_p 9 l - py) from #1 tO /?ι , p2 ^ Jt ^ 1, 0 ^ JV ^ 1 .

These correspondences are Cω and split. Their cross maps c\p,cp\,c\\ are affine
maps so we will ignore the choice of Wj and Z7, j = l,p. With L = L\p + Lp\ + L\\
as in Sect. 5 we find

7\. jq — *j _

~ '
where ̂  is the number of period q points of the Markov correspondence. Since A

is the transition matrix for this correspondence, Nq = Tr(Aq) = p~q + (—p)q. Thus

It follows that the nonzero spectrum of L consists of 2 double sequences

p"'(-pr and pm+\-p)n+l, (/w,/ι) ^ (0,0).

This can be seen more concretely as follows. Suppose f(x,y) is an eigenkernel

for this transfer with eigenvalue λ. Then ^ and j- (if they are nonzero) are

eigenkernels with eigenvalues pλ and ( — l / p ) λ . By inspection, L fixes the kernel α
with oίj(x9y) = 1,0 ^ Λ: ^ 7, = 0 for other x(j — 1, p). The first double sequence,
then, consists of generalized functions which are polynomial of degree n in y whose

nthy derivative is (^) α. Note that |f is a delta function at x = 0 minus a delta
function at x = 7, for j = l,p.

The second double sequence has a similar interpretation starting from an
eigenkernel β with eigenvalue -p2. Here too, β depends only on x and is supported
on [0, 1] ]J[0, p]. This can be seen by considering the hyperbolic correspondence on
this pair of intervals given by the first coordinate of f\p,fp\ and f\\. For this
correspondence, u = 1, s = 0, and

Tr I* = Nq—^— =(\+p" + P

2" + )(l+ (-p2)"),
i — p v
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so the spectrum is pm,(—p2)pm. This corresponds to the mth derivatives of α
and β.

Unlike α, there is no simple formula for the generalized function β(x). The
component β\ = β|[0,1] satisfies a simple functional equation that characterizes it
(and hence βp — β|[0,p]) uniquely up to a constant factor:

—p2β\(x) = —p~2β\(p~2x) + βι(—p + P~lx) -

Using the results of [R2] (see also [F5]) one can see that β(x) is in the dual of
C2+ε, for any ε > 0.

Consider the time 1 suspension flow φt of A and its zeta function Γb(z) for the
trivial bundle and lift:

oo J I

r(z) = exp-Σ-#,τi 7

where Nq = # Fix(^). By the Lefschetz fixed point formula, or an elementary
count,

-Nq = \- Tr Aq + (-!)« = (!- (-/>)«)(! - p~i) ,

oo 1

Γb(z) = exp - £ -e~zq = 1 - e~z .
q=\<l

Thus the transfer operators Z,0(z),Z,ι(z),... satisfy

This example suggests we interpret the alternating product formula for rb(z) in
terms of a sort of analytic sheaf cohomology. We see that L has a spectrum con-
sisting of 2 double sequences, but only the eigenkernel α for the eigenvalue 1 gives
rise to an ^-invariant kernel on Γ2. The latter is just the constant function 1 on
Γ2, as in example I. All the other eigenkernels for L are either concentrated on
the unstable boundary of ^i and Rp and project to zero in Γ2 or are incompatible
along the stable boundary, and do not fit together to form an eigenkernel on Γ2.
The sheafs involved here are based on morphisms that mix restriction and extension,
like the operator εp of Sect. 2.

Section 9. The Explicit Formula for a Cω Basic Set

Let μΦ be the atomic measure on (0,oo) supported on the length spectrum of
φ\Ω, μ* - Σy ~^δ(x - /(y)). We call μ* the length distribution of φ\Ω. Then if
N(T) is the number of closed orbits of length ^ T and NP(T) is the number of
prime closed orbits of length ^ T we can compute any of μ^9N and Np using the
formulas

/(O, T] = NP(T) + \Np(T/2) + ̂

N(T) = Np(T) + Np(T/2) + Np(T/3)
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The sharpest asymptotic statements concerning the length spectrum involve cer-
tain means of μ^. Define M(Γ) for i ^ 0, T > 1 inductively by

M0(Γ) = / tdμ*(t) =
0

By the remarks following the proof of Theorem 5 in [F2], we obtain an analogue
of the Weil explicit formula for prime numbers, valid for any basic set Ω for a
Cω flow on a smooth manifold M. Take k ^ dimM and T > 1. Then Mk(T) is
a "power series" with complex coefficients and complex exponents:

T-kMk(T) = ΣcpT" .
P

Here either p £ {0, -!,...,-&} and cp depends on the first 2 terms in the
Laurent expansion of R'(s)/R(s) or p is a zero/pole of R(s) of order np and
cp = np/ p(p + 1) (p + k). We have the following direct expression for M^(Γ) in
terms of periodic orbits y:

T~kMk(T) = Σ - - ( y ) *

where jc+ is ** for c Ξ^ 0 and 0 for jc < 0.
For the geodesic flow over a closed hyperbolic surface, this formula was proven

for k ^ 2 by Randol using the Selberg trace formula [Ra]. In case Eu is Cω one
can choose any k g: 1 + dimEu [F2]. Also similar expansions hold for μ^ replaced

by μ* = Σ7 ^Xy(Ψ)δ(x - '(?)) for any Cω lift tfr.
From knowledge of the divisor of R(z) one can convert the exact formula to

an asymptotic formula. Suppose p\,...,pN are the only zeroes/poles of R(z) with
Re z > α for some α > 0. Then for any b > α,

T~kMk(T) = cpl T " + + CPN T'" + 0(Tb) .

Consider for instance a closed oriented hyperbolic manifold X of dimension d,
with unit sphere bundle M = Ω and geodesic flow φt:M — •> M. As Eu is analytic
and dim Eu = d - 1, we may take k ^ d. By [F6]

7=0

where Sj is a certain Selberg function. Thus

»P= Σ(-iy θrdp+y(Sy).

7=0

For >v with Re w > 0, ordw5/ is the multiplicity of the eigenvalue λ for the

Laplacian Δj on coclosed y-forms, where λ = (n — j)2 — (w — /ι)2, n = ̂  ([F6],
p. 538). Thus an eigenvalue of A} of the form λ = p(d — 1 — 2j — p) contributes
(-iy to np for Re p > 0. For Re p > n, we use λ ^ 0 to find that p G R and
p ^d-\-2j.

Say J ^ 6. It follows that if j — \,λ — 0 (corresponding to a harmonic one form
on X) there is a pole of R(z) at z — </ - 3 (unless it is canceled by an eigenfunction
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of AQ with λ = 2(d — 3)). Thus the cohomology of X affects the coefficient of Td~3

in the asymptotic behavior of the averaged length distribution

Section 10. Lefschetz Formulas for Smale Flows

This section uses our analytic continuation result to extend results of [F3], to which
we refer for a more extended discussion of the notions that follow. Suppose M is
a closed Cω manifold and φt:M — > M a Cω flow such that the chain recurrent set
Ω is hyperbolic. If dim Ω = 1 we say φt is a Smale flow (this is a more general
definition than that first given by Zeeman, who required the strong transversality
property). Then Ω is isolated and so admits an isolating block N. N is a manifold
with corners whose boundary is the union of 2 manifolds with boundary N-,N+

that meet transversely in their common boundary: N- Π7V+ = <37V_ = δW+,ΛΓ_ U
N+ = dN. The flow φt is transverse to N± (inward on N+9 outward on 7V_) and
U^LooφfW = Ω. The simple homotopy type of the pair N,N-) is an invariant
Of 0.

Suppose E is a flat bundle over M whose holonomy α has | det α =1 and such
that H*(N,N-;E) = 0. It follows that H*(M\E) = Q and that the Reidemeister
torsions are equal: τ#(M) = τβ(N,N'). The latter may be calculated by choosing a
cross-section K for φ\N, with return map r : K U 7V_ — > K U 7V_, where r fixes 7V_
and r(x\x e K - N-, is the first point of A' U N- on the forward trajectory from
x. Let r* be the action of r on Hl(K UN_,N-;E) and define the Lefschetz zeta
function of (φ\Ω,E) as

Then 1E is a rational function. Following Milnor's calculation of the torsion of an

infinite cyclic covering, one shows IC^O)!"1 — tE(N9N-) ([F3], Theorem 3.3).

To describe ζE in terms of periodic orbits, we choose a Markov family of
sections whose union is K Π Ω. We set

where \fa denotes the flat lift of φ to E and n(γ) is the number of ί, 0 < t ^
/(y), where φtp^K for p in 7. Clearly ZE,K(Z,S) is defined for Re s ^ 0,
Re z > 0 or for Re z ^ 0, Re s > 0. Then Sect. 1 gives that ZE,K(Z,S) is an entire

function of (z,^) E C2. Here we deform φE to ψz

E

+sa, where α > 0 is chosen so that

J0 a(φ(x,u))du = 1 for Λ: G ̂ Γ Π Ω and φc) the first return time of c. Then

by the Lefschetz fixed point formula with coefficients in E for the iterates of r.
Also

is the torsion function of φ\Ω for the flat bundle E with holonomy α. We find
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Thus ^-torsion is obtained from the periodic orbits of φ using the Lefschetz formula.
We summarize this result as follows:

Theorem 2. If φ is a Cω Smale flow on M and E is a flat bundle on M which is
acyclic for a pair (7V,Λ/_), with N an isolating block for the chain recurrent set
of φ, then φ is Lefschetz at E, that is \ZE(0)\ = τE(M\

The Fuller index of γ is \nάF(y) = 777^£y If α denotes the holonomy of E then

the preceding formula may be paraphrased

ΣindF(y) Tr α(y) = - logτ^(M),

where the divergent series on the left is regularized by the analytic continuation
result of Sect. 7.
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