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Abstract: Consider the two-parameter family of real analytic maps Faj:χ\-+ x +
a + ^ sin(2πx) which are lifts of degree one endomorphisms of the circle. The
purpose of this paper is to provide a proof that for any closed interval /, the set of
maps Fatb whose rotation interval is /, form a contractible set.

1. Introduction

Orientation preserving homeomorphisms and diffeomorphisms of the circle have
attracted the attention of mathematicians and physicists for a long time because
they arise as Poincare maps induced by non-singular flows on the two-dimensional
torus [2,7,14,29], More recently, families of circle endomorphisms which are
deformations of rotations have appeared as approximate models for some scenarios
of transition to "chaos," or more technically, transitions from zero to positive topo-
logical entropy. One can observe these transitions by varying parameters of flows
in 3-space so that tori supporting non-singular flows get wrinkled and then get
destroyed. More generally, these scenarios are typical for a huge variety of systems
of coupled oscillators so that one sees them everywhere. As a matter of fact, in
many cases when one is lead to study an endomorphism of the interval as a model
for a natural science experiment, some circle endomorphism is a more adequate
model.

While the simplest endomorphisms of the interval depend on a single parameter,
say the non-linearity, the simplest reasonably complete family of circle endomor-
phisms containing the rotations has to depend on two parameters: the non-linearity
and some form of mean rotation speed. In the coupled oscillators picture, these
parameters correspond respectively to the strength of the forcing and the frequency
ratio of the coupled oscillators. The paradigm for interval endomorphisms is the
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quadratic family. For the circle, it is the so-called Arnold or standard two-parameter
family:

with (A, b) G [0, l [ x R + , and (0)Λ =f0 mod n.
Under an orientation preserving homeomorphism of the circle, the orbits of all

points wrap around the circle at the same average speed [29]. For non-invertible
maps this is no longer necessarily the case, but the set of average speeds form a
closed interval. With the concepts roughly recalled so far, we can give an example
of a result that is a corollary of our main theorem: for any average speed ω, the
set {(A, b)} of pairs such that all orbits under the map fA^ wrap around the circle
at speed ω, is connected. Our main result is in fact a similar statement in the more
general setting where average speeds vary in an interval.

Precise definitions and statements are contained in Sect. 2. In Sect. 3, we reduce
our main theorem to a rigidity result: this reduction is merely well known material,
but some proofs are sketched for completeness. In Sect. 3, we have also included
some material not strictly needed for the proof of Theorem A, but intended to help
some readers to build an intuitive picture of what the main result is all about.
The rigidity property, formalized in Theorem D, is proved in Sect. 4. Our proof of
Theorem D is one more example of the efficiency of complex analytic methods in
dealing with questions arising naturally in a real analytic framework.

2. Definitions and Statement of the Results

Let T = R/Z be the circle and 17:1R —• T the canonical projection. The real con-
tinuous map F is a lift of the continuous circle map /:TΓ —> T if and only if

The integer d such that

for all real numbers x is called the degree of / (or of F). The identity map, and
more generally the rotations, have degree one. Since the degree varies continu-
ously for continuous deformations of circle maps, and since we are interested in a
parametrized continuous family containing rotations, we shall only consider degree
one maps in the rest of the paper. Hence, circle map will always mean "degree-one
continuous circle map," and a real map will be called a lift if and only if it is the
lift of a degree one circle map.

Let / be a circle map, and let F be a lift of / (each time both symbols / and
F appear conjoined in the paper, they are related in the same way). We define

Fn{x)
p (x) — lim inf ,
—r n^oo n

and

~pF(x) = lim sup .
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The rotation interval of F [28] is then

I(F) = [α, β] ,

where

α = inf pF(x), j8 = sup ~pF(x) .

When /(F) is a singleton {ω}, we sometimes use the classical language and say

that p(F)= {ω} is the rotation number of F.
We will focus on the standard family fA^ with parameter space [0, l[xIR+,

and the corresponding degree one lifts Fa^ with parameter space IR x 1R+, where
the correspondence is given by A — a mod 1. To state our main result we need the
following

Definition. An arc or curve a — φ(b) in parameter space IR x IR+ is called an
L-curve if φ is uniformly Lipschitz with bound ^ .

Theorem A. For each closed interval I, the set Ri of standard lifts with rotation
interval I corresponds to a contractίble region, also denoted Ri, in the parameter
space IR x IR+. More precisely,

• For any irrational number ω, R{ω} ^ a n L-curve.
• If one bound of I is irrational while the second bound is a rational number, Rj

is an L-curve.
• If the bounds of I are distinct irrational numbers, Rj is an L-curve.
• When both bounds of I are rational, Ri is a lens shaped domain bounded by

two L-curves that meet at their endpoints.

Convention. To simplify the language and the notation, we shall continue to identify
sets of standard lifts with the corresponding regions in parameter space, as we did
in the statement of Theorem A; when the distinction is relevant the context should
tell which space we mean.

Conjecture B. If the bounds of I are distinct irrational numbers, Rj is a point.

The content of Theorem A is illustrated in Figs. 1 to 3:
- Figure 1 is a schematic picture of part of the parameter space for the lifts of the

standard family. The small inserts represent the graph of Fq for F in various
regions, lines and points.

- Figure 2 shows a situation proved to not exist in the standard family by
Theorem A.

- Figure 3 illustrates the situation conjectured not to occur in the standard family
(in Conjecture B).

All labeling appearing in these figures is defined in Sects. 2 and 3.
As an important particular case, relevant for example in the description of the

boundary of chaos [20], Theorem A contains the following result which was con-
jectured in [4] (p. 378 and Fig. 13) and [20] (p. 213):

Corollary C. For each real ω, the set R{ω] is connected.
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Remark. Corollary C (which was known for a long time to hold in the case when
ω is irrational) was recently proved for some families of piecewise affine lifts; for
these families, the proof only uses elementary real variable methods [32]. Later, and
in parallel to the work presented here, more sophisticated real variable methods [11]
were used to get the counterpart to Theorem A as well as a proof of Conjecture B
for these piecewise lifts [32].

b=0

Fig.1.

R P Λ Γ L

U frequency locked

U not locked

ϋ diffeomorphisms

Fig. 2.
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b=0

Fig. 3.

3. Proof of Theorem A, Part I: Real Analytic Part

3.1. Non-Decreasing Lifts. We shall denote by J^(]R) the space of Ck non-
decreasing lifts, equipped with the Ck norm. The next theorem recalls some classical
results [2,14], usually formulated for lifts of degree one homeomoφhisms, but gen-
eralizable verbatim to J*°(]R).

Theorem 3.1.1.

1. The rotaion number, as a function ρ\^°{Wi) —> 1R is continuous.
2. For F and G in °

F £ G => p(F) ^ p(G),

F > G & p(F) or p(G) irrational => p(F) > p(G) .

3. If p(F) is irrational and f has a dense orbit, then,

F^G and F ΦG => ρ(F) > p(G) .

The next result which can also be found in the above references, is more specific
to our problem:

Theorem 3.1.2. For όφO, no iterate of a standard lift is affine.

Set

Theorems 3.1.1 and 3.1.2 yield a partition of the subset IR x [0, 1] of the para-
meter space of the standard family in the A^'s, with the following properties [2]:

PL For ω irrational, A^ is an arc crossing each line b — constant ^ 1 at a
single point,

P2. For a rational number | , A^, is often called an Arnold tongue; it crosses

each line 0 < b = constant ^ 1 on an interval of positive length.
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Remark. Property P2 describes an aspect of the phenomenon of "frequency locking,"
first described by Huyggens, in the context of clocks hanging from the same wall,
and described in modern terms, in the simplest cases, as the structural stability of
generic degree one circle diffeomorphisms with rational rotation numbers.

3.2. Some Special Sets. Following [4] and [20] (both of whom extended the above
mentioned work in [2] from homeomorphisms to endomorphisms), for each real
number ω, we define

Aω = {F e {Fa,b}(a,b)eRχκ+ I ω e I(F)} ,

and

L ω = {F G {Fa,b}(a,b)eKxR+ I W = J(F)}

According to our notational convention, Aω and L ω can also be understood as
subspaces of the parameter space. The following theorem enables us to use the
results of Sect. 3.1 to analyze these subspaces.

Theorem 3.2.1 ([5, 27]).

1. For any lift F G

where F+ is the monotonic upper-bound of F, and F~ is the monotonic
lower-bound (see Fig. 4). In formulas we have:

F+(x) = sup (F(y)) ,

F~(x) = inf
y^x

2. For each ω G I(F), there is a non-decreasing lift Fω with p(Fω) = ω, and
such that Fω coincides with F where it is not locally constant.

Theorem 3.2.1. is quite easy to prove for the maps in the standard family.

3.3. Simple Properties of the Aω's and ~Lω

9s. Theorem 3.2.1. allows us to use
Theorem 3.1.1. in the study of non-invertible maps. In particular, one gets easily that
the Aω 's are connected and, for ω rational, they intersect each line b = constant > 1
on a segment of non-zero length. We discuss the case when ω is irrational in
Sect. 3.4. A fundamental role will be played by the boundaries of the Aω 's and
some of their accumulation sets defined as follows:

B'ω= lim Aι

ti,

B r

ω = lim Ar

0.

These boundaries, pieces of which form all the boundaries of the sets Ri of Theorem
A, are described in the following result due to Boyland [4]. We include a proof for
the sake of completeness.
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I small pieces of graphs

Theorem 3.3.1 ([4]).

1. For any real number ω9 the left and right bounds Aι

ω and Ar

ω of Aω in
IR x R + , are L-curυes.

2. When ω is a rational number these curves intersect at a single point which
has b = 0 as second coordinate.

3.

Bj, = lim A'/ and B£ = lim Ar, .
9 p' p+ Hj q pl p- L^

7 * q 7^ q

Moreover, the sets BJ> and Br

E are L-curves.
<J q

4. For ω irrational,

\'ω = B!

ω= lim A'P ,
t--*ω- q

Ar

ω = Bω = lim A5 .

q

Proof With no loss of generality, we prove statement 1 for A | . To do this we

consider the vertical cone in R x 1R+ with vertex at (a, b) and boundaries made
by lines with slopes 2π and -2π, and show that it contains A^. A point to the right

~q

of the cone has coordinates a' = a + δ + ε, V = b ± 2πδ, while a point to the left
of the cone has coordinates a" = a ~ δ - ε, Z>" = b =p 2π^, for some non-negative
δ and ε. Consequently, using the continuity of the rotation number of F+b as a
function of the parameters, and its monotonicity as a function of a, the inclusion
of Alp in the cone follows from

q

\/δ ^ 0, Vε ^ 0: δ + ε ± δ sin2πx ^ 0 .

Statement 2 follows from Theorem 3.1.2. Statement 3 follows from statement 1 by
continuity of the rotation number applied to the monotonic bounds. Statement 4 is
a consequence of the same continuity property. Q.E.D.
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3.4. Theorem A in the Simplest Case. We recall here the proof of Theorem A in
the case when / is the singleton {ω} for some irrational number ω. We begin with
a weak form of a theorem by Denjoy [7]

Theorem 3.4.1 ([7]). For F in #"2(IR), if p(F) = ω for some irrational number
ω, then the circle map f with lift F has a dense orbit.

The next result is a particular case of a theorem obtained by Block and Franke
(see also [5]) as a consequence of the Denjoy theory:

Theorem 3.4.2 ([3]). // b > 1 and p = p{F'b) = p(F+b% then p e Q

Proof We first remark that there exist distinct C2 smooth lifts Fo and F\ such that,
Vx E IR, F~(x) ^ F0(x) S Fι(x) ^ F + (x). If the claim were false, by Theorem
3.1.1-2, p = p(F0) = p(F{) = p(F+) for some p £ Q. But if p £ Q, Theorem 3.4.1
implies Fo (and Fi) has a dense orbit. Hence the claim follows from Theorem
3.1.1-3. Q.E.D.

To finish the analysis of the case when p(F) — ω 0 Q, we just have to check
that, as a consequence of Theorem 3.4.2, all L ω are contained in the region b ^ 1
described in Sects. 3.1 and 3.3. In summary, we have:

Lemma 3.4.3. For ω $. Q, R{ωy is an L-curve contained in the region b rg 1.

3.5. Intersections of the Boundaries of the Λω's: Existence. For any A, the nar-
rowest diagonal strip with sides parallel to and centered on the main diagonal that
contains the graph of Fa^, can be made arbitrarily wide by choosing b large enough.
Hence

Lemma 3.5.1. For any ω e IR, and any a e IR, ω is contained in the interior of
I(Fa,b) a s soon as b is large enough.

Corollary 3.5.2. If ω < 0, Ar

ω and Wω intersect Xι

ω and Wω. Also, Bp intersects

Bp for any rational^.

3.6. Intersections of the Boundaries of the Aω's\ Combinatorics. In order to prove
Theorem A using Theorem 3.3.1-4, we may restrict our attention to the intersection
points of the boundaries of AP_ and A >. Before we begin the analysis of these

q

intersection points, let us recall that the Schwarzian derivative of a map g is defined
as

A direct computation then gives

Lemma 3.6.1. For b > 1 and F'a^(x)φθ, SFa,b(x) < 0.

This will be used to prove Lemma 3.6.2.
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Using a lift O of any periodic orbit o of / ^ , we can analyze the local
behavior of fAjb near o in terms of the derivatives of Fa^ at q successive
points of O, JC0? x\ = ^« δ(*o), >*$-i = Fa b(xq^2) Define the multiplier of o as
^o = F ^ ( x 0 ) Ff

atb(Xι)\..Ff

aib(xq^). We call o

- attracting if |mo | < 1,
- neutral if |/wo| = 1, and in particular parabolic if m0 is a root of unity,
- hyperbolic if \mo\ > 1.

Clearly m0 only depends on (9.
The periodic orbits of the circle map fAj, which are also orbits of some homeo-

morphism of the circle, and lifts of these orbits will play an important role in our
discussion. If a point of such a periodic orbit o of fAtb has a lift with rotation
number | under Fa,b, ° n a s period q and lifts to p distinct orbits of Fa^.

Lemma 3.6.2. Suppose | £ I{Fa^). Then Fa^ has an orbit O such that

1. O projects to a periodic orbit o of fA,b
2. There is a monotone G G JΓ°(1R) such that O is an orbit of G.
3. No point of O is in an interval where Fa^ is decreasing.
4. If m0 ^ 1, O is uniquely determined up to integer translation. If we relax

the multiplier condition, there are, up to integer translation, at most two
distinct orbits. When there are two orbits distinct under integer translation,
denote them by O and O'. Then

(a) O and O' bound intervals that are lifts of q pairwise disjoint arcs on
which fAtb is orientation preserving,

(b) the interiors of these intervals are in the immediate basin of the at-
tracting periodic orbit which lifts to O\

(c) at least one critical point is in the immediate basin of the attracting
orbit which lifts to O'.

Proof For properties 1 to 3, the existence follows from Theorem 3.2.1.
Uniqueness under the condition m0 ^ 1 follows from the well known fact

(proved by a direct computation) that the absolute value of the (usual) deriva-
tive of a function on the real line, whose Schwarzian derivative is negative off the
critical set, has no local non-zero minimum. That there are at most two orbits dis-
tinct under integer translation when the multiplier condition is relaxed follows in a
similar fashion from the negative Schwarzian derivative property.

Property 4 (a) comes from the fact that we only use the restriction of Fa^b

to the intervals where it is increasing; property 4 (b) is immediate (draw a graph);
and property 4 (c) is a classical result in holomorphic dynamics (see the second
remark in Sect. 4.1). Q.E.D.

Let

OP ={Po>Pi>- ,Pρ-i} and p

be the projections of O P , and Op respectively, where fi,b(Vj) =

> a n d §=(f ) i
Assume that b > 1. It follows from the properties of Op that the two critical

points c and k of / ^ are in an arc Γ bounded by two successive points py and
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Όk of Op. When Q— 1, p, and p^ coincide. When Op exists, they lie in an arc Γ1

Q J Q

bounded by two successive points pj and pjj. of o'P. Let P ; be a lift of py, Pk be the

lift of p^ immediately to the right of P y, and let C and K be the lifts of c and k
in [Pj, Pk\ Let Pj be the lift of pj immediately to the left of C, and P'k be the lift
of p^ immediately to the right of P'j (and of K). Let Fa^ be the lift of f A,b such
that Pj and Pj have rotation number | under Fa,b, i.e., PF(Pj) = ~PF(PJ) = f We
then have the following result whose first part follows easily from Theorem 3.2.1,
and whose second part is a standard bifurcation theory result.

Lemma 3.6.3 ([4, 20]).
(i) With the above notation,

(a, b) e Bp\ Ap <<=> Fa,b(K) = Fa,b(Pj) ,
q q

and

(a, b) e B|\ A£ <=> Fβ,*(C) - Fα,*(P,) .

(ii) Furthermore, for bΦO,

(a, b) G Ap Π Ap 4=> OP ZS parabolic and Op

From the picture which emerges from the discussion so far, Theorem A would
follow from the uniqueness of the intersections described in Corollary 3.5.2. The
general case then follows by Theorem 3.3.1-3. We shall prove this uniqueness prop-
erty in Sect. 4 using the fact that the labels of the curves that intersect determine
the topological conjugacy classes of the maps at the intersections.

Lemma 3.6.4. At any crossing of two boundary curves Cp and Όr

p,, (where C and
q 7

D stand for either A or B), the way the orbits O P , O / and the critical points

τ
q

intertwine is determined by the pair (f,-^-). Furthermore, the itineraries of Op
H q q

I

and Op/ are determined by the pair (f, 4 ).

Proof Take any two standard lifts FaQ^0 and Faχibx, which both possess the pair
of orbits ( O P , Op>). One can find a piecewise linear lift G as in Fig. 5 that con-

9 . 7
tains all periodic itineraries of both FaQib0 and Faubr Choosing G to have all its

slopes greater than one in absolute value, it is easy to check that for ω £ {-|, ^j}

it possesses only one orbit which

- Is invariant by a non-decreasing lift with rotation number ω,
- Has no point in the segments where G is decreasing, and
- Is a lift of a periodic orbit of the circle map g.
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G

Fig. 5.

By standard kneading theory arguments we get ([1, 26]):

- The two orbits (for ω = | and ω =^τ) obtained this way and the turning

points of G are intertwined in the same way as the corresponding orbits and
critical points of FaQtb0 and Faχ^χ

- The kneading information about these orbits can be read from G as
well. Q.E.D.

Lemma 3.6.5. The maps corresponding to all intersections of the two boundary

curves Cp and D r/, (where again C and D stand for either A or B) are topolog-
? 7

ically conjugate.

Proof. This statement is a standard result of the topological classification of maps
with negative Schwarzian derivative, and we refer to ([24] Chap. 2.3) for a more
general discussion; we give only a sketch of the arguments.

Using Lemmas 3.6.3 and 3.6.4, we know that all such maps have the same
kneading data. Because these are smooth maps with isolated critical points, it fol-
lows that they have the same sets of itineraries. The fact that maps with negative
Schwarzian derivative off the critical set have no homterval (intervals of positive
length, not in the basin of a stable periodic orbit, but where all iterates of the map
are homeomorphisms [19,21]) yields the conjugacy. Points with similar itineraries
are paired by the conjugacy, except for points belonging to the basins of stable
or semi-stable periodic orbits. For these points, the connected components of the
basins, on each side of the periodic points and their preimages, can be paired in
any way that respects the orbit structure. Hence the conjugacy is not necessarily
unique. Q.E.D.
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4. Proof of Theorem A, Part II: Complex Analytic Part

To complete the proof of Theorem A we must show that the boundary curves
described in Sect. 3.5 have unique intersection points; that is, that the conju-
gacy classes in Lemma 3.6.5 correspond to a single map. This is the content of
Theorem D. Before we can prove this lemma, however, we need to introduce some
techniques from complex analysis. References for the basic theory of complex
dynamics are [16,25]. References for Teichmuller theory are [12,18] and refer-
ences for its application to dynamical systems are [8,15,23,31].

4.1. Basic Theory of Complex Dynamics. We define a point to be normal for a
family of holomorphic functions if the functions in the family are locally uniformly
bounded in a neighborhood of the point. The set of normal points is open by
definition. We are interested in the normal sets of families generated by iterating a
single holomorphic self-map of the punctured plane C*.

A singular value for a holomorphic map is either a critical value (the image of
a critical point) or an asymptotic value (a limiting value of the image of a path
tending to infinity). A map with only finitely many singular values is called a finite
type map. The points 0 and oo are asymptotic values for holomorphic self-maps
of C* but it will be more convenient to exclude them from the singular value
set.

The non-normal set divides the normal set into connected components. The
normal set is forward and backward invariant and its components are mapped to
one another. If a finite type map has a periodic cycle o — {zo, z\ — f{zo),... ,z^_i =
f(zq-2)} we define the multiplier in the same way we do for real maps, that is,
m0 = f'(zq-2) f'(zq-2)'-f'(zo).

The following theorem classifies the behavior of the components of the normal
set.

Classification Theorem. Given a finite type holomorphic self map o/C*, the orbits
of the components of the normal set are characterized as follows:

• they fall onto a periodic cycle of components containing a periodic cycle
with multiplier \mo\ < 1 {attracting domain if | m o | φ 0 or super-attracting
domain if \mo\ — 0);

• they fall onto a periodic cycle with multiplier a root of unity {parabolic
domain);

• orbits eventually fall into a domain on which an iterate of the map is holo-
morphically conjugate to an irrational rotation {rotation domain).

Remark. The classification of periodic normal behavior was done by Fatou [9,
10], Siegel [30] and Herman [14]. The eventual periodicity of all normal com-
ponents (often called the Non-Wandering Theorem) was proved for rational maps
by Sullivan [31]. For finite type holomorphic self-maps of C* the Non-Wandering
Theorem was proved in [15].

Although arbitrary holomorphic self-maps of C* may have normal components
whose orbits fall onto a periodic cycle of domains in which points are attracted
to zero or infinity (essentially parabolic domains), it was proved in [17] that finite
type holomorphic self-maps of C* have no essentially parabolic domains.
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Remark. Each cycle of periodic components uses a singular value in the following
sense: cycles of super-attracting periodic normal domains contain singular values
by definition, cycles of attracting and parabolic domains each contain the infinite
forward orbit of a singular value, and in fact one of the domains in the cycle contains
the singular point; finally, the boundary of any rotation domain is contained in the
closure of the forward orbit of some singular value. Proofs of these facts go back
to Fatou. Among these facts is the statement in Lemma 3.6.2-4(c).

Definition. The closure of the forward orbits of the singular values is called the
post-singular set and is denoted by PS(f).

We shall be interested in a special subclass of finite type maps.

Definition. A finite type map is geometrically finite if every infinite forward orbit
of a singular value tends to a periodic cycle.

It may happen that no singular value has an infinite forward orbit; such orbits
are periodic or pre-periodic. These maps are trivially geometrically finite.

Standard arguments (see e.g. [8,16,25]) show that for geometrically finite maps

- There are no rotation domains, and
- Every infinite forward singular orbit lies in the normal set and is attracted to

a (necessarily attracting or parabolic) periodic cycle.

4.2. Combinatorial Equivalence.

Definition. A combinatorial equivalence of finite type maps is a pair of homeo-
morphisms (φ, φ) such that

Φ ° /o = /i ° Φ

and such that φ and φ are isotopic rel (PS(fo)).

Definition. A homeomorphism φ : C —> C is called K-quasiconformal, or K-QC
for short, if there exists a K ^ 1 such that the field of infinitesίmally small cir-
cles is mapped almost everywhere onto a field of infinitesimally small ellipses
of eccentricity bounded by k — γ^\ A map that is K-QC for some K is called
quasίconformal

Definition. A combinatorial equivalence (φ, φ) is K-QC (or just QC // we do not
care about the constant) if φ and φ are K-quasiconformal; it is strong if φ and φ
agree in a neighborhood of each super-attracting, attracting and parabolic cycle
(and hence define a conjugacy in these neighborhoods).

Next we prove,

Lemma 4.2.1. A strong combinatorial equivalence of holomorphίc geometrically
finite maps can be isotoped (rel the post singular set) through strong combinatorial
equivalences to a strong QC combinatorial equivalence.

Proof Let (φ, φ) be the given strong combinatorial equivalence. Let TV be the
union of the neighborhoods of the super-attracting, attracting and parabolic periodic
cycles of /o on which φ and φ agree.

The first step is to isotop Φ\N = Φ\N m N rel (PS(fo)ΠN)U dN to a quasi-
conformal homeomorphism that we again call φ. To do this, we use the canonical
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local picture associated to each periodic cycle and determined by the multiplier of
the cycle. For a more complete description of the local behavior see e.g. [25].

Case L Suppose first that p is an attracting periodic point of fo with multiplier
λ and Np is the component of N containing p. Then there is an integer k such
that /Q is the first return map for Np and a conformal homeomorphism h:Np —> A,
where A is the unit disk, such that A(0) = 0 and h o /J(z) = λh(z).

We can use the first return map f\ to identify points in Np - {p} and obtain a
torus of modulus λ. The projection Np — {p} —> Np — {p}/fo is a branched cov-
ering map of the torus and the conjugation φ projects to this torus. Isotopy classes
rel the finitely many marked points for a torus are known to contain K-QC maps
for some K > 1, so the projection of φ may be isotoped rel the branch points to a
K-QC map. Since the homotopy lifting property holds, (see e.g. [13]), and the pro-
jection is holomorphic, the K-QC map lifts to a K-QC map on Np — {p} and may
be extended to Np U dNp so that the lift is isotopic to φ rel (PS(fo)Γ)Np) U dNp.
(If, as in our application to the standard family, there is a single branch point, and
the tori have the same modulus, the isotopy class contains a conformal map but we
do not use this fact.)

Case 2. If p is super-attracting the first return map is holomorphically conjugate
in Np to a map of the form z \-> zk on A, for some k ^ 2. If p attracts no other
singular points, we may push φ to A, isotop the map on A to a conformal map
keeping the boundary values fixed, and pull the isotoped map back to a conformal
map on Np rel dNp. If p does attract singular values the argument has to be
modified somewhat to take these orbits into account and the isotopy will be only
quasiconformal. In our application we have two singular values but we assume each
is attracted to a distinct periodic orbit. Hence we omit the details for the case where
a superattractive p attracts a second singular value and refer the interested reader
to [22].

Case 3. It remains to describe the local behavior when p belongs to a parabolic
cycle. The picture in this case is known as the Leau-Fatou flower. We make two
simplifying assumptions: first that p is a non-degenerate parabolic fixed point, that
is, f'o(p) = 1 and /o(/?)Φθ, and second that p attracts only one singular value.
Full details of the Leau-Fatou flower in the context of rational maps may be
found in [25], Sect. 7. The details for geometrically finite maps may be found in
[8]. A small neighborhood Np of p is covered by a pair of overlapping attracting
and repelling petals, U and U\ such that fo(U) C (U) and fo(U') D U'\ If we
conjugate fo by w = — l/(z - p), p is mapped to infinity and the petals U and U'
are transformed into the two overlapping regions DR and DL shown in Fig. 6. The
conjugated map in a neighborhood of infinity takes the form

We see therefore that DL contains a left half plane {91 w < —M} for some M > 0,
in which F is holomorphically conjugate to right translation by 1; similarly, DR

contains a right half plane {91 w > M'} for some M' > 0 in which F~{ is holo-
morphically conjugate to left translation by 1.

The orbit of the singular value in U is transformed into the attracting region
DR and since the map acts almost as translation the imaginary parts of points in
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w w+1 w'-l w1

Fig. 6.

the orbit are bounded. The repelling petal Ur is transformed into the domain DL.
Hence DL contains a piece of the non-normal set and so is not invariant under the
conjugated map.

For each map /}, i = 1, 2 we form the Ecalle cylinder ER by identifying orbits in
DR under the map F. The singular orbit projects to a single marked point. Similarly
we form EL by identifying orbits in DL under the map F~x. The conjugacy φ
projects to the cylinders and we can find, for some K > 1, a K-QC map in the
isotopy class of this projected φ. Now we lift this isotoped φ to the exterior of a
large rectangle in the w-plane.

We thus have a quasiconformal conjugacy in a neighborhood of the parabolic
point (perhaps smaller than Np). To obtain the strong K-QC equivalence we must
extend the conjugacy to a full neighborhood of the full post-singular set. Since φ is
K-QC on N, where by definition φ = f\ o φ o f~ι, we may lift it as a K-QC map to
fΰι(N). To extend this lift quasiconformally to the closures of these neighborhoods
we need to know that any intersections of dN and 3/Q\N) are transverse. We can
assure this by modifying our original choice of N if necessary, and using the normal
form for parabolic points again. Since /o is geometrically finite, we may lift a finite
number of times to obtain a K-QC conjugacy on a neighborhood N' of the full post-
singular set which is isotopic (rel PS(fo)) to the original combinatorial equivalence
on TV7 and agrees with it in the complement of N'.

To complete the proof, we isotop φ in the complement of N' to any globally
K-QC map and set ψ = /f1 o φ o / 0 , where we choose the branch of the inverse
to preserve the isotopy. Note that these branches are well defined since there are
no singular values in this region. Q.E.D.

4.3. Application to the Standard Family. The circle maps / ^ have a natural
extension to C*. To see this note that the family of lifts Fa>b extends to C, by the
formula

Fa,b'.z f-> z + α + (b/2π)sin(2πz) .
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Using the projection of C to C* given by the exponential map, we obtain holo-
morphic self-maps of C* that are holomorphic extensions of the family /A^- For
readability, we keep the same notation. These maps have exactly two critical values
and no asymptotic values so are of finite type.

4.4. Extending Real Conjugacies. The following lemma appears in various guises
in the literature. To prove a version suited to our needs we require

Definition. Let I be an open interval in IR or ΊΓ. A homeomorphism φ:I —* I is
called K-quasisymmetric, or K-QS, if there exists a K > 1 such that for every
triple (a, b, c) of points in /, where a < b < c, φ satisfies

J_ φ(c) - φ(b)
K φ(b) - φ(a)

The homeomorphism ψ: ΊΓ —> ΊΓ is K-quasίsymmetric if its restriction to every
subinterval is K-quasίsymmetric.

Remark. The restriction of a K-QC homeomorphism of C* is K-QS on ΊΓ and any
K-QS homeomoφhism of ΊΓ has a (not necessarily unique) K-QC extension to C*
(see [12,18]).

Lemma 4.3.1. Let go,g\ be topologically conjugate maps ofΈ in the family fAj>
whose extensions /o, f\ to C* have the property that their post-singular orbits
remain in ΊΓ. Then there is a strong K-QC combinatorial equivalence (φ, φ) for

Proof We need only show how to use the given real conjugacy Φ for go, g\ to
obtain a strong combinatorial equivalence for /o, f\ because we may then apply
Lemma 4.2.1 to complete the proof.

The first step is to replace Φ by a K-QS homeomorphism which agrees with
Φ on the closed post-singular set PS(go) = PS(fo). We can do this since PS(go)
consists of isolated points plus points accumulating at attracting or parabolic cycles.
The attracting and parabolic cycles are distinguishable by their local topological
behavior. Near each cycle we use the local normal form to replace Φ by a K-QS
homeomoφhism for some K\ we then use the circle map g0 to pull this K-QS
homeomoφhism back to the closures of the basins of the cycles in TΓ; finally, we
extend by continuity to ΊΓ. Since go is the restriction of a holomoφhic map, the
new map, which we again call Φ, is ^Γ-quasisymmetric.

The second step is to extend the K-QS map Φ to a K-QC self-map φ of C*.
For each attracting or parabolic cycle P, let Np be a neighborhood of P in C* with
smooth boundary. Using the local normal form again, we extend the ^-QS map Φ
to Np so that it is K-QC. Extending this way for all the cycles defines a germ φ
for a K-QC conjugacy between f0 and f\. Now we extend φ arbitrarily as a K-QC
homeomoφhism of C*.

The final step is to define a lift φ of φ so that the pair (φ, ψ) are isotopic rel the
post-singular sets and are the desired strong combinatorial equivalence. Denote the
critical value set of the map f by St, i = 0, 1; each set consists of two points. The
maps ft are covering maps of C* - f~ι(Si) onto C* - St. Extend these covering
maps to fix the "ends" zero and infinity of C*. Because the maps /o, f\ are in the
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same family, that is, given by a formula of the form αζexp β(ζ — I/O for constants
α and β, and variable C £ C*, they are built up from a sequence of elementary
maps whose lifting properties are known. The lift φ — f^ι o φ o / 0 may therefore
be defined uniquely so that it agrees with φ on any and hence all the points PS(fo).
Q.E.D.

Remark. If the post-singular set is actually finite, the situation is much simpler.
Every singular point is superattracting or else its orbit eventually lands on a repelling
periodic cycle. We can choose an arbitrary topological extension to C* as the home-
omorphism φ and define φ by the formula φ — /j~ λ o φ o / 0 , where again the
branch of the inverse is chosen so that (φ, φ) are isotopic rel the post-singular sets.
By the easy parts of Lemma 4.2.1 there are automatically quasiconformal homeo-
morphisms in this isotopy class.

4.5. Statement of the Rigidity Theorem

Theorem D (Rigidity). Suppose that the functions /o and f\ are both intersections
of boundary curves Cp and Π',, where C and D stand for either A or B as in

? 7
Lemma 3.6.5. Then /o = f\.

From Lemma 3.6.3 we see that at the intersections of the boundary curves one
of the following holds:

α - Both singular orbits are attracted by distinct parabolic cycles,
β - Both singular orbits are preperiodic, or
y - One singular orbit is preperiodic and the other is attracted by a parabolic

cycle.

It follows that the extensions of standard maps corresponding to these intersec-
tion points are geometrically finite.

4.6. Basic Teichmύller Theory. To prove the Rigidity Theorem D we follow the
version of the proof of a rigidity result for rational maps carried out by McMullen
in [23]. In particular, we shall use some standard Teichmύller theory. Below we
state those facts we require in a form suited to our needs. A good basic reference
for this material is [12], Chap. 6. Thurston and Sullivan were the first to apply these
techniques in the context of rigidity in holomorphic dynamics.

Let X be a compact Riemann surface and let C be a closed subset of X con-
taining at most countably many points. Then the Teichmuller space of X with
boundary C is the set of isotopy classes of quasiconformal homeomorphίsms of X
rel C. We denote it by F(X9 C). We shall be interested in 9~{X9 C), where X = C*
and C = PS(f) for / in the standard family.

The Teichmuller space is finite dimensional if X has finite genus and C is a
finite point set: in our case, if PS(f) is finite.

If φ is a quasiconformal homeomorphism of X, its Beltrami differential is
μ(z) = φz/φz* where the derivatives are taken in the generalized sense. The
infinitesimal ellipse field is determined by μ(z): the eccentricity of the ellipse at
the point z is \μ(z)\ and the major axis has argument arg μ(z).
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The maximal dilatation of φ is

KΦ(X) = max(l + ||//||oo)/(l - ||/x||oo) < oo .

Given an isotopy class of quasiconformal homeomoφhisms X rel C one can
ask if there is a map that is extremal; that is, its maximal dilatation is minimal
over all maps in its class.

A quasiconformal map is called a Teichmύller map if it is locally an affine
stretch: that is, its Beltrami differential has the form μ — tq/\q\, where q is a holo-
morphic quadratic differential such that | | # | | = Xr |#| < o c a n ^ M < l

Teichmϋller's Theorem. Let $~(X, C) be a finite dimensional Teichmύller space.
Then every isotopy class contains an extremal map. Moreover, this extremal
is unique and is a Teichmύller map. If 3~{X, C) is not finite dimensional, the
extremal map exists but it is not necessarily unique nor is any such extremal a
Teichmύller map.

Since the post-singular set is not always finite we need to consider infinite
dimensional Teichmϋller spaces. To this end, we introduce the concept of boundary
dilatation. Let S = X - C and let R be any compact subset of S. Set K§(β - R) =
mfxj/r^φ(Kφ(S — R)). Define the boundary dilatation H(φ) as the direct limit of the
numbers K^(S — R) as R increases to S.

StrebePs Frame Mapping Condition. Let φ be a quasiconformal homeomorphism
of S to another surface and suppose H(φ) < K§(S). Then the isotopy class of φ
(rel C) contains a unique extremal map and this map is a Teichmύller map.

4.7. Proof of Theorem D. It suffices to prove that if /o and f\ are topologically
conjugate maps in the standard family whose singular orbits satisfy one of the
conditions α — γ of Sect. 4.5 then they are equal.

Since their extensions to C* are geometrically finite, by Lemma 4.3.1 there is a
strong K-QC combinatorial equivalence (φ, φ) between them.

Suppose first that both singular orbits are preperiodic. Then the post-singular
set is finite and any K-QC combinatorial equivalence is trivially strong. More-
over, ^~(C*, PS(fo)) is finite dimensional and by Teichmϋller's theorem, there is
a unique extremal map in every isotopy class; denote the extremal map in the iso-
topy class of φ and φ by φ. Now we replace φ by φ as we did in the last step of
the proof of Lemma 4.2.1 and set φ = / j " 1 o φ o / 0 , choosing the branch that pre-
serves the isotopy. Since f0 and f\ are holomorphic the infinitesimal ellipse fields
determined by φ and φ are the same and φ is extremal. By uniqueness φ — φ\
denote the extremal quasiconformal conjugacy φ by φ again.

In the other two cases, there is at least one singular orbit attracted by a parabolic
cycle. It is important to note that no parabolic cycle attracts more that one singular
orbit. The quasiconformal homeomoφhisms (φ, φ) we obtained in the proof of
Lemma 4.2.1 agree in a neighborhood N of the post-singular set. We need to modify
this φ in a neighborhood of a parabolic point p containing the forward orbit of one
singular value so that it satisfies the Frame Mapping Condition.

As above we conjugate / 0 to F(w) = w + 1 + o(l) by sending p to infinity.
We follow the argument in [8], Sect. 4.2, Lemma 78. An application of the Schwarz
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lemma shows that |F'(w)| is uniformly close to 1 in a neighborhood of infinity.
This means that for η large, the image of F(t±iη),t e 1R is a curve that stays
very close to horizontal. Hence, given any ε > 0, we can find M such that for
\η\ > M,φ is isotopic to a map (again called φ) with dilatation less than 1 + ε.
Next, using the images of the endpoints of vertical lines inside the closed large
rectangle to control the images of these lines, and noting that we have arranged it
so that there are no points of PS(f) inside the large rectangle, we can isotop φ in
the part of Dι U DR inside the rectangle so that it is quasiconformal.

This new map together with its lift in the same isotopy class gives us a combi-
natorial equivalence (φ, ψ) which is no longer strong but is still K-QC. This new
φ satisfies StrebeΓs Frame Mapping Condition for ε small enough. Therefore, just
as in the preperiodic case, we may replace both maps in the equivalence with the
unique extremal Teichmϋller map in their isotopy class and obtain a quasiconformal
conjugation, denoted again by φ.

Finally, we complete the proof of the lemma by showing that φ is conformal
and hence a homothety.

If φ is not conformal, its Beltrami differential determines a quadratic differential
q on S. Since φ is a conjugacy, and the maps / 0 and f\ are holomorphic, the
infinitesimal ellipse fields determined by the Beltrami differential μ and the Beltrami
differential f$μ of f[ι o φ o / 0 = φ are the same; that is, f^μ — μ. Since f^μ
is again the Beltrami differential of a Teichmuller map, it has the form f^μ =
tflq/\flq\, where fζq is the pull-back quadratic differential. Now on the one hand,
the norm of the pullback differential ||/o^H is given by \\q\\ times the degree of /o
so since / 0 has infinite degree, | | / o # | | is unbounded. On the other hand however,

j & \ , so that

/oVI/o*l = ql\q\ •

If h = f$qlq, then h = \h\ and h is real valued. But h is meromorphic on S and any
meromorphic function taking only real values must be constant. Thus f$q = cq for
some c > 0. Since \\q\\ is bounded, we have a contradiction and φ is conformal.

If we conjugate / ^ by a homothety, we obtain an equivalent dynamical system.
Since the homothety preserves the unit circle, the factor must have modulus 1; its
argument only appears in the sine term and does not change any of the dynamical
properties. Q.E.D.

5. Concluding Remarks

In our study of the standard family we used real analytic techniques to get good
control of the boundary curves in the parameter plane of regions with a given
lower or upper bound on the rotation number. In order to control the intersections
of these curves we needed to apply rigidity properties found in families of complex
analytic maps. Previously, complex analytic techniques were used to obtain rigidity
in one parameter families of maps with a single critical point. Our description of
the parameter space of the standard family is still incomplete and we pose some
open problems here. They do not seem amenable to the methods used so far and
new ideas are needed.
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Conjectures.

• RPQ is homeomorphic to Rpx by a homeomorphism Hp^ px having the folio w-

ing property:

If Hp0 p{(fo) — / i , then / 0 partitions the circle into qo intervals, 7i,...,/0,

and / i partitions the circle into q\ intervals, J\,...,Jqχ so that fl°\ij is topo-

logically conjugate to f\x\ikj G {l,...,qo}9k E {1,...,^}.

• The set of maps with a given topological entropy is connected.

Both conjectures are proved in [32] for some two parameter families of piece-

wise affine maps. A similar entropy conjecture for cubic maps is discussed in [6].
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