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Abstract: We study a variety of dilute annealed lattice spin systems. For site diluted
problems with many internal spin states, we uncover a new phase characterized by
the occupation and vacancy of staggered sublattices. In cases where the uniform
system has a low temperature phase, the staggered states represent an intermediate
phase. Furthermore, in many of these cases, we show that (at least part of) the
phase boundary separating the low-temperature and staggered phases is a line of
phase coexistence - i.e. the transition is first order. We also study the phenomenon of
aggregation (phase separation) in bond diluted models. Such transitions are known,
trivially, to occur in the large-g Potts models. However, it turns out that phase
separation is typical in bond diluted spin systems with many internal states. (In
particular, a bond aggregation transition is not tied to a discontinuous transition in
the uniform system.) Along the portions of the phase boundary where any of these
phenomena occur, the prospects for a Fisher renormalization effect are deemed to
be highly unlikely or are ruled out altogether.

1. Introduction

Annealed Dilute Systems. Annealed dilute spin systems have, traditionally, received
far less attention than their quenched counterparts: From the physical perspective, it
is generally agreed that the experimental realizations of dilute spin systems are better
described in the quenched approximation and, from the theoretical perspective, it is
generally believed that the annealed-dilute problems are not substantially different
from their uniform counterparts. Although we will not be discussing the applicability
of annealed-dilute spin models, let us briefly address the first issue by noting that
there are a host of systems - such as alloys or multi-component fluids - that are also
described by dilute spin models. In many of these cases, it can be argued that the
annealed version is the appropriate choice.

Partly supported by the NSF grant DMS-93-02023 (L.C.), the grants GACR 202/93/0449 and
GAUK 376 (R.K.), and the NSF grant DMS-92-08029 and the Russian Fund of Fundamental
Investigations grant 93-01-01470 (S.B.S.).
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Let us turn attention to the second issue. According to the standard notions
of universality, the nature of a phase transition should depend on only a limited
number of details of the model. Thus, if we consider a typical lattice spin system
described by the (formal) Hamiltonian

H = - Σ JuA°ι,°j) (1-1)

(where for simplicity we have restricted attention to pair interactions) the "impor-
tant details" are presumed to be the dimension of the lattice 1L, the range of the
interaction and the general features (e.g. symmetries) of the spin variables σt that
are respected by the functions Jιj{—, —). The bond and site annealed versions of
the Hamiltonian in Eq. (1.1) are given by

Hb = - Σ nUj{Jij{σi9σj) + λu) (1.2a)

and

Hs = - Σ nh ΠjJijiσ^σj) - μ Σ ni + £ * > O 2b)
ijeiL ieJL

respectively. In Eq. (1.2a), riij is 0 or 1 indicating the presence or absence of
a bond and it may be presumed, without loss of generality that for those pairs
which are beyond the range of the interaction (J/J(<7J, σj) = 0) ntj is always zero.
In Eq. (1.2b), «/ is similarly either 0 or 1 and Ks = Ks[(rii)] represents possible
additional terms involving the (nt) alone.1

The partition function for the systems described by Eqs. (1.2) are defined by
summing e~^H over all bond/site configurations and tracing out the spin degrees
of freedom according to a pre-specified spin-space measure (which may include
magnetic field type terms not written into Eqs. (1.2)). One can conceive of being
able to explicitly perform these operations in exactly this order and, after the first
step has been achieved, ending up with an effective uniform system Hamiltonian.
As such, it is difficult to believe that the "essential features" of the uniform and
dilute system differ in any dramatic way. Therefore it is anticipated that the phase
structure and phase transitions will be of the same type with or without the annealed
dilution.

Let us pause to illustrate this procedure for the annealed bond-dilute problems.
The partition function (on some suitably finite 1L) can be written as

Zji = Jd^σΣ Π e"W,i( f f " f f ; )- λ u B 0 ]
ntJ ijelL

( x / Λ Π [pije-M jW + (1 - pu)] , (1.3)

1 A bond-bond interaction term can also be added to the Hamiltonian in (1.2a) but we regard
this as an unnecessary complication. As such, the above described bond-diluted models are usually
referred to as uncorrelated. However, it is clear that as soon as the spin interactions are taken into
account, (i.e. after the annealed trace is performed) there will, in general, be correlations among
the bond variables. In both the bond and site diluted cases, we will take the minimum value of
JιJ{σι,σJ) to be zero. In the bond-diluted models this convention is implemented without loss of
generality since the difference can be absorbed into the λij. However, in the case of site-dilution,
this convention is not without loss of generality and this is the principle reason for the extra term
Ks in Eq. (1.2b).
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where l^
lJ = e^J. Thus, in one stroke, we have produced a uniform system

Hamiltonian of the form in Eq. (1.1):

at some inverse temperature β where the new β and J Z J are given in terms of the
old by the relations

In particular, when the JhJ can only take on two values - as is the case in the Potts
models-all that has changed is the temperature.

Over the years, these sorts of conclusions have been bolstered by a myriad of
other exact results (e.g. [SM, EG and ST, see St] and references therein) along with
some additional considerations (see [F]). All leaves us with the quiescent picture
of a general stability to annealed types of disorder and no real need to study these
models as separate entities in their own right.

Fisher Renormalization and Phase Transitions in Annealed Systems. Against the
above mentioned background, in the late 1960's, Fisher addressed the problem of
continuous transitions in systems with "hidden" constraints [F]. An example of such
a system is described by Eqs. (1.2) in a constrained ensemble defined by a fixed
concentration of bonds or sites. Now according to the likes of Eq. (1.4), the bond
concentration is essentially the same as the energy density. It therefore follows that
when a critical phase boundary (in the extended parameter space) is approached
at any finite angle, the concentration remains approximately constant provided that
the specific heat exponent, a, is negative. However, if α > 0, it becomes necessary
to devise a drastic line of approach in order to stay at fixed concentration. This in
turn implies that when a constrained ensemble crosses a phase boundary, the critical
exponents will undergo the so-called Fisher renormalization effect which means that
nothing changes if α is negative but if α > 0,

«-«* = i ^ , (l 5a)

h

= fty,v, (1.5b)1 — α

and

c -» c* = c c = δ, η . (l 5c)

The arguments in [F] are straightforward, essentially rigorous and, for several Ising
type systems, actually provide a more satisfactory account of the experimental data
than the uniform exponents. Of course Eqs. (1.5) rely crucially on the supposition -
Hypothesis B in [F] - that the phase structure and the phase transitions of the pure
system have not been corrupted by the addition of the dilution degrees of freedom.

In this paper, we provide certain evidence to the contrary. In particular we show
that the global results suggested by the exact solutions are exceptional situations
and that typically the extended phase diagram is beset with first order transitions
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and intermediate phases. The foremost of our results are:

• the existence, for site-diluted models, of an intermediate phase characterized by
the occupation and vacancy of staggered sublattices and

• the proof of a discontinuous bond aggregation transition for bond diluted models.

Minimal hypotheses are required to establish the above effects. The basic ingre-
dients are [i] many internal states, [ii] a mild restriction on the degeneracy of the
lowest energy spin-states and, [iii] (when relevant) a condition that ensures that the
low temperature behavior of the uniform system is not excessively frustrated. How-
ever, for ease of exposition, in this work we confine attention to reflection positive
models. This is by no means a requirement. Indeed, in more general annealed dilute
systems, one finds a myriad of additional phase transitions of this sort [CKS].

The above phenomena are entropy driven and thus, by and large, have escaped
notice. (See, however, [RL].) For example, it appears that the staggered phase
eluded the renormalization group analysis of the site diluted Potts model presented
in [NBRS]. On the other hand, site aggregation in annealed site-diluted models is
energy driven and, as such, has been well understood for some time. Nevertheless,
to our knowledge, this transition has not been studied by rigorous methods. In this
paper, we will also provide

• a proof of a discontinuous site aggregation transition for site-diluted models.

Clearly, on the portion of the phase boundary corresponding to a discontinuous
transition, the Fisher effect is ruled out. Further, when the phase transition is an
entrance to or an exit from an intermediate phase, one is bound to be suspicious.
To underscore this point we prove, in a number of cases, that at least part of the
phase boundary between the staggered phase and the low temperature phase is also
discontinuous.

Of course, nothing in this paper proves that a Fisher renormalization scheme is
impossible. In the first place, whenever the transition (in the extended parameter
space) is continuous, the arguments of Fisher still apply. However, it might happen
that the α,...,η on the right-hand side of Eqs. (1.5) do not correspond to the expo-
nents of the uniform system. In the second place, it is still eminently plausible that
at weak dilution, Hypothesis B is still in effect. Thus, if part of the phase bound-
ary is first order, we can envision a critical line of the uniform type of transition
emanating from the uniform critical point and joining up with the discontinuous
portion of the transition line at a tricritical point. However, without additional de-
tailed arguments, it is equally plausible that the phase boundary in the vicinity of
the uniform system is a weakly first order line.

Let us now discuss the physical origins of these phenomena.

Aggregation and Staggered Phases: Heuristics of the Transitions. Once they are
spelled out, the underlying reasons for these effects are not particularly difficult
to understand. Let us start with the staggered phases. It will be sufficient, for
present purposes, to consider the nearest neighbor Potts Hamiltonian on ΊLd. Thus
in Eq. (1.2a), we take σt G {1, 2,...,q},Jij = J(δσhσj - 1) for \i — j \ = 1 and zero
otherwise and, to keep things simple, set Ks — 0. Consider the case where eβJ is
large, q is large and e^μ is small. Then the partition function (or activity) of an
isolated particle is qe^μ which we will regard as appreciably - but not enormously-
large. Now consider the situation when two particles are neighbors: they must either
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reside in the same state, which restricts the pair to a small fraction, l/q, of the states
that they had in isolation or suffer an severe energetic penalty of e~^J if they choose
to disagree. Thus there is a strong effective repulsion between neighbors and the
system is reminiscent of a hard squares problem. For hard squares, it is known [D,
FILS III] that a pair of staggered states exists at some fairly reasonable value of
the activity. Thus, the βJ = -βμ — q = oc limit of this problem is understood and,
in a certain sense, all that remains is to show that this situation is stable enough to
persist at finite temperatures.

In this context, it is worth noting that a restricted version of this problem was
analyzed some time ago in [RL]. There, the system considered was the lattice
version of the Widom-Rowlinson model which may be formally identified with the
site-diluted Potts model at J — -f oo. In [RL], the existence of staggered phases was
indeed demonstrated using, more or less, the above line of reasoning. However, the
generality of this phase and its importance in the context of dilute systems was not
discussed.

Let us now turn attention to the problem of site aggregation. We will be
extremely brief because the heuristics are adequately described elsewhere, e.g.
[St]. Consider, for example, the above model with the additional term Ks =
~κΣ\i- \=\nιnj> w n e r e K > 0. Let us now envision the constrained ensemble at
zero temperature with a positive fraction of sites and vacancies: It is clear that
energetics will push all the sites together into one big cluster which is an act of
phase separation in its purest form. All things considered, it is not difficult to show
that this general situation persists at finite temperatures.

Finally, we come to the question of bond aggregation. Here, in the context of
the constrained ensemble it has been argued that there will not be phase separation
at zero temperature because "there is no energetic advantage in that." This, however,
is a little naive since, in a constrained ensemble, there are entropic effects even at
T = 0. As for our discussion, let us go back to Eqs. (1.4) and consider, e.g. for an
isotropic nearest neighbor model, the limit β —> oo with p = e^λ/(l -f e^λ) fixed. It
has already been discussed that if the original model is a Potts model then (even
at T = 0) we still have a Potts model at a finite effective temperature. As noted
in [SW], the first order transitions in the large-g Potts models then correspond to
aggregation transitions in the diluted versions.

It seems, therefore, that an aggregation transition is tied to a first order transi-
tion in the uniform system-and this appears to be the current accepted wisdom.
However, this reasoning has no basis and the answer turns out to be far simpler:
Consider, for example, any g-state ferromagnetic model. By this we mean that σz

has q states and Jij(βi, Gj) = 0 if σz = σ7 and is positive otherwise. Under the
same limit (β —» oo with the /?'s fixed) we arrive at: The g-state Potts Model.
Cf. Eq. (1.4b). Thus, under quite general circumstances - g large, and, say, nearest
neighbor interactions, we find that the transition at zero temperature is first order.
Under these conditions, it is again not terribly difficult to show that this situation
persists at finite temperature.

Strategic Overview, Organization and Summary of Results. The strategy that is
used throughout this work is the standard approach in the theory of phase transitions:
the method of contours. We start by focusing attention on the smallest possible
subsystem that is capable of exhibiting the characteristics of the phase in question.
Most often, this will be an hypercube of side 2. For example, a staggered phase
is exhibited by the corresponding checkered pattern of the occupation variables on
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the hypercube or a low density phase is exhibited by a hypercube that is devoid of
sites.

In the case of a single phase, once the phase signature has been defined, any
hypercube that is not of this type is considered a contour (or part of a contour). The
existence of the phase is established by a demonstration that contours are "rare."

In the case of a region of coexisting phases (e.g. the staggered phases) there are
different possible modes of correct behavior on the elementary hypercubes. These
should be a priori of equal probability. Again, any hypercube not exhibiting one
of the characteristic behaviors belongs to a contour. Moreover, to prove that the
phases coexist, it must be shown that the simultaneous presence of two or more
types of hypercubes is improbable. This amounts to showing that, under such cir-
cumstances, contours are present and the proof again reduces to showing that con-
tours are rare.

Finally, in cases without underlying symmetry, we allow the probabilities to
depend on a variable parameter such as the temperature or chemical potential. Two
things must be established: (a) throughout the range of parameter, contours must
be suppressed and (b) in the two extreme regions of the range of this parameter,
different phases dominate. From this it follows that there is a point of phase co-
existence and furthermore (since the contours are extremely rare) the probabilities
of the individual behaviors take a jump.

In this paper, the above program is implemented by the methods of reflection
positivity. These methods allow us to estimate the various local probabilities in terms
of the partition function where the global configuration takes on the appropriate
characteristic in every hypercube. In addition, these methods allow us to estimate
the probability of a contour as the product of factors - the number of which scales
with the size of the contour. These factors can then be evaluated in terms of the
probability that the entire system consists of a single contour.

The principal price of using the RP methods is that we must limit, severely,
the class of models that we wish to study. In addition, we must be content with
a blurry vision of the phase diagram - in particular at the triple point of the site
diluted ferromagnets where the high temperature, low temperature and staggered
phases meet. In future papers we will study systems with more general interactions,
sometimes using the methods of Pirogov and Sinai. In the general situation, it turns
out that a plethora of additional staggered phases are possible. Furthermore, we will
demonstrate the existence of all the phases and phase transitions discussed here for
systems with continuous spins, such as the XY or Heisenberg models.

For the staggered phases and their generalizations, the ratio of output to effort
is approximately the same for the RP versus PS methods. However, in the case of
the aggregation transitions, the RP methods provide a reliable technique that allows
a reasonably general proof at little cost. By contrast, the contour methods would
require a difficult construction along the lines of [MS] to prove these results.

The organization of this paper is as follows:
Section 2 will be completely devoted to the analysis of the two-dimensional

site-diluted Potts model. For this case, we have pushed hard on our methods to
obtain nearly complete results. The phase diagram for this system is illustrated in
Fig. 2.1 and the principal result of this section, Theorem 2.1. is a proof of the major
part of this picture. Section 2 is pretty much a self-contained piece of work. Most
of the technical results (and a good deal of the notation) used in the rest of the
paper will be developed in this context.
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In Sect. 3, we analyze the problem of staggered ordering in a more general
setting and prove the relevant parts of Theorem 2.1 for an extended class of large
q nearest neighbor models (Theorem 3.1).

In Sect. 4, we treat the problem of (first order) aggregation transition for the
bond- and site-diluted models. Under suitable hypothesis we show that these transi-
tions occur: in the bond-diluted case, large q is required. However, in the site-diluted
case, these transitions occur with only minimal hypotheses.

2. Phase Diagram of the Id Site-Diluted Potts Model

Definitions and Statement of Results. Our starting point will be to define the q-
state Potts Hamiltonians on Έ?. Beginning with a finite volume system, we will
consider our models on the 2-dimensional tori that are given by

^N = { i e Z 2 \ 0 S ik ^ N ; k = 1 , 2 } (2.1)

together with the formal identifications (N9 12) = (0, i2) and (z'i, N) = (z'i, 0). Here,
and throughout this paper, we will assume that N is of the form 2k. If i,j G 3ΓN, i
and j are deemed to be neighbors if one of their coordinates agree (mod N) and the
other differs (mod N) by 1. When a pair of points, z and j satisfies this criterion,
we use the notation (Uj)2 With this in mind, the site-diluted Potts Hamiltonian on
the torus ^ / , is given by

HN(nN, σN)= -J Σ ninjί^σίtσ. " I ) " μΣnι~KΈ ninj > ( 2 2 )
(U) i (UJ)

where the first and third terms run over all neighboring pairs of ϊFN, nt = 0 or 1
indicates the absence or presence of a particle at the site / G ^ , the σz 's denote
the usual g-state Potts variables, σz G {1,... ,q} and δσhσ. = 1 if σt = σy and is zero
otherwise. The partition function &N,β — &N,β(μ> K, J) is given by the annealed
trace,

= Σ Σ aφ{-βHN(nN,σN)} . (2.3)

As usual, the partition function serves as the normalization constant for the finite
volume Gibbs states, (—)Jjff, that assigns to the configuration (nN, σN) a weight
proportional to exp{—βH^{n^, σ^)}. Therefore, the physical interpretation of the
restricted sum over spin configurations in Eq. (2.3) is that the spins σι are simply
not present unless n\ — 1. Alternatively, we may stipulate that the spin variables
are always present - and should be summed over - while the nt represent additional
degrees of freedom that mediate the interaction. It is easily seen that the latter
problem is equivalent to the former after a shift in μ by the amount i log q. In this
paper, we keep with the original perspective.

2 Despite the comma, (z, j) is not an ordered pair. Thus we may identify the neighboring pair

(z, j) = (J, i) with a bond joining the sites i and j .



210 L. Chayes, R. Kotecky, S.B. Shlosman

Ordered Phase
(Positive Magnetization)

q Phases

μ + 2κ =0

- U n i f o r m T r a n s i t i o n ••• •'.•[•'.•'

•.••.••.••. P o i n t .-•.••; .•;.•;.•;.•;.•;.•;.

unt vi v. v. v.

•v!•;'.'-'•••'••• S t a g g e r e d P h a s e ;'

:^v ; : (Staggered Order) !
:' . . : : : 2 Phases ::•;:•::•/

•vvy Disordered Phase-
•;• (Unique Phase) ••

Fig. 2.1

Remark. We will assume throughout our discussion of the Potts models that J > 0
and K ^ 0. If J ^ 0 and K > 0, the staggered phases probably do not occur for any
value of β or μ. If / > 0 and K < 0, the interaction between neighboring particles
is a priori repulsive and the existence of the staggered phases comes as no real
surprise. In fact, the Ising (q = 2) version of this case was investigated in the guise
of the Blume-Emery-Griffiths model [HB]. (Albeit with non-rigorous methods.)
Not surprisingly, it was concluded that for K negative and below a certain value,
a staggered phase emerges. The problems with J > 0 and K < 0 could easily be
incorporated into the forthcoming, but this would require a proviso following each
formula. Hence, although this region is both, in principle and in practice, more
straightforward than the region J > 0 and K > 0, we will postpone its treatment
until we get to the general g-state problems in the next section. In fact, once
we allow K < 0, we can even prove the existence of staggered phases for weakly
antiferromagnetic (/ < 0) interactions. However, these problems are not of sufficient
interest to warrant a separate treatment in their own right.

Let us summarize our claims concerning the phase diagram of the diluted g-state
Potts model defined by Eqs. (2.2) and (2.3). For some fixed values of K € (0, J)
and q > 1, the phase diagram that will emerge from our analysis is schematically
shown in Fig. 2.1. (We have, of course, allowed ourselves some artistic leeway.) In
a region around the point (μ = oo, β = oo), q different ordered phases coexist, while
on the other hand, if —μ is large and/or β is small, there is a unique "disordered"
phase. Close to the axes μ = oo and β = oo, the disordered phases and the low
temperature phases meet directly. Further away from the axes, the staggered phases
are sandwiched between the extremes. These new phases are characterized by the
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preferential occupation of the even or odd sublattices and zero spontaneous mag-
netization. Much of the boundary between this region and the region of q ordered
phases in also the line of first order transitions at which q + 2 phases coexist. On
the other hand, the boundary between this region and the high temperature phase
is conceivably a line of continuous transitions. In our analysis, we will investigate
the behavior in four (partially overlapping) regions where we have tight control of
the phases and the phase transitions. The phase boundaries in these regions always
involve a transition into the ordered state; unfortunately, we have no control of the
phase diagram along the curve where the disordered and staggered phases meet - in
particular, at its two ending triple points.

In the forthcoming, a given state, "*", corresponding to parameters K, β, and μ,
will be denoted by ( )(

κ*j/( (sometimes omitting various parameters). As is the case
of the standard Potts model, the ordered phase can be characterized by a significant
probability (<5σ/ jm)^ that a given spin attains a fixed value m. Furthermore, the

average, {xζ1 rm\ of the indicator for the event that a given bond b has both its
endpoints occupied and in the spin state m attains an appreciable value in this phase.
To describe the staggered phases we consider elementary squares

c = c(j) = {i e^\jk S h Sjk + hk = 1, 2} . (2.4)

Let IA(C) denote the event that all the even sites of c are occupied and all the odd
sites of c are vacant:

IA(c) = {nN, σ^\πi = \;i G c, i\ + ί2 even,« 7 = O z G c,i\ -f i2 odd } . (2.5)

To define /#(c), we exchange the roles of the even and odd sites in Eq. (2.5). The
phases, to be denoted { )^A^ and ( }^B\ will be characterized by a large probability
of the events IA and IB, respectively. We use XA(C) and XB(C) to denote the indicator
functions of the events IA(C) and /#(c). Finally, the characterization of the unique
"high temperature-low density" disordered phase depends on the region: in one
region it is characterized by a high probability (χ^ l s ^ d ^ that a bond is occupied
by different spins, «z = «y = 1, σι φσ y , while in another it is characterized by a low
density, (<5Λ,,i)<

d>.
Our claims about the phase diagram can now be formulated as the following

statements concerning the existence of distinct infinite volume Gibbs states3 corres-
ponding to the given values of parameters K, μ, and β.

Theorem 2.1. Consider the site diluted q-state Potts models with J and K fixed and
satisfying 0 < K < J and suppose that q is (sufficiently) large and fixed. Then
there are regions Rj =R°IURd

I, Rn = R°n U Rd

π, and Rln = R°1Π U RS

IU {the regions
Rj, RIl9 and Rm overlap) such that R^ΠRJ = yi,R°π Π Rd

H = γπ, and R°ΠI Π RS

IΠ =
yjjj are continuous curves. Moreover, there is a "small" number ε such that:

i) The region R° is defined by the existence of q different states ( )™} ,m —

1,..., q, for which

(S ) ( m ) > 1 - F

3 For the various values of the parameters, we only prove that at least the states that are
characterized in Theorem 2.1 exist. In principle, this does not exclude the existence of some
additional phases. However, with a bit more work this could be achieved using Pirogov-Sinai
theory, in particular as formulated in [Z].
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while the region RJ is defined by the existence of a disordered state ( }^l for

which
, fdis)v(d) ^ 1 o

ii) The region R°π is characterized by the existence of ordered states as described
in item (i) above. The region Rd

π is defined by the existence of a disordered state
for which

iii) In the region R°1Π there are ordered states as described above. In RS

ΠI there

are two states ( ) ^ and ( )^g for which

(XA(C))[% > 1 - β

and

respectively.
In (ί)-(iii) above, both characteristic behaviors of the regions RJ-RΠJ are found

at all points of the curves yj-ym. In short, these are curves of phase coexistence;
explicitly, on y/ and yjj there coexist q-\- \ phases and on yjjj there coexist q -f 2
phases. Further, the curves yi—ym can be represented as {graphs of) continuous
functions.
iv) Finally, there is a region RIV in which there is a unique Gίbbs state satisfying
the conditions of complete analyticity.

For convenience, the above regions and curves are illustrated in Fig. 2.2.

Reflection Positίvity and Other Tools .Our analysis in this work relies heavily
on the fact that all the systems we consider are reflection positive (RP). In the
discussion on reflection positivity that is to follow, we will be as terse as possible.
Indeed, we will supply just enough information to define our notation. For more
details, the reader is urged to consult the original references [FSS, FL, FILS I], or
the review article [S].

In order to permit the unimpeded use of these results in later sections, we must
work in a slightly more general context: in particular 3ΓN will now denote the d-
dimensional torus of linear scale N and the spin variables will belong to an arbitrary
(but in this paper discrete) space.

We will also allow for the possibility of dynamical variables on the bonds. Bonds
are defined according to the obvious generalization of the previous discussion; a pair
of sites with d - 1 of their coordinates in agreement and one of their coordinates
differing by exactly one unit constitutes a bond. We will denote the set of bonds
of 5̂v by ^Tv-

Let P denote a generic "hyperplane of sites" for the torus ^ . By way of
example, we may consider

= 0 o r / i = ^ l . (2.6)

In this work we will consider only planes P which contain sites and are orthogonal
to one of the coordinate axis. Let P+ and P~ denote the corresponding "right" and
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"left" halves of the torus, e.g.

= <ie#k\o ύ h ^ - (2.7)

If / G ̂ v, let #/>(*) E $N denote the image site of / reflected by the hyperplane P
and, in general, if {fι\...fk)} C fN, let ΰP({P\...ί^}) = {ϋP(iV)),...ΰp(tk))}
Let Σ denote the spin space for the spin variables at the sites i G 5/v and let Ξ
denote the space of variables for the bonds (i,j) E &N (F° r t n e site-diluted Potts
model, we may take Σ = {0,1 ,...,</}, 0 corresponding to nz = 0, and the values
1 — q corresponding to nt = 1 and the appropriate value of σ;. Here we would have
Ξ = {1} but for the bond-diluted models, we will have Ξ = {1,0}.)

Let (SN) be the notation for a spin configuration on 3ΓN and let Sj denote the
value of the spin at the site i. Then we will use ΰpSi to denote the value of the
spin at the site ϋp(i). Similar notation applies to the bond variables: (BN) will
be notation for a bond configuration, B^ will serve as notation for the individual
values and we define ϋpB^j) — ̂ (#p(o,tf/>(/)>• Fma^Y? if /(SN',BN) is a function that
depends only on the configuration in P+ : / =

with ι<ιK..iW and (/,7>(1),...(/,y)(/l) in P+ we will say that / E ̂ + . Further,

if / G # ^ , we may define ϋPf (which, by analogy with the preceding notation
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would belong to ^P

N ) by saying that for each (SN;BN),

ϋpf(Sh(\), jS/On); #(/,;)(!)> >B(ι,j)("ϊ )

..,ϋPB{ιj){n)) . (2.8)

We may also, in a natural fashion, use ϋP to map $FP

Ή —» J^j^ and, in this sense,
we have ϋp = 1. We shall omit any further explicit references to ϋP as a map

from £FP

N to # ^ since this would only serve to double the length of the various
definitions and statements of propositions.

Definition. A state (-) on the set of configurations ΣTN X Ξ®N is said to be re-
flection positive, or reflection symmetric, with respect to the reflections ϋp if, for
every / e &ζ,

0 ^ 0 , (2.9)

w h i l e f o r a n y f , h £ ̂ P

N ,

) = (hϋPf) . (2.10)

Proposition 2.2. Let HN(SN;BN) denote a (Hamiltonian) function of the config-
urations on the torus 3ΓN and let (—}N$ denote the (Gibbs) state that assigns
the weight proportional to e~^HN to the configuration (SN BN). Suppose that H^
admits an expression of the form

with GN G J ^ . Then the state {—)NS is reflection positive with respect to ϋp.

Proof This is demonstrated in any of the references [FL, FILS I or FSS]. See, e.g.
[S] Theorem 2.1. D

Let us consider the elementary hypercubes

c = cU) = {ierN\jk S ik ^ Λ + l , * = l , . . . , r f } , (2.11)

and let b denote a configuration (pattern) or a collection of configurations on the
bonds and sites of the hypercube c. We use h(c) as notation for the set of con-
figurations (SN',BN) for which the restriction to c displays this pattern and finally,
Xb(c) as the indicator for the event h(c).

We may reflect the pattern b, repeatedly, through the various hyperplanes P until
the pattern covers the entire torus. Then, if A is a collection of bonds and sites,
we may consider the event h(A) that (SN,BN) restricted to A displays this periodic
extension of the pattern b. The indicator for the event h(A) will be denoted by
Xb(Λ).

Our principal usage of reflection symmetry will be the so-called chessboard
estimate for contours:

Lemma 2.3. Let {c^} be a collection of distinct {but possibly overlapping) hyper-
cubes and consider a particular behavioral pattern b( associated with each cube
C{. Then
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Proof. The proof follows exactly the methods of [FL]; see Theorem 2.2 and
Eqs. (1.42) and (1.44) in [FL]. D

The following result from [KS] is useful in conjunction with reflection positivity
to establish the existence of discontinuous transitions:

Lemma 2.4. Let a and b denote two distinctive patterns on a cube c G $~N Let
H be a Hamiltonian that depends on a control parameter, denoted by α, that lies
in the range [aa, α/>] and let {—)N,X denote the Gibbs state on έFN induced by the
Hamiltonian H at parameter value α. Finally let A G (\, 1] and B £[0,l] be such

r / 1 2

that B ^ U + \/5 ~ I and ^et ^ % £ (0, \\ Suppose that for all α G [αα,αj,],

and for all c,c G &N, one has
(0) χa(c)χb(c) = 0,

(1) (la(c) + χb(c))Ka ^ A,

(ϋ) {Uc)to(β))N* ύ B,
and, meanwhile,

(iiia) (χa(c))Koίa > 1 - εa.
and

(iiib)

Further, suppose that the above holds for all N in some sequence 2fc /* T^d• Then
there is a value ott G (αα, α^) and two distinct {infinite volume) Gibbs states {-)",
and {-)b

Λt {characterized, e.g. by the fact that {χa(c))"t ^ 1 - δ and (lb{c))h

at ^
1 — δ, where δ is a particular function of A and B such that δ —> 0 as A —• 1 and
B-+0).

Proof See, e.g. [KS or S]. We remark that the hypotheses (O)-(iii) as stated, in [S]
pertain to actual infinite volume states. Here, since we are assuming that they hold
for the states (—)/v, α a s $~N / 7Ld -> we may rest assured that the desired properties
hold in the various limiting states. Inspecting the proof of Theorem 4 from [KS],

one can ascertain that for A = 1 - η and B = η, the function δ(A, B) ~ J\. D

Proof of Theorem 2.1. In our analysis of the two dimensional Potts model there
are few basic patterns which, in various regions of parameter space, will dominate
the spin/particle configurations. We will define these following events by specifying
the configurations restricted to an arbitrary A C ^\
The empty even-all sites in A are vacant,

/0(Λ) = {nN, σN\n}=Q for all / G A] . (2.12.0)

The disordered event - all sites in A are occupied but all pairs of neighboring spins
disagree,

Id(A) = {nN, σN \nt ~ 1 for al l i G A , Oi^Oj for all i,j G A , \ί — j \ = 1} .

(2.12.d)
The staggered events - the events "A" with all the even sites of A occupied and all
the odd sites of A vacant (cf. Eq. 2.5),

IA{A) = {nN, σN\ni = l z G A, i\ + i2 even, nt = 0;/ G Λ,i\ + i2 odd } , (2.12.A)

and similarly for B with the words even and odd exchanged.
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And finally, the ordered event-all sites in A occupied with all spins aligned,

I0(A) = {nN, σN\rii = l i e A, σf is constant throughout A} . (2.12.0)

As usual, we let χψ(A), Xd(A), XA(A), XB(A), and χo(A) denote the indicators of
the corresponding events.

In the forthcoming discussion, a given state will be characterized by the domi-
nance of one of the above patterns. For the contour analysis, e.g. of a region
of phase coexistence, the patterns of the relevant states are taken for generalized
"ground states" and the remaining ones are considered to be part of contours. More
precisely, let us choose a set Q c {0, d, o,A, B} of labels for the states under
consideration. For a given configuration («#, σ#), we say that the square c is good
if (ric, σc~) G Iq(c) for some </ £ β. The remaining squares are called bad and any
component, Γ, of their union is a contour of the configuration («jv,σ#).

Of course even for a system as simple as the two-dimensional site-diluted Potts
model, there are many possible modes of bad behavior. It turns out that more
efficient estimates are obtained by taking finer characterizations of bad behavior and,
in this case, we have taken things about as far as they can go. With the idea in mind
to use the chessboard estimates of Lemma 2.3, let us define the restricted partition
functions i ^ for a behavioral pattern b via (Xbi ^N))^ = ^ (For simplicity, we
usually omit explicit reference to the various parameters.) It is clear that we need
bounds on several partition functions ^t>- We urge that, rather than poring over the
formal definitions listed below, the reader immediately consults Fig. 2.3.

Lemma 2.5. Consider, for two dimensions, the pattern 0, A, B, d, and o as
described previously. Then we have

1

^ 1 % ) _ i
^ 0 — L 5

Furthermore, we have

where b\ is any of the four patterns on c where a particular corner is the sole
site occupied',

where b^ is any of the four patterns on c where a neighboring pair of sites is
occupied and in alignment while the other two sites are vacant;

lid) ~ e 2 e l e 2 Q1 ->
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Fig. 2.3

Spins in alignment

Spins not aligned

where b^ is any of the four patterns on c where a neighboring pair of sites is
occupied by spin-states in disagreement and the other two sites are vacant;

where oζ is any of the four patterns on c where only one {particular) corner is
vacant and the three occupied sites have their spins aligned,

where b3 is any of the four patterns on c where only one {particular) corner is
vacant and each spin disagrees with its neighbor•;

where b™ is any of the eight patterns on c where only one {particular) corner is
vacant and the central site of the occupied trio is in alignment with one {particular)
neighbor and is in disagreement with the other;

/ l
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where f\ is any one of the four patterns on c where all sites are occupied, a
particular neighboring pair is in alignment, and the other three neighboring pairs
are in disagreement;

ψ
4

where f\ is either of the two patterns on c where all sites are occupied and each
site agrees with one of its neighbors and disagrees with the other\

n
where f^ is any one of the four patterns on c where all sites are occupied
and three sites are in agreement with each other and disagree with the
fourth.

In the above, < indicates that the ratio of the left- and right-hand sides is
bounded by unity in the limit ^ /* Έ? and we use \$~N\ = N2 as notation for
the number of sites in $~N.

Proof The equalities for %£§, ̂ A and Jf'#, 2t'09 as well as the upper bound on
^ d are obvious. The lower bound for 3?d follows from the observation that for
any configuration on the even sublattice, each spin on the odd sublattice enjoys
at least (q - 4) states that are guaranteed to be different from all of its
neighbors.

We will not spell out of all the details for all of the other estimates; each case
can be readily checked. For example, examining the site configuration that leads
to ^Am), it is seen that three quarters of the sites and one half of the neighboring

pairs are present. This gives us a "prefactor" of e*βμN eβκN . Half of these occu-

pied neighboring pairs are in disagreement yielding the factor e~ϊβJ. What remains

amounts to ^- independent sites and j independent (frozen) chains of length N
1

whose joint contribution is no more than qϊN +2". The bound on Jf ^ follows

immediately. The other estimates are obtained in similar fashion. D

Proof of Theorem 2.1. First we observe that the Hamiltonian in Eq. (2.2) is of the
form described in Proposition 2.2 so we may use the chessboard estimates of the
subsequent lemma. We will break our proof into separate proofs for the regions
Rj — Rjy and we will start with RJJ since this case offers the fewest obstacles.

The region R// is the cold temperature region and thus we anticipate that the
dominant configurations on the square will be either 0 or o. To estimate the prob-
ability of other configurations, we will therefore use only 2£$ and, ^ 0 as our de-
nominator in the (single square) chessboard estimate. Evidently, we are anticipating

1 1

that &^2 — 1 and/or if ^ 2 = eβμe2βκ are large compared with "anything else" and
we note that their relative size is determined by μ: the control parameter. Let us
demonstrate explicitly in the case of b3 , the basic calculations for dispensing with
the various patterns. Using the chessboard estimate, the relevant calculation from
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Lemma 2.3, and JΓ ^ if 0 4- «2ΓO, we arrive at

ί~-*pκ

.[1 +
(2.13)

Observe that the term in the square brackets is bounded above by unity independent

of the value of eβμe2βκ. Thus we arrive at (xb(d)(c))JJf < qie~βJe~^K.

Let us recall that J > K and define the region RJJ by the condition

Rn: q^e-l2βκ £ au , (2.14)

where an is a small number that we will specify shortly. Evidently, throughout Rn,

we have {Xdd){c))Jff < aπ. Similar estimates can be performed for all the quan-

tities with the results that the probabilities for observing examples of the patterns

b\, &2 ' ^3 a n d fi o n m e un^ square are all (asymptotically) bounded above by

an, the probabilities for observing examples of the patterns A,B,b^ or f\ by a2

π,

the probabilities for f\ and b™ by a\, and that of d by aπ.
Thus, for aπ sufficiently small-which here simply means β large-we have

verified (i) of Lemma 2.4. (We note that the multiplicity of each pattern must be
taken into account in order to perform an honest calculation of an.) Clearly (0) is
satisfied and, along any line of constant β in Rπ, (iiia) and (iiib) are satisfied for
±μ sufficiently large. The remaining issue is therefore (ii), and here we get into
the contour estimates.

Suppose that Io(c) and I$(c) both occur with c=j=c. Let us consider, e.g. the
connected component of "ordered sites" that contains c. The boundary of this re-
gion may be defined, on the dual lattice, by drawing a bond between all pairs of
neighboring sites that have one member in the region and the other member out. It
is clear that these bonds form closed loops and, furthermore, a moment's thought
reveals that the endpoints of these bonds always reside in the middle of bad squares.
Thus (for an small) we can use the chessboard estimate to show that the probability
of a contour goes to zero exponentially fast in its length. When we have both I0(c)
and Iφ(c) in the same configuration, there must be either a contour "surrounding"
one or the other region or there must be a long contour (i.e. of length exceeding
N) which wraps around the torus and separates the two squares. In any case, we
may now use the standard (Ising type) Peierls estimate to establish condition (ii)
in Lemma 2.4.

Thus, for any β satisfying the condition in Eq. (2.14)-with ajj sufficiently small
-the conclusions of Lemma 2.4 hold with μ serving as the parameter α. For such
a fixed β, let μt be any value of the parameter from Lemma 2.4 at which phase
coexistence occurs and let (—)dβμt and (~)°βμt denote the associated coexisting states.
Below we show that, in fact, the point μt is uniquely determined. Observe that in
the states (~)dβμt and {—)°βμt we have

')L > 1 - * (2-15)
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a n d

(Xo(c))°β,μt > l - δ , (2.16)

for all c and with a "small" δ = δ(aπ,q). It therefore follows that, for any /, one
has

(n,)U < δ (2.17)

and

(nι)lμt > l - δ . (2.18)

Since the density is a thermodynamic observable (i.e., it may be obtained via a
derivative of the free energy), it follows from the standard convexity arguments that,
in any limiting Gibbs state corresponding to (β,μ) with μ > μt, the density exceeds
1 — δ (and hence χj has a small average value). Similarly, in any Gibbs state
corresponding to μ < μu the density is less than δ (and χo has small average). Thus,
we may unambiguously define the old μt as μn(β), the unique point of coexistence
of high and low density states along the associated isotherm. Construction of the q
individual magnetized states for μ ^ μπ(β) follows from standard procedure, e.g.
as in Theorem 2 of [KS].

We now show that μπ(β) enjoys certain monotonicity property, namely, that
βμn(β) is monotone in β. Let β\ > β2 and let μ < μπ(β\); we will show that
βiμ < β2μπ(β2) To this end, let (—)*βf , denote any limit of the torus states

(—}ĵ lβfK Using the same convexity-type arguments, it is clear that if we decrease β

while keeping βμ fixed, the average of nιΠj(δσhσj — 1) + jΠiΠj will only decrease.

Explicitly, for all neighboring pairs (i,j), we have

(mnjiδ^ - 1) + ηΠiΠjY L S {mπjiδ^ - 1) + -ntrij)}^ . (2.19)

Neglecting the non-positive term on the right-hand side and using πι ^ wz «y, we
may replace the upper bound with <5-£, since μ < μπ(β\). Thus the left-hand side
is "small" and we claim (for δ sufficiently small) that this implies that the density
(«/)* β is also small. The claim follows from the fact that for any (β, μ) £ RJJ,

the quantities (niΠj(δσiiσj — l ) ) j^ and (^(1 —nj))*βμ are uniformly small - indeed,
the fact that ΠiΠj(δσιtσ — 1) = 1 or rii{\ — πj) — 1 forces the indicator of some bad
square to be one. Hence, we may write

(n,)^ < cS (2.20)

with c a constant of order of unity. From this it follows (for sufficiently small δ
one has cδ < 1 — δ) that

βiμ <βiμπ(βi), (2.21)

which is the desired statement.
Finally, we will show that μπ(β) is continuous, and hence that there is a con-

tinuous phase boundary. Suppose that μ > μπ(β). It follows from the above mono-
tonicity that for any β' > β, in any Gibbs state {—)%μ the particle density exceeds
1 — δ. However, this means (see, e.g. [G], Theorem 4.23) that we may construct
a limiting Gibbs state (—)% , for which the density is also at least as large as
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1 — δ. This in turn implies that μ ^ μjj(βf), and hence that μπ{β) is lower semi-
continuous. Upper semicontinuity of μπ(β) follows from an essentially identical
argument.

Next, we turn attention to Rj where the dominant patterns are expected to be
d and o. The control parameter is, as expected, qe~2^J (i.e. if this is small, o
dominates and if it is large, d dominates). It turns out that the small quantity that

defines Ri is q~^ e~ ̂ μ e~ ̂ κ \ we define

Ri : q\e-τ*μe ^βκ S aj (2.22)

with aj sufficiently small as later requirements will dictate. Unlike the previous

case, here we will also require q itself to be large (actually q*, cf. below), in

particular so that the control parameter can swing from large to small. In Rj, the

principal culprits are the b^ pattern, the probability of whose appearance on c is

bounded by aj, and f\ and / ^ , each of which gets a factor of q~ϊ. All the other

patterns lead to bounds involving higher powers of aj and/or q~*. For possible
future reference, we will tabulate the results. We obtain 0 : a*q~ι; A and B: aj;

bλ : a]q~Xϊ\ b{

2°
} : a]q~\\ b{d) : cήq-*; b{

3

o) and b[m) : aiq-* and finally f\ : q-\.
We will apply Lemma 2.4 along curves where βμ + 2βκ is constant; clearly these
curves partition the region 7?/, so it is fully covered. We will denote the latter
quantity by ω. Evidently, along each curve of constant ω (sufficiently large), we can
find a βt and a pair of coexisting states, (~)dβt μ and {—)°βtμ with, e.g., (χo)

dβt μ S δ
and (χo)°βtμ ^ 1 — <5. The argument will run in pretty much the same fashion as
for RJI, except in this case, the "thermodynamic" variables are somewhat artificial.
Writing the Hamiltonian in terms of the parameters ω and β, it is evident that, along
curves of constant ω, the quantity X corresponding to ^i Σ//7\[^^y(^σz,σy — 1)+
jj(rii(\ — tij) -f rij{\ —«/))] is conjugate to the parameter β. We will now argue
that this quantity takes a jump at β = βt. Indeed, in both states, the average of
rii(\ —Πj) is small and thus, as is fairly easily seen,

βuμ^-cxδ, (2.23)

while

(X)d

βt9μ ^~(l-c2δ) (2.24)

with c\ and c2 (positive) constants of order unity. Thus, in all Gibbs states with the
same ω and β > βf (β < β'), the mean values of X are not smaller than —c\δ (not
greater than - ( 1 - c2δ)). Since, throughout Rj, the mean of ^(1 — nj) is uniformly

small, for those states that emerge as limits of (—)^o' , only one large jump of the
mean of X is possible. This defines, unambiguously, βi(ω). By the above reasoning,
it is easy to see that whenever β < β/(cυ), no state with parameters β, ω can have
an appreciable average value of χ0 and for β > βj(ω) no state has an appreciable
value of χj.

Let us now express our phase plane coordinates in terms of ω and η = βμ, and
write our function as ηi(ω). (Explicitly: ηi(co) = ω — 2βj(ω)κ.) Following iden-
tically the (more physically appealing) arguments of RJJ, it is clear that rji(ω) is
monotone increasing and, finally, continuous.
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Let us now dispense with the region RIΠ. Our definition of the region is given
by

RIU : qie~βJ ^ gm and q-ϊe-*βμ ^ am (2.25)

with am and gm sufficiently small numbers.
The dominant patterns are anticipated to be o or A/B and hence the control

parameter, "α" is 0 = q~ϊe2βμe2βκ. In Rm, we obtain the following bounds on

the probability of observing the stated patterns: 0 : ajπ; d : g2

IΠ; b\ : am; oγ :

q 4 5 and j j '• QJJJQ ^

Clearly, 0> can take on large values in Rm since it is infinite on the βμ = oo
boundary of the region. This (re)proves the existence of ordered phases in RΠI.
To establish the existence of staggered phases, it must be shown that 0 can take
on small values in Rm. Indeed, placing ourselves in the farthest corner of Rm :

q2eβ°J — auι and q~Άe~~^μ^ — am, we

q V - (2.26)
aiii) \giiij

Using, in this last step, the condition that K < J, we see that for very large q,
there is a staggered phase in Rm. Actually, for the purposes of our subsequent
discussion, it is assumed that q is large enough to ensure that staggered phases
exist in a neighborhood of (/?o,μo)

Let us begin our analysis of the phase boundary by discussing the behavior

along the curve q~^e~^μ = am- By applying Proposition 2.4, there is a point

βt,μt on this curve at which there coexist Gibbs states (—)°βt μt and {~)Sβtμt,S =A9B

characterized, e.g. by the fact that (χo(c))°βt μt ^ I — δ and (χs(c))Sβ( ^ 1 - δ.

We now claim that (βt,μt) divides this curve into a staggered and ferromagnetic
portion. Indeed, for all (β,μ) G Rm, the quantity ^(δσ^σj — l)«z w7 + ΠiΠj -which is
conjugate to β along the curves of constant fugacity = eβμ - is uniformly larger than
a small negative number. Note that along any curve of constant fugacity, the mean
value of this quantity can only increase as the temperature is lowered. Thus if
βμ = βtμt with β > βt, the preceding implies that (in any limiting state that comes
from the torus) wz «7 has a mean that is close to unity and thus we are in an ordered
phase. A similar statement holds if β < βt. It is noted that, on the basis of proviso
following Eq. (2.26), βt > β0.

Let us now investigate the behavior along isotherms that lie in RIΠ. To facilitate
our analysis, we may again consider the particle density. It is clear that if β ^ βt,
then for all μ (with (β,μ) € Rm), the particle density in any Gibbs state is close to
unity. This rules out the possibility of a state with an appreciable average value of
either of the staggered order parameters and, further demonstrates the existence of
states in which the average of χo(c) is close to unity. On the other hand, if β < βt,
we first reemphasize that at μ = μoγ (i.e. along the bottom boundary of Rm) the
average of (XA(C) + Xβ(c))*βμ is close to one in any state (—}*βμ, which is a limit
of torus states (—)^, . Thus, using Proposition 2.4, we can find a μt such that at
(β,μt), staggered states and ordered states (with order parameters close to unity)
coexist.
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For μ > μu the reasoning is identical to the analysis of the isotherms with β ^
βt. Furthermore, it is not difficult to see that if μ < μt, there cannot exist any Gibbs
states in which the average of χo is close to unity. This permits us to unambiguously
define a function μm{β) (βo ^ β < βt) Nevertheless, it still remains to be shown
that for (μ, β) with μ < μm(β) there exists staggered states with order parameter
close to unity. Although these sorts of arguments are standard, here the result can
be achieved by conditioning on a single square: Observe that in the staggered states
at (β,μjjj(β)), the particle density is not appreciably larger than | . It follows that

in any limiting state of (—}jfβK with μ < μm(β), the average of χo(c) is also not

much larger than ^: indeed, if {ij) is in c,

y (r) < n n < ~(n 4- n Λ (2 27Ϊ

and the average of |(«/ + ttj) (in any limiting torus state) cannot exceed the density

in, e.g. the state (—}Sβμ («)• Since, in R/jj, the sum χ0 + χA 4- χB has average close

to unity and (χA(c))J^T = {XB{C))J^, it follows that

lim inf (χA(c))J

N

μ

β

κ ^ g (2.28)

with g ~ \ for every square c on the torus. Next, for any sequence c^ located at
distance at least N/2 from the origin, we will consider the conditional measures
(-\χA(cN) = l ) ^ ' " 7 . If c is a fixed square, we may write

_ i \J,μ,κ _
J,μ,κ

1
(XA(C)\XA(CN) = \)J

N

μf = 1 - ( Σ χb(c)\χA(cN) = 1 ) ^ 1 - -δ (2.29)
\b*A I Nφ 9

uniformly in TV, for N sufficiently large. Restricting the measures on the left-hand
side to any sequence V^ centered at origin and of the diameter less than y, the
existence of the desired staggered states is established.

Finally, mimicking the argument used along the line βμ — βoμo, it is immedi-
ately clear that μm(β) is monotone decreasing in β\ continuity of this function is
established by following the reasoning used for μπ(β) in R/j.

Let us now derive conditions that ensure complete analyticity. We will consider
a one site system with a boundary condition B as provided by the state of its
four neighbors. We will denote this state by PB(-) and abbreviate its argument by
0,1,... q. If B' is a boundary condition that differs from B at just one boundary site,
it is sufficient, by [DS], to demonstrate that

md^Y^m^pBik) - ρBι{k)\ < - . (2.30)
B k B' 4

It is straightforward to show that the above is always small provided that qeβμe4fjκ or
q\\ — e±βJ\ is small. We will illustrate this in the case where an occupied boundary
spin changes from the state 1 to the state 2. Let us define the normalization, in the
obvious fashion, so that the weight of the empty state is always one. Comparing the
weights, (wβ(0),w5(l),...w5(g)), before and (wB/(0), wB/{\\... wBt(q))9 after the
change, we see that wB(0) = wB(0),wBf(l) = wB(l)e~βJ,wBt(2) = wB(2)e+βJ and
wBr(k) for all k > 2. Thus, there is little effect if either βJ is small or the w(fc)'s
themselves are small for A: > 0. Since, for k > 0, the w(A:)'s are bounded above by
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eβμe4βκ^ m j s j s e a s ϋ y implied in the region

RIV : qe^e4^ ^ aIV or q{\ - e~βJ) ^ gIV , (2.31)

with giv and ajy sufficiently small numbers. The other required changes in other
states are similarly seen to be sufficiently small in the region Rjy.

All the features in the statement of this theorem (but not all the features of
interest) have now been covered and we are finally finished. •

Remark. The endpoints of the order-disorder boundaries are well understood. In par-
ticular, at β — oo, there is (trivially) a transition at μ — —2κ. With some additional
effort [M, Z] at μ = oc, it can be shown that for large q, there is a βt(q) satisfying
qe~

2βtJ — i _|_ O(-) which is the unique point for order/disorder coexistence (and
no other phases present). On the basis of these facts, we can prove:

Corollary. In both the temperature and chemical potential variables, the staggered
phases are reentrant.

Proof. For the case of the temperature parameter, all we have to do is show that
the "small ^ " regime of Rm intersects the line μ = -2/c. Let us place ourselves

at the right boundary of RjΠ : q2e~βJ = gΠI and show that the intersection of this
boundary with the above-mentioned line takes place in RJJJ. To do this, all that we

need to do is demonstrate that here, q^e^μ is large; having done this, we will then
have automatically demonstrated 2P is small (since μ = —2κ). Now at this point in

the phase plane, it is easily seen that q^e^μ — g}J q^ι~^. In light of Eq. (2.26),
this is indeed small.

For the case of the fugacity parameter, the definition of Rm precludes the above
sort of result. However in our estimates we had to allow for the possibility that &
was large or small. All of the patterns that require qe~2^J small-the disordered
patterns - have additional (hidden) factors of 8P which we can now bring into play.

Let us therefore make the alternative assumptions that qϊe~$J ^ g with g>\ and

0> itself sufficiently small. We will still assume that q~^e~^μ g am so there are

only three calculations that need to be redone, the results of which are b^ : gSPϊ

b^ : ajπg^; and, obviously, the disordered pattern d which enjoys the bound of

g2^. Now, all we need to do is show that the region where 3P is small (or, to

be more precise, ^ 2 is small) and the region q~^e~^μ ^ am intersects the line

qie-βJ — g ~ 1. However, if we go to the "corner" we find that the calculation

for 0* is the same as the one leading to Eq. (2.26) with gm replaced by g. This is

indeed small enough. D

3. Staggered Phases in an Extended Class of Site Diluted Models

In this section we will prove the existence of staggered phases for a general class of
nearest neighbor site diluted models on 7Ld. Our results will be sufficiently general to
preclude the global results for the whole of the phase diagram that were featured in
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the preceding section. Indeed, here we will treat systems in which a low temperature
phase may be absent altogether.

Here we assume that the formal Hamiltonian for the uniform system takes the
form

Hu = -ΣΆ<Γi,σf) (3.1)
(ι,j)

with σ; e {l,...,q} and J(σ z,σ7) = J(σ 7 ,σz ) ^ 0.
The annealed site-diluted Hamiltonian on the torus 3ΓN takes the form

HN(nN,σN) = - Σ niΠjJiσ,,σy) - μΣnι ~ κ Σ ninj > ( 3 2 )
(Uj) i (U)

where μ,κ, and the «Z(G {0,1}) play the same roles as their counterparts in Sect. 2.
In these models, we will not require that the a priori weights, (w(l),...,w(g)),
that determine the single spin distribution, are all equal. (However, to maintain
continuity with what has preceded, we shall assume that the weights sum to q.)

Thus, the partition function on 3ΓN is given by

^N,β= Σ Σ e*p{-βHN(nN,σN)} Π "/(*,•) (3-3)

As was the case in the two-dimensional Potts models, the problems of merit
typically have K ̂  0. Nevertheless, we can incorporate the cases K < 0 with little
enough effort. The principal "small parameter" in the problem is the quantity

s(β) = maxwiiσ^Σ^Λ^e-^^ (3.4)
{}

To prove staggered order for K > 0 (but not terribly large) our basic require-
ments are that q is large, and that s is small relative to q. A glance at Eq. (3.4)
shows that the condition s <C q is the statement that for an interacting pair of spins,
not all the spin space is taken up by the lowest energy states. For K < 0, there is
always staggered order at sufficiently low temperature (cf. Example 2 below).

Our result can now be formulated precisely:

Theorem 3.1. Let HN denote the Hamiltonian in Equation (3.2) and suppose there
is an inverse temperature β* and an ε ̂  1 such that at β — β* the following two
conditions holds:

(i) s(β*)^qε,
while

(ii) qv-ε)e-
Dβ*κ > p

with P a fixed sufficiently large number and

f 1 if K < 0 ,
U ~ \ d if κ^0.

Then there is a region R, which includes a neighborhood of the point (β,μ) =

(β*,- \Dκ+ ^ηβ1]) , such that for all (β,μ) in R, the set of infinite volume

extremal Gibbs states corresponding to the Hamiltonian HM with these parameters

contains {at least) two extremal elements (—}ίμ and (—)?„• These states are
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characterized by distinctive staggered orderίngs: in particular, in the AIB state,
the even/odd sublattice has an occupation density in excess of the odd/even
sublattice.

Examples.

(1) Generalized q-state ferromagnet.
Let Eq C 1RV for some v ^ q be a discrete set containing q points which, without

loss of generality, satisfies |σ| < 1 for all σ G Eq. The generalized g-state ferromag-
nets may be constructed by writing J(σ z, af) = β{σt σ}• — 1) with # ^ 0. Further,
letting h G IRV to denote the "external field", we may write

w(σ) oc ehσ . (3.5)

Then, if q is sufficiently large, it is possible to find a κ0 > 0 and ho > 0 such
that for all K and h with /c < ?co and ||A|| < ho, the conditions of Theorem 3.2 are
satisfied.

(2) Any q-state spin system with K < 0.
Consider any Hamiltonian of the form of Eq. (3.2) with K < 0. The condition

is satisfied for ε = 1 and β sufficiently large.

Remark. Observe that for the Potts models, s = (1 + (q — l)e~PJ). Thus (i) and (ii)
cannot both be satisfied unless J ^ dK. However, in the two-dimensional analysis
all that was required was J > K (and q correspondingly large). Thus, clearly, we are
working with a condition that is stronger than optimal. To obtain better conditions
on s (e.g. replacing s by sd in (ii)) would require the detailed classification of all
modes of "bad behavior" on a hypercube as in Lemma 2.5. This is an arduous task
for the general case in d ^ 3. However, in any particular case, the details can be
worked out with enough effort.

To prove Theorem 3.1, we again examine all possible behaviors on a (hyper)
cube c. Our principal goal will be to establish that, in a certain range of parameters,
the (staggered) patterns A and B are dominant.

The following estimates will form the core of our analysis.

Lemma 3.2. Let nc denote the occupation pattern restricted to the cube c and
Xnc(nN,σN) be the indicator for the event that nc is the occupation pattern on c.
Let E denote the number of bonds {"edges") in the configuration nc\

$ — #{ pairs (ij) G c nι =

let 5£ denote the number of (locked) sites that participate in the formation of
bonds

(£ — #{ sites i G c\rii = 1, there exists j G c, \i — j \ = 1,«7 = 1} ,

and % the number of unencumbered sites

% = #{ sites i G c\rii = 1, w7 = 0 for all j G c with \i - j \ = 1} .
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Then

where ( — ) ^ denotes the torus Gίbbs state for the Hamiltonian in Eq. (3.2) and

the symbol < has the same meaning as in the statement of Lemma 2.5.

Proof It is noted that the H^ are of the form described in Proposition 2.2 so we
may freely use the arsenal of RP techniques. According to the chessboard estimates
of Lemma 2.3, it is clear that we must estimate the constrained partition functions

First observe that each free site in the periodic continuation of nc gives rise
to a factor of qεβμ and there are exactly (tf//2d)Nd such sites. This accounts for

the factor of (jfe*βμφ. Similarly, there are a total of (^/2d)Nd locked sites

which gives us the factor of {e^βμ) id. Next, it is seen that each of the E bonds
in nc produces 2 x i bonds in the repeated pattern - the factor of two from the

reflections orthogonal to the original bond-for a grand total of e2Eβκ.
As for what remains, we denote by ^«C(W) the graph that is obtained from the

periodic extension of nc over 7V (The bonds of @nc(N) are, of course, all of the
nearest neighbor pairs in gnc(N).) Let H^c denote the "uniform" Hamiltonian

σ;). (3-6)

We will now estimate the trace of e~βHN . We claim that

Ίxe-^ ^(qlsf'\{s)^fd (3.7)

from which the stated bound follows immediately.
To derive the inequality in Eq. (3.7), recall the stipulation J{σ^σj) ^ 0; for an

upper bound, this allows us to delete any interactions and perform a less restrictive
trace. We will use this fact to prove the following (slightly) general result:

Let ^ denote any connected graph with | ^ | sites and let H^ denote a Hamilto-
nian that is of the form of Eq. (3.6) with ^nc(N) replaced by <&. We claim that

Tre-*"* ^ qsW-1 . (3.8)

The proof follows by induction. Equation (3.8) is obviously true if | ^ | = 2. Suppose
that it has been established for any connected graph of size | ^ | = k — 1. In adding
the kth site, let us delete all but one of the bonds that attach the new site to the
old graph. Freezing the spin configuration on the old graph and performing the
partial trace over the new spin, we obtain a multiplicative factor - that is clearly no
larger than s - times the weight of the frozen state according to the old Hamiltonian.
Bounding the multiplicative factor above by s, the stated claim is established.

Equation (3.7) now follows from the observation that &nc(N) can have no more
than Nd~ι components and applying the preceding claim to each component. The
desired result is now established. D

Proof of Theorem 3.1. Clearly, the main task will be to demonstrate that somewhere
in the (j8,μ) plane, ( χ « c ) ^ is small for all nc except the staggered patterns A and B.
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We claim that at the value (β*,μ*) with β* the inverse temperature from hypothesis

(i) and μ* = - \ϋκ + ^ 1 , the inequality

(Xnc)
K

N

μ

β ύ P~^ (3.9)

holds unless nc = A or B. Indeed, estimating JΓ^l ^ qϊe^μ, we write

nupuβμplβμj 2Eβκ

(Xnc)Z * q \ \*e-V , (3.10)
qie2

?μ

where u = ύUj2d and / = S£j2d are the fractions of unencumbered and locked sites.
Next we observe that

The lower bound is trivial. As for the upper bound, notice that each site in c is
contained in d bonds of c. From each locked site, let us place an outward pointing
arrow along all the d bonds of c that are attached to the site. The $ "bonds" of nc

are just those (lattice) bonds that are double covered. There cannot be more than
| such doubles and this is the upper bound in Eq. (3.11).

Thus, in Eq. (3.10), we may replace S with § <£ if K ^ 0 or \S£ if K < 0. In
short

I u uβμ Iβμ lDβκ

(Ύ ) κ ' μ < q n\iλ

Here D was defined in the statement of the theorem.
Setting β = β*, we may replace s by qε. By definition

<feP*f<PFK = \, (3.13)

and so

(χnc) S q-ίτ-«)e-U-u)β*μ* ^ {qeβ*μ*y¥ , (3.14)

where the last inequality is the worst case scenario. (Namely, u differs from \ by
the absence of a single particle.) Finally, we use Eq. (3.13) and the condition (ii)
to establish that (z«c(^ίv)) is indeed small.

Thus, if P is sufficiently large, the cubes bearing A or B dominate and contours
separating A and B regions are suppressed. The existence of two distinct staggered
phases A and B is established by the same argument as in the proof of Theorem
2.1 (cf. Eqs. (2.28) and (2.29)). D

4. Bond Aggregation and Site Aggregation

In this final section, we treat the bond and site aggregation transitions that were
advertised in the introduction. Both of these transitions are reminiscent of the transi-
tion in RJI that was analyzed in Theorem 2.1 -indeed in the case of site aggregation,
what we will prove is exactly the generalization of Theorem 2.1 part (ii). In both
the bond and site problems, we will require very little: in each case, we will make
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some mild assumptions concerning the low energy behavior of the uniform sys-
tem. These assumptions are satisfied in all the familiar spin models, e.g. the g-state
ferromagnets in the first example following the statement of Theorem 3.1. For the
bond-dilute models we will require large q (i.e. the phenomenon is entropy driven)
but, of course, for the site diluted case this is not necessary.

Throughout this section, the uniform Hamiltonian will take the form of Eq. (3.1)
with weights (w(l),..., w(q)) that sum to q. The site-diluted models will therefore
be exactly of the form in Eq. (3.2) and the bond-diluted models will be of the form
in Eq. (1.2a) with spin couplings as described in Eq. (3.1) and

__ Γ λ if / and j are neighbors , ,* ,
ιJ 10 otherwise . K '

For the bond-dilute case, let us formulate our conditions about the Hamiltonian
Hu from Eq. (3.1). Recall the definition of s(β) (cf. Eq. (3.4)) and let ζ(β) denote
the (undiluted) partition function per site:

ζ(β) = lim ( i ^ ; u n i f Φ . (4.2)

We will suppose that there is a β ^ oo and positive numbers ε and ε' with ε -f- d <
±s such that

s(β) g q£ (4.3a)

and
ζ(β) ^ q-ε> . (4.3b)

If the above holds at β = oo, then it also holds for β sufficiently large.
We now state

Theorem 4.1. Consider the bond-diluted Hamiltonian as described above and sup-

pose that β is such that the conditions (4.3) hold. Then there is a value of bond

"chemical potential" λ = λ(β) such that two distinct phases (—)5; and {—)Fβλ co-

exist. The state (—}®λ is characterized by a low density of bonds while in (—)^λ,

bonds are occupied with high probability.

Proof We will show that if q is large enough, then at inverse temperature β,
along the entire isotherm, the only behaviors that are observed with any appreciable
probability on cubes c £ 3ΓN "full" and "empty."

We start by noting that the considered bond-diluted Hamiltonian on a
J-dimensional torus &Ή is RP.

Let mc = {nij\i,j G c} be a bond pattern on a cube c. The principal cases,
mc—F (full) and mc — 0 (empty) give rise to constrained partition functions ^F
and if 0 that satisfy

Sf = q (4.4)

and

Zf >ζ(β)edβλ ^ q-ε'e2dβλ . (4.5)

Let B denote the number of bonds in the pattern mc, °U denote the number of sites
in c that do not belong to any bond of mc and, finally, let i f = 2d - °lί. By the
chessboard estimate and the argument in Lemma 3.2 leading to the bound (3.8), it
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is not hard to see that

(χmc)kβ
[qNd +(q

where χmc is the indicator for the event mc and (—)## is the Gibbs state on J^v fc>r

the considered bond-diluted Hamiltonian. We choose the control parameter ("α")
to be M = q~ε edβAlq so that, as λ —• ±00, the empty/full configurations dominate.
Writing the terms in the numerator and denominator in terms of q and ^ , we obtain

For m c φ F or 0 we have B < dld~x and the factor involving 0ί is uniformly
bounded by one. We may also, with certain inefficiency, replace the coefficients of
ε and ε' by unity. We now claim that for C/ΦO or 2d, one has ^ + U < 2d. This
would easily follow from the (strict) inequality that B < | Z unless L = 0 or 2^.
However, supposing that B = |Z, and L > 0, then it must be the case that each
site attached to any bond is in fact attached to all d possible bonds in c emanating
from it. But this would, necessarily, cover all of c.

Thus, for the cases of relevance, we may claim

9 /? 1

— + % < 2d - - , (4.8)
d d

and hence
(χmcYκβ £ q ^ ' - ^ . (4.9)

Thus, for ε and &' as stated and q sufficiently large, using the routine contour
argument, we may plug directly into Lemma 2.4 and the result is established. D

In the site diluted case, we will need no assumption concerning the value of
s(β)-\\\ε obvious bound s(β) < q2 is sufficient. However, we will require that the
low temperature behavior of the uniform system is not too badly frustrated. Namely,
we will suppose that there is a constant A < ψ and a β* < 00 such that

COS) ^ e~βA (4.10)

for all β > β*. We reemphasize that in all of the usual problems, the condition
(4.10) is satisfied with Δ = 0.

Theorem 4.2. Consider the site-diluted Hamίltonians with K > 0 and suppose that
the condition (4.10) holds. Then there is a value μ*(β) at which two phases, "fulF
and "empty" coexist.

Proof. It is sufficient, by the previous arguments to establish that (χnc}
JjfβK <C 1,

unless nc is full or empty, uniformly in μ. For K > 0 this will be shown for all β
sufficiently large. By the standard estimates, we may bound

( ) t κ * ^ } (4Π)
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After some manipulations on the right-hand side,

We will immediately write / + u ^ 1, which allows us to get rid of the fraction

and to replace the first term by eΔK Next, we claim that for nc not full or empty,

d{^ + $ί) — 2S ^ 1. Indeed, this is basically the same argument that was used in

Theorem 4.1. Namely, if S = S£ = 0, we must have % ^ 1. Otherwise, for i f < 2d

we have IS < d$£, i.e. IS S d<£ - 1. Putting these facts together, we arrive at

{lnc)fβ ύ q"Je-β[%-A] -+ 0 as β -+ oo . (4.13)

If Eq. (4.13) is taken in conjunction with the previous arguments, then for all β

sufficiently large, phase coexistence at some μ*(β) is established. D

Acknowledgement. The authors would like to thank Roland Dobrushin for the tip that the oo >
μ ^> 1 region of the site diluted Potts models were accessible by these techniques.

References

[CKS] Chayes, L., Kotecky, R., Shlosman, S.B.: Research in Progress.
[D] Dobrushin, R.L.: Problem of Uniqueness of a Gibbs Random Field and Phase Transi-

tions. Funkts. Anal. Prilozh 2, 44-57 (1968)
[DS] Dobrushin, R.L., Shlosman, S.B.: Completely Analytical Gibbs Fields. Statistical Physics

and Dynamical Systems, Progress in Physics, v.10, Edited by Jaffe, A., Fritz, J., Szasz,
D., Boston, Basel, Stuttgart, Birkhauser, 1985

[EG] Essam, J.W., Garelick, H.: Critical Behavior of a Soluble Model of Dilute Ferromag-
netism. Proc. Phys. Soc. 92, 136-149 (1967)

[F] Fisher, M.E.: Renormalization of Critical Exponents by Hidden Variables. Phys. Rev.
176, 257-272 (1968)

[FL] Frόhlich, J., Lieb, E.H.: Phase Transitions in Anisotropic Lattice Spin Systems. Com-
mun. Math. Phys. 60, 233-267 (1978)

[FILS I] Frόhlich, J., Israel, R., Lieb, E.H., Simon, B.: Phase Transitions and Reflection Posi-
tivity. I. Commun. Math. Phys. 62, 1-34 (1978)

[FILS III] Frόhlich, J., Israel, R., Lieb, E.H., Simon, B.: Phase Transitions and Reflection Posi-
tivity. III. In preparation

[FSS] Frόhlich, J., Simon, B., Spencer, T.: Infra-red Bounds, Phase Transitions and Continuous
Symmetry Breaking. Commun. Math. Phys. 50, 79-95 (1976)

[FSS] Hoston, W., Berker, A.N.: Dimensionality Effects on the Multicritical Phase Diagrams
of the Blume-Emery-Griffiths Model with Repulsive Biquadratic Couplings: Mean-field
and Renormalization Group Studies. J. Appl. Phys. 70, 6101-6103 (1991)

[KS] Kotecky, R., Shlosman, S.B.: First-Order Phase Transitions in Large Entropy Lattice
Models. Commun. Math. Phys. 83, 493-515 (1982)

[M] Martirosian, D.H.: Translation Invariant Gibbs States in g-state Potts Model. Commun.
Math. Phys. 105, 281-290 (1986)

[MS] Minlos, R.A., Sinai, Y.A.: The Phenomenon of "Phase Separation" at Low Temperature
in Some Lattice Gas Models I. Mat. Sb. Phys. 73, 375-488 (1967)

[NBRS] Nienhuis, B., Berker, A.N., Riedel, E.K., Schick, M.: First- and Second-Order Phase
Transitions in Potts Models Renormalization-Group Solution. Phys. Rev. Lett. 43,
737-740 (1979)

[RL] Runels, L.K., Lebowitz, J.L.: Phase Transitions of a Multicomponent Widom-
Rowlinson Model. J. Math. Phys. 15, 1712-1717 (1974)



232 L. Chayes, R. Kotecky, S.B. Shlosman

[S] Shlosman, S.B.: The Method of Reflection Positivity in the Mathematical Theory of
First-Order Phase Transitions. Russ. Math. Surv. 41:3, 83-134 (1986)

[St] Stinchcombe, R.B.: Dilute Magnetism. Phase Transitions and Critical Phenomena
Vol. 7, Edited by Domb, C, Lebowitz, J.L., London: Academic Press Inc., 1983

[SW] Sarbach, S., Wu, F.Y.: Z Phys. B44, 309 (1981)
[SM] Syozi, I., Miyazima, S.: Prog. Theor. Phys. 36, 1803 (1966)
[ST] Southern, B.W., Thorpe, M.F.: J. Phys. C12, 5351 (1979)

[Z] Zahradnik, M.: An Alternate Version of Pirogov-Sinai Theory. Commun. Math. Phys.
93, 559-581 (1984)

Communicated by Ya. G. Sinai




