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Abstract: An attempt is made to understand the root spaces of Kac Moody algebras
of hyperbolic type, and in particular Eg, in terms of a DDF construction appropriate
to a subcritical compactified bosonic string. While the level-one root spaces can be
completely characterized in terms of transversal DDF states (the level-zero elements
just span the affine subalgebra), longitudinal DDF states are shown to appear beyond
level one. In contrast to previous treatments of such algebras, we find it necessary to
make use of a rational extension of the self-dual root lattice as an auxiliary device,
and to admit non-summable operators (in the sense of the vertex algebra formalism).
We demonstrate the utility of the method by completely analyzing a non-trivial level-
two root space, obtaining an explicit and comparatively simple representation for it.
We also emphasize the occurrence of several Virasoro algebras, whose interrelation
is expected to be crucial for a better understanding of the complete structure of the
Kac Moody algebra.
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1. Introduction

Affine Kac Moody algebras (see [29, 25] and references therein), which first appeared
in physics in the guise of (two-dimensional) current algebras, have come to play an
increasingly important role in string theory and conformal field theory as well as
other branches of mathematical physics. By contrast, Kac Moody algebras based on
indefinite Cartan matrices have not yet found applications in physics. In view of the
scarcity of results about such algebras, it is remarkable that they have nevertheless
been suggested as natural candidates for the still elusive fundamental symmetry of
string theory (and hence of nature). Being vastly larger than affine Kac Moody al-
gebras, Kac Moody algebras of indefinite type might certainly be “sufficiently big”
for a unified and background independent formulation of string (field) theory, but an
even more compelling argument supporting such speculations is the intimate link that
exists between Kac Moody algebras and the vertex operator construction of string
theory (this connection has been known for a long time [1, 28]). More specifically, it
has been established that the generators making up a Kac Moody algebra of finite or
affine type can be explicitly realized in terms of tachyon and photon emission vertex
operators of a compactified open bosonic string [16, 24]. On the basis of these results,
it has been conjectured that generalized Kac Moody algebras of indefinite type might
not only furnish new symmetries of string theory, but might themselves be understood
in terms of string vertex operators associated with the higher excited (massive) states
of a compactified bosonic string [24, 14]. Despite its great appeal, however, this idea
has not led to a truly satisfactory understanding of these Kac Moody algebras until
now.

Disregarding possible physical applications in string theory, very little is known
about indefinite Kac Moody algebras beyond their mere existence and the remarkable
result that the Weyl-Kac character formula continues to hold for them [36, 29]. The
basic problem here is the proliferation of timelike roots (having negative (length)?)
and the concomitant exponential growth in the dimension of the corresponding root
spaces. For a limited number of cases, and in particular for roots of level two at most!,
one knows explicit multiplicity formulas counting the dimension of the root spaces
[30], but the complete root multiplicities are not known for a single Kac Moody
algebra of indefinite type (root multiplicities can be determined in principle from
the Peterson recursion formula [31], but this formula quickly becomes too unwieldy
for practical use). Unfortunately, the available results have not shed much light on
the structure of the corresponding root spaces, and, in contrast to affine Kac Moody
algebras, a manageable representation of the root space elements has not been found
so far. In an interesting recent development (more concerned with understanding the
monster group than with applications in physics), complete and explicit multiplicity
formulas were derived for the so-called fake monster Lie algebra based on the 26-
dimensional Lorentzian even self-dual lattice II5s; [4]; this algebra is, however, not
a conventional Kac Moody algebra in that it has imaginary simple roots beside the

! The notion of “level of a root” is defined in Sect. 4.1.



On Ejg and the DDF Construction 573

usual simple roots [3] (the extra simple roots correspond to new Lie algebra elements
that cannot be generated by multiple commutators of the conventional Chevalley
generators and must therefore be adjoined “by hand™). These results rely heavily on
special properties of 26 dimensions such as the no-ghost theorem, and so far no other
example has been fully worked out?.

In this paper, an attempt is made to understand Kac Moody algebras of hyperbolic
type, and in particular the maximally extended hyperbolic algebra F;g, from a more
“physical” (i.e. pedestrian) point of view and to examine the known results as well as
the difficulties from what we believe to be a novel perspective. We here (somewhat
immodestly) concentrate on Ejy not only because, in our opinion, it is the most
interesting, containing F3 and Ey as subalgebras, and because the basic problems are
not simplified in any substantial way by considering lower rank hyperbolic algebras
instead. Rather, we shall need to make use of two special features of Fj( not shared
by other algebras of this type, namely the self-duality its root lattice, the unique
Lorentzian lattice Il ;, and secondly the property, crucial for our construction, that the
fundamental Weyl chamber of E)( contains precisely one null direction (i.e. touches
the light-cone in root space only once), in contrast to generic Kac Moody algebras
of indefinite type, whose Weyl chambers contain several linearly independent null
vectors, and also in contrast to strictly hyperbolic algebras, whose Weyl chambers lie
entirely within the light-cone and therefore contain no null vectors at all.

Our key observation is that, beyond level one, there appear longitudinal string
states and vertex operators, whose significance in this context has so far not been
recognized. A central role in our analysis is played by the DDF construction, which
provides the most direct and explicit solution of the physical state constraints in
string theory [11]. The physical states, which by definition are annihilated by the
Virasoro constraints, are simply obtained in this scheme by acting on a tachyonic
groundstate with the DDF operators, which commute with all Virasoro generators and
form a spectrum generating algebra. For their definition, one must choose a special
Lorentz frame, in terms of which one can distinguish transversal and longitudinal DDF
operators. As is well known, the longitudinal states (or operators) have zero norm
and hence decouple in 26 dimensions by the no-ghost theorem [26, 8, 41]. Above
26 dimensions, no consistent string theories and hence no consistent Kac Moody
algebras are expected to exist, as there are always negative norm states. Below 26
dimensions, on the other hand, the longitudinal DDF operators create extra positive
norm states (also referred to as Liouville states), and thus modify the spectrum in
an essential way. It is therefore hardly surprising that longitudinal states should also
play a role in the construction of Lorentzian and hyperbolic Kac Moody algebras
of “subcritical” rank. Our results thus suggest a connection between these algebras
and Liouville (or subcritical string) theory, the precise nature of which remains to be
elucidated, however.

The adaptation of the DDF construction to the present context involves a dis-
cretization of the string vertex operator formalism. As is well known [24], the al-
lowed momenta of the string excitations must be elements of the weight lattice of
the corresponding (affine or indefinite) Kac Moody algebra. A curious feature of our
construction, not encountered in previous studies, is that we are here forced to make
use of a rational extension of the self-dual root lattice as an auxiliary device in order
to understand the root spaces associated with higher level roots in terms of the DDF

2 As an amusing aside, we note that the very notion of what the monster Lie algebra should be has
undergone several metamorphoses since it was first proposed in [7].
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construction. To be sure, the intermediate states belonging to momenta not on the
root lattice do not correspond to elements of the Kac Moody algebra, but they are
nonetheless indispensable for the construction of a complete basis for any given root
space, which we here obtain in terms of transversal and longitudinal DDF states. The
problem of characterizing the root spaces is thereby reduced to finding the “missing
states,” i.e. those physical states which cannot be reached through multiple commu-
tators of Chevalley generators. To illustrate our method we will completely analyze
one non-trivial example of a level-two root space in terms of the DDF decomposition.
To appreciate the simplicity of our final result (cf. (4.59)) readers need only contem-
plate the problem of classifying the states in terms of 75-fold multiple commutators
of the Chevalley generators for this example. Notwithstanding eventual refinements
which may become necessary at a later stage, we thus believe that our procedure
provides a workable method to probe higher level root spaces, yielding a manageable
representation of the level-two root space elements for the first time.

Of course, we are aware that vertex operators have been utilized in previous work
on indefinite Kac Moody algebras [24, 14]. However, at least to the best of our
knowledge, neither the explicit representation of the level-one elements in terms of
transversal DDF operators (the level-zero elements just span the affine subalgebra),
nor the emergence of longitudinal states and vertex operators at level two and beyond
have been exhibited in previous treatments. Our results are couched in the language of
vertex algebras [6, 17, 19] (see also [33] for a treatment in the BV formalism), which
is entirely equivalent to the formulation of [24, 22], but slightly more convenient
for our purposes because of its economy of notation. An important technical point
is that the longitudinal vertex operators cannot be associated with definite states,
as their action cannot be defined on all of Fock space. Put differently, they do not
correspond to summable operators in the sense of [17]; in this respect, vertex algebras
encompassing longitudinal states transcend the definition given in [6, 17].

A remarkable property of the vertex operator realization of hyperbolic Kac Moody
algebras, which has not received due attention so far, is the occurrence of several Vi-
rasoro algebras in the construction. The first is the usual one with central charge ¢ = d
(where d is the rank of the algebra, or, equivalently, the dimension of the root lat-
tice), by means of which physical states can be distinguished from unphysical ones.
Furthermore, there are two sets of longitudinal DDF operators, called A, and £, in
this paper, which generate Virasoro algebras of central charge ¢ = 26 — d and (inde-
pendently of the rank) c = 24, respectively; the first choice is the standard one used
in proofs of the no-ghost theorem (see e.g. [27]). These two sets are related through a
GKO construction [23]. Since all DDF operators depend on the tachyon momentum,
there are actually infinitely many “longitudinal Virasoro algebras,” related to one
another by Weyl rotations on the (Lorentzian) root lattice (the Virasoro generators
defining the physical states are, of course, invariant under the Weyl group). Thirdly,
there is a Sugawara-type Virasoro algebra, whose relevance for the general repre-
sentation theory of affine Kac Moody algebras was already known [29]. Our results
indicate a subtle entanglement of the affine subalgebra and the longitudinal Virasoro
algebras, as well as a deep connection between the longitudinal and Sugawara-type
Virasoro algebras. The action of the corresponding Sugawara generators of level £ > 1
on the states remains to be fully worked out, however. We believe that a proper un-
derstanding of these Virasoro algebras is one of the keys to unlocking the secrets of
indefinite Kac Moody algebras.

Since this paper brings together various different concepts and ideas, not all of
which may be universally familiar, we have tried to make it self-contained as far as
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possible. In Sect. 2, the formalism of vertex algebras is briefly reviewed (for more
details, the reader should consult [17, 19]). Section 3 is devoted to a rather detailed
exposition of the discrete DDF construction in the framework of vertex (operator)
algebras with particular emphasis on the longitudinal states and operators; we stress
once more the new feature that these operators are non-summable and have not been
considered in this context before. In Sect. 4, we apply the formalism to the maximal
hyperbolic Kac Moody algebra E}, first recalling some known results. We then define
what we call the DDF decomposition of a given root vector of arbitrary level #; this
is the point where we are forced to admit fractional momenta }r with r € Il ;.
For the level-one root space elements, which are known to form the so-called basic
representation of Ey [29], we exhibit a simple and explicit realization in terms of
DDF states. Finally, we give a complete analysis of a non-trivial level-two root space
and construct an explicit basis for it, whereas only its dimension was known so far
[30]. This example displays the appearance of longitudinal and the disappearance of
certain transversal states, which we conjecture to be generic for higher level root
spaces of hyperbolic Kac Moody algebras. Of course, our results should be regarded
only as a tiny step into the ferra incognita of hyperbolic Kac Moody algebras, but
we hope at least that they will give the reader a flavor of their complexity. Explicit
formulas for transversal and longitudinal DDF states as well as a number of Lie algebra
commutators giving level-two root space elements are collected in the appendix.

2. General Setup

2.1. Vertex algebras. We shall provide a short primer to formal calculus and vertex
algebras following closely [19]. In [17] the subject is treated thoroughly.

In contrast to conformal field theory (see e.g. [2] or [20]), in the vertex algebra
approach we use formal variables z, 2y, 21, 23, etc. The objects we will work with are
formal power series. For a vector space W, we set

Wiz, 27 '] = { > wnz™ | wy € W}, 2.1)
nerl

Wizl = { > wnz"|wy € W}, (2.2)
neN

Wiz, 2 1 = { Z wpz"™ | wy, € W, almost all w, = 0} (Laurent pol.), (2.3)
ner

Wiz] = { Z wpz" | w, € W, almost all w,, = 0} (polynomials), (2.4)
neN

where “almost all” means “all but finitely many.” These sets are C-vector spaces
under obvious pointwise operations. We can generalize above spaces in a straight-
forward way to the case of several commuting formal variables, e.g. W[z, 2z, =
ey Wmn 2" 2y ™ [ Wimn € W

Since we will often multiply formal series or add up an infinite number of series,
it is necessary to introduce the notion of algebraic summability. Let (x,),c; be a
family in End W, the vector space of endomorphisms of W (I is an index set). We
say that (x;);cs is summable if for every w € W, x;w = 0 for all but a finite number
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of 4 € I. Then the operator ) ., z; is well-defined. In general an algebraic limit or
a product of formal series is defined if and only if the coefficient of every monomial
in the formal variables in the formal expression is summable.

If we define

8(z)=Y 2" €Clzz'1, 2.5)

neL

then, formally, this is the Laurent expansion of the classical é-function at z = 1.
Indeed, 6(z) enjoys the following fundamental properties:
Let w(z) € W(z,27 1], a € C*. Then

w(2)8(az) = wia~Hd(az). (2.6)

Let X (z1,2,) € (End W)([[z1, 2, ', 22, z; 1| be such that lim,, _,., X(z1, 2;) exists (al-
gebraically) and let a € C*. Then

X(z1,2)6 (a—z—l>
22

X(a" 2, 2)0 (aﬂ>
22

X(z1,a21)8 (aﬂ> . Q2.7
2

Note that w(z) must be a Laurent polynomial to ensure existence of the product with
the é-series. For explicit calculations it is useful to keep in mind that the substitutions
in the arguments correspond formally to az = 1 and az;/2; = 1, respectively.

Now we want to introduce the tools for formal calculus which correspond to
contour integrals and residues for complex variables. We will need quotients of formal
power series which will often be expressed by analytic functions of z and z7!,
respectively. They are understood as formal Taylor or Laurent expansions. E.g., for
a € C we have

(12" = Y (“) 2" € Cl2]), 2.8)
neN n
1+z7hHe = Z (Z)z-" e Crz"1. (2.9)
neN

In the following we will always (though sometimes not explicitly stated) refer to the
binomial convention which says that all binomial expressions are to be expanded in
nonnegative integral powers of the second variable. This is the only point in explicit
calculations at which one must not be too sloppy. For example, for a € C the following
expressions are in general not the same:

a
21— 2 A\, \n_—a_a-n_n
(—ZO ) Z(n)( D"z 2, (2.10)
nEN
a
—22—-1-21 a _1\y¢—n_ —a_n_a-n
( - ) Z<n>( 1) "y e 2.11)
neN

With the binomial convention we can rewrite the generating function for the deriva-
tives of the §-series as
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%6 (—Z‘ — Zz) =25 le™2 (ﬂ) . 2.12)
20 20

As an important exercise one may prove subsequent identities which will be extremely
useful for vertex operator calculus:

56 (——Z‘ — Zz) =26 (——ZO ”2) : 2.13)
20 21

%' (z‘ _ Zz) — 26 ("22 ”1) =25 (——Z‘ - ZO) : 2.14)
20 20 22

where all binomial expressions are expanded in nonnegative integral powers of the
second variable.
We shall use the following residue notation. For a formal series

w(z) =Y wp2" € Wiz, 271, (2.15)
nel
we write
Res. [w(z)] = w_i, (2.16)

so that we may think of Res, [...] as the operation fo %[. ..] in complex analysis.
Indeed, formal residue enjoys some properties of contour integration. For w(z) €
Wiz, 2~ as above and n € Z we find that

wy, =Res, 27" w(z)]; 2.17)

for v(2),w(z) € W[z, 2~'] integration by parts reads as

Res, ['v(z)gdgw(z)] = —Res, [w(z)%v(z)} . (2.18)

We have already used exponentials of derivatives in (2.12) to obtain a formula for

the higher derivatives of 6(z). However, one might also expect e 1o act somehow
as a one-parameter group of automorphisms (parametrized by zo). This turns out to be
also true in formal calculus. Let w(z) = Y., ., wim2™ € Wlz,27'], y € 20Cl[20]

and write D,, = —z"*! d%, n € N. Then we have

1. (Translation)

e VP-1u(2) = eV w(z) = w(z +y), (2.19)
2. (Scaling)

€¥) P w(z) = e¥* @ w(z) = w(evz), (2.20)
3. (Projective change)

e¥Prip(z) = w ((z—" + ny)‘l/") for n 0, 2.21)
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with binomial convention.

We shall give a definition of vertex algebra [15] using the notation of [{21] which
we believe is more accessible to physicists.

A vertex algebra is a Z-graded vector space,

7 =D, (222)
n€L

equipped with a linear map 7 : . % — (End.% )[ 2, z~ '], which assigns to each state
P € .F a vertex operator 7 (1), z), and the vertex operators satisfy the following
axioms:

1. (Regularity) If ¢, o € .7 then
Res, [z" 7 (1, z)<p] =0 for n sufficiently large, (2.23)

and n depending on ) and .
2. (Vacuum) There is a preferred state 1 € .7, called the vacuum, satisfying

7'd,2) =id 7. (2.24)

3. (Injectivity) There is a one-to-one correspondence between states and vertex op-
erators,

T, z)=0 <= 1=0. (2.25)

4. (Conformal vector) There is a preferred state w € %, called the conformal
vector, such that its vertex operator

Z(w,2)=Y Lz "7, (2.26)
ner

a) gives the Virasoro algebra with some central charge c € R,

c
[Lmy, L] = (m = m)Lmim) + 75(m = M)Brman,0; 227
b) provides a translation generator, L_),
d
Z (L, 2) = a;%(w,b, z) for every ¢ € 7, (2.28)

c) gives the grading of .5 via the eigenvalues of L),
Loy =nyp = Ayyp for every ¢ € Ay, n € Z, (2.29)

the eigenvalue Ay is called the (conformal) weight of 1.
5. (Jacobi identity) For every ¢, p € F,

—2+ 2

76 (%) T @, 207 (0, 22) — 75 ' 6 ( ) 7 (p, )7 (%, 21)
=26 (z‘z;zz") D (T (), 2009, 22),s (2.30)

where binomial expressions have to be expanded in nonnegative integral powers
of the second variable.
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We denote the vertex algebra just defined by (%, 7", 1, w).

We may think of .77 as the space of finite occupation number states in a Fock
space so that % is a dense subspace of the Hilbert space .7% of states. The regularity
axiom states that, given ¥, € .7 , there is always a high enough power z™ such
that z"Z" (¢, z) is (at “z = 0”) a regular formal series. In other words, the regularity
axiom ensures that any Z°(1), z)¢ contains only a finite number of singular (at “z = 0”)
expressions. In terms of creation and annihilation operators it reflects the fact that
any finite occupation number state ¢ is killed by a finite but large enough number
of annihilation operators contained in (the normal ordered expression) v,,. We also
mention that in physical applications the vertex operator of the conformal vector
corresponds to the stress—energy tensor of the field theory.

A vertex operator algebra is a vertex algebra with the additional assumptions
that

1. the spectrum of L is bounded below,
2. the eigenspaces %, of L) are finite-dimensional.

The first condition is an immediate consequence of a physical postulate. As we
will see L) generates scale transformations. Recalling that the variable z in conformal
field theory has its origin in et*® (cf. [20]) one finds that L) corresponds to time
translations. Thus it may be identified with the energy which should be bounded
below in any sensible quantum field theory. In fact, vertex operator algebras can
be regarded as a rigorous mathematical definition of chiral algebras in physics [38].
Then the formal variable z can be thought of as a local complex coordinate and the
above relations (2.17) and (2.17) can be realized by contour integrals. The vertex
operators 7 (1, z) correspond to holomorphic chiral fields, i.e. they can be viewed
as operator-valued distributions on a local coordinate chart of a Riemann surface. In
this context the three terms of the Jacobi identity are geometrically interpreted as the
three ways of cutting the Riemann sphere with four punctures into two spheres with
three punctures [18, 43].

Since vertex operators are operator valued formal Laurent series we can give an
alternative formulation (see [5], e.g.) of the axioms of a vertex algebra using the mode
expansion

T @, 2) = Z Yz~ "L (2.31)
nex
One has
1. (Regularity)
Y =0 for n sufficiently large, (2.32)
2. (Vacuum)
1,9 = bne1,09, (2.33)
3. (Injectivity)
Yn=0 VYneZ <+ P=0, (2.34)

4. (Conformal vector)

Wntl = L(n), (2.35)



580 R.W. Gebert, H. Nicolai
5. (Jacobi identity)

(1
3 -1y (Z) (Wtem—i(@nsi€) = (=D Pren—i(Pmri€)

i>0
=> (’f) Wi Pmin—ik, (2.36)

i>0
for all ¥, p, & € F, l,m,n € Z.

In what follows we will frequently make use of two important formulas which
are the special cases m =0 and [ = 0, respectively, of Eq. (2.36):
(Associativity formula)

_ i ! . o (—1) .
(d}lw)n = ’LZZO(‘D (Z) <¢l—z§0n+z ( 1) Qol+n—z¢z>7 (237)
(Commutator formula)
Wy nl = > (’f) WiPman—is (2.38)
>0

for all ¥, € .7, I,m,n € Z.

To get a feeling of the formalism and the axioms it is instructive to derive some
important properties of vertex algebras. Iterating (2.28) and using translation (2.19)
we find that L_) indeed generates translations,

o (ezoL(—l)w, Z) =7 (Y, z + ). (2.39)

Moreover, the vacuum is translation invariant because (2.28) for 7 = 1 together with
the vacuum axiom (2.24) and injectivity (2.25) gives

L(_l)l = O (240)

Taking Res, [ResZl {z{"‘(Jacobi identity)]] in the special case 1) = w we obtain

n+1 s
(Lin), Z (0, 2)] = ::_‘1 (Z . 1)“7(L(i)<ﬁ,Z)z . (2.41)
In particular,
. d
[L-1, Z(p,2)] = %97/ (¥, 2), (2.42)

[L(O)a W(‘P» Z)]

(z% + A¢> 7 (p,2) if p € Aa,)- (2.43)

Using the well-known formula eABe~4 = Y7  Lads)"B = Y 20 L[A,[4,...
[A, B]]...] and Egs. (2.19) and (2.20) above equations give, respectively,

(Translation property)
VLV T (p, 2)e VD = T, 2 +), 2.44)
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(Scaling property)
OZ (p, 2)e VO = eV T (p,ev2) if p € A, (2.45)

for every y € 2C[[20]l. Thus L) generates scale transformations. Note that (2.43)
also implies

OnFmy) C A 4m-n—1) if ¢ € R4, (2.46)

which means that the operator ¢,, shifts the grading by A, —n — 1, i.e. it can be
assigned “degree” A, —n — 1. In view of this relation the reader might wonder again
why we use subscripts in round brackets for the grading of .%# and for the Virasoro
generators in contrast to the naked subscripts occurring in the mode expansion (2.31)
of a vertex operator. This possibly causes some confusion but stems from the fact that
we employ two different mode expansions. In conformal field theory we are familiar
with the expansion

YD =P (W, 2) =) Pz ", (2.47)

nek

which depends on the conformal weight of the field 1(z). To exhibit explicitly the
Virasoro algebra in the definition of a vertex algebra we used this expansion for the
vertex operator associated with the conformal vector (stress-energy tensor!) in (2.26).
It is quite easy to convert results obtained in one expansion into the other formalism,
namely, simply by shifting the grading:

d}n = ¢(n+l——A¢)’ ¢(n) = 1/)n—l+A¢7 (248)
for any homogeneous element 1) € % . For example we can rewrite (2.46) as
oy Fimy C Fm—nys (2.49)

so that ¢(,) always has “degree” —n irrespective of . The mode expansion (2.47)
is therefore the more natural one because it respects the grading of .7 . On the other
hand for formal calculus it is more useful to stick to an expansion which does not
refer to the conformal weight of a state. Hence we shall almost everywhere in the
formulas assume the mode expansion (2.31).

Note that the Jacobi identity is obviously invariant under (v, 21, z) < (¢, 22, —20).
This symmetry property together with (2.7), (2.13), (2.39) and (2.25) finally yields

(Skew-symmetry)

T (@, 20)p = €MD F (0, —zo )P, (2.50)
or, in components,
Unip = —(=DPpph + > H=DPILL (pnaith). @.51)
i>1

In particular, we observe that the vertex operator Z (i, z) “creates” the state
1 € % when applied to the vacuum:

Z (9, 2)1 = ey, (2.52)
by (2.24). In components,
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0 forn >0
Yul={ ¥ 1 o for n = —1 (2.53)
mL(_l) for n _<_ -2.
Hence the vacuum satisfies
Lyl=0 Vn > —1. (2.54)

We shall denote by &, the space of (conformal) highest weight vectors or
primary states of weight A satisfying

(L(n) — (SnQA)’l,b =0 vn > 0. (255)

Thus in any vertex algebra the vacuum is a primary state of weight zero. We imme-
diately infer from (2.41) that, for ¢ € HA,),

[Lny, Z° (4, 2)] = 2™ {z(% +(n+ I)A} zZ" (Y, z) Vn € Z, (2.56)
or
[Lny, Ym] = {(A = D+ 1) = m} Ymin vm,n € Z, (2.57)
i.e. Z°(1, z) is a so called (conformal) primary field of weight A. We can rewrite
(2.56) as
(L, 22V 7 (3, 2)] = 2! d% {27 @, 2}, (2.58)

so that, by (2.21),
L —yL, 0z 4
eV W2 (¢, 2)e” v = B 7 (Y, 21) Vn #0, (2.59)

for every y € 2Cllzo]l where z; = (27" — ny)~ /" = 2(1 — nyz")~ /™.
We shall provide a certain subspace of the Fock space .7 with the structure of a
Lie algebra (cf. [6, 5, 17]). We define a bilinear product on .7 by

[, ¢] =Yoo, (2.60)

which turns out to be antisymmetric on the quotient space # /L(_1)% due to skew-
symmetry (2.51). Putting [ = m = n = 0 in the Jacobi identity (2.36) we get Yp(¢of) —
woto€) = (Pop)o€. But this equation translates precisely into the classical Jacobi
identity for Lie algebras,

[[¥, ¢), €1 + [, €1, Y1 + 1I€, ¥1, ] = 0, (2.61)

on.7 [L(—1)% . Note that we may identify the Lie algebra .7 /L(_1,% with the Lie
algebra of commutators of operators 1y, ¥ € % . Indeed, the commutator formula
2.38) for m=n=0,

[¢07 QOO] = ([d}: 30])0, (262)

together with definition (2.60) tells us that in the adjoint representation 1) acts on
F [L—1»F as the operator 1. Moreover, if ¢ = Ly € Lo for some



On E)jy and the DDF Construction 583

¢ € Fo then ¢y = Res, [Z'(L—1)p,2)] = Res, [£Z(p,2)] = 0 by (2.28) and
(2.18). In other words, dividing out the subspace L(_;%# reflects the fact that the
zero mode 1)y of a vertex operator Z°(1), z) remains unchanged when a total derivative
is added to Z7° (¢, 2).

The Lie algebra .7 / L_1% is too large for further investigations. In physical
applications such as string theory a distinguished role is played by the primary states
of weight A =1 which we shall call physical states from now on. In fact, we learn
from Eq. (2.57) that for a physical state ¢ the corresponding zero mode operator
1o commutes with the Virasoro algebra thereby preserving all subspaces A, of
primary states of weight n. In particular, it maps physical states into physical states,
ie. [P, Ayl C FymodL—1yF,). Hence it is natural to look in detail at the Lie
algebra of physical states,

87 = Ay /LAy, (2.63)
where we used the fact that
LyFo 0 Ay =LAy (2.64)
in any vertex algebra. To see this we start from the following identity:
Loyl =m+ 1)Le—ny + LyLmyy Vi € .F ,n €. (2.65)

Then the inclusion “2” in (2.64) obviously holds. On the other hand, let ¢ € F,
and demand LyL_1y% = 0 Vn > 1. Hence

Ly = =Ly Yn>1, (2.66)

n+1

which by induction yields the inclusion “C” in (2.64) when the regularity axiom
(2.32) is applied to the right-hand side.

When defining the Lie algebra .7 /L(_1).% we had to divide out the space L(_,.#
for mathematical reasons. Surprisingly, this reasoning is motivated by physical con-
siderations (cf. [27]). Suppose that . is equipped with an inner product (_,-) such
that the operator L(_y, is the adjoint of L, . Then (L_1)p, %) = (¢, L) =0 Vy €
F ) € Auy,n € Z, i.e. the space L1 F is orthogonal to all primary states. In
particular, L_1)&, consists of null physical states, physical states orthogonal to all
physical states including themselves. Hence the Lie algebra g is obtained from 7,
by dividing out (unwanted) null physical states.

It is well known that there are additional null physical states in &7}, if and
only if the central charge takes the critical value ¢ = 26, namely the space
(L—p + %L(z_ 1) -1y (see [27] for the calculations). The existence of these addi-
tional null physical states is used in the proof of the no-ghost-theorem [26].

2.2. Toroidal compactification of the bosonic string. It is by no means obvious that
nontrivial examples of vertex (operator) algebras exist. However, a class of vertex
algebras is provided by the following result (see [6, 17]):
Associated with each nondegenerate even lattice A is a vertex algebra (¥, 77,1, w).
If in addition A is positive definite then (%, Z",1,w) has the structure of a vertex
operator algebra.

The rest of this section will be concerned with the explicit construction of the
vertex algebra stated above. For physical motivations of the construction below the
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reader may consult the articles [24, 22, 25] or the comprehensive review [32]. A
precursor of the construction is given in [28].

Let A be an even lattice of rank d < oo with a symmetric nondegenerate Z-valued
Z-bilinear form _-_ and corresponding metric tensor n*¥, 1 < p,v < d (A even means
that r? € 27 for all r € A). The vertex algebra (% , 7", 1, w) which we shall construct
can be thought of as a bosonic string theory with d spacetime dimensions compactified
on a torus. Thus /A represents the allowed momentum vectors of the theory. We take
Ag := R ®z A to be the real vector space in which A is embedded.

Introduce “zero mode states” ¥;, r € A, which are by definition orthonormal,

(P, ¥5) = br s, (2.67)
and oscillators at, m € Z, 1 < p < d, satisfying the commutation relations
lad, ail = mn* bmn 0, (2.68)
and the hermiticity conditions
()t =ot, (2.69)

and acting on zero mode states by

ab U,
'

0 ifm >0, (2.70)
e, 2.71)

where p* = af and r* are the components of r € A. While the operators o, for
m > 0 by definition act as annihilation operators, the creation operators ak,, m < 0,
generate the Fock space from the zero mode states. For convenience let us define

d
r(m) := Z Tuoh =T-0y, (2.72)
pu=1

for r € Ay, m € Z, such that

[r(m),s(n)] = m(r-8)dman 0- 2.73)
We denote the d-fold Heisenberg algebra spanned by the oscillators by

h = {r(m)|r € Ag,m € 7}, (2.74)

and for the vector space of finite products of creation operators (= algebra of poly-
nomials on the negative oscillator modes) we write

N
S@™) =P {Hri(—mi) |r; € Ag,m; >0for1<i< N}, (2.75)

NeN & i=1

where “S” stands for “symmetric” because of the fact that the creation operators
commute with each other.

If we introduce formally position operators g#, 1 < p < d, commuting with o,
for m # 0 and satisfying

l¢”,p"1=1in"", (2.76)
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then we find that

eI = U, (2.77)
i.e. the zero mode states can be generated from the vacuum ¥:

7, = "y, (2.78)

Thus the operators e*9, r € A, may be identified with the zero mode states and
form an abelian group which is called the group algebra of the lattice A and is
denoted by IR[A]. One might expect the full Fock space .7 of the vertex algebra to
be S(h™) ® R[A]. However, it is well known that we must replace the group algebra
R[A] by something more delicate in order to adjust the signs in the Jacobi identity
for the vertex algebra. We will multiply e™4 by a so-called cocycle factor ¢; which
is a function of momentum p. This means that it commutes with all oscillators oy,
and satisfies the eigenvalue equations

Vs = ¢(r, s)Ws. 2.79)

More specifically, we define operators e := e!™9¢, and impose the conditions

ee® = e(r,s)e™, (2.80)
ee® = (—=1)"Se%e", (2.81)
efeT = (—1)i7, (2.82)
e = 1, (2.83)

which are equivalent to requiring, respectively,

€, )e(r+5,0) = €(r,s+0)es, b), (2.84)
er,s) = (—1)"%s,1), (2.85)
er,-r) = (=17, (2.86)
€0,0) = 1. (2.87)

For example, associativity of the product e"e’e! and (2.80) yield (2.84). Note that the
cocycle condition (2.84) implies €(0, 0) = €(0,r) = €(r, 0) Vr. It is not difficult to show
that it is always possible to construct cocycles with these properties (see [25], e.g.).>
Also note that every 2-cocycle € : A x A — {£1} corresponds to a central extension
A of Aby {+1}:

1= {x1} A -4-1, (2.88)
where we put A= {£1} x A as a set and define a multiplication in A by
(p,x) *(0,8) := (e(xr,8)po,r +s) for p,o € {£1}, r,s € A (2.89)

We will take the twisted group algebra R{A} consisting of the operators €', r € A,
instead of IR[A]. This means nothing but working with the section in the double cover
A of the lattice A.

3 Without loss of generality we can assume that the function € is bimultiplicative, i.e. €(r +s,t) =
e(r, t)e(s, t) and e(r,s + t) = €(r,s)e(r, t), Vr,s,t. Together with (2.86) and the normalization condition
(2.87) this then implies that e(mr, nr) = [e(r, O] = (= 1)3™" Ve, m,n € 2.
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To summarize: The Fock space associated with the lattice A is defined to be
F :=8(h7) 9 R{4}. (2.90)

Note that the oscillators r(m), m # 0, act only on the first tensor factor, namely,
creation operators as multiplication operators and annihilation operators via the adjoint
representation, i.e. by (2.73). The zero mode operators cfy, however, are only sensible
for the twisted group algebra,

r(0)e’ = (r-ap)e’ = (r-s)e’ Vr € Ag,s € A, (2.91)

while the action of e* on R{A} is given by (2.80).
We shall define next the (untwisted) vertex operators Z° (v, z) for ¢ € .% . For
r € Ay we introduce the formal sum

r(z):= »_ rm)z""", (2.92)

mel

which is an element of h[[z, 2~ '] and may be regarded as a generating function for
the operators r(m), m € 7Z, or as a “current” in contrast to the “states” in % . It is
convenient to split the current r(z) into three parts:

r(2) = r<(2) + r(0) + r(2), (2.93)
where
re(z) =Y r(-m3™',  ra(2) =) rmyz (2.94)
m>0 m>0

We will employ the usual normal ordering procedure, i.e. colons indicate that in the
enclosed expressions, ¢” is written to the left of p#, as well as the creation operators
are to be placed to the left of the annihilation operators.

For e" € R{A}, we set

T(e, 2) = e T<@dzr O [ =1z (2.95)
using an obvious formal integration notation, i.e.
1 1
/r<(z)dz = E —r(—m)z", /r>(z)dz =— _;_ —r(m)z~™.  (2.96)
m m
m>0 m>0

This can be written in a way more familiar to physicists by introducing the Fubini-
Veneziano coordinate field,

1
Q) =q* —ip*lnz +i E Eafnz—m, 2.97)
melk .

which really only has a meaning when exponentiated. We find that the vertex operator
in (2.95) takes the familiar form

T, 2) = 167z, (2.98)

and the current r(z) becomes
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d
r(z) = ia—[r-Q(z)]. (2.99)
z

This shows that the vertex operators in (2.95) are indeed already normal ordered and
carry a cocycle factor hidden in the elements of the twisted group algebra R{A}.

Let ¢ = [H;V:I s,(—n, )] ®e" be a typical homogeneous element of .7 and define

i 1 d n,—1
T,2) = (e, z)H my 1 (-) s;(2) 2 (2.100)

d\™
= 1 1r Q(2) ) .
- H Ty — 1)!) ( ) (5;-Q(2)) @ .

Extending this definition by linearity we finally obtain a well-defined map

7 F - Ed )Nzl e Y ez (2.101)

neL

We shall prove the first four axioms in the definition of a vertex algebra.

1.

(Regularity) Note that .7 contains only states with a finite occupation number
of creation operators and the vertex operators are normal ordered expressions.
Having this in mind it is clear that 1,0 = 0 for n large enough (depending on
1, € F) since annihilation operators are always attached to negative powers
of the formal variables.

. (Vacuum) We choose the vacuum to be the zero mode state with no momentum

and without any creation operators, i.e.
1:=1®¢, (2.102)
so that
7', 2) = 10 = id 5 (2.103)

by the normalization condition (2.83).

(Injectivity) Observe that, when acting on the vacuum, only terms involving cre-
ation operators survive in the expression for a vertex operator. Then it is obvious
that

¢Y_il1=Res, 7' Z°W,2)1] =y VYpe.7. (2.104)

In particular, Z°(¢, z) = 0 implies ¢ = 0.

(Conformal vector) We claim that the element
d
w =3 €= Degy(—1)(®e") (2.105)
p=1

provides a conformal vector of dimension d which is independent of the choice of
the basis {e,} of Ay with dual basis {€®"} (w.r.t. n*¥). By (2.100) and (2.92),
we have
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7 (w, 2)

d
3 Z e (2)e((2):

p=1
% z 0y Otz T (2.106)

m,nel

(Note that in the last step we had to rely on nondegeneracy of the lattice, i.e. we
used the completeness relation Zzﬂ(e(“))p(em))g = 7)ps.) Thus

Lin) = W1 =3 ) 10tm Otn_m?, (2.107)
mel

in agreement with the well-known expression from string theory. Using the os-
cillator commutation relations one indeed finds that the L,)’s obey (2.27) with
central charge ¢ = d (see [27] for the calculation). To establish the translation
property of L_;y we find that

r(—1)", (2.108)
mr(—m — 1) for m > 0, (2.109)

L(_l)e'
L(_l)r(—m)

by (2.91) and (2.73); but, on the other hand,

()7 (€, 2): = Z'(x(—1)e", 2), (2.110)

d r
EW(C 72)
b
(m— 1!

—d‘W(l‘(—m), 2) (i) r(z) = Z (mr(—m — 1), 2)2.111)
dz dz

by (2.95), (2.100) and (2.92). Together with the derivation property of L(_1, and E‘i;
this proves (2.28). Finally, let ¢ = [H]]\il s](—nj)] ®e" be a typical homogeneous
element of .% . Then

N
Loy = (%r2+2nj)'z/) (2.112)
j=1

yields the desired grading of .% . Furthermore we observe that the spectrum of
L o) is nonnegative and the eigenspaces of L) are finite-dimensional provided that
A is a positive definite lattice; while if A is Lorentzian then r? can be arbitrarily
negative so that the spectrum of L is unbounded from above as well as from
below.

It is not surprising that by far the hardest axiom to prove is the Jacobi identity because
it contains most information about a vertex algebra. We will skip the proof and refer
the interested reader to Ref. [17].

We turn now to the analysis of the Lie algebra of physical states, g4, and work

out some of its commutators. A closed formula for the commutator of zero mode
operators associated to general weight one states and a related investigation of the
Lie algebra of quasiprimary states of weight one can be found in [34] and [35].

Let us first list the simplest physical states:
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1. Tachyonic states:

g[/?] ={e'|re A}; (2.113)
2. Photonic states:
g[/{] ={s(-1)®e" |rs=0,s € Ag,r € Ay}; (2.114)
3. Massive spin 2 states:
g o= {[(s-r)t(—z) +(t-1)s(—2) — 2s(—Dt(—1)] ® e
st =2(s-T)(t-r);s,t € A, T € A_z}; (2.115)

where A, = {r € A|r? = n (€ 27)} denotes the set of lattice vectors of squared
length n» and the superscript of g, counts the oscillator excitations. The relevant
physical state conditions for above polarization vectors s,t € Ay follow immediately
from (2.112) and

N N
Ly = Z i [sk(m— nk)Hsj(—nj)} ®e"
o o
N N
+m26m,nk(sk-r)[ns](—nj)} ® e
k=1 g1
ik
N N
+ Z nknk’ém,nszkf(sk‘sk’)[ H Sj(—nj)] ®e  (2.116)
K<k’ 7=1

a7k, k!

for ¢ = “—[31\; sj(—n,)] ® e* € .. The above formula also exhibits an explicit

example for the regularity axiom (2.32), namely, that L)% = 0 for m > max;4(n;+

ng). We want to stress again that the physical states in g4 are only defined modulo

L(—1yZAp) which means for example that r(—1)®e" =L_)(e") =01in g4 for r € Ay.
For the antisymmetric product (2.60) on &7, / L(—1)Zo) we obtain

[er’es] = Res, [ef l‘<(Z)dZerZr(0)ef l'>(z)dz(1 ®es)]

Res, [ Z Sm(r)zm”'se'es}
m>0
0 ifr-s>0,
e(r,s)S_i_rs(r)®@e™ if r-s <0,

Q2.117)

where we used the Schur polynomials S,,,(r) = S,,(r(—1),r(—2),...,r(—m)) which
are defined via the generating function

@20 T NS (1), 1(=2), ..., H=m)2™, (2.118)

m>0
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so that, e.g., So(r) = 1, S;(r) = r(=1), Sp(r) = 5 (r(—1)*> + r(—2)). For notational
convenience we put S,,(r) :=0 Vm < 0,r € A. We also find that

[S(-D®e", e

= Res, [:ef r<@dzgr x0) [ r>@dzgye(1 ®et)]

Res, [ Z Sm(r)2™ ™ <(S't)2_1 + Z s(—n)z"“‘) ® e'e‘]

m>0 n>0
0 ifrt>1,

—1-rt

e(r, ) [(s-t)S~,.t(r) + 3 Sumsm+ r-t)] et ifrt <0, (%119

m=0

[S(-D®e" u-1)®e

Res, [:ef r<(z)dzerzr(0)ef l'>(z)dzs(z):(u(_1) ® et)]

Res, [ Z Sy (1) 2™ [[s.u — (r-u)(s-t)]z~2

m>0

+ ((s-tu — (r-ws)(—1)z""

+ Z (s(—nyu(—1) — (r-ws(—n — 1))z”—1] ® e'e‘]
n>0
0 ifr.t> 2,

e(r, t) [[(s‘u — (r-u)(s-t)]S;_r.¢(r)

+ ((s-Hu — (r-w)s) (= 1)S_p.4(r)
= (2.120)

—1-rt

+ Y (s(=m—r-tyu(=1)
m=0

—(rws(—-m — 1 —rt))Sp)| ®e™ ifrt<l1.

These formulas simplify drastically in the special case where A is a positive definite
even lattice. Obviously, .7 = R1 and the spectrum of L is nonnegative so that
g4 = Ay = 7). Its elements are easy to describe,

ga = {Re']re Az}@{S(—l”SEAm}. (2.121)
The commutators become
[r(=D),s(=1)] = 0, (2.122)
[r(=1),e*] = @9, (2.123)
0 ifr-s >0,
[e",e)] = { e(r,s)e™ ifrs=—1, (2.124)
-r(—1) ifrs=-2.
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Note that in this special case the Schwarz inequality yields |r-s| < 2. Moreover,
rs=-1 <= r+seAandrs=-2 < r+s=0forr,s € A,.

We are not interested here in this well-understood case of positive definite A
which leads to a finite-dimensional Lie algebra g,, but rather the case of Lorentzian
lattices, which is of course far more complicated.

We have seen that a special role is played by the norm 2 vectors of A which we
call real roots of the lattice. The reflection v, associated with a real root r is defined
as w(x) = x — (x-0)r for x € Ay. It is easy to see that a reflection in a real root
is an automorphism of the lattice. The hyperplanes perpendicular to these real roots
divide the vector space Ay into regions called Weyl chambers. The reflections in the
real roots of /A generate a group called the Weyl group 20 of A, which acts simply
transitively on the Weyl chambers of A. This means that if we fix one Weyl chamber
& then any real root from the interior of another Weyl chamber can be transported
via Weyl reflection to a unique real root in & . The real roots r; that are perpendicular
to the faces of & and have inner product at most O with the elements of & are called
the simple roots of Z". The Coxeter-Dynkin diagram & of & is the set of simple
roots of &, drawn as a graph with one vertex for each simple root of & and two
vertices corresponding to the distinct roots r;,r; are joined by —r;-r; lines.

Let us denote the group of graph automorphisms of the Coxeter-Dynkin diagram
by Aut(¥). Note that an automorphism ¢ € Aut (%) induces an automorphism of
A by o(r;) :=rs() Vi. Hence Aut(%) may be identified with the group of automor-
phisms of A fixing . Furthermore, one can show that oto;,0 =" = to,_, and that
20 N Aut (%) = 1. Then the group of all autochronous automorphisms of the lattice
A is a split extension of its Weyl group by Aut (%),

0 — W - Aut(A) - Aut(¥) — 0, im. = kerm,

i.e. it is equivalent to a semidirect product of the Weyl group and the group of graph
automorphisms:

Aut (A)* = Wx Aut (%),

The full automorphism group of A is just the autochronous subgroup extended by
the negative of the identity operation (which interchanges the forward and backward
light cones).

Returning to the vertex algebra (% , 2, 1, w) associated with the even Lorentzian
lattice A, we immediately infer from (2.113) and (2.114) that, for any simple root r;,
the elements €™, e™", and r;(—1) describe physical states, i.e. they lie in &;,. Define
generators for a Lie algebra g(A) by

e; + e, (2.125)
fi = —e (2.126)
h; — ri(=1). (2.127)

Then, by (2.122) — (2.124), we find the following relations to hold:

hi,hj1 = 0, (2.128)
[hi7 e]] = ai]ej7 [h'l.y fJ] = _az]fj, (2129)
lei, f;1 = biyha, (2.130)
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where we defined the Cartan matrix A = (a;;) associated with & by a;, = r;r,.
The elements h; obviously form a basis for an abelian subalgebra of g(A) called the
Cartan subalgebra h(A). In technical terms, from the above commutators we learn
that the elements {e;, f;, h; |7} generate the so-called free Lie algebra associated with
A. But even more is true; for we can show that the Serre relations

(ade;) "™e; =0, (adfi)! "™ f; =0, (2.131)

are fulfilled for all 4, j. To see this we recall that % is A-graded by construction,

F=PshoHee=PrF™. (2.132)

xX€A x€A

Then the Lie algebra of physical states inherits a natural A-gradation from .% by
defining

6® = gan [S(fr) ® e"] : (2.133)
so that
[y, 651 € g4 (2.134)
for X,y € A.*In particular,
(ade™Ye® € g™ Vj >0, r,s € 4. (2.135)

From (2.112) we infer that the element (ade")’e® has an L, eigenvalue of at least
%(jr +8)> = 1+ j(j +r-s). Comparing this with the physical state condition Loy = 1
we conclude that

(ade)e* =0 for j >1—r-s. (2.136)

Having established the Serre relations, the Gabber-Kac theorem [29, Thm.9.11] tells
us that the Lie algebra g(A) generated by the elements {e;, fi,h;|i} is just the
Kac Moody algebra associated with the Cartan matrix A. Namely, the latter is
defined as the above free Lie algebra divided by the maximal ideal intersecting §(A)
trivially, and the theorem states that this maximal ideal is generated by the elements
{(ade)'"e;, (ad £;)' =% f; ] # 5}.

We would like to emphasize the remarkable fact that the physical state condition
Ly = 1 accounts for all Serre relations which are usually very difficult to deal
with in the theory of Kac Moody algebras; or, in string theory language, the absence
of particles with squared mass below the tachyon reflects the validity of the Serre
relations for the Lie algebra g(A).

To summarize (cf. [6]): The physical states {e™,e ™ ,r;(—1)|i} generate via
multiple commutators the Kac Moody algebra g(A) associated with the Cartan matrix
A = (r;-r;) which is a subalgebra of the Lie algebra of physical states, g,.

Only in the Euclidean case these two Lie algebras coincide. In general, we have
a proper inclusion

9(4) C ga, (2.137)

4 Some of the subspaces g(A"> may be empty, e.g. for x> > 2.
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and the characterization of the elements of g, not contained in the Lie algebra g(A),
is the key problem for the vertex operator construction of hyperbolic Kac Moody
algebras. The special feature of (2.137) is that the root system of the Kac Moody
algebra g(A) is well understood though its root multiplicities are not completely known
for a single example; whereas the root system of g, is certainly not compatible with
that of a Kac Moody algebra although the root multiplicities are always known. Thus
a complete understanding of (2.137) requires a ‘“mechanism” which tells us how g(A)
has to be filled up with physical states to reach the complete Lie algebra of physical
states. For the special case of the unique self-dual Lorentzian lattice II,s ;, this was
accomplished in [4] by the addition of imaginary simple roots, or, equivalently, by
adjoining new generators to the Kac Moody algebra L..(= g(A), where the infinite
matrix A corresponds to the Coxeter-Dynkin diagram built up from the Leech roots
[7]), thereby furnishing the transition to the “fake monster” Lie algebra gp,, , [4]. See
also [39] for an attempt to determine the structure constants of this algebra.

3. Discrete DDF Construction

As can be seen from Egs. (2.113) ~ (2.115) and (2.116) the Virasoro conditions
(Liny — 6r0)¥ = 0, n > 0, which should be obeyed by physical states 1), become
increasingly complicated at higher excitations. In fact, we cannot hope to arrive at a
general description of the physical states by this method of calculating polarization
vectors. However, there is an elegant resolution of this problem by Del Giudice, Di
Vecchia and Fubini [11] which allows an explicit construction of all the physical
excited states. The idea is to find a set of operators that commute with the Virasoro
operators, and which when applied successively to the tachyonic ground states give all
possible physical states. These operators form a closed algebra called the spectrum
generating algebra. It turns out that the latter consists of transversal DDF operators
Ail, 1 <i<d-2,n € Z, describing the transversal modes of the string, and of
longitudinal DDF operators £,,, n € Z for the longitudinal excitations. We shall now
introduce the discrete version of these operators taking into account that the momenta
lie on the even lattice A so that we are not allowed to use Lorentz transformations to
rotate them into convenient frames. Apparently, the longitudinal DDF operators have
so far not been considered in this discrete context.

3.1. DDF vertex operators. Let k be a primitive lightlike lattice vector, i.e., k € Ag
and %k ¢ Ay Vn > 1. Using (2.120) we can immediately write down the commutator

of physical states £(—1)e™* and n(—1)e™, m,n € Z:
[E(=De™,n(=De"™] = e(mk,nk) (& mymk(—1)e™™%
= m(&§-Mbmn,0k(—1), (3.1)
since £k =71k =k-k =0 and k(—1e™ = 1L _)(e"%) = 0 for n # 0. Recall that

we assumed the cocycle € to be bimultiplicative so that e(mk, nk) = (—1)%’7“"“k2 =1.
We define the transversal DDF operator AS, = A,,,(¢,K) as the zero mode operator
corresponding to the physical state &(—1)e™,

A = (E(=De™), (3.2
Res, [77(&(—1)e™, 2)]
Res. [£()7°(™, )], (3.3)

l
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where normal ordering in the last line is unnecessary due to -k = 0. According to
(2.62) the above commutator then translates into

[AS,, A7) (€ 1)Sman,0o(k(—1))o
m(§ '77)5m+'n,,0k(0)- 3.4

We observe that apart from the operator k(0) = k - «y, this is just an oscillator
commutation relation like (2.73) but now for d — 2 oscillators since the space {£€ €
Ag | €k=0, £ = ¢mod Rk} has indeed dimension d — 2. Moreover, it is clear from
(2.57) that these operators commute with the Virasoro algebra,

Ly, A5,] =0 VYn,m e Z. (3.5)

Since we shall encounter the DDF operators only when acting on physical states with
certain momentum r, say, the operator k(0) can be thought of as an integer k-r. The
crucial feature of the DDF construction is then that for given momentum r, one has
to find a lightlike vector k = k(r) such that k-r = 1. In this case the transversal DDF
operators A%, (k) realize precisely the algebra of d — 2 transversal oscillators on the
ground state e". Indeed, we learn from (2.119) that the DDF operators Afn(k) for
positive m annihilate the tachyonic ground state e',

A8, (K)r)=0  Vm >0, (3.6)

the operator Ag(k) = £(0) acts diagonally with eigenvalue §-r, while the operators
A¢ (k) for negative m when applied to the ground state generate new physical states
called transversal DDF states,

AS AR ) = 6 (=D ™K [ [En(=DeT ™R e L)), B

where we wrote e' = |r) to make contact with the standard physics notation. For later
purposes we denote the d — 2-fold Heisenberg algebra spanned by the transversal
DDF operators by

t:={A% |€c A, £k=£1=0, m €T}, (3.8)

and the vector space of finite products of creation operators (= algebra of polynomials
on the transversal oscillators) is written as

N
sE) =P { A%, & € Ay, € k=E€1=0, m; >0 Vi}, (3.9)
1

NEN *~ i=

where “S” stands for “symmetric” because of the fact that the creation operators
commute with each other.

The above identification of DDF physical states with multiple commutators in the
Lie algebra g4 will be our main guide in the analysis of hyperbolic Lie algebras; for
the DDF construction allows us to write down elements of the Kac Moody algebra
g(A) explicitly and to introduce the notion of polarization into the framework of these
algebras.

Recall that the photonic physical states in (2.114) deserve the attribute “transver-
sal” in the sense that the polarization vector s in s(—1)e" has to be orthogonal to the
momentum vector r. Thus, we cannot expect to obtain “longitudinal” physical states
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in a straightforward way. Nevertheless, there is a “dirty trick” [8]. Letr € A, k € Ay
and suppose that k-r ## 0. Then Eq. (2.41) yields

dz
+inn+ Dk 0)Z(e*, 2)z" " (3.10)

Loy, Z°(x(=1)e¥,2)] = 2" {zi +n+ 1} Z (r(—1)e¥, 2)

The unwanted term on the right-hand side which destroys the conformal transforma-
tion properties (2.59) can be removed by the following trick: introduce the formal
series

KX (2) = z @—1 Zk( )2+ <k(0) 1>, (3.11)
and define
-1 i+1 .
log( (k)> =log[1 +k*(2)] :=Z( Z,) k*(2))", (3.12)
i>1

which is only defined on states with momentum s such that sk = rk: if the second term
on the right-hand side of (3.11) does not vanish on a given state, an infinite number of
terms will contribute when (3.12) is applied to it. This means that the above series is
not (algebraically) summable on the whole space .7 . In particular, it is not summable
on the vacuum state 1 = |0) which, in view of (2.53), makes it impossible to recover
the state corresponding to the log series: there does not exist a universal state whose
vertex operator is given by log(1 + k™ (2)). Luckily, however, we shall only need the
action of this log series on states with momentum r — nk (with n € N), so that the
resulting series will be well-defined. And if this is the case then we may indeed find a
state whose vertex operator has the same action as the log series. Thus, the log series
should be interpreted as some sort of generating series for a class of genuine vertex
operators which can be revealed by acting on states. Keeping in mind this subtlety
let us perform some calculations in connection with the log series.

Ly, k()] = 2" {z% + n} k*(2) + nz", (3.13)

since the current k(z) is a primary field of weight 1. For the formal series log[1+k™ (2)]
we therefore obtain

[Liny, log[1 +k*(2)]]

S =DM (@) Ly, k¥ (2)]  since k € Ao

i>1

+l dilz log[1 +k*(2)] + nz", (3.14)

so that

Lin), dilz log(1 +kx(z)]] =" {z% +n+ 1} diz log[1 +k*(2)] + n2z""'. (3.15)

Using this formula and the fact that
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d k(z) d % ~1
7 log k-1 log[l +k*(2)] — 277, 3.16)

we deduce that

[L(n), dd log &i{)] =2" {Zdiz +n+ 1} (dilog (—k)) +nn+1)2""1. (3.17)

Putting everything together we conclude that the DDF vertex operators

d k
AT, 2) = 7 (r(—1)eX, 2) — %(r‘k)gg log ( (2 )>W(e z), (3.18)
enjoy the correct conformal transformation properties for primary fields of weight 1:
[L(n), Y (r, z)] =2" {z% +n+ 1} D (r, 2) Vn € Z. (3.19)

For rk # 0 we call 24(r, 2) longitudinal vertex operator since otherwise we recover
the transversal vertex operator Z°(r(—1)eX, z).° Also note that the log term in (3.18)
does not require normal ordering because of k € Ao.

3.2. Longitudinal Virasoro operators. We define the longitudinal Virasoro operator
£ as the zero mode operator of the longitudinal vertex operator %,k(r, 2),

L£nm = —Res, [Zn(r,2)]
— mk m d k( ) mk
= Res, [—Z (x(—1)e™, 2) + ?(r-k)a log 7™, 2)| (3.20)
These operators satisfy the commutation relations of a Virasoro algebra with central
charge c = 24. To see this, we first note that

[F(—1)e™, r(—1)e"™¥]
e(mk, nk) [m[r* — mn(r-K)k(-1) + (n — m)(r-k)r(-1)]e™*™k
(n — m)(@-Kr(—1)e™ ™ + mr* + m*(r-k))6min ok(—1) (3.21)

by (2.120) so that

3 This is in perfect agreement with [8] since we employ a different normal ordering prescription for
p* and ¢¥; we use :¢”p*: = ¢¥p* in contrast to the “standard” symmetric normal ordering iq” pl‘i =

3(q¥p* + pq¥) = :q¢VpH: — $nH¥ which leads to
Piymm. (x(—1De¥, 2) = Z'(x(—= D)X, 2) + 3k DZ' (¥, )27,

so that indeed

Piymm. (r(—1)e¥, 2) — %(km);i‘i log[1 +k* (2)]7(e, 2)
A

= Z'((-De* 2) - Lk r)—-log( ”)@(e, 2).

6 Apparently, the essential log term was missed in [14].
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{Reszl [Z7(r(=1)e™, 21)] , Res,, [Z (x(=De™, 2,)] }
= (m—n)(r-kRes, [-Z x(—De™™k )]
+m[r? + m*(r-K)16mn 0k(0). (3.22)

It is also clear that the commutator of two log terms vanishes due to lightlikeness of
k. Finally, we have to calculate the cross commutator:

[Resz, [Z7(r(~1)e™, 2)] , Res., [ilog (k(z2))W( nk )H
de r-k

d k(27) m n
= Res,, {Elog( rli )[Re Sz, [,@/(r( De k zl)] Z(e k’zz):|+

+ [Resz, (7D, 2] 5 log (klffli))] 7@, z2>} (3.23)

To calculate these two commutators we first recall the following version of the com-
mutator formula (2.38):

[ReSZI [67‘(1#) 21 )] ) W(‘P, 22)] = W(d)ﬂ(p? 22)
7" ([, 91, 22). (3.24)

il

From (2.119) and (2.120) we therefore deduce that
[Resz, (2 (r(=1)e™, 2)] W(enk,zz)] = n(r-RZ @K 2,) (3.25)
and
[Resz, (77 (r(=1)e™, 21)] , 7" (k(~1), Zz)] = mr-RZ k(=1)e™, 2), (3.26)

respectively. The last formula then yields

r-k
i—1
= [Z( )”‘("(z” 1) M7 (k(—1e™, 2)
i>1
d mk
= [m(r-K)Z (™, 2,)]
= m*(r-KZ k(-1)e™, 2). (3.27)

Collecting the above commutators we finally get

[Cm,€n] = (m—n)xKRes, [~Z (x(-1)e™™*, 2)]
+ m(r2 +m*(r-k))8man,0k(0)

- —(r ‘k)’Res, [dil og (k(’z)) 7 (emmk, z)]

- %”—(r-k)zkesz (2 (K(=1)e™™k, )]
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m2
k)2 d k(Z) (m+n)k
+ - (r-k)"Res, [_dz log (_r-k)% (e ,2)

2
+ ok Res, [77(k(= D™, 2)]
= (M — )L + [(0-K)? + (- K)IM® + r*Mmbp4n 0k(0).  (3.28)

As for the central term, we shall assume from now on that r-k = 1 so that the factor
in the central term reads 2m?> + r’m. The standard form 3 (m® —m) can be obtained

by redefining £y — £o + (1 + %rz)k(O) so that we end up with
[£ms Ln] = (M — 1) Lrin +2(m° — )b 114, 0K(0). (3:29)

We conclude that the longitudinal Virasoro operators £,,, when applied to physical
states with momentum r, realize a Virasoro algebra, Virg, with central charge cg = 24.
Remarkably, this Virasoro algebra is universal in the sense that its central charge does
not depend on the dimension of the lattice.

Let us proceed by determining the commutator of the transversal DDF operators
and the longitudinal Virasoro operators,

[, A7)

[Reszl [7°(€(-1)e™, 21)] , Ress, [Z(r(—1)e™, 2,)] ]

Res, [Z7([¢(—De™, r(—1)e™], 2)]

Res, [n(€ 1)Z (k(—1e"™ ™%, 2) — n(r-K)Z (£(—1)e"™ ¥, 2)]
—n(r-k) AL, + (T €)6min 0k(0) (3.30)

by (2.120). Obviously, we can remove the second term by choosing & orthogonal to
r; and if we make our standard assumption that r-k = 1 we arrive at the important
formula

[Em, A5] = —nAS,... (3.31)

We claim that the tachyonic ground state e" is annihilated by the longitudinal
Virasoro operators £,, for nonnegative m,

Lnlt)=0  V¥m>0. (3.32)

First note that the operator £y = —r(0)+(1+ %rz)k(O) acts diagonally with eigenvalue
1- %rz) which indeed vanishes because r € A,. Next, using the A-gradation (2.134)

of g4 we observe that the state £,,|r) carries momentum r+mk. But %(r+mk)2 =1+m
contradicts the physical state condition L = 1 for positive m in view of (2.112)
unless the state itself vanishes. We conclude that only the operators £, for negative
m generate new physical states when applied to the ground state

‘g—nl . 'E—np |l‘> € ‘%1) (333)

for ny,...,np > 1. Further, we can verify that the state £_|r) is a null physical
state, i.e. the action of the operator £_; is essentially the same as the action of L(_):

£ |l'> = €(T, k)L(_l)il' - k), (334)
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which vanishes as an element of g4! To prove this equation we first deduce from
(2.119) that

Res, [~ Z (r(— e, 2)] (e")

—[r(=1)e¥, "
er,k)(r—2k(-H®e X (3.35)

The calculations for the log term have to be performed explicitly:
1 d -k r
Res, 1, logk(2)Z"(e™ ", z)| (")

1 d —k r

= Res, —27; logk(z2)Z (™%, 2)| (")

= —IRes, “di log[1 +k*(2)] — z—l}?/(e-k,z)] (e)

= Resz[ w3 (kX(z))Zk<z>Zsm< —k)2"" ‘](e'>
1>1 m>0
+ 1Res, [z" > Sm(—k)zm_le_ker}
m>0

- [Z( 1) (Zk( n>2< 1 n—l)
= —n)z z +Zk(—n)z X

i>1 n>0 n>0

X Zs (—k)z" ek f] le(—k,k(—1)e" ¥

m>0

= —e(—k,r)k(—1)e" k. (3.36)

Putting together the above two results we obtain e(r, K)(r — k)(—1)|r — K) as desired.
Thus, using the commutation relations and (3.34), we can rewrite any state of the
form (3.33) as a linear combination of states not containing .£_;. As a basis for states
of the form (3.33) in g4 we may therefore choose

Ln o Lnplr), (3.37)

with fixed ordering n; > ... > np > 2.

We turn now to the no-ghost theorem applied to our discrete construction. We fix
a tachyonic groundstate e' = |r), r € A,, and suppose that there exists a lightlike
vector k = k(r) € Ag such that r-k = 1. Then we can always find d — 2 orthonormal
vectors &, € Ay, 1 < i < d — 2, orthogonal to both r and k. If we put A%, = Aﬁ’l
then the no-ghost theorem [26] tells us that the states

Al AT Lon,r) (3.38)

for éy,...,in € {1,...,d =2}, my,...,my > 1and ny > ... > np > 1, account
for all physical states (including null physical states!) with momentum

N P
r— (Z Mo+ nb> k. (3.39)
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Reformulated in the language of the Lie algebra g4, the subspace
oa® =P ™, reds, (3.40)
neN

is spanned by elements of the form

A AT S L), (3.41)
where iy,...,iy € {1,...,d =2}, my,....my >1andn; > ... > np > 2.

3.3. Spectrum generating algebra. Note that due to (3.31) we had to fix some ordering
of the operators in (3.38). Historically, this was the reason for replacing the longi-
tudinal Virasoro operators £, by longitudinal DDF operators A, which commute
with the transversal DDF operators. To see this, we introduce the standard normal
ordering of the transversal DDF operators by placing DDF operators with positive
modes to the left of the ones with negative modes, and we define

d—2
Ln=5 Y > ALAL (3.42)
i=1 mel
Comparing this with (2.107) we immediately infer that the .%,,’s obey a Virasoro

algebra, Viry, with central charge co = d — 2. Furthermore, it is straightforward to
show that

[ B, AL] = —nAL,... (3.43)
Hence, if we define
d—2 ) .
A =8 =L =8 — 1YY ALAL L (3.44)
i=1 meZ
we get
[4L,,A7]=0 VmneZ 1<i<d-2. (3.45)

The last equation can be used to show that longitudinal DDF operators form a “coset”
Virasoro algebra, Vir 4, with central charge c4,- =cg — cy =26 — d:

[4;,,47] = (m—n)A,,, +254m° — M)¥bmin (3.46)

Thus we may rewrite the basis of all physical states (including null states!) as

A AW AT AT T (3.47)
where iy,...,iy € {1,...,d =2}, my,...,my >1and ny > ... > np > 1, which

exhibits explicitly how the space of physical states with momentum r — nk, n > 0,
splits into a tensor product of the algebra of polynomials in the transversal oscillators
with a Virasoro Verma module:

T =P AT =5E) 0 V(26 - d,0), (3.48)

n>0
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where V (¢, h) denotes the irreducible highest weight Vir-module. In other words, we
may regard the associative algebra

SE) ® Virg -, (3.49)

as the spectrum generating algebra associated with r, since it generates all physical
states with momentum r—nk, n € N, by acting on the fixed tachyonic groundstate |r).
In particular, we observe how the critical dimension d = 26 arises: in 26 dimensions
the longitudinal and the transversal modes decouple because the coset Virasoro module
V(26 — d,0) becomes trivial. Moreover, (3.47) enables us to write down a formula
for the dimension of the physical subspaces with momentum r — nk, r € A;:

dim g™ = py_1(n) — pa_1(n — 1), (3.50)

where py_;(n) counts the partitions of n € N into “parts” of d — 1 “colours” , i.e.
oo
$'* = JJa-H'
I=1

Z pa—1(n)q"”

neN
1+(d—1Dg+3(d—1D(d+2)¢ + Ld—Ddd+ g +..., (3.51)

in terms of the generating Euler function ¢(q). Hence

> dimg{ ™™g =1+ (d — 2)g + 3(d — dg* + }(d — 1)(d*+4d — 6)¢’ +... .

n=0

Note that the second term in (3.50) is due to the null physical states.

Since we will mainly focus on a deeper understanding of the Kac Moody algebra
g(A) the question arises how to make contact between the elegant DDF formulation
of g4 and the construction of g(A) in terms of generators and relations. In other
words, we have to face the problem how to separate the DDF states contained in
g(A) from those which cannot be generated by the set {e;, fi, h;|i}. Note that a
special case of (2.117) gives us a recipe for writing physical states £(—1)e" as Lie
algebra commutators:

e(s, t)s(—1)es*
Les, s — (- @™ (3.52)

[e*,¢']

for s,t € A, such that s-t = —2. The last equality is obtained by adding the null
physical state (“total derivative”) %e(s, t)L_1)e**'. Hence we may put £ =s —t and
r = s+ t. This observation will be useful later.

We conclude with a comment that will be crucial for the discrete DDF construction
of Ejp. So far, we have tacitly assumed the DDF vectors k and r to be elements of
the root lattice. However, inspection of the computations presented above shows that
all arguments remain valid if only k* = 0,r? = 2, rk = 1 and &r = £k = 0. Thus, there
is actually no need to assume the vectors k and r to be on the root lattice as long as
these conditions are satisfied. In particular, under these circumstances we may choose
k and r on the rational extension Ag := Q) ®7 A, and the discrete DDF construction
still works. All our formulas will continue to make sense, whereas the interpretation
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of physical states and the identification of Lie algebra elements need some care. This
subtlety arises because, rigorously speaking, we are dealing with a generalized vertex
algebra associated with A, into which the original vertex algebra (associated with A)
can be embedded. The generalized vertex operators are then defined as in (2.95) and
(2.100), but are no longer elements of (End.% )[[z, z~']; rather, the generalized vertex

operator associated with a typical homogeneous element ¢ = [Hﬁl s;j(—n, )] ®e’
(where now r € Ag) is an element of (End Z;)[ 2, 271 with

=P 7°. (3.53)
selqg
r-SEZ
This means that the modes of the generalized vertex operators are not well defined
operators on the whole Fock space .%, but only on certain of its subspaces.

4. The Hyperbolic Algebra E;p and the DDF Construction

We now want to apply the concepts developed in the foregoing chapters to the study
of Kac Moody algebras g(A) whose Cartan matrix A is of hyperbolic type, choos-
ing the hyperbolic Kac Moody algebra F)( as our example. We remind the reader
that hyperbolic algebras are distinguished from the more general algebras based on
arbitrary indefinite Cartan matrices by the additional requirement that the removal of
any point from the Dynkin diagram leaves a Kac Moody algebra which is either of
affine or finite type (for a review of hyperbolic root systems, see [36]). As shown
in [29], the rank can then be 10 at most, and the root lattice must be Minkowskian,
i.e. with metric signature (+...+ |—). There are altogether three hyperbolic algebras
of maximal rank. Of these, Fj( is not only the most interesting, containing Eg and
its affine extension Ey as subalgebras, but also distinguished by the fact that it has
only one affine subalgebra that can be obtained by removing a point from the Ej
Dynkin diagram, while the other two rank 10 algebras contain at least two regular
affine subalgebras, (see e.g. [40]). Furthermore, the root lattice Q(FE1g) coincides with
the (unique) 10-dimensional even unimodular Lorentzian lattice IIy; [10], whereas
the root lattices of the other two maximal rank hyperbolic algebras are not self-dual.

Overall, our knowledge about Kac Moody algebras of hyperbolic type is rather
limited. As already explained in Sect. 2.2, they are generally defined in terms of mul-
tiple commutators of the basic generators e;, f;, h, and the multilinear Serre relations
(2.131). In contradistinction to the finite and affine cases, a manageable representa-
tion of all the Lie algebra elements obtained in this way has not yet been found. In
principle, the string vertex operator construction provides a more concrete realization
with the additional advantage that the Serre relations (2.131) are built in from the
outset (see the discussion at the end of Sect. 2.2), but the problem of characteriz-
ing the missing elements belonging to g, and not to g(A) in (2.137) remains. We
emphasize that we face essentially the same problem if instead we want to define a
Borcherds-type algebra [5] based on IIg 1, because we then would have to supply the
missing generators “by hand” by adding extra imaginary simple roots, which again
presupposes knowledge of what the missing Lie algebra elements are (not to mention
the potential arbitrariness as to the number of ways in which this can be consistently
done).

As already mentioned, our analysis makes use of a discretized version of the DDF
construction and relies in a crucial way on the identification of Lie algebra elements
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with physical Fock space states. In the previous section we have seen that a central
role is played by the tachyon momentum a of the ground state (so a? = 2) and the null
vector k, subject to the condition k-a = 1. For continuous momenta a, we can always
find suitable k = k(a); moreover, we can rotate these vectors into a convenient frame
by means of a Lorentz transformation [41]. On the lattice, however, the full Lorentz
invariance is broken to a discrete subgroup (containing the Weyl group generated
by the fundamental Weyl reflections), and for generic roots A, the associated DDF
vectors a and k will not be elements of the root lattice Iy ; in general’. Nevertheless,
we employ these vectors in our analysis because we can still use the associated
(transversal and longitudinal) DDF operators to construct a complete basis for any
root space of the Lie algebra of physical states g, ,. The corresponding root space
of the Kac Moody algebra g(A) is then a proper subspace thereof. As we will see,
longitudinal states are absent only for level zero and level one; this accounts for the
comparative simplicity of the corresponding multiplicity formulas.

Although it is possible in principle (with some effort) to extend our discussion to
other hyperbolic Kac Moody algebras, the following points must be kept in mind. Our
method may not apply to strictly hyperbolic algebras, which by definition have no
affine, but only finite subalgebras, because their associated Weyl chambers contain no
null vectors (i.e. they lie entirely within the light-cone), so the DDF operators cannot
be defined. On the other hand, the Weyl chambers of arbitrary Kac Moody algebras
of indefinite type generically contain several linearly independent null directions, a
feature that will greatly complicate (if not vitiate) the application of our method,
because one must then deal with at least two different sets of photon momenta for
the DDF operators. Moreover, if the algebra contains more than one regular affine
subalgebra, the level of a root is no longer uniquely defined; for indefinite algebras,
which are not hyperbolic (such as the fake monster), it is not even clear whether
this notion can be sensibly defined at all. We thus begin to understand the possible
significance of the fact that the fundamental Weyl chamber of E( touches the light-
cone at precisely one edge. In view of the limitations of the method, we will make
no attempt to state the results in the most general way.

In Sect. 4.1 we will summarize the pertinent results about Fo. In Sect. 4.2, we
apply the discrete DDF construction to level-zero and level-one elements of g(A),
thereby recovering some known results. In Sect. 4.4, we turn to the level-two states,
analyzing one example in complete detail.

4.1. Basic results about Eyy. The hyperbolic Kac Moody algebra Ejy is defined via
its Coxeter-Dynkin diagram and the Serre relations following from it. As already
mentioned, the root lattice Q(E)p) coincides with the unique 10-dimensional even
unimodular Lorentzian lattice Iy ;. The latter can be defined as the lattice of all
points X = (z, ..., Zo|xo) for which the x,’s are all in Z or all in Z + % and which

have integer inner product with the vector 1 = (%, ceey % | %), all norms and inner

products being evaluated in the Minkowskian metric x> = x% +.. .+m§ - a:% (cf. [42)).
In more physical parlance, we are dealing with a subcritical open bosonic string
moving in 10-dimensional space-time fully compactified on a torus (hence “finite in
all directions” [37]), so that the momenta lie on IIy;. According to [10], a set of
positive norm simple roots for Iy ; is given by the ten vectors r_;,ro,ry,...,rg in

7 To make this explicit in the notation, we designate the tachyon momentum by a rather than r as in
the previous sections.
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Iy for which r? =2 and r;-p =
with p? = —1240. Explicitly,
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—1 where the Weyl vector is p = (0, 1,2,...,8|38)
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These simple roots indeed generate the reflection group of Il ;. The corresponding
Coxeter-Dynkin diagram looks as follows

.
o————o————-o—o—o———o————l—o——o

and is associated with the Cartan matrix:

2

-1

0

0

. 0
A=(a,) =1y = 0
0

0

0

0

whose inverse

0 1

1 2

2 4

3 6

1 4 8

A7 =—1 5 9

6 12

4 8
2 4

3 6

-1
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6
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we shall need below. The Eg null root is
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8
§=3 mri=(0,0,000000 1D, @2)
=0

where the coefficients n, (called marks of Fs) can be read off from

3
[012345642‘ 43)

The fundamental Weyl chamber & of F)o is the convex cone generated by the
fundamental weights A; 8,

8
Ai=-) (A hyr; fori=-1,0,1,...8 4.4
j=—1

with the inverse Cartan matrix from above. Thus,

8
Ae%¢:>A=ZkiAZ (4.5)

i=—1

for k; € Z,. A special feature of Eyq is that we need not distinguish between root
and weight lattice, since these are the same for self-dual root lattices®. Since Weyl
transformations preserve multiplicities and since every root can be brought into & by
means of a Weyl transformation, the structure of the algebra is completely understood
once the root spaces for roots belonging to & are under control. Note also that the
null root plays a special role: the first fundamental weight is just A_; = 6, and all
null-vectors in & must be multiples of A_; since A> < 0 for all other fundamental
weights.

As described in Sect. 2.2, the algebra g(A) = Ejg consists of all multiple com-
mutators of the Chevalley-Serre generators e;, f;, h, with 2 = —1,0,1,...,8. Itis a
standard result [29] that this algebra can be written as a direct sum

g A =n.Bhdn_ (4.6)

where the subalgebras n_ and n, are defined to consist of all linear combinations
of multiple commutators of the form [f;,,[f,,,...[fi,_,, fo,1...11 and [e;,, [es,, . ..
lei,_,,€.,1.. 1], respectively, modulo the multilinear Serre relations (2.131). Since
n, and n_ are conjugate and thus enjoy analogous properties, it is enough in
practice to consider only multiple commutators made out of e; generators (corre-
sponding to positive roots). To classify such commutators one introduces the level
¢ € 7 of a root, such that positive ¢ counts the number of e_; generators in
[ei,, [€iy, ... [€4,_€0,]1...]] (similarly, if £ is negative, —¢ counts the number of
f—1 generators in [f;,[fi,,..-[fi._,s fi.]...]D). In terms of the corresponding root
A=r; +...+1,,, £ is defined by

0:=-A6. 4.7

8 Notice that our convention is opposite to the one adopted in [30]. The fundamental weights here are
positive and satisfy A, -r, = —&;; Thus, we will be dealing with “lowest weight” rather than “highest
weight” representations in accordance with physics usage.

9 In the remainder, we will consequently denote arbitrary roots by A and reserve the letter r for real
roots (i.e. r2 = 2).
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Observe that ¢ is not preserved under arbitrary Ejy Weyl transformations, but only
under the subgroup 20(Fy) corresponding to the Ey subalgebra. Therefore, we can
freely use this notion also for roots A which are not in &, but can be brought into
& by an Ey Weyl transformation.

The level derives its importance from the fact that it grades the algebra Fo with
respect to its affine subalgebra Eg [12]. The subspaces belonging to a fixed level
can be decomposed into irreducible representations of Eyg, the level being equal to
the eigenvalue of the central term of the Ey algebra on this representation (the full
E) algebra contains Fy representations of all integer levels!). Let us emphasize that
for general hyperbolic algebras there would be a separate grading associated with
every regular affine subalgebra, and therefore the graded structure would no longer
be unique. An important result is the following [12] (see also [13]).

Theorem 1. Suppose that x is an element of Fq at level n. Then it can be represented
as a linear combination of n-fold commutators of level-one elements, viz.

z =[xy, [z, [Bn-1, 28] .. 1] (4.8)
where each x; contains exactly one generator e_ in the right-most position'”, i.e.
Ty = (e, [es) - - - [€s,, 1] 1] 4.9)

with i, € {0,1,...,8}, and similarly for the other x;.

We are going to make use of this result in the next section in order to effectively
construct higher level elements.

As already mentioned, little is known about the general structure of this algebra.
Partial progress has been made in determining the multiplicity of certain roots, i.e. the
number of linearly independent Lie algebra elements in the corresponding root space.
Although the general form of the multiplicity formulas for arbitrary levels appears to
be beyond reach for the moment, the following results for levels £ < 2 have been
established. For £ =0 and ¢ = 1, we have [29]

mult(A) = pg(1 — 1A% (4.10)

i.e. the multiplicities are just given by the number of transversal states; we will see
in the next section that the corresponding states are indeed transversal. For £ = 2, it
was shown in [30] that

mult(A) = £3 — 1 4%) 4.11)
where
1 P(q)
§ = 1 - === 4.12
= $mg ¢(g)® [ cb(q“)] @12

and the Euler function ¢(q) is defined in (3.51). For sufficiently large (negative)
A2, one can check from this formula that there are roots A such that mult(A) >
pe(l — %Az); this clearly implies the presence of longitudinal states. Beyond ¢ = 2,
no general formula seems to be known although the multiplicities can be determined
recursively from the Peterson formula (see e.g. [31]).

10 A1l level-one elements can be cast into this form by use of the Jacobi identity and by taking appropriate
linear combinations.
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The derivation of the above result in [30] is based on the Ey decomposition

L(Ao) A L(Ao) % LA & V (3, )

where L(A;) denotes the irreducible Fy module with lowest weight A; and V' (%, TIE)

the irreducible Virasoro module with ¢ = % and h = % (by abuse of notation, we

use the same labels for the Ey weights as for the Fj, weights). Observe that the
module L(A;) precisely corresponds to the ideal generated by the double commutator
[[eo, e—1],e—1]. For higher levels, analogous decompositions contain more than one
term on the right-hand side, and it seems no longer possible to divide out the Serre
relations by this method.

In the physical interpretation, the multiplicity of a root A is nothing but the
number of linearly independent polarization states of the associated vertex operator
of momentum A, which can be generated by multiple commutators (recall that not
all physical states can be obtained in this way, cf. (2.137)). Given a root A € &, we
call a polarization vector £ transversal if £ A = £-§ = 0, and longitudinal otherwise.
This terminology is, of course, physically motivated. We also define the little group
(A, 6) to be that subgroup of the full Weyl group of Ej¢ which leaves the vectors
A and 6 invariant. Unless A is collinear with § (corresponding to ¢ = 0), 20(A, 8) is
a finite subgroup of 2(FE)p), as well as a discrete subgroup of SO(8). As an example
consider £ = 1; then A = Ay = r_; + 26 and 20(A, 8) is isomorphic to the Weyl
group of Eg. In fact, for A € &, it is known (cf. [29, Prop. 3.12]) that 20(A, 6)
is generated by the reflections rv; corresponding to those simple roots r; for which
A-r; = 6-r; = 0. This indicates that the little group will not be quite as useful in this
context as it is in conventional quantum field theory, because it becomes trivial for
sufficiently high levels. However, at low levels, this problem does not yet arise, and

the polarization states and hence the elements belonging to the root space g(H’?I can

be classified as representations of 20(A, 6).
Any root A € & can be represented in the form

A=fr_+Mébé+b 4.13)

where £ is the level of A and b an element of the Fg-root lattice Q(Eg) (b need
not be positive by itself as only M é + b must be positive). We now define the DDF
decomposition of A by

A =a—nk(a), (4.14)
where
k(a) = —16 4.15)
and
n=1-1A"=1+0M - 0¢ - 1p*. (4.16)

By construction, a obeys a® = 2 and is therefore associated with a tachyon state, and n
is the number of steps required to reach the root A by starting from a and decreasing
the momentum by k at each step (n is non-negative because A% < 2; note also that k
is always a negative root, so A is positive for all n). Obviously, for £ > 1, neither k
nor a belong to the lattice in general. As a consequence, the intermediate DDF states



608 R.W. Gebert, H. Nicolai

associated with momenta a — mKk not on the lattice will not correspond to elements
of the algebra. On the other hand, states associated with the root A do belong to the
algebra of physical states, and the DDF decomposition enables us to write down all
possible polarization states associated with the root A € & in terms of transversal
and longitudinal DDF states; the totality of these states constitutes the complete set
of elements in the root space g(A)

Of course, we could also try to apply the DDF decomposition to roots A not
2W(Ey)-equivalent to roots in &. Whenever we succeed in finding a suitable null
vector k on the lattice obeying A-k = 1, we can also find a Weyl transformation
v € WW(F}p) such that ro(k) = —& because 8 is the only primitive null vector in & .
Since A-k = —ro(A)-§ is just the level, it follows that ro(A) = a+ nd is a level-one
root with tachyon momentum

a=r_;+(b*)6+b 4.17)

for some b € Q(E3). Therefore, nothing is gained by searching for DDF vectors out-
side the 2J(Ey) transforms of the fundamental Weyl chamber. Note that the elements
of the form (4.17) constitute the Fy Weyl orbit of r_; [29].

4.2. The DDF states at levels zero and one. Although the multiplicity formulas for
levels £ =0 and ¢ = 1 are understood [29], we here derive them once more, because
our explicit DDF representation of the level-one elements has apparently not been
exhibited in the literature so far. The level-zero elements make up the Fy subalgebra
of Ejo. The allowed (positive and negative) roots are all r € Ily ; obeying r? =2 and
r-6 = 0 (hence having no r_; component), and méd for m € Z*. These correspond
to the tachyonic and photonic states with multiplicities 1 and 8, respectively:

r) = e for r*=2, (4.18)
&,(=1)|mé) &(—1e™®, (4.19)

where £,-6 = 0 and &, has no component along § (i.e. r—;-§, = 0). The Cartan
subalgebra of Ey is spanned by the states

Il

5(-10) = K, (4.20)
r_ +8)(=D0) = d, 4.21)
£,(=1)|0) for i=1,...,8, 4.22)

where K represents the central element, d is the derivation of Ey, and {€,(—1)|0) | =

., 8} span the Cartan subalgebra of Eg. This is the standard “light-cone” basis
of h(Ey) in the sense that K and d are lightlike. As for the commutators we rewrite
(2.120) and (2.122) - (2.124) as

[n(=D]0),¢(=DI0)] = 0, (4.23)
[n(=1[0),&;(~DIm8)] = mn-8)¢;,(—~)Imé), (4.24)
[(n(=10),Ir)] = @0lr), (4.25)

)]

[:(=D)Im8), &;(=D)|ns MBmin,0(€;-€,)6(—1)0), (4.26)
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[61(—1)1777/6), Ir>] = (Ell‘)ll‘+m6>, (427)
0 ifrs >0,
), |S)] = { er,s)ir+s) ifrs=-1, (4.28)
—r(—1)|mé) ifr+s=mé,

for n,{ € h(Es) and Ey roots r,s. To see that photonic states with all required
transversal polarizations can be generated by commuting tachyonic states, we recall
(3.52) (a special case of (2.117)): choosing s = r; and t = mé — r; (where r; is any
simple root of Fy), we obtain all transversal polarizations. There is obviously no way
to generate longitudinal states, because the polarization vectors £, would then have to
have components along r_;, which we cannot generate by commuting tachyonic states
belonging to Ej roots only. Since we can ignore null physical states (for which £ « 6),
we can in addition impose the requirement £-r_; =0, so § € spang{r;,...,rs}, so
that by taking appropriate linear combinations we can arrange that §;-§; = ¢;; with
£&-6 =€ r_y =0fori,j=1,...,8 It is clear that an infinity of conjugate Eq
subalgebras in Ejy can be obtained by Weyl conjugation of these states with elements
of 20(Ep) not in L (Ey).

Let us now turn to the level-one roots. Inspection of the inverse Cartan matrix
shows that the only such roots in & are of the form

A=k_1A_1+A()=l‘_1+(2+k‘_1)lS (429)

corresponding to the DDF decomposition (4.14) witha=r_;, k= —6 and n = 2+k_;.
Since all these vectors are elements of the lattice, we can straightforwardly apply the
DDF construction to obtain the physical states

Al AT ey, (4.30)

—-mn

where my+...+my = 2+k_; and with the polarization vectors chosen as above. Recall
that A* = (51(—1)em5 ) o- These states correspond to the multiple commutators

(€, (=D|mb), [ ..., [&, (—=DImné),Ir-1)]...]], 4.31)

as we have already shown. Moreover, we can explicitly verify that they form part of
the basic representation of Fy with lowest weight vector |r_;). To see this we have
to work out the commutators of the Fy elements (4.18) — (4.22) with the level-one
states (4.30):

[n(=D]0), A", - A jr_y)]

= [(my + ...+miN)6‘n+r_1-n]Al_'m] A_Nler_1>, (4.32)
€, (- 1)), A%, - A, e )]
= AJ (Az—lml Al—Nler—l»

- Z 18 1 Orm H At Jr_y) ifn <0,

AJ A'l AW [r_l) if n >0,

—-my —mnN

(4.33)
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[|s),Ai' C AW |l'_1)]

—Tm —MmN

—Mk—1 —Mk+1 -—mnN

N
= =D €AY, AT [ls+myd), AT AT e )]
k=1

+ AL AT s), )] (4.34)
The first commutator tells us that the Cartan subalgebra of Fy acts diagonally on the
DDF states, giving the components of the lowest weight 77- A of the representation.
The second commutator which directly follows from the definitions (2.60) and (3.2),
reveals that the Ey elements corresponding to multiples of the null root é act by
multiplication with a DDF operator. The last commutator is obtained by rewriting the
DDF states (4.30) as multiple commutators and repeated application of the following
version of the Jacobi identity:

“S)vAz—mw] [IS>7 [ﬁi(_l)lm(S))'lp]]
[[Is), &.(=D)|mé)], %] + [£,(=D)Imb), [[s),%]]
—m(s-&)[|s + mb), ] + AL [|s), ¥] (4.35)

for any state . Note that the commutator [[s), [r_)] above can be evaluated using
(2.117). For example it vanishes whenever s is a negative root of Ey as it should
be since r_; is a lowest weight vector; furthermore, we always get a level-one state
since s is a Fy root. Weyl-equivalent level-one states can be generated by Weyl
conjugation with elements o € 20 leaving the level fixed, i.e. v € 20(Ey). The
tachyonic momentum r_; is then mapped to a vector of the form (4.17) with a =
ro(r_;), while & is left invariant. The polarizations used above must be replaced by
the rotated polarization vectors § ;) := 10(§;) with corresponding changes in the DDF

vectors. Denoting the rotated DDF operators by A'f(,’z = Af(fj), we obtain the new
states

AT AN (e ). (4.36)
The so-called basic representation is spanned by all elements of the form (4.36). Notice
that although we are using transversal indices these now transform under different

little groups (which are all conjugate to 20(F3g)). The multiplicity formula for the
level-zero and level-one roots [29]

mult(A) = ps(n) = pg(1 — $A?) (4.37)

can be read off immediately from (4.18), (4.19) and (4.30). This multiplicity formula
holds likewise for roots related by an arbitrary Weyl rotation to a level-one root.

As already mentioned before, the states (4.30) transform covariantly under the
corresponding little group 20(r—, 8), which is just the Weyl group of Fg. Now it is
known that 20(FEg) = D4(2) x (Z,)?, where Dy(2) is the Chevalley group of order
21235527, or, equivalently, the set of SO(8) matrices with entries in the field Z, (see
e.g. [9]). Since it is the maximal discrete subgroup of SO(8) of this type in the sense
that the little groups of all higher level roots will be much smaller, this also explains
why the states (4.30) look “SO(8) covariant” (although the polarization indices ¢, j, . . .
should by no means be regarded as SO(8) indices). The higher level root spaces will
exhibit much less symmetry.
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4.3. Higher level: Generalities. Before turning to the discussion of an explicit exam-
ple of a level-two root space, we would like to explain the general ideas underlying
the description of higher level elements in terms of the DDF construction. As we
have already mentioned, the DDF states constitute a complete basis of physical states
for any allowed momentum on the root lattice. Consequently, the root space E%‘) is a
(proper for £ > 1) subspace of g(ﬂ’?l for any root A (this inclusion is a special case of
(2.137)). The physical states are e)iplicitly given by (3.47) or, equivalently, by (3.38).
Anticipating that the final results are somewhat simpler in terms of (3.38), we will
use the basis

A (@), A (@)L ). £,y (a)la), (4.38)

—mp

explicitly indicating the dependence of the DDF operators and their polarizations
on the tachyon momentum a and the associated lightlike vector k(a) = —%6, and
assuming n; > 2 from now on to exclude null states. Since £ # 1, we have

AL @ = (@) (e’ (4.39)

with an extra factor of % in the exponent, as appropriate for level ¢ by (4.15). In
accordance with the DDF decomposition A = a — nk(a), the indices obey the sum
rule my+...+mpr+n;+. .. +ny = n. We emphasize once more that neither a nor k(a)
need be on the root lattice for £ > 1 any more. The problem of characterizing the root
spaces of the hyperbolic Kac Moody algebra is now no longer one of dividing out the
Serre relations (2.131) (these are automatically taken care of by the vertex operator
formalism as we pointed out already), but rather one of identifying the missing states
which cannot be generated by multiple commutators of the Chevalley generators e,
or f;. The above representation immediately yields the following upper bound on the

root multiplicities [6]
mult (A) < po(1 — 1A% — po(—1A%). (4.40)

To effectively construct higher level elements we invoke Theorem 1 of Sect. 4.1.
For instance, given a level-two root A in the fundamental Weyl chamber &, we write

A=r+s+mé, (4.41)

where r and s are real positive level-one roots (i.e. containing the simple root r_;
exactly once and obeying r? = s> = 2). In general, there will be many different ways
to split A in this manner, as well as different integers m. For fixed value of m, these
decompositions are related by the little group, which leaves A and § fixed, but varies
r and s. Thus, we work with a fixed decomposition and then act on the resulting
commutator states with the little group so as to obtain all possible states with the
same value of m. The commutator to be computed is

[A, (s)... A™  (s)|s), A%, (r)... AN, (©)|r)] (4.42)

—mMpm —nN
where m; +...mar + 1y + ...+ ny = m. For the special example to be discussed
below, this expression can be evaluated with the help of the formulas given in the
appendix. Expanding it in terms of the basis (4.38), we arrive at
@42)= Y v Al @) A @€ (). £ g, (a)la) (4.43)

1 —pp
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with the “Clebsch Gordan coefficients” c;."*' /¥ into which all the information
about the missing states is encoded. For the Fock space states, this equality holds
of course only modulo terms L(_y(...), which can however be ignored for the Lie
algebra, as they are factored out by (2.63). (4.43) is the crucial formula, containing
both transversal and longitudinal excitations!!. For the calculations, we note that the
polarization vectors &,(r) and &;(s) can always be chosen orthonormal and such that
they agree for7 = 1,...,7; from (4.41) we then see that §,(a) = &,(r) as well for these
values of the indices. As for the remaining components &g(r), &g(s) and &g(a), one
can convince oneself that their differences are proportional to the null vector §. Since
such contributions drop out in the non-zero mode parts of the DDF operators (cf. the
discussion after (2.62)), the respective DDF operators are really the same except for
their zero mode parts and the crucial fact that their photon momenta depend on the
level. We stress that this would not be true if the Weyl chamber contained more than
one null direction.

Just as for the level-one states, one can determine how the states (4.43) transform
under Ey. Suppressing the label (a) on the DDF operators to make the formulas less
cumbersome, this calculation requires the commutators (for £ = 2)

[n(=D)]0), A", .. AM L L Lony(a)]

D
= (Jom+...+np)8mran) A, AW S Lo a). (444)

The scalar product in parentheses is easily seen to reduce to 17- A, giving the compo-

nents of the lowest weight of the representation. Furthermore,

[€;(=DIné), A" LA™ L L onyla)]

—mn

= A, (AM,, AL Loy a), (4.45)

—muy

(notice that the index on the first operator is (—#n) rather than (—n)!) and

[Is), A%, .. A € . Lonyla)]

M
= =) (& AN, AR [Is+ fmeb), Ak AN L L a)]
k=1

—mar

N
+Y AT, A 2 L [ls+ §ub), Snyy - Snyl2)]
=1

+ AN A S Loy [lS) @) (4.46)
Observe that there are no contributions from the logarithmic terms in £_,, to the
last commutator because s-§ = 0 for any Ey root s. The proof of these formulas is
analogous to the proof of the corresponding formulas for the level-one states in the
previous section, save for the following important caveat. When building up the states
from the tachyonic groundstate |a) by successive application of the DDF operators,
the intermediate states, whose momenta are not on the root lattice, do not belong

11 This formula also shows why the fake monster Lie algebra of [6] is, in a certain sense, much simpler
(though bigger) than Ejo. The longitudinal components generated by commuting two transversal DDF
states decouple in 26 dimensions, and therefore only the terms without longitudinal states survive in the
expansion (4.43). To be sure, one must still prove that indeed all transversal states can be generated in this
way if one takes into account the imaginary simple roots.
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to the Kac Moody algebra, because the Lie bracket with arbitrary elements is in
general not defined due to branch cuts in the relevant operator product expansions'?.
Therefore, the “commutators” in (4.46) are neither commutators in Ejp nor even in
the Lie algebra of physical states g,; nevertheless, the above calculation does make
sense because all relevant products of momenta are integer, and therefore the generic
branch cuts are absent. So we must keep in mind that only the final result including
summation according to (4.43) is an element of Ejy again. The fact that the direct
construction of the DDF states has no Lie algebra analog beyond level one explains
the emergence of longitudinal states as well as the disappearance of certain transversal
states.

In the next section, we will work out one non-trivial level-two root, arriving at a
complete description of its root space in terms of DDF states, which decompose into
irreducible representations of the little group 20(A, 8); as a by-product, we verify
the multiplicity formula of [30] for a concrete example. The comparative simplicity
of the representation obtained in this manner is perhaps best appreciated by noting
that the number of Lie brackets needed to represent any of its elements in terms of
Chevalley generators is equal to (—p-A — 1), where p is the Weyl vector.

4.4. A level-two example: A = A;7. Any level-two root in & must be of the form
A +né or A7+nb or 2Ay+néd for some n € N. We will here only discuss the root
A = A7, dual to the simple root r;. Explicitly, A7 is given by

7
./17=[2 468 10 12 14 9 4}_(0, 0,0,0,0,0,0,0,0]2), 447)

S0 A% = —4. Its decomposition into two level-one tachyonic roots is A7 =r+s + 26,
where

0
ri=r_; = [1 000000 O 0]:(0, 0,0,0,0,0,0,1,-1]0),
1
s = [1 222122 21 0]:(O, 0,0,0 0,0,0—-1,-1]0).
Since n = —%A%=3WC have the DDF decomposition A7 = a—3k where k := —36
and

a=r+s-k=(0,0,0,0, 00,0, 0,—3|1.

As expected, neither k nor a are elements of Il ;. Nevertheless, since a-k = 1, the
action of the DDF operators A’ , (k) on the tachyonic ground-state |a) is perfectly
well-defined as we already pointed out. As for the three sets of polarization vectors
associated with the tachyon momenta |r), |s) and |a), respectively, a convenient choice
is

12 We note that the cocycle conditions (2.80)—(2.87) can be solved on a rational extension of the root
lattice [17].
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€a = &a)=&a(s)=&a(@) for a=1,...,7,
El = (17 O, O, O’ 07 07 07 Ov OIO)’
57 = (0, 0’ 0, 07 07 0) 1, 0, 010)’
& = (0,0,0,0,0,0,0,1, L|D),
&(s) = (0,0,0,0,0,0,0,—1, 1|D),
&g =¢&(@ = (0,0,0,0 0,0, 0,1, 0]0). (4.48)

The little group is 20(A7, §) = 20(Dg) = Sgx(Z2)’ of order 2'4315!71, This group
is generated by the fundamental reflections {rvy, 01, 102, 193, 14, 105, 106, t0g }. On the
polarization vectors £;(a) it acts as follows:

o(§7) = & , 1o(€s) =&,

w1&s) = & , w1(§;) =&,

w2(&5) = & , (&) =&s,

w3(€y) = &, 13(€5) =&,

w4(€3) = & , wa(€y) =&;,

s(€) = & , ws(&3) =&,

we(§) = —& , we(&,) =&,

rg(§) = & , ws(&) =&, (4.49)

and as the identity on all those that have not been listed. Furthermore, {tv, ..., ¢, g}
leave r and s invariant, whereas

too(r) =T +1y , o(s) =S —rg .

The Weyl group element v = 1ogho{1o,103104105108M0610510410310, 10119 interchanges
r and s.

There are three sets of DDF operators acting on different tachyonic ground states

r), |s), and |a), respectively. Now, since g(H’z’l) is spanned by the 192 transversal and

the 9 longitudinal DDF states
A" @A (@)AF (a)a
Ai_z(a)A{ [(@]a
A% y(a)la
A" @£ @)a)
£ s(a)la)

L z £ L

we can express any element of the root space Ef‘g’) as a linear combination of the
above elements modulo Ly, terms. This is done by using the formulas from the
appendix and solving the resulting (overdetermined!) systems of linear equations for
the coefficients. We will suppress in our notation the dependence of the DDF operators
on the tachyon momenta. In the following we adopt the convention that DDF operators
are always understood to be associated with the tachyons on which they act. Hence
the DDF operators occurring on the left hand side and on the right-hand side of the
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formulas below are not the same. In Eq. (4.50), for example, we have A%, = A% (r)
on the left hand side but A%, = A% ,(a) on the right-hand side. Here are our results:

[Is),A‘_’lAél]r)_ ¢ {—%AizA‘fl —1AP A% — A% AP AR

+ 6% (A%, 4348 2, —44% A% A% ]} a), (4.50)

[ls),A‘ilAS_lm: = e{dA% 1A%, 48 148 A% 1A% e \V]a), (451)
[|s),A8_1A8_1|r): = A A, AR 1A e e 1A AR AR ) ja),(4.52)
[ls),Aﬁ2|r): = e{-34°% —14% g ,+ A% A% A% }]a), (4.53)
[|s),A8_2[r)] = {143, 4148 ¢} a), (4.54)

1l

[Azl|s>,A€1|r>] { 142,47+ 14° A% 4+ A% AP A8

— L6 (A8 +3A% £, —4A% A% A% ]} a), “459)

[A‘ills>,A8_1|r>] e{—3A% + 1A%, A%+ 1A A% + 1A% L 5} |a), (4.56)

[A8_1|s),A8_1|r)] e{17AB, 4 1A% o, 18 A8 A8 )la), (4.57)
for a,=1,...,7 and with € = €(s, r)e(k, a); contributions involving L_)(...) have
been discarded in accordance with (2.63). Since these terms are, however, indispens-
able for the actual calculation, we have listed them in the appendix. An immediate
consequence is the following simple formula:

DAL ), AT )]~ (1% [l8), AL A )] = AL,A7 Ja) . (4.58)

Further careful analysis of the above results and use of the little Weyl group action
(4.49) finally reveals that the following states form a complete basis of the root space
(A7) (no summation convention!)

Al LAY 1la) for i, j arbitrary,
AL A AR |a) fori#j £k #1i,
(A", — AL AT A Ya) for i # j,
{5A 5+ A" | A" (A" }|a) for 4 arbitrary,
{AL, — A" £ ,}|a) for i arbitrary. (4.59)

Remarkably, this choice is consistent with the above eight commutator equations and
their Weyl-rotated analogs thereby proving the viability of our method. Altogether,
we get 64 +2-56 +2-8 = 192 states in agreement with the formula (4.11) predicting
£(3) = 192 [30]. Despite the fact that this number coincides with the number of
transversal states, our result explicitly shows the appearance of longitudinal as well
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as the disappearance of some transversal states. The above states form irreducible
representations of the little group, whose action on the polarizations can be determined
from (4.49) in a straightforward fashion; in particular, the longitudinal DDF operator
is inert under the little Weyl group. We note that the states (4.59) do not even look

“SO(8) covariant” any more, unlike the level-one states (4.30).

Having a complete description of the root space E%m, we can now in principle

explore root spaces associated with other level-two roots of the form A = A; + né
(i.e. the root string associated with A7) by commuting the states (4.59) with the Ey
elements (4.19). From (4.45) it is evident that all states obtained by acting with a
product A", ...Ai_“gmM on any of the states (4.59) belong to the root space of
A = A7+ (my +...mp)6 (note that each operator A, = shifts the momentum by
md!). However, it is also clear that we cannot obtain all root space elements in this
way. For this, it is necessary to calculate DDF commutators of the form (4.42). An
alternative, more elucidating way might be to consider the action of the Sugawara

generators defined by

1 i Ad
S T hv){ DoAY ady ad|-s—m5>=} (4.60)
ney SEA'”](EQ)

on the states (4.59) (with A?, = Af (r_1)); here, h¥ = 30 is the dual Coxeter number
of Fg, the level is £ = 2, and the normal ordering of the operators ad)y = (e") is
chosen as

. . _ | adjsyms) adjtinsy  if m 2>,
:adjsims) adjtns)t = { adjtns) adjsimey if M <7, 4.61)
for Fg roots s,t and m,n € Z. It is now not difficult to check that
F3ue|a) = 0 (4.62)

for m > 1. Furthermore, when evaluating .%,"® on the ground state |a), only the
term with A§A§ contributes in the sum with our choice of polarization vectors. With
AB|a) = —2|a), we thus obtain

F5 " |a) = ka), (4.63)

showing that the state |a) is a highest weight vector of weight h = {t for the level-two
Sugawara generators. In accordance with the remark after Eq. (4.12), we therefore
expect these states to belong to the irreducible Virasoro module with ¢ = 5 and b = .
The problem that remains is to relate the Sugawara generators to the longitudinal DDF
operators. If this can be done, a completely explicit description of all level-two root
spaces is within reach.

Acknowledgement. We are grateful to M. Koca and P. Slodowy for discussions related
to this work.



On E)p and the DDF Construction 617

A. DDF States and Commutators

We here list the transversal and longitudinal DDF states, required in Sect. 4.4. For
the special example discussed there, we must only evaluate them for the following
scalar products: r? = s? =2, K*=0, rk=sk=1, £,€ = 0ijs Ny Mjr = Oirjry T =
Ek=nys=n,k=0, §s=bis, 1,0 =i, M,-§; = giry. Also put € = e(k, 1),

€ = e(s,r).

The transversal states are:

A" \r) = e€(—Dlr—k), (A1)
AL = {611 + Loy [K(-17 — k(-2 JIr - 2K), (A2)
ALl = {€-2) = 26,(-Dk(D }r - 2K), (A3)

AL A AR ) = e{Ei(——l)ﬁj(—l)ﬁk(-l) + L6,8,(—1) +6,48,(~1)

+00i€, (=] [K(=1 = K(=2)] }Ir - 3K), (A4)

AL 0 = f€(-2)8,(-1) - 26,(~DE, (- Dk(-1)
— 26, [2k(=1)* = 3k(—=2)k(—1) + k(-3)] }[r — 3k), (A.5)

Ailr) = e{{z(—3)—3£l(—2)k(——1)

+ 36, D[3K(=1? ~ k(=2)] }Ir - 3K). (A6)
The longitudinal states are:
AT Ir) = e —r(=D+k(=D}|r - k) = —eLp|r - k), (A7)
AT,lr) = { —r(=2) + £Ek(-2) + 2r(—Dk(-1)
d—2
1) &1+ Q}‘k(—l)z}|r—2k>, (A.8)

i=1

AL AT ) = 6{ = £i(=3) — r(=2)€;(—1) + 3€,(=2DK(~1) + T2k(=2)¢,(~ 1)

d—2

+20(—DE(—Dk(=1) — 1 3" &,(~1)g;(~1)?

j=1

- %ﬁii(—l)k(—lf}lr - 3k), (A.9)
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d—2
e{ — 1(=3) + 25 00(=3) + 3r(—2k(—1) = D &,(-D&;(—D)

i=1

AZ5lr)

+ 3K(=2)r(—1) + B5H4K(-2)k(—1) — r(— Dk(-1)*

d—2

+2> &(-1k(-1) + ﬁgﬂk(—lf}lr— 3k). (A.10)

=1

Some commutators for r-s = 0:
[l9), AL A2 1)) = e {E=DE,(~Ds(-1)
— 3 [6is& (= 1) + 8,5&,(— )] [s(— 1) +5(—2)]
+ 285565 [s(—1)* + 3s(—1)s(—2) + 2s(—3)]
+ 165 [s(=1)° = 3s(—1)’k(—1) + 3s(— )k(—1)?
— 3s(—)k(—2) + 3s(—1)s(—2)

— 3s(—2)k(—1) +2s(-3)] }|r —2k+s), (A.11)

[Is), A,[r)] = e’{gi(—2)s(—1) +&;(—D)[s(—1)* = 2s(=Dk(—1) + s(—2)]
— 16,5 [s(—=1)° — 25(—=1)*k(—1) + 3s(—1)s(—2)

— 2k(—1)s(~2) +25(~3)] }|r —2k+s), (A.12)

A% 18), A2, 10] = ¢ {8um0(=3) = 0y (=285~ 1) + 85 (-2)[s(— 1) — k(= D)]
— 0y (=D, (=D[s(—1) — k(~1)]
— 3 [60r&5(=1) = 855m (= D)] [s(—1)* — 2s(— Dk(—1)
+k(=1)% +5(~2) — k(-2)|
+ L8iebjs — girs] [s(—1)* — 3s(—1)’k(—1)
+3s(—Dk(=1)2 — k(=1)? + 3s(—=2)s(—1)
— 3s(—2)k(—1) — 3k(—2)s(—1) + 3k(—2)k(—1)
+25(—3) — 2k(-3)] } e — 2K +s). (A.13)
The following commutators are written in terms of the basis (3.47) rather than (3.38)

as in the main text. Because the contributions L(_;(. . .) are needed to find the correct
results, we list them here. We put ¢ = €(s,r)e(k,a) and stress again that we are
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dealing with different sets of DDF operators depending on the tachyon momenta they
are acting on (see remarks before Eq. (4.50)).

[Is), A%, A )] =

e{ — 3 ANAT - JAT A% — A AT AT

7
+6°P [2i4A‘i3 +1A% AT, + L ZA%IALAL - %Ag_,A?_IAS_I} }]a)

=1
L {3€a(-DE1) +8°7 [ - Le(-2)+ S A2 + Les(—1
+ A — L&~ DIAGD - 5(-11] }149), (A14)

[IS>, A31A8—1|r>] =

6{5,433 SLA%AS, - LA A% — 1A% A,

7
- %ZA‘LALAL - éAgJAS—lAS—I}IfO

=1
+L<_1>{ — 36a(=2) = z€a(=DI[2&5(-1) —A(—1>+36(—1)]}IA7>, (A.15)
[|S>7A8—1A8—1|r>] =
7
6{5&3 + AR, AR+ PAR AT+ BN AR AT AT+ AR 1Af‘_lAS_l};:n

4841~
y=!

+Len{ = 365D+ HACD) — 8(-2) — Les(— 17 + FA-1Y

— 18(—1)" = L&s(~DIA-D) +76(—1)]}|A7), (A.16)
[Is), A%,[r)] =
e{ —34%, — 1A% AT, - giAzlAzlAzl + %A‘ilAg_,Ag_l}h)
o
+ L {§€a(=2) — Ja(=DIAE(=1) — A=1) +8(- ] }|47), (A17)
[Is), A% 5[r)] =

7

f{ — 3 AL+ 3 A% AT 4 ZAilALAL + 5A§1A§1A8—1}13>
y=1

+Lep{ = 16s(-2) + JA(-2) — 6(-2)+ J&s(— 17 + LA(-1Y

— 18(=1)" = L&~ DIAGD — 8= D1} A7), (A.18)
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[Aflls),A’zllr)] =
e{ — 142,48 4 1A% A%+ A% AP A3

;
_ gas [512,48_3 SIAP AT, LY AR AT AT ;_SAS_IAS_IA&] }ia)

=1

+Len{ = Hea(-DE(-1) — 67| — Lu(-D) + A2 + L~ 1)
+ HACD? = L& DIAGD - (-1 }43), (A.19)

[A%,s), A% ||r)] =

1 qga 1 go A8 148 a 1 fa A—

7
+ % ZAflALAL + %AC—!1A8—1A8—1}|3>

v=1

L] = 36a(-D) — Jea(-DI-26(- D) + A=) + 8(-DI}A7),  (A20)
[A%]s), A%, Ir)] =
7
e{é—ZAS_3 + %AS_IA:2 + % ZAg—lAzlAzl + %Ag—lAilAg—l}la)
=1
L] = 36D + A2 - 6(=2) - Hes(— 1P + ZAC1Y

— 18(=1)? = J&(~DIAG=D) — 8(~D)] }|47). (Aa21)
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