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Abstract: We construct a Markov partition for a Feigenbaum-like mapping. We
prove that this Markov partition has bounded nearby geometry property similar to
that for a geometrically finite one-dimensional mappings [8]. Using this property,
we give a simple proof that any two Feigenbaum-like mappings are topologically
conjugate and the conjugacy is quasisymmetric.
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0. Introduction

Markov process has been introduced by Sinai and Bowen, etc. in the study of
dynamical systems in the 1960’s. Sinai [16] and Bowen [2] constructed a Markov
partition for a hyperbolic dynamical system. Using Markov partitions, they related
hyperbolic dynamical systems with symbolic dynamical systems. Thus hyperbolic
dynamical systems can be studied topologically through symbolic dynamical sys-
tems rather easily. Indeed, to construct a Markov partition for a dynamical system
is quite important in the study of dynamical systems. In this note, I shall give
a construction of a partition for a Feigenbaum-like mapping. I shall prove that
this partition has all but finiteness properties as those of a Markov partition for a
hyperbolic dynamical system. It will be called an (infinite) induced Markov parti-
tion. A Feigenbaum-like mapping is definitely not hyperbolic for its critical orbit
is recurrent. However, from the construction and properties of this induced Markov
partition, one can study topologically and geometrically a Feigenbaum-like mapping

! Partially supported by a PSC-CUNY and a NSF grants



352 Y. Jiang

by using methods in hyperbolic dynamical systems. Moreover, using the properties
of induced Markov mappings, I give a simple proof that any two Feigenbaum-like
mappings are topologically conjugate and the conjugacy is quasisymmetric in this
note. The same idea has been successfully used to give a construction of a certain
Markov partition of the Julia set of the Feigenbaum quadratic polynomial. This
partition enables us to prove a long standing conjecture that the Julia set of the
Feigenbaum quadratic polynomial is locally connected. The proof of this theorem
and its generalization will be written in a forthcoming paper [9].

This paper is organized as follows: I shall introduce notations and review some
known results in Sect. 1. In Sect. 2, I shall construct the induced Markov map from
a Feigenbaum-like mapping and prove one of the main results, i.e., this Markov
map has bounded nearby geometry. In the last section, I shall apply the property of
bounded nearby geometry to prove another main result, i.e., any two Feigenbaum-
like mappings are topologically conjugate and the conjugacy between them is
quasisymmetric.

1. Infinitely Renormalizable Unimodal Mappings

Suppose 1 is the interval [—1, 1]. A continuous function f from [ into itself is called
a unimodal mapping if f(x) = hA(—|x|") for some real number y > 1 and some
homeomorphism % from [—1,0] onto [—1,4(0)]. The Schwarzian derivative S(g) of
a C3?-diffeomorphism ¢ from an interval onto another interval is, by definition,

3 g/// 3 g// 2
S0 =" 72 <g’ '

A unimodal mapping f(x) = A(—|x|") is called a S-unimodal if % is a C3-diffeomor-
phism from [—1,0] onto [—1, 4(0)] and satisfies that S(#)(x) < 0 for all x in [—1,0].

A S-unimodal mapping f is said to be renormalizable if there is a subinterval
J =[—a,a] of I for some a > 0 and an integer n» = 2 such that f°" are mono-
tone when restricted on [—a,0] and on [0,a] and f°"(J)CJ and f(J)NJ =
0,0 < i < n. One can normalize J to I by a linear transformation a(x) = px such
that Z2(f) = a~! o f°" o« is a unimodal mapping again (see below). To fix nota-
tions, I always assume that » = 2 is the smallest such integer and J is the biggest
such interval. Thus one can say that f is once n-renormalizable and Z(f") is the
renormalization of f.

Suppose f is a once n;-renormalizable S-unimodal mapping. If %(f) is once
ny-renormalizable, then f is said to be twice (n;,n;)-renormalizable. Further, f is
k-times (n1,ny,...,n;)-renormalizable if 2% (f) is n;;-renormalizable for 0 < i <
k and is infinitely (n),ny,...,ny,...)-renormalizable if #°'(f) is n;,-renormalizable
for every integer i = 0. A S-unimodal mapping f is infinitely (n;,n2,...,m,...)-
renormalizable if and only if there is a sequence {f; = [—ax,ax]}52, of nested
intervals so that f°" is monotone when restricted on [—a,0] and on [0,a],
FoINNIL =0 for 0 < i < my, and f°"™(I;) C I, where my = Hle n;. An in-
finitely (n,n2,...,n4,...)-renormalizable S-unimodal mapping f is said to be of
bounded type if {n;}2, is a bounded sequence, otherwise f is said to be of un-
bounded type. In particular, if all n; = 2, then f is called a Feigenbaum—Coullet—
Tresser-like mapping, in short, Feigenbaum-like mapping [3-5].

Suppose f(x) = h(—|x|") is an infinitely (n;,ns,...,n,...)-renormalizable S-
unimodal mapping and my = Hf:l ni. Let Z°K(f)= ock'l o f°" ooy be the
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k™-renormalization of f, where ox(x) = —pyx is the linear rescale from
I =[-1,1] to Iy = [—ay,ar], where a; = |pi] and [y = [—ay, a;] is the maximal
interval containing 0 such that

a. f°™ is monotone when restricted on [—ay, 0] and on [0, a;],

b. fo" () C Ik, and [ L)NI =0,0 <i < my,

c. f°™ has exactly two fixed points p; and g, in I; which are also periodic points
of f of period my.

Suppose c(i) = f°/(0) is the i™ critical value of f. For each k > 0, let I;(i) =
£OI) and pi(i) = f°(px) be the images of I; and p; under the i"-iterate of
f. Then [;(i) is an interval bounded by pi(i) and c(i) for 0 < i < my;. Note
that 7;(0) = I; is an interval bounded by —p; and p; and I;(my;) is an interval
bounded by p; and c(my). The mapping f|I; is fold from I; onto I;(1) and all
other mappings f|I(i) from I;(i) to [;(i + 1) are homeomorphisms for 1 < i < my
(see Fig. 1). Hence the k"-renormalization can be written into a form #°¢(f)(x) =
hi(—|x|") as a S-unimodal mapping, where & = o; ' o £~V o ho gy is a diffeo-
morphism from [ into A (1), where &;(x) = | px|'x.

The nonlinearity N(g) of a C?-diffeomorphism ¢ from an interval onto another
interval is, by definition, N(g) = ¢g”’/¢’. The a priori real bounds for the nonlineari-
ties of renormalizations of f have been found in [18] (see also [6]). These a priori
real bounds depend only on the power law —|x|”.

Lemma 1 (Bounded and eventually universally bounded). There is a universal con-
stant C(y) > 0 and a sequence {C(k,y)}; 25 of positive real numbers such that
C(k,y) — C(y) as k — oo and

Nk < C(k,7y).
xehﬁlﬁ(}])l (b )| = Ck,y)

Remark 1. For a C2-diffeomorphism A, N(h~')(x) = —h"(»)/(K'(y))?, where x =
h(y).

The proof of Lemma 1 can be found in [12,18]. The next two lemmas are
actually two steps in the proof of Lemma 1. I would like to highlight them. I shall
first state a well-known result (see [12,18, etc.]) to estimate the nonlinearity of a
C3-diffeomorphism.

Lemma 2 (C3-Koebe distortion lemma). Suppose g is a C* function on an open
interval J = (a,b) and S(g)(x) = 0 for all x in J. Then

2
N(g)x)| =
N@OW! = 75775
fry- (i+1) f
—al(m, ) — >
c(2) Py(2) c(i+l) py (i+1) - 0 p pe (i) c(i) Px(1l) c(1)
N—

— f

Fig. 1.
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Fig. 2.

for any x in J, where d(x,0J) = min{|x — al|, |x — b|} is the distance between x and
the boundary of J.

The second one is about Koebe space around every interval /;(i) (see [12,18]).
Let & = {L(i)}1, "'for k=1,2,... be the hierarchical system induced from f.
For each interval [;(i), use LI (i) and RI;() to denote the intervals in &; adjacent
to Ix(i) and in the left and right sides of [;(i), respectively, (there is only LI (1)
or RI;(2) in &). Let LI (i) be the smallest interval containing LI(i) and the left
end-point of (i) and let RL'(i) be the smallest interval containing RI(i) and
the right end-point of (i) for i =0 or 3 < i < my. Let LLF(2) =[—1,¢(2)] and
RIF(1) = [e(1),1] (see Fig.2).

Lemma 3. There is a universal constant C(y) > 0 and a sequence {C(k, )} of
positive real numbers such that C(k,y) — C(y) as k — oo and

min{|LLF(0)], |RLF(0)]} = C(k, )| (0)] .

2. Markov Maps Induced From Feigenbaum-like Mappings

Suppose f(x) = h(—|x|") is a Feigenbaum-like mapping. The hierarchical system
& = {Ik(i)};'Z‘O_1 for k =1, 2,... of f is quite simple. For each £ > 0, the interval
I(0) is bounded by a periodic point p; of f of period 2! and — p;. The mapping
f o2t [7:(0) has two fixed points p; and py.;. Every interval [,(i) in & contains
only two intervals I (i) and I, (2F 4 i) in &, which have a common endpoint
pri1(i) for 0 < i < 2%,

Using the sequence of nested intervals {Z,(0)}g2,, I construct a partition in
I =[-1,1]. Let P_y and Py be the closures of the left and right connected compo-
nents of 7\/;(0). Inductively, let P_; and P; be the closures of the left and right
connected components of 7;(0)\/;+1(0). Finally set Po, = {0}. The collection iy =
{P-0,Po,P_1,P1,...,P_,Ps,..., Py} forms a partition of 7 = [—1,1] (see Fig. 3),
that is, P; and P; have disjoint interiors for i#j and I = P UU:Z](P#« U Py).
Let F' be the function defined as F(0) = 0 and

f(x), xe€P_qUPy;
f2(x), x€P_jUPy;
F(x)=4":

f¥(x), x€P_ UP;

Then F' is continuous on / (see Fig. 3).
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Lemma 4. For every even integer k =2n 2 0, F(Py) = Uis, P—i UU;:HIP,-,
and for every odd integer k =2n+1 > 0, F(Pxt) = Uiy P-i WU P

Proof. 1t can be seen from Fig. 3.

From Lemma 4, the mapping F and the partition f satisfy the Markov property
in the sense that the image of every element in the partition ffy is the union of some
intervals in the partition fo. Thus I call F' the induced Markov mapping from f.

Let g4; = (F|P+;)~! be the inverse branches of F for 1 < i < oco. Suppose
w = igiy - - - ix—1 is a finite sequence of Z =7 U {-0}. It is said to be admissible
if the range P, of g, is contained in the domain F,_,(P;_,) of g;_, for l=
1,...,k — 1. For an admissible sequence w = igiy - ik—1, define the composition
Gw =iy © iy © -0 ir_,- Use D(gy) to denote the domain of g,, and |D(gy)| to
denote the length of the iterval D(g,,).

Definition 1. We say the induced Markov map F from [ has bounded nearby
geometry if there is a constant C = C(f) >0 such that

() C' < |P/IUS Pl = C and C71 g [Pol/|UZS Pl = € forall
k = 0, and

(i) |N(gw)®)| = C/|D(gw)| for all x in D(g,,) and all finite admissible sequence
w of Z.

Remark 2. Condition (ii) implies that the distortion |log(|gw(x)|/[gw( »IDI of gw
at any x and y in D(g,,) is bounded by C. Condition (i) is an analogy to bounded
nearby geometry defined in [8] for geometrically finite one-dimensional mappings.

Theorem 1. Suppose f(x)= h(—|x|") is a Feigenbaum-like S-unimodal mapping.
Then the induced Markov mapping F from f has bounded nearby geometry.
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Before proving Theorem 1, I shall prove some useful lemmas.

Lemma 5. Suppose h from [—1,0] to R' is a C* orientation-preserving diffeo-
morphism and S(h)(x) < 0 for all x in [—1,0]. Suppose ¢ is a linear fractional
transformation satisfying that

(@) ¢(a) = h(a) for a =0 and —1, and

(b) N(h~')(=1) = N(¢~")(—1).

Then ¢(x) < h(x) for all x in [—1,0].

Proof. Let Z=h""'0o¢. Then Z(a) = a for a =0 and —1 and for x in [—1,0],

S(Z)x) = (¢'(x))* - (S~ H))((x)) 2 0.

The goal is to show that Z(x) < x for x in [—1,0].
Using (b), one can get N(Z)(—1) = 0. This implies that Z"”(—1) = 0, and
moreover,
Z(x) Z F(x)=—-14Z'(-1)(x+ 1)

for small x + 1 = 0. Thus Z(x) = F(x) for all x in [—1,0] since S(Z)(x) = 0 for
all x in [—1,0]. In particular, Z(0) = F(0). Hence Z'(—1) < 1. Therefore, Z(x) <
x for all x in [—1,0] because S(Z)(x) = 0 for all x in [—1,0]. So ¢(x) =< h(x) for
all x in [—1,0].

Let SF(y,C) be the subspace of S-unimodal mappings f(x) = A(—|x|?) so that
minep-10p (N(A™")(x)) = —C.

Lemma 6. There is a constant Cy = C(y,C) > 0 such that f(0) = C; for every
infinitely renormalizable mapping in SF(y,C).

Proof. Suppose f(x)=h(—|x|") is a mapping in SF(y,C). Since h is a C*
orientation-preserving diffeomorphism and S(#)(x) < 0 for all x in [—1,0], one can
compare s with some linear fractional transformation ¢(x) = (ax + b)/(cx + d). Let
¢ be the linear fractional trnsformation satisfying that (a) ¢(a) = A(a) for a = —1
and 0, and (b) N(¢~')(—1) = —C. Then

x+1

~1.
SO+ D+ s — 5

o(x) =

From Lemma 5, ¢(x) < A(x) for all x in [—1,0].

Suppose, at the moment, ¢ = f(0) > 0 is a variable. Let C; = C{(y,C) > 0 be
the smallest solution of ¢(—|c|’) = 0. Then for 0 < ¢ < C;, f°3(0) = ¢°*(0) =
@(—|c|’) > 0. This says that f°2 has an attractive fixed point and thus is not once
renormalizable. Hence f(0) > C, if f is infinitely renormalizable.

For a S-unimodal mapping f(x) = A(—|x|") with f(0) > 0, let g5 be the fixed
point of f in (0,1).

Lemma 7. There is a constant C, = Cy(y,C) > 0 such that q; = C, for all in-
finitely renormalizable f is SF(y,C).

Proof. Let

x+1
C

-1
foe+D+ely—§

Po(x) =
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and C, be the fixed point of ¢o(—|x|") in (0,1). Take
x+1
C

s S
2 OIS

P(x) =

Then the fixed point ¢’ of ¢(—|x|”) in (0,1) is greater than C, since f(0) > C).
But gr = q > G,.

Proof of Theorem 1. Suppose Z°*(f)= hy(—|x|") is the k"-renormalization of

f. It is the rescale of f o2t [1x(0). From Lemma 1, there is a constant C = C(f) >
0 such that max.en,(-10) IN(hk’l)(x)| < C for all k=0 (set hy = h). Now
Lemma 7 says that there is a constant C; = Cy(y,C) > 0 so that

U (O
IL(0)] =

for all k = 0 (set Ip(0) =1).
Following Lemma 3, there is a constant C; = C3(f) > 0 such that

k
Hk1(2)] >
{+1(0)]
for all k = 0 since ;4 (2F) is either LI, (0) or RL! ,(0). This implies that

@) _ . 1
O] = 26 +1

G

for all £k = 0.
Now take Cs5 = max{Cz"l,C4}. Then

L )
o= o) =

for all £ = 0.

Since I;(0)\/x+1(0) is the closure of Uioij(P_,- UP;), and |P_i| = |Py], (i) of
Definition 1 is verified.

Now let me prove (ii) of Definition 1. For an integer i30, g; can be extended
to the interval Q) = I;_,;(2"1=")UD(g;) UI};(2") as a C*-diffeomorphism and
S(gi)(x) 2 0 for all x in ;. For go and g, without loss of generality, we may
assume that they can be extended to the interval Qy = (—oo0, —1]1U D(go) U 11(1)
and S(go)(x) = 0 and S(go)(x) = 0 for all x in Q.

Suppose w = igi; ---iz_; is an admissible sequence of Z = Z U {-0} and
9w =iy ©gi; © -+ 0gi,_,. By the definition of an admissible sequence, one can
check that

lio] < lis] -+ = lig—1].
Hence g, can be extended to the domain Q | as a C3-diffeomorphism and
S(gw)(x) 2 0 for all x in &, ;. We note that D(g,,) = D(g;,_,) and the inter-
vals Q; are nested for |i| =0,1,.... Then (ii) of Definition 1 follows now from
Lemmas 2 and 3.

Remark 3. In [10], there is a more general discussion of the induced Markov map
from an infinitely renormalizable S-unimodal mapping.
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3. Conjugacies Between Feigenbaum-like Mappings

It is known that two Feigenbaum-like S-unimodal mappings are topologically con-
jugate. The proof of this depends on two deep facts, kneading theory developed by
Milnor and Thurston [14] and non-wandering interval theorem proved by Gucken-
heimer [7] and de Melo and van Strien [13]. Using Markov partitions constructed
in this note, I can set a topological model for all Feigenbaum-like mappings as
Sinai and Bowen [2,16] did for hyperbolic dynamical systems. Applying Theo-
rem 1, I give a simple proof of that two Feigenbaum-like S-unimodal mappings are
topologically conjugate.

Suppose f is a Feigenbaum-like mapping and fo = {P+x}2, U {P} is the
induced partition and F is the induced Markov map. Let 4 = (a;;) be the bi-
infinite matrix so that a; =1 if P; C F(P,) and a;; =0 otherwise. From the
construction of F, we can see that 1. for i = £2n,n = 0,a;; = 1 if and only if
lj] > lijor j=-2n;2. i=+2n+1) > 0,n > 0, a; =1 if and only if |j| > |i|
or j =2n+ 1. Now consider the symbolic space X4 = {w = igiy - - - igigs1 - |ix €
ZU {oo}, a4, = Lk =0,1,...} with product topology and the shift map o4(w) =
iy - dgiggr e A W =gl - ikl e

A sequence wy = igiy - -ix of Z is admissible if a;;, , =1 for 0 </ < k.
For an admissible sequence wy = igij---i, define g, =g,09;0---0g;
and Py, = gy, (F(Py)).

Lemma 8. Suppose f is a Feigenbaum-like S-unimodal mapping and F is the
induced Markov map. Then F is semi-conjugate to o4, this means that there is a
continuous surjective map H from X4 to I such that F o H = H o oy4.

Proof. For any w = il - - - fglgyq -+ in Xy, wy =i - - i 1s admissible for every
k =z 0. Applying Theorem 1, ﬂ,fio P,,, contains only one point x,,. Set H(w) = x,,.
It is a continuous map from X4 to I from Theorem 1. Since ka P,, =1, where
wy runs over all admissible sequences of length £ + 1, H is surjective. Moreover,
every point x has at most two preimages in X, under H and only a boundary
point x of P,, for some admissible w; has two preimages. Now it is easy to see
FoH(w)=Hoagy(w).

Theorem 2. Any two Feigenbaum-like mappings f and g are topologically
conjugate.

Proof. Suppose F and G are the induced Markov maps from f and g. Let H,
and H, be the semi-conjugacies from F and G to g4. From the proof of Lemma
8, H=H, oHZ_‘ can be defined as a homeomorphism of / and FoH = H o G.
Hence F and G are topologically conjugate. Furthermore, H is also the conjugacy
between f and g¢.

A homeomorphism H of I =[—1,1] is said to be quasisymmetric [1] if there
is a constant C > 0 so that for any x and y in /,

L HE - HE)|

C =g =6,
T H@-HO»)| T

where z = (x + y)/2. Furthermore, I can use a similar method to that in [8] to
prove

Theorem 3. Suppose [ and g are two Feignbaum-like mappings and H is the
conjugacy between them. Then H is quasisymmetric.
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Proof. Suppose Por = {P+if}5o U {Poo,} is the induced Markov partition from
S oand Poy = {Piig}2o U {Poog} is the induced Markov partition from g. Let
By = {Pw,.rlwe be an admissible sequence of Z U {oco} of length k + 1} and
Brg = {Pu, 4wk is an admissible sequence of Z U {oo} of length k + 1}. They are

called induced k™-partitions of 7 = [—1,1] from f and g. From Theorem 1, there
is a constant C > 0 so that

_ lPilw,f|
c! < - <
| U?21+1 Piiwk,fl
and
c-! |Pilwk>!/l <cC

] Uzo:ol+1 Pifwk,g|

for all / in Z and all admissible sequences w; of Z of length k + 1. This exactly
means that the hierarchical system {fs}o2, and {fiy}52, satisfy a similar property
to bounded nearby geometry defined in [8] for a geometrically finite one-dimensional
mapping. Now using a similar argument to the proof of Theorem B in [8], one can
prove that H is quasisymmetric. However, for the sake of completeness of this note,
I shall write down the proof in more details.

I first construct a little different sequence of nested partitions { r}2, of I =
[—1, 1] from By . Let 1o ; consist of one interval /. Cut I into three intervals
Lo=P_g s, My =cl (U?jl(P_i,f UP, f)), where c/ means closure, and Ry = Py s
(see Flg 4) Then n,r= {Lo, Mo, Ro}.

The map F is a difftfomorphism when restricted on Ly or Ry and F(Ly) =
F(Ry) =Ly UM,. Cut Ly (respectively, Ry) into two intervals LoLy and LyM)
(respectively, RoLo and RoM;) which are preimages of Ly and M, under F|L
(respectively, F|Rp). And cut M, into three intervals L =P_ r, M, =
cl (U, (P-, s UP;y)), and Ry = Py s (see Fig.5). Then

2, 1 = {LoLo, LoMy, L1, My, Ry, RoLo, RoMy} .

Now I shall define #, , for » = 3 inductively. Suppose #, ,; has been defined
for some n = 2 and contains L, = P_(,_1), 5, My—y = cl (U2 (P—, s UP, 1)),
and R, =P,_1,y. Cut M, , into three intervals L,=P_,;, M,=
e (U2, (P=i,; UP, ), and R, = P, ;. For an interval J+M,_, in 1, ;, there

Lo M Ro

Fig. 4.

LLLM Lo MR RM AR

Fig. 5.
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is the maximum integer i = 1 such that F°/|J is a diffeomorphism. Then F°/(J)
is either 1) M,_;,_, or 2) L,_;UM,_; or 3) R,_;UM,_;. In case 1), cut J into
three intervals ¢ = {JL,—;, JM,_;, JR,—,} which are the preimages of L,_;, M,_;
and R,_; under F°'|J. In case 2), cut J into two intervals ¢ = {JL,_;, JM,_;}
which are the preimages of L,_; and M,_; under F°/|J. In case 3), cut J into two
intervals ¢ = {JM,_;, JR,—;,} which are the preimages of M,_; and R,_; under
F°|J. Then

Mtt,f = { IV € fn, r} U{Ln, My, Ry} .

Therefore I have defined a sequence 7, = {n,, r}2, of nested partitions from
Bo, r. Similarly, one can define a sequence 1, = {1, 4}52, of nested partitions from
BO,g‘

From the construction of #y and Theorem 1, ny has bounded and bounded
nearby geometry which is defined in [8]. More precisely, there is a constant C > 0
such that (BG) (bounded geometry): for any intervals J C T with J in #,;, and
T in 5, n =0, |[J|/|T) 2 C, and (BNG) (bounded nearby geometry): for any
intervals J; and J; in #, with a common endpoint, n = 1, |J1|/|2] = C.

The statement (BG) follows from Theorem 1 and the construction of 7, directly.
To prove the statement (BNG), one need to check when the common endpoint point
q of J; and J, is a preimage of a fixed point p; of F under F. In this case, let
Ji.i = F°(Jy) and J, ; = F°/(J,) for i = 0. Then there is the biggest integer j = 0
such that F°/|J; UJ, is a diffeomorphism. So F%/(q) = piy. Therefore there exists
another integer m = j such that both of F°™|J; and F°"*D|J, are diffeomorphisms
and Jy, » = Jo, m41 = Py or P_y. This implies that J; ; =J,, 14 forall j </ < m.
In particular, J;,, = J3 j41. So Ji j = F(J, ;). From Theorem 1, there is a constant
Cp > 0 such that Co_1 < F'(x) £ Cp for all x in Py, and k& = 0. Hence

_ 1, /1
cTl < 2L <G,
L VA

Applying Theorem 1 again, there is a constant C; > 0 such that

_ Ji |
crl < il <.
S
P P
?:-1 P'k'll P . k?k+1 F:k+1 klpk k-1 Py

Fig. 6.
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Similarly, one can prove that 1, has bounded and bounded nearby geometry ((BG)
and (BNG)) too.

Now I use the property of bounded and bounded nearby geometry ((BG) and
(BNG)) of 5y and 5, to prove that 4 is quasisymmetric (refer to [8]). For any
x < yin I, let z = (x + y)/2 be the midpoint between x and y and N > 0 be the
smallest integer such that there is an interval J in ng, r contained in [x, y]. Let J be
the interval in ny_, ; containing J. Then the union of J and one JJ of its adjacent
intervals in #ny_; s contains [x, y] (see Figs.7,8 and 9). Because of bounded and
bounded nearby geometry ((BG) and (BNG)) of #, (and refer to Figs. 7,8 and 9),
there is a constant C, > 0 such that

HOL 5 o) g O
[H([x, zD| ~ |H([z, yDI ~
Y J HW)  HO)
/\,/—A,\ /\If”l\
N-
N1 J H HW)
N+N, e Hiy ) HEb)
| I [ S |
X z y Hix) H(z)  Hy)
Fig.7
J J HO)  HW)
N "
N-1 — : L1
N J H H()
NN, 2 H) Hep)
x oz oy H&) HE@  Hy)
Fig. 8
NN J HJy  HQ)
N-1 KA\'A r—/\l 1
N - H _HW)
NaN, o 2 HIY ) Heb)
X z y Hix) Hz) H(y)



362 Y. Jiang

Since #, has bounded geometry (BG), the maximum length of intervals in 7, _r
tends to zero exponentially, that is, there is a constant C; > 0 and 0 < A < 1 such
that

max |J| < C31”

J €1y, f
for all » = 0. Thus there is a constant integer N; > 0 (does not depend on N)
such that there are intervals J; and J, in ny,y, contained in [x, z] and [z, y],
respectively. This implies that H(J7) and H(J;) are contained in H([x, z]) and
H([z, y]) respectively because H is the conjugacy.

Because of bounded and bounded nearby geometry ((BG) and (BNG)) of #,
again, there is a constant C4 > 0 (see Figs. 7,8 and 9) such that

L HE) -HE)| _

Cc, < = R
$ SH@H-Hy) =

which means that H is quasisymmetric.

Remark 5. The quasisymmetric property of a conjugacy is first studied in [18] for
complex quadratic-like Feigenbaum-like mappings by using the complex method.
The proof of Theorem 3 here is for more general unimodal mappings and is a real
method developed from [8,10]. A different approach to the proof in the general
case was tried in [15]. This theorem can be also proven for infinitely renormaliz-
able S-unimodal mappings of bounded type (see, for example, [10]). However, for
infinitely renormalizable S-unimodal mappings of unbounded type, it is still an open
question. In [11,17], a result about infinitely renormalizable quadratic polynomials
of unbounded type has been announced recently.

Acknowledgement. 1 would like to thank the referee for valuable suggestions.
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