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Abstract: We consider the statistical properties of solutions of Burgers' equation in
the limit of vanishing viscosity, jtu(x,t) + ^(^u(x,t)2) — 0, with Gaussian white-
noise initial data. This system was originally proposed by Burgers^ as a crude
model of hydrodynamic turbulence, and more recently by ZeΓdovich et al.[l2^ to
describe the evolution of gravitational matter at large spatio-temporal scales, with
shocks playing the role of mass clusters. We present here a rigorous proof of the
scaling relation P(s) oc sι/2,s^ 1, where P(s) is the cumulative probability distribu-
tion of shock strengths. We also show that the set of spatial locations of shocks
is discrete, i.e. has no accumulation points; and establish an upper bound on the
tails of the shock-strength distribution, namely 1 - P(s) ^ exp{—Cs 3}for s^> 1. Our
method draws on a remarkable connection existing between the structure of Burg-
ers turbulence and classical probabilistic work on the convex envelope of Brownian
motion and related diffusion processes.

1. Introduction

The study of Burgers' equation with random initial data

du(x, t) j _ d_ (u{x,t)2\ _ J2u(x, t)
2 (1)

__ + f χ Γ _ ^ ] = v ,

where UQ(X) is a Gaussian white noise; i.e. (woCO) = 0; (u0(x)uo(y)} = δ(x — y)
originated in the classical work of Burgers^ as a simplified model of hydrody-
namic turbulence. It is now widely recognized that this model, sometimes called
"Burgers turbulence" (BT), lacks basic features of Navier-Stokes turbulence such
as vorticity stretching, incompressibility, etc.; in fact, the statistical fluctuations of

* Inadvertently the sequel to this article, "Statistical Properties of Shocks in Burgers Turbulence,
II. Tail Probabilities for Velocities, Shock-Strengths and Rarefaction Intervals" has already appeared
in an earlier issue of Commun. Math. Phys. (Commun. Math. Phys. 169, 45-59 (1995).
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u(x, t) are entirely determined from the initial conditions and not, as in the latter
case, by chaotic nonlinear dynamics arising from the equation itself. However, BT
is a prototypical nonlinear wave equation in conservation form describing interesting
physics of a different kind. Following the works of ZeΓdovich^12^ and others^ there
has been increased interest in BT in cosmology, as a possible model to describe the
distribution of gravitational matter in the universe. According to the socalled "adhe-
sion model," cold gravitational matter evolves from an initial epoch in which mass
is distributed homogeneously in space and particles are assumed to have random,
weakly correlated velocities. As gravitational matter evolves in time, it aggregates
into clumps (galaxies, superclusters). Two particles or clumps of particles coming
together at a given instant collide completely inelastically and turn into a larger
clump with mass and momentum conserved. In the idealized case of one space
dimension, such evolution was shown[12] to correspond to a distribution of Eulerian
velocities given by the inviscid Burgers equation

y0
with u(x, t — 0) = UQ(X), where this equation is understood as the v —> 0 limit of (1).
A connection between the evolution of gravitational matter in three space dimensions
and a suitable generalization of (2) ("potential" Burgers turbulence) has also been
established^. In the present paper we will limit the discussion to the scalar wave
equation (2).

Viewing (1) as a "cartoon" for hydrodynamic turbulence, Burgers^ undertook
the calculation of the statistical moments and correlations of u(x,t). He showed
that in the inviscid limit (2), the solution consists, for each realization of uo(x), of
a "sawtooth profile" or sequence of linear rarefaction waves separated by shocks.
Using the fact that {uo(x), x ^ xo} and {UQ(X), X > x0} are independent random
processes for all x0, he obtained analytical expressions, in terms of solutions of
certain boundary-value problems, for the probability distributions of intervals be-
tween shocks, shock strengths, etc. From these expressions he derived formulas for
the statistical correlations of solutions of (2), such as (w(x, t) u(x\t)}. The results
obtained by Burgers give a great deal of information on the structure of BT, leaving
few questions unanswered. One such open question pertains to the properties of the
shock strength distribution in the limits of very large and very small shock strengths.
In view of the connection of BT with Zeldovich's cosmological model, in which
the shocks represent high-density regions of gravitational matter, this question has
more than merely historical interest.

In 1979, Kida[8] attempted to characterize the distribution of shock strengths.
Denote by pt(s), 0 < s < -f-oo, the shock-strength probability density function, i.e.,

where S represents the strength of, say, the first shock of u(x, t) to the right of
x = 0. Kida found that

pt(s)^037tι/2s-{/2, s<\ (3)

matched numerical experiments very well. Relation (3) is equivalent to
/0* pt{s') ds' oc tι/6sι/2, s<ζ 1 and hence to

N(s) oc tι/2sι/2 , s « U , (4)
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where N(s) represents the number of shocks per unit length in a single realization
of u(x,t) having strength of order s (say, between s and 2s).

More recently, She, Aurell and Frisch^13^ considered the inviscid Burgers equa-
tion with more general initial data having non-trivial correlations and postulated a
general scaling law: for t = 1,

N(s)(xsι-h, s<\ (5)

for solutions with initial data satisfying

\uo{x)ds o c | ( x 2 - x i Γ , \xx-x2\<\. (6)

She et al. made a comparison between the sawtooth profiles corresponding to
h = 3/2 (Brownian motion) and h = 1/2 (white-noise) based on Monte Carlo sim-
ulations. Their interesting study shows that in the former case, there are infinitely
many shocks per unit volume and the exponent in the scaling law (5) is -0.5 ±
0.005, whereas in the latter case, there are finitely many shocks per unit volume.
The numerically determined scaling exponent in this case is close to 0.5 but the
data is much less definite.

Sinai[14] gave a rigorous proof of (5) in the case uo(x) = Brownian mo-
tion, which corresponds to h = 3/2 in (6). The corresponding exponent in (5) is
1 — h = -1/2; implying that the number of shocks of size s increases as s —• 0. The
corresponding set of shock locations has accumulation points. In the case of UQ{X)
= white-noise, the situation is different. From Burgers' results on the distribution
of the separations between successive shocks (rarefaction intervals) and the Marko-
vian nature of the solution u(x,t) as a function of x (see Sect. 2 below), the set
of shock locations is expected to be countable and discrete. These works therefore
indicate that the structure of shocks depends crucially on the similarity properties
of the random initial data. We believe that white noise initial data is probably the
most relevant from the point of view of the cosmological model, since it arises nat-
urally as the coarse-grained limit of a wide class of spatially homogeneous initial
"velocities" with finite correlation length (see Sect. 6)

The purpose of this paper is to prove rigorously the aforementioned properties of
the shock-strength distribution in BT with white-noise initial data, and, in particular,
the scaling law (4). We shall establish

Theorem 1. For fixed t > 0, with probability one, the set of points x at which
u(x,t) has jump discontinuities is countable, without accumulation points. D

Theorem 2. Let S be the strength of the first shock to the right of x = 0 at t = 1.
There exist numerical constants C\ and C2 such that

Cxφ ^ Pr{S < s) ^ C2Vs~, s ^ 1 . D (7)

These theorems imply the asymptotic result on the density of small shocks (4), with
oc interpreted as "bounded from above and from below by numerical constants," by
an application of BirkhofΓs Ergodic Theorem (see also Eq. (14) below).

To derive these results on the structure of shocks of BT, we draw on work done
by probabilists on the convex hull of Brownian motion. This problem was care-
fully studied, most notably by Groenboom[6] and Pitman[11]. To see the connection
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between these questions, consider the Hopf-Cole solution^ of (2),

(8)

where β(y) = JQ uo(y') dy' is Brownian motion pinned at y = 0. This formula
leads, via Legendre transformation, to the consideration of the convex envelope
of the graph of the random function

F(y) = β(y) +2y2> ~°° < y < + o c ( 9 )

The local structures of the convex hull of F{y) and the convex hull of standard
Brownian motion are similar. In fact, the measures induced by F(y) and β(y) on
path space are mutually absolutely continuous by Girsanov's theorem. Using this
fact and the results of Pitman and Groenboom on the convex hull of Brownian
motion, we can establish that the set of shock locations of u(x,t) for fixed t is
countable and has no accumulation points. This is done in Sect. 3. Chorin^ gave
an earlier proof of Theorem 1 by different methods.

The proof of Theorem 2 also uses the similarity between the structures of F(y)
and β(y) over finite intervals. From the Hopf-Cole formula (8), the statistics of
small shocks are related to the small-scale oscillations of the convex hull of F{y).
Since β(y) is rapidly oscillating at all scales but not \y2, only the oscillations of
Brownian paths contribute, to leading order, to the statistics of small shocks. In
order to make this precise and to obtain (7), we use a time-inversion technique,
due to J.M. Pitman. With this method the problem is reduced to the study of the
asymptotic (t —> oo) behavior of a suitable diffusion process. This program, which
is the main part of the paper, is carried out in Sect. 4.

Finally, we prove a theorem which characterizes the tails of the probability
distributions of u(x,t), the length of rarefaction intervals, and the shock-strength
distribution.

Theorem 3. There exists a numerical constant C3 > 0 such that, for fixed t,

(i) Pr{|w(jc,O| > u] S exp{-C 3ta 3}, u ^ 1,

(ii) Pr{S > s) ^ exp{-C3&
3} , s ^ 1,

and

(iii) Pr{δx > x} ^ exp{-C 3 rV} , x ^ 1,

where δx represents the length of an interval between two consecutive shocks. D

The proof of this theorem, given in Sect. 5, relies on elementary bounds on rare
events for Gaussian distribution. The tail distributions for the three random variables
of Theorem 3 are determined by the probability that F(y) = β(y) + \y2 takes small
values as \y\ —> +00. Contrary to the case of Theorem 2, we have not been able to
prove the corresponding lower bounds for these probabilities. However, we believe
that similar lower bounds should exist, i.e. that these upper bounds on the tails are
sharp. We present a heuristic argument supporting this conjecture for the tails of
the shock-strength distribution at the end of Sect. 5. Our conclusions are presented
in Sect. 6.
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2. The Hopf-Cole Solution

The "integrated" form of (2) is obtained by introducing the potential

Ψ(x,t) = Ju(x',t)dx'. (10)
0

This function satisfies the Hamilton-Jacobi equation

f dΨ(x,t) l fδΨ(x, t)\2 _
—d^ + 2 {—dx—) -° (11)

{ Ψ(x,Q) = β(x).

An explicit solution for (11) can be obtained[1>5] by the least-action principle for

Lagrangian trajectories (action = /Q |X(S)|2£?S),

Ψ(x9t) = mf\β(y) + ~ ^ ] - (12)

Using the statistical self-similarity of Brownian motion, β(δt)/δχl2 « β(t) (we use
" « " to denote statistically equivalent quantities), and (11) or (12), we find that

( ^ ) (13)

and thus

«(x,0«^«(^j,l) • (14)

For our purposes, it suffices therefore to consider the statistical properties of BT at
a fixed time, say t = 1. We set Ψ(x) = Ψ(x, 1) and u(x) = u(x, 1). By definition,
we have

x2

= — - sup[xy - F(y)]

X2

with

and
F\x) = sup (xy-F(y)).

y

The last function is the Legendre transform of F(y). In particular, it is convex.
Therefore it is diίferentiable almost everywhere with respect to Lebesgue measure
and its derivative is a monotone, non-decreasing function with jump discontinuities
contained in a set of Lebesgue measure 0. We normalize dF*(x)/dx so that it is
right-continuous. From (11), we have

«W = , - ^ . (is)
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Fig. 1. The curve F(y) = (l/2)y2 + β(y) and its convex envelope, F**(y). For a given number
x,y(x) = dF*(x)/dx is the abscissa of the point of contact of the tangent line with slope x

We can characterize dF*/dx geometrically by introducing the Legendre trans-
form of F*(x),F**(y), which is the convex envelope of F(y); see Fig. 1. By ele-
mentary convex analysis, dF*/dx and dF**/dy are inverses of each other. There-
fore, dF*/dx has the following geometric interpretation: given a realization of β(y)
and of the corresponding curve F(y), consider a line of slope x which does not
intersect the graph of F{y) (such a line exists because Xim^^^ F{y) = +oo).
Continuously "raise" this line, keeping the slope always equal to x, until it touches
the graph of F(y) for the first time. Then dF*(x)/dx = y(x), where y(x) is the ab-
scissa of the contact point, if this point is unique, and otherwise y(x) is the largest
abscissa corresponding to a contact point. It can be shown using the properties of
Brownian motion (cf. Sect. 3 and the Appendix) that, for a given x, y(x) is actually
unique with probability 1.

From Eq. (2) we conclude that u(x) is a stationary, or statistically translation
invariant, stochastic process. Moreover, for all x and h,

u(x + h)[uo( )] = u(x)[uo( + A)],

where the square brackets emphasize the dependence of u(x) on the initial condition:
translating u{ ) by h is equivalent to computing u( ) after translating wo( ) by h.
Since wo( ) is ergodic under spatial translations, we conclude that u(x) is ergodic
under spatial translations as well. This means that spatial averages of functions of
u(x) can be equated with their ensemble averages. In particular, the equivalence
between (4) and the conclusion of Theorems 1 and 2 is established.
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So far the properties of u(x) derived here essentially follow from the stationarity
and ergodicity of u{x). To say more we will use the following

Theorem (Millar). Let X(t), t e I (=interval) be a Markov process with continu-
ous paths, and let φ(x,t) be a continuous function such that

Pr. Γinf φ(x(t), t) > -ool = 1 .

Define

t* = sup{ί : φ(X(t),t) = mfφ(X(s),s)}
s£l

and
x*=X(t*).

Then, conditional on (X*9t*) the random processes

{X(t), tei9t <t*}

and

{X(s + t*),s + t* el s > 0},

and statistically independent Markov processes.

In the present situation, dF*(x)/dx — y(x) is the last "time" that the process
F(y) — y ' x (—oo < y < +oo) reaches its minimum value. By Millar's theo-
rem, {F(y); y < y(x)} and {F(y), y > y(x)} are statistically independent given
(y(x), F(y(x))). Notice that, given y(x), {F**(y), y > y(x)} depends only on
{F(y)9 y > y(x)} and {F**(y\ y < y(x)} depends only on {F(y\ y < y(x)}.
Therefore {F**(y), y < y(x)} and {F**(y), y > y(x)} are also independent, given
OO), F(y(x)). This implies that {dF**(y)/dy, y < y(x)} and {dF**(y)/dy, y >
y(x)} are also independent given (y(x), F(y(x))). Moreover, since dF(y)/dy is an
incremental quantity, these processes are independent of F(y(x)) as well. The fact
that dF*/dx and dF**/dy are reciprocal functions implies that {dF*(xf)/dx\ x' <
x} and {dF*(x')/dx, xr > x} are independent given y(x) = dF*(x)/dx and, hence,
given u(x) = x — y(x). This establishes that u(x) is a Markov process.

3. Discrete Structure of the Set of Shock Locations

We will show first that the convex hull of F(y) = \y2 + β(y), —oo < y < +oo,
is a piecewise linear function such that dF**(y)/dy has countably many, isolated
discontinuities with probability 1.

Let N be a large positive number, and let JSΛKJ) be defined by

f β(y) 0 < v <

βN(y) = I -hoo y < 0 or y > N.

Let us denote by βχ*(y) its convex hull. The study of βχ*(y) can be done exactly
like in Pitman^11^, working instead on a finite interval.

Proposition 1. With probability 1, βχ*(y), 0 ^ y g N, is piecewise linear, and the
set of points {yv}, where dβ**/dy has jump discontinuities is countable. Moreover,
{yv} has accumulation points at y = 0 and y — N only, i.e. for any numbers a,b
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such that 0 < a < b < N, the number of points of discontinuity of dβ**(y)/dy
in [a,b] is finite.

For a sketch of the proof of this proposition, see the Appendix.
Next, we consider the function

By Girsanov's theorem^, the measures induced in path-space by β^ and FN, + are
mutually absolutely continuous. Therefore, we conclude that the convex hull of
FΛΓ+(>>), i.e. Fχ*+(y), enjoys the same property regarding the set of discontinuities
of dFχ*+(y)/dy: there exist countably many points of discontinuity accumulating
only at y = 0 and y — N. Define

F+(y) =-y2 + β(y% o s y < oo,

and denote by F+* its convex envelope. Because limy-*oodF**(y)/dy = +oo with
probability 1, we have

lim F*N%(y) = F*+*(y),

and even more is true: given any positive number a, there exists No — No(a) such
that if N > No,

This leads us to conclude that the derivative of F+*(y) has countably many points
of discontinuity and that these points accumulate only near y = 0.

The same argument applies to

F-(y) = l-y2 + β(y), y<0,

and its convex hull, F^_*(y).
Finally, we observe that F**(y) is the convex envelope of the function which is

equal to F!*(y) for y < 0 and F$*(y) for y > 0. Hence dF**/dy has countably
many points of discontinuity and F**(jμ) is piecewise linear. By the above argu-
ments, the points of discontinuity of dF**(y)/dy can accumulate only at y = 0.
However, note that we have F**(0) < 0 with probability 1. Therefore, 0 must
be contained in an interval with endpoints y~,y+ such that F**(y) is linear for
y~ < y < y+ and y~,y+ are points of discontinuity of dF^_*(y)/dy and dF+*/dy,
respectively. Hence discontinuities of dF**/dy cannot accumulate at y = 0. We
have shown that the set of discontinuities of dF**/dy is countable without ac-
cumulation points and F**(y) is piecewise linear. Note also that this implies that
y(x) is unique with probability 1, for any given x.

We turn next to the study of the discontinuities of dF*/dx. Let {yk} = {• <
y-2 < y~\ < yo < y\ < * •} represent the discontinuity set of dF**jdy. From
the above analysis, we conclude that dF*/dx is piecewise constant and given by

dF*(x)
, = yk, if Xk ύ x < χk+\,
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where
dF**f Λ

x/c = τ ( y k ) '
dy

(This property is self-evident in view of the geometric interpretation of dF*/dx =
y(x), cf. Fig. 1).

We thus see that the set of discontinuities of dF*(x)/dx, {xk}, is countable (it
coincides with the range of dF**/dy). In addition to this, since dF**/dy increases
from -co to +00 and {y{\ has no accumulation points, {xk} cannot have accu-
mulation points either. Recalling that we have u(x) = x — dF*(x)/dx, this proves
Theorem 1.

Actually, the above discussion tells us more: the sequence (xk,yk% & = 0, ± 1 ,
± 2 , . . . is a Markov process. This property is the basis for Burgers' quadrature
formulas: the statistics of the increments of this point process (xk+ι — Xk,yk+\ — yk)
depend only on (xk,yk) but not on the "past" {(xJ9yj),j < k}. Nevertheless, it is
worthwhile to emphasize that {x^ and {yk} are not individually Markovian, so the
statistics of successive increments in Xk or yk are given by complicated relations^.

The spatial homogeneity of u(x) proved in Sect. 2 implies that the sequences
{x£+i — **} and {yk+\ — yk} are stationary. Moreover, as shown by Burgers,

(xk+\ - xk) = (yk+ι - yk) = 0.95 .

However, the probability distribution of rarefaction intervals {xk+i — Xk} and shock
strengths {yk+\ — yk} are quite different. In the proof of Theorem 2, we will use
the following result about the distribution of JC^+I — Xk = δx> established by Burgers
[1, Sect. 47, p. 135 and Sect. 49, p. 139].

Proposition 2. The random variable δx has a continuous probability density func-
tion φ(x),0 S x < +oo, such that lim^^o Φ(χ) = Φo > 0.

In particular, we have

?r{δx <x} = fφ(x')dx' ^ 2φ0x,
o

for x sufficiently small. (Burgers found that φo ~ 3.4.)

4. Statistics of Small Shocks

The problem of estimating P{S < s} for small s is tantamount to calculating the
probability that the convex hull of F(y) = \y2 + β(y) has a small linear segment
to the right of ^(0), where F(y(0)) = min F(y). We begin by formulating this
problem in terms of a suitable diffusion process describing F(y) for y > y(0). The
technique that we use follows closely Pitman's approach^11] for characterizing the
convex hull of Brownian motion.

Before entering the unavoidable technical details, we give a basic idea of the
procedure. The problem of interest can be formulated as the study of the "slope
process," G(z) = (F(z + y(0)) - F(y(0)))/z, for z > 0. Recall that we are inter-
ested in the statistics of small shocks corresponding to minima of G(z) for z<^l.
By making a change of variables z — l/t, the problem reduces to the study of the
long-time recurrence properties of a suitable diffusion process. It turns out that this



22 M. Avellaneda, E. Weinan

process is transient, i.e., it tends to infinity with t, so recurrence becomes increas-
ingly unlikely as t —» +00. Pitman^1^ introduced this technique with F(y) = β(y)
and showed that the recurrence probabilities are precisely of the order of ί~1/2. By
changing back to the original variables z — l/t, we obtain a probability of the order
sι/2 for the minimum of G(z) for z < s, which is consistent with the desired scaling
result. Thus, the proof is essentially an adaptation of Pitman's method for the case
of F(y) = β(y)+±y>.

4.1. Conditioned diffusion Processes. Let X(t), t > 0, be a Markov process with
continuous paths taking values on the real numbers, and let P(x,s;y, t) be the
corresponding transition probabilities. We denote by Pxs( ) the probability measure
on path space corresponding to paths originating at the point x at time s, so that

Pxs[X(t) eA]= P[X(t) € A\X(s) = x]

= JP(x9s',y,t)dy.
A

Let τR denote the first time that a path exits the interval 0 < x < R. For an arbitrary
set E of paths, measurable with respect to the σ-algebra of events occurring before
time t(t > s), we define

Px,s[X(')eE; X(τR) = R]

Clearly, PX

R}( ) defines a measure on path-space, corresponding to conditioning
the Markov process X(t) to exit the interval 0 < x < R through R. It can be shown
that PXJ generates a Markov process with transition probabilities

J'*° Px,s(X(τR) = R) '

We set
P 0 , s;y,t)= lim P{R\x, s;y,t)

R^oo

whenever this limit exists. Formally, we have

P(x,s;y,t)= [lim ̂ ' ^ = * |1 x Px,s\x(t) = y; τ0 > t] , (17)
[*_>oo pXtS(X(τR) = R)J I J

where τo is the first time that a path hits 0. If the limit exists (as is the case
for Brownian motion and for diffusion processes with bounded drift), the measure
induced by P(x,s; yj) on path-space, henceforth denoted by {Px,s( )}?* > 0,s >
0, corresponds to the probability distribution ofX(t), conditional on X(t) > 0 for
all t.W

Example. If X(t) = β{t\ t > 0 is standard Brownian motion, then according to
a classical result of Williams^15^ PXio =PX is the measure associated with the
Markov process with infinitesimal generator

W£_ ι_d_
2\dr2 rdr



Statistical Properties of Shocks in Burgers Turbulence 23

Thus the conditional Brownian motion β(t\t > 0 is distributed like a Bessel-3
process. This result follows from (17) and the formula

PXW*R) = *] = J, (18)

which is a consequence of the spatial homogeneity of Brownian walks. Probabilisti-
cally, a Bessel-3 process is equivalent to the radial component of a three-dimensional
random walk, and is therefore transient: with probability 1,

(19)

We state the following proposition, which will be used in the sequel:

Proposition 3. Let β(t) be conditioned Brownian motion. Then, for t>\,

(i)
m l " I y

(ii) Let

sup Py[β(s) ^ x for some s > t] oc — . (20)
t

U = sup{ί > 0 :

Then,

Px [u > t] ex

For a proof, see Williams[15].

4.2. Conditioned process associated with shocks in BT. For a given real number
u, we set

Xu(t) = β(t) + — -u, 0 < t < oo .

This is a Markov process; the associated family of probability measures is to be
denoted by {Px,s}. Notice that Px,s{Xu(τR) = R} > 0 for all x,s and R. We consider
the associated conditional Markov process Xu(t), which is constructed from Xu(t)
as indicated in the previous paragraph. We define

xl = MXu(t)
t>0

and _
ζ = sup{t:Xu(t)=x*u}.

Lemma 4. Let S represent the strength of the first shock of u(x) to the right of
x = 0. Then

and if x\ denotes the location of the shock,

Pr.{x! >a}=E{P{x*um><x}}. (23)

Here E{ } represents the expectation value with respect to the distribution of
u(0).
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Proof. Let x be an arbitrary point on the real line. Consider a realization of
F(y) — \y2 + β(y)> ~°° < y < + ° ° W e assume first that y(x) > 0. Later this
assumption will be removed. We wish to characterize the strength and position of
the shock to the left of x. By definition, the position of this shock is x + δx, where

δχ = i n f F(z + y(x))-F(y(x))-Z x

z>0 Z

_ i n f ^
z + y^>

z>0 Z

. β{z) + \z2-z u{x)
« mf , (24)

z>0 Z

where we set β(z) « β(z + y(x)) - β(y(x)) (with slight abuse of notation). The
fraction in (24) is positive for all z > 0, by definition of y(x). Moreover, the
process

is independent of {F(y\ y < y(x)}, given u(x), by Millar's theorem. We introduce
the variable

t = I (26)

(which is not to be confused with the physical time in the evolution of u). The
process β(z) in (25) is a Brownian path. Therefore tβ(l/t) is also a Brownian path.
It follows that

conditioned on remaining positive for all times t > 0,

or, more precisely,

Therefore,

and

S - l

lu{x)

where Sx denotes the strength of the first shock to the right of x. The second
relation is a consequence of the fact that Sx = z* — point where the minimum of
G(z) is achieved, taking account the time inversion (26). Hence, the statement of
this lemma follows if we assume that y(x) > 0.

However, this condition is not really necessary - it appears in the above
argument only because we normalized the integral of uo(y) to vanish at y = 0.
To remove it, note that

s] = ?r[Sx < s]



Statistical Properties of Shocks in Burgers Turbulence 25

by stationarity. Therefore,

Pr [S < s] = Pr [Sx < s, u(x) < x] + Pr [u(x) > x]

= Pr [Sx < s; u(x) < x] + Pr [>(0) > x]

= E{u(x) < JC; Pr {Sx < s\u(x)}} + Pr [u(0) > x]

= E L(x) < x; P \ζ(x) > 1] J + P [n(0) > x],

since u(x) > x is equivalent to y(x) > 0. Hence, by stationarity again,

P{5 < s} = E | « ( 0 ) < χ; P ^C(θ) >

Letting x —> oo, we obtain

which gives (22). The argument for δx is similar. This concludes the proof of the
lemma.

In the sequel we will make use of the following estimate on the moments of

Lemma 5. For all γ > 0, there exist Cγ > 0 such that for all t > 0,

Elicit))7] ύ Cytl . (27)

The proof of this lemma is given in the Appendix.

4.3. Proof of the Asymptotic Estimates for the Probability of small Shocks. Let
A be a subset of part-space which is measurable with respect to the σ-algebra of
events up to some finite time. Then

We note that, for t > s, and X(s) — x,

X(t)=x--l- + ±-+β(t-s)
2s It

^x + β(t-s)Ξ βx,s(t).

Therefore, if X(τR) = R then βx,s( • ) also exits (0,R) through R and

)€A; X(τR) = R)

where %R is the first time βXiS( ) exits (0,R). Moreover, since
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if x > γs, then βx_±(^R) = R implies X(τR) = R, and thus

R)^P [βx_^s(τR) = R] . (30)

Using estimates (29) and (30) in (28), we obtain that, for x > γs,

V P[X( )€A; βx,s

= (γ χ /V
\*T°o P[βx_±JτR) = R]J ^Too P[βx,s(τR) = R

Recalling that, if X(s) = x,

X(t) = βx,s(t) + γt~γs,

and using the explicit formula for exit probabilities (18), we obtain

where /?X 5 is conditional Brownian motion starting at x at time s. This inequality is
valid for all measurable sets on path-space as well, by a standard measure-theoretic
extension argument. In particular, if x > 1/y, we have

1 =

and thus

Proposition 6.1fx> l/s,for all measurable sets A,

( 3 2 )

a similar argument gives a lower bound on PXS(X( ) G A):

Proposition 1. If x > \, for all measurable sets A in path-space,

,( ) + ^ - 1 € A] . (33)

Propositions 6 and 7 will be used to obtain the desired estimates on the proba-
bilities of small shocks. To do this, we consider the set

A = {X( ):t* >t}.

Consider first the upper bound in (7). We define

ΛL, = 0 , Xn=X(2"), n = 0,1,2,3.. . .
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Then,

Pr.{C(θ) > 0 = P r {C(0) > t\ Xn> 2~n for some n]

+ Pr.{C(o) > t\ Xn ύ 2~n for all n} .

Clearly, if Xn <; 2~n for all n, then x*(0) = mfXu(0)(t) = 0. But, by Proposition 2,

this happens with zero probability. Therefore,

Pr.{ί*(o) > t} = Pr.{f*(0) > t; Xn > 2~n for some n]

r.{Λ0 g 2">; y ^ n - 1; Xπ > 2""; /B'(0) > ί}
oo

Λ=0

= Z ^ F r ι^«-i = ^ 5 -Λ/I > ^ , rw(0) > ij + Fr.{Ajv ^ z j . (34;

Here the integer N is chosen so that

2 S ί S 2 . (35)

We estimate each term in (34). By Proposition 6,

rτ.\Λn-\ ^ z , A w > z , ίw(Q^ > ί j

Z7fx? <" o—(Λ—1). x? -^ o~"rt D Γf* ^ *11
— -Zi^Aw_i ^ Z , Λn J> Z , Γ j 2" L Jj

?„_! ^ 2"(A7~1}; Xn > 2~n\ Pχnan(X(s) ^ Xn for some j > 0 }

- ~ 1 1

^ Xn for some 5 > 0 } >

where we used the fact that the expectation is taken only with respect to paths such

that Xn > 2~n. Moreover, using (20), we have

1 1 ~
= X"> f o r s o m e 5 >

^,2»(^) ^ ΊXn, for some j > t]

< -βL= (37)

We conclude from (36) and (37) that

Pr.{X«_, ^ 2-<"-'»; Xn > 2""; £

Applying Holder's inequality to this last expectation, we obtain

„_, ^ 2-C- 1); Xn}
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for any y > 1. Hence, taking into account that N satisfies (35),

i U i S 2-("-1); Xn > 2~n; ζ{0) > t}

By Lemma 5, the last expression can be bounded by

S p [ ί f l _ ! ^ 2-
{n-l)]γ-y2n/2. (38)

V*

We note also that,

Vτ.[Xn S 2~n] S Pr.K*(0) S 2~n] ^ 2φ0 x 2~n, (39)

for n sufficiently large, by Proposition 2. All this gives, using (34),

For y > 2, the geometric series converges and hence

C"
Pr.{C(o) > t } ύ ^ * > 1,

where C" is a numerical constant. Therefore, recalling lemma 4, we have

Pr.{S > s} S C"y/s, s < 1,

as desired.

Finally, we prove the lower bound in (33). Notice that

Pr. K ( 0 ) > t} ^ E{XX > 2; PX[2(t* > t)}. (40)

Let ** denote the last time that the infimum of βg _\ 2{s) + γs is achieved, and let

*2 denote the last time that the infimum of β% _\ 2(s) is achieved. We claim that

f2<t\. (41)

In fact, omitting the starting point/time, we have, by definition,

or

But the left-hand side is negative and hence 1/(2**)- 1/(2*1) < 0, hence (59)
follows.
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Returning to (40), and applying Proposition 7 and (41), we obtain

Pr.{C(0) > t} ^ E{Xλ > 2; P^2(f > t)}

2; λ-E{X, > 2; P(t*λ > t)}

^ X-E{XX > 2; P{t*2 > t}} .

By Proposition 3, (Eq. (21)), we have

where C is a numerical constant, and hence

2]

C _ _ _ C"
: Pr.[xw*(0) > 2] ^ - , , for f > 1 ,

where C is another numerical constant. Finally, since S\ « (Ceo))"1' w e conclude
that

Pr.ί.S < s} ^ C'VS, for 5 < 1,

and the lower bound in (7) is proved.

5. Tail Probabilities for u(x) and the Distribution of Large Shocks and
Rarefaction Intervals.

In this section we prove the upper bounds on the tail probabilities of u(x), δx and
S stated in Theorem 3.

5.1. Tail Probabilities for u{x). We are interested in the distribution u(x) for fixed
x. Due to the dissipation caused by shocks, we expect that the tails of the probability
distribution of u(x) should decay rapidly. In fact, we claim that there exists a
positive constant C such that, if u > 1,

Prob.{|φ:)| > u} ^ exp{-Cw3}. (42)

Notice that restoring the time-dependence by means of the scaling relation (14)
yields the estimate

Prob.{|tt(*,0| > u} ^ exp{-Cta3} (43)

for utx^ > 1. In particular, the probability that |w(x,ί)| will take a value larger than
a prescribed positive number u decays exponentially as t —* oo.

Let us show (42). Since u(x) is stationary, we consider x = 0, hence
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where y(0) is such that

F(y(0)) = β(y(0)) + \{yφ)f = inf (β(y) + X-yΛ .

We can assume without any loss in generality that y(0) > 0 (symmetry of F(y)).
Clearly, F(y(0)) < 0 with probability 1. Therefore, |w(0)| > u implies that

y>u

so, in particular,

inf (β(y)+^yu) < 0.

y>u \ 2 )

This implies also that

i n f ( Έ z Λ + I M < 0 . (44)
y>u\ y j 2

Observe that if z Ξ l/y, then β(y)/y = zβ(j) ~ jS(z), by Brownian time inversion.
Thus (44) becomes

mΐ(β{z))<-\u.
z<\/u 2

Therefore, we conclude that

_ + ? ° _92/2 US

— 2 j e s const, e
i ..3/2 v 2π

This proves our claim.

J.2. Rarefaction Intervals. We estimate the tail probabilities of rarefaction in-
tervals δx, using the previous estimate (42). To fix ideas, let δx represent the
rarefaction interval containing x = 0. The function u(x) is linear with slope 1 in
this interval. Therefore, if δx > /, where / is a positive number, then

so we must have either

M ( 0 ) < -1-,

or

u{l) > l-.

This implies that

Vx{δx > 1} S Pr|«(0) < -^ j + P r jM(/) > {} S 2Pr||«(0)|
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where we used the stationarity of the function u. From the estimate (42), we con-
clude that

Vx{δx > 1} S O r / 3 / 6 4 .

The statement (iii) in Theorem 3 is obtained by restoring time units.

5.5. Tail Probabilities for Large Shocks. Let S represent the strength of the first
shock to the right of x = 0. Our goal here is to show that there exists a constant
C such that, for s > 1,

Prob.{S > s) ^ exp{-C?3} . (45)

The dimensional result (ii), stated for arbitrary times t > 0, is recovered using the
scaling relation (14).

Let (xo,*i) denote the rarefaction interval containing JC = 0. Then

and
u(χ-) = u(0

Therefore,
\u(x+)\ ^ |κ(0) |+&c,

and, similarly,
|«(xo-)| ^ \u(0)\ + δx.

This shows that, for all integers k,

«} ^ Pr{|M(0)| > ^ ^ } ^ e~Cu\ u

where C is a numerical constant. In words, the tail probabilities of the values of
u(x) at a shock, either to the right or to the left of the shock, are bounded by
exp{—C w3}. But then, since the shock strength at x = Xk is

Sk = u(χ-)-u(x+l * = 0 , ± l , ± 2 , . . . ,

we have,

¥r{Sk >s}S Pr{|«(*t-)l > | } +Pr{|«(x+)| > *-} ^ 2e~c? ,

for some numerical constant C. This concludes the proof of Theorem 3.
The question of whether there exist similar lower bounds for the tails of the

shock-strength distribution is natural. We have not found an elementary proof of
such a lower bound but nevertheless conjecture that the inequality

?ΐ{S > s} ^ exp{-Cs3}, s>\ ,

should also hold for suitable C. Let us give a heuristic justification for this con-
jecture, based on the structure of the convex hull of Brownian motion over a finite
interval. (Proposition 8 of the Appendix). Accordingly, the asymptotic behavior of
the probability distribution of y\ — y(0) for Brownian motion in the finite interval
[O,ro]is

?v{yι-y(0) > θ} πE{e-l2a\0}, Θ<\ ,
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where

= β(Yo) - β(y(P))
aχ Yo - y(0) '

If we replace, self-consistently, β(y) by F(y) = β(y) + \y2 in the last relation and
take YQ — y(0) « 0, we obtain a\ « θ and have

> 0} « e " ^ ,

which would be the derived asymptotics. This argument is far from being rigorous,
but we believe that a mathematical justification could be made using the theory of
Large Deviations^.

6. Conclusions

We have shown that the statistical properties of Burgers' equation with white-noise
Gaussian initial data can be studied rigorously and in detail using a probabilistic
approach. Specifically, we exploited a remarkable connection existing between this
problem and the work of Groenboom and Pitman, who showed that the convex
envelope of Brownian graphs could be characterized using the technique of time-
reversal and conditional diffusions.

The main features of BT which emerge from this study are
(i) The set of shock locations is discrete, in contrast with the case of initial

data such as Brownian motion. For fixed time, the solution is a Markov
process as a function of the spatial variable.

(ii) The tails of u(x,t) for fixed x and t, the rarefaction intervals and the shock-
strength distribution decay at least like exp ( - C M 3 ) . Note that this is much
narrower than Gaussian.

(iii) The s1//2 asymptotics for the small shock-strength distribution can be
obtained rigorously by the technique of time-reversal of Pitman[11]. The
analysis clearly shows that this scaling is determined essentially by the con-
secutive peaks, or oscillations of Brownian paths. The additional drift term
coming from the Burgers nonlinearity is irrelevant in the small-shock
regime.

The assumption that uo(x) is a Gaussian white noise, as opposed to a generic
stationary random function with finite correlation length, plays undoubtedly a cru-
cial role in the analysis. This notwithstanding, we believe, with She et al [13], that
the properties (i), (ii) and (iii) apply, in a suitable sense, to solutions of Burgers'
equations with initial data in the universality class of stationary processes uo(x)
with short-range spatial correlation, to which the Central limit theorem

$ f i β(x), N>\,

applies. This class includes a variety of strongly mixing processes, such as finite-
state, stationary Markov processes. In this broader context, the statement is that
properties (i), (ii) and (iii) hold asymptotically. Let δ represent the ratio between
the correlation length of uo(x) and the "integral" length scale at which physical
observations are made. If δ <̂  1 it makes sense to consider the rescaled functions



Statistical Properties of Shocks in Burgers Turbulence 33

\ (x t

It is not hard to see that, as δ —> 0, the sequence w^(x,0 converges in distribution
to the solution of BT with white-noise initial data. As an example, let us take uo(x)
to be the Ornstein-Uhlenbeck process. From the discussions above, we have the
following picture for u. On one hand, in light of the works of Sinai[14] and She et
«/,[13] the set of shock locations of u at a fixed time is not expected to be discrete,
since the Ornstein-Uhlenbeck process behaves like Brownian motion at small scales.
On the other hand, if we look at the long-time, large-scale features, and if we pick
out shocks of amplitude greater than (51/3, then these shocks tend to be discrete and

obey the sϊ law.
Finally, in hindsight, the proofs of (i), (ii) and (iii) suggest that these features

are valid not only for BT, (i.e. for (2)) but also in the case of general scalar
conservation laws

^ + ! [ / • « * < > ) ] = 0, (46)

where f(u) is convex and grows sufficiently rapidly as \u\ —> 00. In particular, the
present results suggest that the statistical properties of the set of small shocks in
hyperbolic conservation laws with short-range correlated initial data are primarily
due to multiple shock interactions through inelastic collisions, and the specific form
of the flux function giving the wave speed is irrelevant. On the other hand, the tails
of the distribution of large shocks depend strongly on the form of the nonlinearity
as suggested by the analysis of Sect. 5. These tails are associated to the probabilities
of rare events for the Gaussian distribution. A more detailed analysis of (46) will
be taken up in future work.

Note added in proof: Recently, Vergassola et al. [16] obtained scaling results for P(S), SpΊ, for
general Gaussian initial data. These results agree with ours in the case UQ = white noise.
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Appendix: Time Reversal, Convex Hull of Brownian Motion and Moment

Estimates for X

In this section we present some technical results which were used in Sects. 3 and
4, concerning the convex envelope of Brownian motion and the behavior of cer-
tain conditional diffusions. The first result is a characterization of the convex hull
of a Brownian graph over a finite time interval used in Sect. 3. Here we follow
the method of J. Pitman^ for Brownian motion on an infinite interval, without
substantial modifications.

Proposition 8. Let β(y), 0 ^ y ^ YQ, be standard Brownian motion, and let
β**(y) be the convex hull of this graph. Then β**(y) is a polygonal curve and
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dβ**(y)/dy has countably many jump discontinuities, which accumulate only near
y = 0 and y = Yo. Let {yk}, k = 0, ± 1 , ± 2 , . . . denote the set of discontinuities,
with - - < yk < yk+\ < > and let

be the successive slopes of β**(y). Then,
(i) The process (xk,yk) n a s independent increments',
(ii) Given (xk-\,yk-\)β(Yo) and β(yk-\), the increment δxk = xu — Xk-\ is dis-
tributed uniformly in the interval

(in) Set ak^ = χ ^
Then, given (xk-Uyk-\),β(Yo) and β(yk-\), the increment yk - yh-\ is dis-

tributed like

- Λ - 1 9

where θ is a random variable with density

>o.
Vϊπθ

Proof For a given x > 0, let y(x) be the last time that the process

β(y) - y χ, o^ySYo,

reaches its minimum. Clearly, 0 < y{x) < 70 with probability 1, since

lim β(y)/y = -oo and JSm^ (β(y) - β(Y0))/(y - Yo) - +oo .

By Millar's theorem {β(y\y < y(x)} and {β(y\y > y(x)} are independent
given (y(x), β(y(x)))- For z > 0, the function

represents the slope of the chord passing through the points (y(x), β(y(x))) and
(y(x) + z, β(y(x) + z)). Due to the definition of y(x), the function

is positive for 0 < z < YQ — y(x). Let t = 1/z; i.e. we make a time inversion. Then,
we have

— < t < +00 .

Jo - y(χ)

The process

X(t) = G(J\ =t\β(j+y(x)\ -β(y(χ))] -x
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satisfies
β(Y0)-β(y(x))

χ a(x)

Moreover, X (t) is a Brownian motion conditioned on not hitting X = 0, because
if β is standard Brownian motion the increments t[β{-t + y{x)) — β(y(x))] are
again Brownian. Therefore, by William's characterization of conditional Brownian
motion[13], X(t) is a Bessel-3 process. In particular,

δx* = inf (X(t))
t>(Y-y(x))-1

is uniformly distributed on the interval

The results of Williams also yield a characterization of the time interval t* —

γ __* ,χ) after which X(t) reaches its minimum[13]. Accordingly, t* — (YQ — y(x))~ι

is distributed like the first passage time of standard Brownian motion through X =
a(x). Hence[9J [t* - (Yo - Φ O Γ 1 ] " 1 = θ has density

so that

θ (Y0-y(χ))

Therefore, the chord passing through (y(x), β(y(x))) and (z + y(x),β(z + y(x)))
with smallest slope corresponds to z* = ^ , where

1 1

θ (7 0 - y(χ))

Due to the Markovian structure of β**(y); this process can be repeated with
the new values x' = x + δx* and y' = y(x)-\-z*. Successive applications of this
method yields a sequence of {yk} of discontinuities of dβ**(y)/dy and a sequence
of slopes {xk} for y > y(x). Since the starting slope x was chosen arbitrarily, we
have shown that the set of discontinuities of dβ/dy is discrete. The characterization
of the distributions of (xk,yk) also follows. D

Remark. The method of proof is due to Pitman^, we have included the present
case (7o < +oc) just for the sake of completeness. Notice that if x < 0, then, as
YQ —>• ex), y{x) converges to the abscissa of the contact point of the full Brownian
graph with the supporting line of the slope x and a(x) converges to —x so the
results of references 4 and 9 are recovered. D

The next result presented here is the

Proof of Lemma 5. We prove here the estimate

E {(Xu(0)(t))y} ^ C/ / 2 , t > 1 (A.I)
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for all γ > 0, where Cy is a numerical constant which is independent of t. For this
purpose, we shall use the equivalence of the measures in path-space corresponding to
β(y) + \y2 = F(y) and β{y\ for \y\ ^ Yo < +00. The estimate will be established
by proving that

α} S txpί-cίjλ \ (A.2)

for Y > 1, where C is a numerical constant. Clearly (A.I) follows from (A.2) and
the formula

0 0

0

Let YQ be a large positive number. Then, for all α,

P r . [ i > ) ( 0 > α] ̂  Pr.{XM(0)(0 > α; \y(0)\ ^ Yo} + exp{-C70

3} (A.3)

where we used the estimate (19). Suppose that \ < Yo. Then,

α;

where y* is such that min F(y) =
bl<2r0

By Girsanov's theorem[7]

where z* is such that min β(y) = β(z*), and
| Ί 2 y

I 2Y0 1 2Y0

I ydβ(y)--Jy2dy\
[-2Y0 Z2Y0 J

ί 2r° 1 / 8
L-21Ό J

Using the Cauchy-Schwartz inequality

> α;

α; |z*| < 27 0 J) x (^[M(/?, 70)
2])1/2

= (vτίtlβίz* + ̂  - /?(z,)j > α; |z*| < 27011' x e*/3Yo . (A.4)
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By previous results, \{β(z* + 7) — β(z*)), is a Bessel-3 process starting at time

Ό = π ^ a t Position ^L )lf* z* ) = ao
We note that, since |z*| < 27o?

a0

and

By standard estimates,

and

for some constant C. Therefore, if t > j - ,

1
Ό < Y

2 max |β(.s)|
kl<2r

Yo

?r.[βato(t)

Pr. | i

^ Pr. {7

α,

| ; k*| < F0J+Pr.

( A β 5 )

where we used the fact that j(β(z* + 7) — β(z*)) is a Bessel-3 process starting at

< α/2 at time t0 < j - . Putting together the estimates (A.3), (A.4), and (A.5)

for t > •£- we have

Pr.{Zw(0)(O > α} ^ 2(e3 F o" c i# + e\Y^-C2^- + e -

C I , C 2 , C 3 being numerical constants. Let us choose Yo such that

y0

3 = C4(α2/O

Note that this choice of YQ implies that, for t > 1,

/ > ίl/3 =

(A.6)

(A.7)

Yo

so the condition t > ^ holds if c\βa2li > 2. Substituting (A.7) into (A.6) we

obtain _
Pr.{ZM(0)(O > α}

8 n α 2 3 ^2 / α 2 "\ 3
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Therefore, if we choose C4 such that C\ — 8/3C4 > 0, then for α > oco,t > 1 and

we obtain the final estimate

as claimed. This concludes the proof of Lemma 5.
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