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Abstract: We analyze the limiting solution of the Bartnik-McKinnon family and show
that its exterior is an extremal Reissner-Nordstr0m black hole and not a new type of
non-abelian black hole as claimed in a recent article by Smoller and Wasserman.

The purpose of this short communication is to correct some erroneous statements made
in a recent article by J.A. Smoller and A.G. Wasserman [1]. This article concerns
the limiting behaviour of an infinite discrete family of regular, static, spherically
symmetric solutions of the Einstein-Yang-Mills equations (gauge group SU(2))> whose
first few members were discovered by Bartnik and McKinnon [2]. A general existence
proof for this family was given by Smoller and Wasserman [3] and by the present
authors together with P. Forgacs [4].

In their article [1] the authors claim that a suitable subsequence of the infinite
family converges to some limiting solution for all values of the radial coordinate
r φ 1. The part of this limit defined for r > 1 is interpreted as a new type of black
hole solution with event horizon at r = 1. According to their claim the function W(r)
parametrizing the Yang-Mills potential is non-trivial, i.e., W φ 0 and tends to +1 or
— 1 for r —> oo. In contrast we claim that the limiting solution for r > 1 is given
by the extremal Reissner-Nordstr0m (RN) solution with W = 0. This can be easily
derived from the results of our article [4] and is also strongly supported by numerical
calculations. Subsequently we shall give a proof of this claim using the results of [4].

First we recall some definitions and results of [4]. The variables T, A, μ, w, and
λ used in [1,3] correspond to the quantities (AΛΓ)"1, μ, 2m, W, and 2b in [4] and in
this article. We parametrize the line element in the form

dr2

ds1 = A2(r)μ(r)dt2 - r2dΩ2 , (1]
μ(r)

and use the Άbelian gauge'
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W«Tadxμ = W(r)(T} dθ + Γ2 sin θdφ) + Γ3 cos θdφ , (2)

for the static, spherically symmetric SU(2) Yang-Mills field.
The field equations for A, μ, and W (see, e.g., Eqs. (6) in [4]) are singular at

r = 0 and r - oo as well as for μ(r) - 0. In order to desingularize them when μ -» 0
we introduce TV = y/μ, [7 = JVW, a new independent variable r (with '= d/dτ), and
K = (In rANJ as additional dependent variable. The field equations are then equivalent
to the autonomous first order system

r = r N , (3α)

W = rU , (36)

(3c)
r

N = (κ- N)N - 2U2 , (3d)

« = 1 + 2U2 - κ2 , (3e)

(AN)' = (K - N)AN , (3/)

subject to the constraint

2κN = 1 + N2 + 2J72 - (iy2 - l)2/r2 . (4)

If the initial data satisfy this constraint then it remains true for all r.
There exists a one-parameter family of local solutions with regular origin where

W(r) = 1 - br2 + O(r4), μ(r) = 1 + O(r2) such that W(r) and μ(r) are analytic in r
and 6. If we adjust r such that r = In r + O(r2) we obtain a one-parameter family of
local solutions of the system (3) which satisfy the constraint (4) and are analytic in
r and 6.

Similarly there exists a two-parameter family of local black hole solutions with
W(r) = Wh + O(r — Th), μ(r) = O(r - r/0 such that W(r) and μ(r) are analytic in r,
r/t, and W^. If we adjust r such that r = 0 at the horizon we obtain a two-parameter
family of solutions of (3,4) analytic in r, r^, and W^ except for a simple pole in
AV(T) at the horizon.

Both types of initial data satisfy K > 1 and this relation remains true for all r due
to the form of Eq. (3e).

In the following we exclude the case W = 0 and can therefore assume (W, U) φ
(0, 0) for all (finite) r. Integrating Eqs. (3) with regular initial data r(f ) > 0, N(τ) > 0,
κ(τ ) > 1 satisfying the constraint (4) we obtain solutions analytic for all r > f as
long as N > — oo. There are three possible cases:

i) N(r) has a zero at some r = TO, the generic case. Then

(W2(τ0) - I)2 = (1 + 2ί/2(τ0)) r2(τ0) , (5)

and r has a maximum at r - TQ. For T > TO we find that N < 0 and r, W, f7, «:,
rAΓ, and r^4]V remain analytic at least as long as r > 0.

ii) N(r) > 0 for all r and r(τ) tends to infinity for r ^ oo. These are the asymp-
totically flat solutions with (W, U, N, «) -> (±1, 0, 1, 1).

iii) ΛΓ(τ) > 0 for all r and r(τ) remains bounded. This is a new type of Oscillating'
solution with (r, W, 17, TV, K, -A) -+(1,0, 0, 0, 1 , oo) for r — > oo first discussed in
detail in [4].
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Analyzing the solutions with regular origin and their dependence on b we have
shown in [4]:

1. For each positive integer n there exists a globally regular and asymptotically flat
solution with n zeros of W for at least one value b = bn and there is at most a
finite number of such values bn.

2. There exists an oscillating solution for at least one value b = b^ and there is at
most a finite number of such values 600.

3. The values bn have at least one accumulation point for n — » oc and each such
accumulation point is one of the values 600.

Completely analogous results hold for black hole solutions with fixed r^ < 1 and
their dependence on W^

Let us analyze the oscillating solutions in some detail. Near the singular point
(r,W,U,N,κ) - (1,0,0,0, 1) we introduce the parametrization (with W - ^ and
tt = K — 1)

_ 1 Λ/3
W(r) = Cιe~ττ sin(~-r + 0) , (6α)

/O /Λ

E7(τ) = C, e~ ±r sin(^-τ + y + θ) , (66)

N(τ) = C2e
τ + ~(W2 -UW + 2U2) , (6c)

κ(τ) = C4e~2τ + W2 + 2UW + 2U2 , (6d)

as in [4] and compute r from the constraint (4)

(1}

The functions θ, C\, C2, and C4 satisfy differential equations,

0 = /o , (8α)

(Cfe-^^Cίe^ί- !+/,), (86]

(8c)

with 'non-linear' terms fτ that can be expressed as homogeneous polynomials in
C2e~τ, C2e

r, and C4e~2τ of degree one for /o and /i and of degree two for /2 and
/4 with (r, ^)-dependent coefficients that are bounded as long as r is bounded.

We can apply a general result for perturbed linear systems (see, e.g., [5] p. 330)
stating the existence of a stable manifold. The system (8) has one unstable mode.
C2e

τ, and hence there exists a three-dimensional stable manifold of initial data, i.e..
quadruples Y = (W, U, N,~κ) such that Y — > 0 for r — > oo. Eliminating the freedom
to add a constant to r we are left with a two-parameter family of oscillating solutions
In [4] we have derived the stronger result that θ and C\ have a limit for r -> oc
(with CΊ(oo) φ 0) whereas C2e

2r — > 0 and C4e~r — * 0 for each member of this
two-parameter family. Consequently these oscillating solutions have infinitely man)
zeros of W and inifinitely many minima of TV as r — > 1.

Conversely there exists a one-dimensional 'unstable manifold' (i.e., stable man-
ifold for decreasing r) of initial data such that Y — > 0 for r — > -oo. These initial
data Y = (0, 0, N, 0) describe the extremal RN black hole with r = (1 - N)~} .



688 Peter Breitenlohner, Dieter Maison

In the following we analyze the behaviour of solutions for b near (one of the
values) 600 and in particular the behaviour of globally regular solutions with n zeros
of W in the limit bn — > 600 for n — > oo. In view of the analytic dependence of the
solutions on 6 and r the trajectories reach any given neighbourhood of the singular
point Y = 0 for 6 sufficiently close to 600. Trajectories missing the singular point
cannot stay near it, they must start to 'run away.' They will, however, remain close to
the unstable manifold. In the limit bn — > 600 they converge to the unstable manifold,
i.e., extremal RN solution.

We can decompose Y into its parts parallel and perpendicular to the unstable
manifold and measure the distance from the singular point Y = 0 by

m), with |yj,| = | Λ Γ | , |yj=max(Cfc- r,|7φ. (9)

Using the distance function | | we get from the smooth dependence of the solutions
on b and τ that all solutions with b ̂  b^ must come close to the singular point Y = 0
for some τ = TQ.

Lemma 1. Given b^ and any e > 0 there exist some δ > 0 and TQ such that all
solutions with \b — b^l < δ satisfy \Y\(TQ) < c and 0 < 1 — Γ(TQ) < c.

Let us analyze the behaviour of these trajectories in the neighbourhood of Y = 0.
The general result [5] also states the existence of some η > 0 such that trajectories
missing the singular point cannot stay within \Y\ < η for all r. Due to the structure
of Eqs. (3), resp. (8) this runaway is caused by the growth of N. The trajectories
can therefore be characterized by three possibilities: They either run into the singular
point Y = 0 or miss it on one or the other side; in the latter case either N stays
positive and r grows beyond r = 1 or N has a zero while r < 1 and r runs back to
r = 0. This is expressed by

Lemma 2. There exists some η > 0 such that for any solution of Eqs. (3α — e, 4) with
\Y\ < c <C η and 0 < 1 - r < e at some r = TQ there are three possible cases:
a) r < 1, N > Qfor all T > TQ and Y — > Ofor T — > oo,
b) r = 1 for some f > TQ, N = η for some τ\ > f, N(r\) > 0, and 0 < N < η,

\YjL\ < tforTQ < T < n,
c) N - Ofor some f > TQ, N = —η for some τ\ > f, N(τ\) < 0, andr < 1, \N\ < η,

\YjL\<eforτQ<τ <τ}.

Proof. The general result [5] mentioned above states the existence of some η > 0
such that that either Y — > 0 (case a) or |Y"| = η for some r\ (case b and c). Choosing

η small enough, Eq. (86) shows that the 'amplitude' \C\\e~r/2 decreases as long
as \Y\ < η. Moreover Eq. (3e) implies that \κ\ < e remains true as long U2 < e.
Therefore \Y±\ < e as long as \N\ < η.

Next, if \N\ > IFjJ then TV « (1 - N)N due to Eq. (3d) and r « (1 - TV)"1 due
to Eq. (7), i.e., r > 1 and N > 0 for N > e, resp. r < 1 and N < 0 for TV < -e.
Finally, Eq. (5) implies that N can vanish only when r < 1.

To conclude the argument we analyze what happens to the solutions in the limit
b -» 600.

Proposition 3. Given b^ and η as defined above there exists some δ > 0 such that
the solutions with regular origin and \b — 6^1 < δ satisfy:

1. Case a of Lemma 2 holds if and only ifb = b^. There exist continuous functions
τ(b) < T] (b) defined for b φ b^ such that the same case either b or c holds for all
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6 < 600 and for all b > b^ (with \b — b^l < δ); case b holds in particular for the
globally regular solutions with n zeros of W as bn —> 600 for n —> oo.

2. In the limit b —> 600 both f and τ\ - τ diverge. The part of the solution defined
for r < f converges for any fixed r or r < I to the oscillating solution. The part
defined for r > f converges for any fixed r — r\ or r ^ 1 to the exterior, resp.
interior of the extremal RN solution with W = 0 in case b, resp. c.

Proof.
1. Since an oscillating solution exists only for finitely many values of 6, we can

choose δ > 0 in Lemma 1 such that the interval |6 — tool < <5 contains only
one of them, namely 6^. The existence of f and r\ for b ^ b^ was shown in
Lemma 2. The rest follows from the continuity of the solutions in 6.

2. The convergence of the solutions follows from the convergence of the initial data,
i.e., quadruples Y at an arbitrary regular point. The initial data for any fixed τ
converge to those of the oscillating solution. At the same time f (with r(f) = 1,
resp. N(f) - 0) diverges. On the other hand Y(τ\) converges to (0,0, ±77,0),
i.e., to initial data for the exterior or interior of the extremal RN black hole and
ϊ - T] —> -oo. Convergence for fixed r requires in addition N ^ 0; given r ^ 1
this is satisfied for 6 sufficiently close to 6^.

Using exactly the same arguments one obtains

Corollary. Analogous results hold true for black hole solutions with any fixed r^ < 1
and Wh, Whn, Whoo replacing 6, 6n, 600.

Having shown the incorrectness of the statements made by Smoller and Wasserman
in [1] about the limiting solution one may ask for the source of this error. Looking at
their arguments one finds that they use Prop. 3.2 of their earlier work [3] in an essential
way. This proposition is, however, wrong as it stands; its validity requires the further
assumption of a uniformly bounded rotation number (as made for their Prop. 3.1).
This additional assumption is not satisfied for the Bartnik-McKinnon family.
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