

On the Limiting Solution of the Bartnik-McKinnon Family

Peter Breitenlohner, Dieter Maison

Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, Föhringer Ring 6, D-80805 Munich, Germany

Received: 10 May 1994

Abstract: We analyze the limiting solution of the Bartnik-McKinnon family and show that its exterior is an extremal Reissner-Nordstrøm black hole and not a new type of non-abelian black hole as claimed in a recent article by Smoller and Wasserman.

The purpose of this short communication is to correct some erroneous statements made in a recent article by J.A. Smoller and A.G. Wasserman [1]. This article concerns the limiting behaviour of an infinite discrete family of regular, static, spherically symmetric solutions of the Einstein-Yang-Mills equations (gauge group SU(2)), whose first few members were discovered by Bartnik and McKinnon [2]. A general existence proof for this family was given by Smoller and Wasserman [3] and by the present authors together with P. Forgács [4].

In their article [1] the authors claim that a suitable subsequence of the infinite family converges to some limiting solution for all values of the radial coordinate $r \neq 1$. The part of this limit defined for r > 1 is interpreted as a new type of black hole solution with event horizon at r = 1. According to their claim the function W(r) parametrizing the Yang-Mills potential is non-trivial, i.e., $W \neq 0$ and tends to +1 or -1 for $r \rightarrow \infty$. In contrast we claim that the limiting solution for r > 1 is given by the extremal Reissner-Nordstrøm (RN) solution with $W \equiv 0$. This can be easily derived from the results of our article [4] and is also strongly supported by numerical calculations. Subsequently we shall give a proof of this claim using the results of [4].

First we recall some definitions and results of [4]. The variables T, A, μ , w, and λ used in [1,3] correspond to the quantities $(AN)^{-1}$, μ , 2m, W, and 2b in [4] and in this article. We parametrize the line element in the form

$$ds^{2} = A^{2}(r)\mu(r)dt^{2} - \frac{dr^{2}}{\mu(r)} - r^{2}d\Omega^{2} , \qquad (1)$$

and use the 'Abelian gauge'

Peter Breitenlohner, Dieter Maison

$$W^a_{\mu}T_a dx^{\mu} = W(r)(T_1 d\theta + T_2 \sin \theta d\varphi) + T_3 \cos \theta d\varphi , \qquad (2)$$

for the static, spherically symmetric SU(2) Yang-Mills field.

The field equations for A, μ , and W (see, e.g., Eqs. (6) in [4]) are singular at r = 0 and $r = \infty$ as well as for $\mu(r) = 0$. In order to desingularize them when $\mu \to 0$ we introduce $N = \sqrt{\mu}$, U = NW', a new independent variable τ (with $= d/d\tau$), and $\kappa = (\ln rAN)$ as additional dependent variable. The field equations are then equivalent to the autonomous first order system

$$\dot{r} = rN , \qquad (3a)$$

$$\dot{W} = rU , \qquad (3b)$$

$$\dot{U} = \frac{W(W^2 - 1)}{r} - (\kappa - N)U , \qquad (3c)$$

$$\dot{N} = (\kappa - N)N - 2U^2 , \qquad (3d)$$

$$\dot{\kappa} = 1 + 2U^2 - \kappa^2 , \qquad (3e)$$

$$(AN) = (\kappa - N)AN , \qquad (3f)$$

subject to the constraint

$$2\kappa N = 1 + N^2 + 2U^2 - (W^2 - 1)^2 / r^2 .$$
⁽⁴⁾

If the initial data satisfy this constraint then it remains true for all τ .

There exists a one-parameter family of local solutions with regular origin where $W(r) = 1 - br^2 + O(r^4)$, $\mu(r) = 1 + O(r^2)$ such that W(r) and $\mu(r)$ are analytic in r and b. If we adjust τ such that $\tau = \ln r + O(r^2)$ we obtain a one-parameter family of local solutions of the system (3) which satisfy the constraint (4) and are analytic in τ and b.

Similarly there exists a two-parameter family of local black hole solutions with $W(r) = W_h + O(r - r_h)$, $\mu(r) = O(r - r_h)$ such that W(r) and $\mu(r)$ are analytic in r, r_h , and W_h . If we adjust τ such that $\tau = 0$ at the horizon we obtain a two-parameter family of solutions of (3,4) analytic in τ , r_h , and W_h except for a simple pole in $\kappa(\tau)$ at the horizon.

Both types of initial data satisfy $\kappa \ge 1$ and this relation remains true for all τ due to the form of Eq. (3e).

In the following we exclude the case $W \equiv 0$ and can therefore assume $(W, U) \neq (0,0)$ for all (finite) τ . Integrating Eqs. (3) with regular initial data $r(\bar{\tau}) > 0$, $N(\bar{\tau}) > 0$, $\kappa(\bar{\tau}) \ge 1$ satisfying the constraint (4) we obtain solutions analytic for all $\tau > \bar{\tau}$ as long as $N > -\infty$. There are three possible cases:

i) $N(\tau)$ has a zero at some $\tau = \tau_0$, the generic case. Then

$$(W^{2}(\tau_{0}) - 1)^{2} = (1 + 2U^{2}(\tau_{0})) r^{2}(\tau_{0}) , \qquad (5)$$

and r has a maximum at $\tau = \tau_0$. For $\tau > \tau_0$ we find that N < 0 and r, W, U, κ , rN, and rAN remain analytic at least as long as $r \ge 0$.

- ii) $N(\tau) > 0$ for all τ and $r(\tau)$ tends to infinity for $\tau \to \infty$. These are the asymptotically flat solutions with $(W, U, N, \kappa) \to (\pm 1, 0, 1, 1)$.
- iii) $N(\tau) > 0$ for all τ and $r(\tau)$ remains bounded. This is a new type of 'oscillating' solution with $(r, W, U, N, \kappa, A) \rightarrow (1, 0, 0, 0, 1, \infty)$ for $\tau \rightarrow \infty$ first discussed in detail in [4].

On the Limiting Solution of the Bartnik-McKinnon Family

Analyzing the solutions with regular origin and their dependence on b we have shown in [4]:

- 1. For each positive integer n there exists a globally regular and asymptotically flat solution with n zeros of W for at least one value $b = b_n$ and there is at most a finite number of such values b_n .
- 2. There exists an oscillating solution for at least one value $b = b_{\infty}$ and there is at most a finite number of such values b_{∞} .
- 3. The values b_n have at least one accumulation point for $n \to \infty$ and each such accumulation point is one of the values b_{∞} .

Completely analogous results hold for black hole solutions with fixed $r_h < 1$ and their dependence on W_h .

Let us analyze the oscillating solutions in some detail. Near the singular point $(r, W, U, N, \kappa) = (1, 0, 0, 0, 1)$ we introduce the parametrization (with $\overline{W} = \frac{W}{r}$ and $\overline{\kappa} = \kappa - 1$)

$$\overline{W}(\tau) = C_1 e^{-\frac{1}{2}\tau} \sin(\frac{\sqrt{3}}{2}\tau + \theta) , \qquad (6a)$$

$$U(\tau) = C_1 e^{-\frac{1}{2}\tau} \sin(\frac{\sqrt{3}}{2}\tau + \frac{2\pi}{3} + \theta) , \qquad (6b)$$

$$N(\tau) = C_2 e^{\tau} + \frac{2}{7} (\overline{W}^2 - U\overline{W} + 2U^2) , \qquad (6c)$$

$$\overline{\kappa}(\tau) = C_4 e^{-2\tau} + \overline{W}^2 + 2U\overline{W} + 2U^2 , \qquad (6d)$$

as in [4] and compute r from the constraint (4)

$$r^{-2} = \rho + \sqrt{\rho^2 - \overline{W}^4}$$
, where $\rho = \frac{1}{2}(1-N)^2 + \overline{W}^2 + U^2 - \overline{\kappa}N$. (7)

The functions θ , C_1 , C_2 , and C_4 satisfy differential equations,

$$\dot{\theta} = f_0 , \qquad (8a)$$

$$(C_1^2 e^{-\tau}) = C_1^2 e^{-\tau} (-1 + f_1) , \qquad (8b)$$

$$(C_2 e^{\tau}) = C_2 e^{\tau} + f_2 , \qquad (8c)$$

$$(C_4 e^{-2\tau}) = -2C_4 e^{-2\tau} + f_4 , \qquad (8d)$$

with 'non-linear' terms f_i that can be expressed as homogeneous polynomials in $C_1^2 e^{-\tau}$, $C_2 e^{\tau}$, and $C_4 e^{-2\tau}$ of degree one for f_0 and f_1 and of degree two for f_2 and f_4 with (r, θ) -dependent coefficients that are bounded as long as r is bounded.

We can apply a general result for perturbed linear systems (see, e.g., [5] p.330) stating the existence of a stable manifold. The system (8) has one unstable mode, C_2e^{τ} , and hence there exists a three-dimensional stable manifold of initial data, i.e., quadruples $Y = (\overline{W}, U, N, \overline{\kappa})$ such that $Y \to 0$ for $\tau \to \infty$. Eliminating the freedom to add a constant to τ we are left with a two-parameter family of oscillating solutions. In [4] we have derived the stronger result that θ and C_1 have a limit for $\tau \to \infty$ (with $C_1(\infty) \neq 0$) whereas $C_2e^{2\tau} \to 0$ and $C_4e^{-\tau} \to 0$ for each member of this two-parameter family. Consequently these oscillating solutions have infinitely many zeros of W and inifinitely many minima of N as $\tau \to 1$.

Conversely there exists a one-dimensional 'unstable manifold' (i.e., stable manifold for decreasing τ) of initial data such that $Y \to 0$ for $\tau \to -\infty$. These initial data Y = (0, 0, N, 0) describe the extremal RN black hole with $r = (1 - N)^{-1}$.

688

In the following we analyze the behaviour of solutions for b near (one of the values) b_{∞} and in particular the behaviour of globally regular solutions with n zeros of W in the limit $b_n \to b_{\infty}$ for $n \to \infty$. In view of the analytic dependence of the solutions on b and τ the trajectories reach any given neighbourhood of the singular point Y = 0 for b sufficiently close to b_{∞} . Trajectories missing the singular point cannot stay near it, they must start to 'run away.' They will, however, remain close to the unstable manifold. In the limit $b_n \to b_{\infty}$ they converge to the unstable manifold, i.e., extremal RN solution.

We can decompose Y into its parts parallel and perpendicular to the unstable manifold and measure the distance from the singular point Y = 0 by

$$|Y| = \max(|Y_{\parallel}|, |Y_{\perp}|), \text{ with } |Y_{\parallel}| = |N|, |Y_{\perp}| = \max(C_1^2 e^{-\tau}, |\overline{\kappa}|).$$
 (9)

Using the distance function $|\cdot|$ we get from the smooth dependence of the solutions on b and τ that all solutions with $b \approx b_{\infty}$ must come close to the singular point Y = 0for some $\tau = \tau_0$.

Lemma 1. Given b_{∞} and any $\epsilon > 0$ there exist some $\delta > 0$ and τ_0 such that all solutions with $|b - b_{\infty}| < \delta$ satisfy $|Y|(\tau_0) < \epsilon$ and $0 < 1 - r(\tau_0) < \epsilon$.

Let us analyze the behaviour of these trajectories in the neighbourhood of Y = 0. The general result [5] also states the existence of some $\eta > 0$ such that trajectories missing the singular point cannot stay within $|Y| < \eta$ for all τ . Due to the structure of Eqs. (3), resp. (8) this runaway is caused by the growth of N. The trajectories can therefore be characterized by three possibilities: They either run into the singular point Y = 0 or miss it on one or the other side; in the latter case either N stays positive and r grows beyond r = 1 or N has a zero while r < 1 and r runs back to r = 0. This is expressed by

Lemma 2. There exists some $\eta > 0$ such that for any solution of Eqs. (3a - e, 4) with $|Y| < \epsilon \ll \eta$ and $0 < 1 - r < \epsilon$ at some $\tau = \tau_0$ there are three possible cases:

- a) r < 1, N > 0 for all $\tau > \tau_0$ and $Y \to 0$ for $\tau \to \infty$,
- b) r = 1 for some $\overline{\tau} > \tau_0$, $N = \eta$ for some $\tau_1 > \overline{\tau}$, $\dot{N}(\tau_1) > 0$, and $0 < N < \eta$, $|Y_{\perp}| < \epsilon$ for $\tau_0 < \tau < \tau_1$,
- c) N = 0 for some $\bar{\tau} > \tau_0$, $N = -\eta$ for some $\tau_1 > \bar{\tau}$, $\dot{N}(\tau_1) < 0$, and r < 1, $|N| < \eta$, $|Y_{\perp}| < \epsilon$ for $\tau_0 < \tau < \tau_1$.

Proof. The general result [5] mentioned above states the existence of some $\eta > 0$ such that that either $Y \to 0$ (case **a**) or $|Y| = \eta$ for some τ_1 (case **b** and **c**). Choosing η small enough, Eq. (8b) shows that the 'amplitude' $|C_1|e^{-\tau/2}$ decreases as long as $|Y| < \eta$. Moreover Eq. (3e) implies that $|\overline{\kappa}| < \epsilon$ remains true as long $U^2 < \epsilon$. Therefore $|Y_{\perp}| < \epsilon$ as long as $|N| < \eta$.

Next, if $|N| \gg |Y_{\perp}|$ then $\dot{N} \approx (1-N)N$ due to Eq. (3d) and $r \approx (1-N)^{-1}$ due to Eq. (7), i.e., r > 1 and $\dot{N} > 0$ for $N \gg \epsilon$, resp. r < 1 and $\dot{N} < 0$ for $N \ll -\epsilon$. Finally, Eq. (5) implies that N can vanish only when r < 1.

To conclude the argument we analyze what happens to the solutions in the limit $b \rightarrow b_{\infty}$.

Proposition 3. Given b_{∞} and η as defined above there exists some $\delta > 0$ such that the solutions with regular origin and $|b - b_{\infty}| < \delta$ satisfy:

1. Case **a** of Lemma 2 holds if and only if $b = b_{\infty}$. There exist continuous functions $\overline{\tau}(b) < \tau_1(b)$ defined for $b \neq b_{\infty}$ such that the same case either **b** or **c** holds for all

On the Limiting Solution of the Bartnik-McKinnon Family

 $b < b_{\infty}$ and for all $b > b_{\infty}$ (with $|b - b_{\infty}| < \delta$); case **b** holds in particular for the globally regular solutions with n zeros of W as $b_n \to b_{\infty}$ for $n \to \infty$.

2. In the limit $b \to b_{\infty}$ both $\bar{\tau}$ and $\tau_1 - \bar{\tau}$ diverge. The part of the solution defined for $\tau < \bar{\tau}$ converges for any fixed τ or r < 1 to the oscillating solution. The part defined for $\tau > \bar{\tau}$ converges for any fixed $\tau - \tau_1$ or $r \neq 1$ to the exterior, resp. interior of the extremal RN solution with $W \equiv 0$ in case **b**, resp. **c**.

Proof.

- 1. Since an oscillating solution exists only for finitely many values of b, we can choose $\delta > 0$ in Lemma 1 such that the interval $|b b_{\infty}| < \delta$ contains only one of them, namely b_{∞} . The existence of $\bar{\tau}$ and τ_1 for $b \neq b_{\infty}$ was shown in Lemma 2. The rest follows from the continuity of the solutions in b.
- The convergence of the solutions follows from the convergence of the initial data, i.e., quadruples Y at an arbitrary regular point. The initial data for any fixed τ converge to those of the oscillating solution. At the same time τ (with r(τ) = 1, resp. N(τ) = 0) diverges. On the other hand Y(τ) converges to (0, 0, ±η, 0), i.e., to initial data for the exterior or interior of the extremal RN black hole and τ τ₁ → -∞. Convergence for fixed r requires in addition N ≠ 0; given r ≠ 1 this is satisfied for b sufficiently close to b_∞.

Using exactly the same arguments one obtains

Corollary. Analogous results hold true for black hole solutions with any fixed $r_h < 1$ and W_h , W_{hn} , $W_{h\infty}$ replacing b, b_n , b_∞ .

Having shown the incorrectness of the statements made by Smoller and Wasserman in [1] about the limiting solution one may ask for the source of this error. Looking at their arguments one finds that they use Prop. 3.2 of their earlier work [3] in an essential way. This proposition is, however, wrong as it stands; its validity requires the further assumption of a uniformly bounded rotation number (as made for their Prop. 3.1). This additional assumption is not satisfied for the Bartnik-McKinnon family.

References

- 1. Smoller, J.A., Wasserman, A.G.: Commun. Math. Phys. 161, 365-389 (1994)
- 2. Bartnik, R., McKinnon, J.: Phys. Rev. Lett. 61, 141-144 (1988)
- 3. Smoller, J.A., Wasserman, A.G.: Commun. Math. Phys. 151, 303–325 (1993)
- 4. Breitenlohner, P., Forgács, P., Maison, D.: Commun. Math. Phys. 163, 141-172 (1994)
- 5. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. New York: McGraw-Hill, 1955

Communicated by S.-T. Yau

This article was processed by the author using the Springer-Verlag T_EX PJour1g macro package 1991.