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Abstract: We study the spectral theory of the fourth-order eigenvalue problem

[a(x)u"(x)]" = λp(x)u(x\ -oo < JC < oo ,

where the functions a and p are periodic and strictly positive. This equation models
the transverse vibrations of a thin straight (periodic) beam whose physical charac-
teristics are described by a and p.

We examine the structure of the spectrum establishing the fact that the periodic
and antiperiodic eigenvalues are the endpoints of the spectral bands. We also intro-
duce an entire function, which we denote by E(λ), connected to the spectral theory,
whose zeros (at least the ones of odd multiplicity) are shown to lie on the negative
real axis, where they define a collection of "pseudogaps." Next we prove some
inverse results in the spirit of two old theorems of Borg for the Hill's equation. We
finish with a "determinant formula" (i.e. a multiplicative trace formula) and some
comments on its role in the formulation of the general inverse problem.

1. Introduction

The Euler-Bernoulli equation for the free undamped infinitesimal transverse vibra-
tions of a thin, straight beam can be written as (see [T-Y] or [G])

[a(x)u"(x)]'f = λp(x)u(x),

where u is the deflection of the beam and the positive functions a and p correspond
to physical characteristics of the beam.

Mathematically speaking, the Euler-Bernoulli equation (together with appropri-
ate boundary conditions) is a fourth-order eigenvalue problem. In contrast with the
second-order case, works on fourth-order problems appear sparsely in the literature.
Joyce McLaughlin (see [Me] or [G]; also [B] for some relevant results) has solved
an inverse problem, where the beam equation is considered on a finite interval with
certain separated boundary conditions. A variant of this problem was recently solved
by V.A. Yurko (see [Yl]).
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This work is concentrated on the periodic case, namely

(au")n = λpu, a(x + b) = a(x% p(x + b) = p(x), -oo < x < oo . (1)

Notice that a and p are assumed twice continuously differentiable and strictly pos-
itive. Without loss of generality we impose the following normalizations:

b Γo(χ\

o L"W

Elastic structures consisting of many thin elements arranged periodically are
common in applications. Although there are some authors that have studied such
problems numerically (see for example [M]), as far as we know, nobody has studied
(1) theoretically.

Our goal here is to understand the spectral theory of (1) and to start developing a
feeling of how to formulate the inverse problem. For its second-order analog, namely
the Hill's equation, the corresponding literature is huge. Also, there are many known
results for the general linear ordinary differential equation with periodic coefficients
(see for example [D-S], Sect. XIII.7, p. 1486-1498), but, as it will be demonstrated
in this work, (1) possesses many properties which are not present in the general
case, thus deserves special attention.

It is well known that (1) is a self-adjoint problem with no boundary conditions
at ±oo (see for example [C-L], Chap. 7, Exer. 11, or [D-S] Sect. XIIL6, Th. 35).
It follows that the spectrum of (1), which from now on we will denote by 5(α,p),
is a subset of the real numbers. Due to the periodicity (see [D-S], Sect. XIII.7,
pp. 1486-1498) 5(α,p) is a union of disjoint nondegenerate closed intervals, the
bands. It is easy to see that inf S(a, p) — 0. The set R+\5(α, p) is a (possibly empty)
countable union of disjoint open intervals, called gaps. For the "unperturbed" case
a(x) = p(x) = 1, we have SQ = 5(1,1) = [0, oo) i.e. there are no gaps (another way
to say this is: all gaps are closed), but in general gaps do exist. For example, if
a(x)p(x) = 1, then (1) can be written in the form

L2u = λu, where Lu — —au" .

Now L is a Hill type operator, thus the spectrum of L, and therefore the spectrum
of L2, has gaps and the same is true if we consider small perturbations of this case.

The Green's function G(x, y λ) associated to (1) satisfies

[a(x)Gxx(x, y\ λ)loc = λp(x)G(x9 y\ λ) + δ(x - y) .

Notice that we have the symmetries

G(x,y\ λ) = G(y,x; λ) and G(x + b,y + b;λ) = G(x, y\ λ) .

For any fixed λ the "shift" transformation (Tu)(x) = u(x + b) maps solutions
of (1) to solutions. Thus T = T(λ) is a well-defined linear transformation on the
fourth-dimensional vector space of the solutions of (1). As a basis of this space we
take the solutions uj(x;λ),j — 1,2,3,4, such that (primes refer to derivatives with
respect to x)

If α(0)φl , in the case j = k = 3 it is more appropriate to take a(0)u"(0;λ) = 1.
The set {w/}y=1 is called a fundamental set of solutions of (I). In the sequel, by a
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slight abuse of terminology, we will sometimes refer to uj as the / h fundamental
solution. A standard Picard iteration argument implies that each uj(x;λ) is entire
in λ of order 1/4. We identify T with its matrix with respect to the above basis,
called Floquet or monodromy matrix, namely (if α(0)φl , the third row must be
multiplied by a(0))

«i (A) u2(b) u3(b) u4(b)

u\{b) u'2{b) u'3(b) u\{b)

~ ίβ] uf{{b) u'{{b) u»(b)

where the dependence in λ is suppressed for typographical convenience. Using the
properties of the Wronskian of the u/s we get that

det T = 1 .

Let ri,r2,r3,r4, be the eigenvalues of T, sometimes called Floquet multipliers (of
course rir2r3r4 = 1). They are analytic functions of λ and the only type of singu-
larities they can have are algebraic ones, i.e. branch points. Except for a discrete
set of A's (we will discuss this set more later), T is similar to a diagonal matrix
and its eigenvectors correspond to the Floquet solutions, namely to the solutions
fjj = 1,2,3,4, of (1) such that

fj(x) = ewJxpjix), where η = ewJb, and Pj{x Λ-b) = Pj(x) . (3)

The w/s are called Floquet exponents or quasimomenta (or even complex rota-
tion numbers, following R. Johnson and J. Moser-see (J-M]). It follows that the
spectrum S(a,p) is characterized as

S(a,p) = {λ : \rf(λ)\ = 1, for some j} ,

whereas the Green's function has the form

G(x, y; λ) - Σ cjkfj{x)fk{y\ x^y, (4)

where each f}(x) is a Floquet solution belonging to Z 2(-oo,0) and each fk(y)
belongs to L2(0,oo) (see [D-S], Sect. XIΠ.7.64, Th. 64). By setting x = y in (4)
and using (a) the fact that G(x,x, λ) is periodic in x, and (b) the form of fj given
by (3), we obtain an important property of the Floquet multipliers, namely that they
occur in pairs of inverses,

1 . (5)

It follows from (5) that the characteristic equation of T is an inverse equation, i.e.
it has the form

r 4 - A(λ)r3 + B(λ)r2 - A(λ)r + 1 = 0 , (6)

where A(λ) and B(λ) are certain invariants of T, entire in λ.
An interesting question is how one can extract wj(λ) from the Green's function

G(x, y λ) as Johnson and Moser did for the second order problem. This will show
how to define rotation numbers in the cases where α and p are almost periodic or
ergodic. Such cases are also common in applications.
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It is instructive to see what all these quantities become when a(x) = p(x) = 1.
When we consider a quantity of this (unperturbed) case we index it by 0. The u/s
become

uo\(x\λ) = (coshsx + cossx)/2 , uo2(x;λ) = (smhsx + smsx)/2s ,

uo3(x; λ) = (coshsjt — cossx)/2s2

9 Uo4(x; λ) = (sinhs t — sinsx)/2s3 ,

where s — A1/4 (notice that wOy = u^"^). It follows that

= 2[cosh(>l1/46) + cos(λ1/4b)] ,

= 2 + 4cosh(/l1/4Z>)cos(Λ1/4£)
and

G0(x,y9λ) = 4pμ[ieu ]x~yl ~ e~A ]x~y]l ° < a r S λVA < π / 2 .

The Riemann surface of the solution r(λ) of (6), has four sheets and its branches
are η(λ), j — 1,2,3,4. The only possible λ's for which our equation has not four lin-
early independent Floquet solutions are the λ9s for which the characteristic equation
(6) of T has multiple roots. The value λ = 0 is such a λ. In this case the funda-
mental solutions can be written down explicitly. It follows that ^4(0) = 4,5(0) = 6,
and that there is only one Floquet solution (namely u\) while r(λ) has always a
fourth-root branch point at λ = 0.

If λ φ 0, then the characteristic equation of T can only have simple or double
roots (otherwise, by (5) η(λ) — 1, for all j , which is impossible because, as we will
see below, when AΦO is in the spectrum, there is a j for which rj(λ) > 1). Now let
ΛΦO be such that (6) has a double root, say rj. Then there is one Floquet solution
fj(x -f b) = rjfj(x) and a solution #/(x) (/} and gj are linearly independent) such
that gj(x + b) = rjgj(x) -f Cjfj{x\ where the constant c, may be 0 (in this case
we say that we have coexistence, i.e. two linearly independent Floquet solutions
corresponding to the same multiplier). If cyΦO, we can say that, for this particular
λ9 T has a Jordan anomaly (this terminology is due to Professor Barry Simon) and
t h a t gj(x) i s a generalized Floquet solution of (I).

2. Some Basic Properties of the Fundamental Solutions

We start with a property of all nontrivial solutions of (1). Its proof is easy and thus
omitted.

Proposition 1. Let wφO be a solution of {here a and p need not be periodic)

(au")" = λpu,

If —oo < c < d < oo, then each of the functions u,u',u" and {au")' has finitely
many zeros in [c,d].

Remark. It is easy to construct an example for which u(x) — x2 -f 1 is a solution,
thus it can happen that u"f = 0.

The next property of the u/s plays a crucial role in the spectral theory of (1).
The eigenvalue parameter λ is assumed positive. This covers all the values in the
spectrum S(a,p), with trivial exception of 0.
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Proposition 2. Let λ > 0. If Uj is the / h fundamental solution of (1), then

lim U;(x) = -foo, lim w/(*) = ( — l ^
Jt—> —OO

Furthermore, u2 and u4 are always increasing, whereas u\ and u^ are decreasing
on (—oo,0) and increasing on (0,oo).

The proof of this proposition is based on the following lemma whose proof is
trivial.

Lemma. Let f e Cn[0,oo),f{k){0) Ξ> 0,0 <; k < n and f(n)(0) > 0, where n ^ 1
is a fixed integer. If x0 > 0 is such that f(xo) = 0, then there are numbers
xk^ k = 1,2,..., n such that

0 < xn < - < x\ < xo and f^k\xk) = 0 .

Proof of Proposition 2. Let f{x) = a(x)u"(x). Then

=/ 7 (0) = 0, f"(x)

in particular / " (0) = λp(O)ι/i(O) = λp(O) > 0. If JC2 G (0,OO) is the smallest zero
of / " , then x2 is the smallest positive zero of u\ (if u\ has positive zeros, then x2

is well defined by Proposition 1). Applying the lemma to u\, we have that there is
a xo ^ (O,^)? s u c n that U'({XQ) — 0. Thus f(xo) — 0 and this contradicts the lemma.
Thus / > 0 on (0,00), therefore u\ increases on (0,00), thus u\ increases to 00.
The case x G (—00,0) is reduced to the case x £ (0,00) by replacing x by — x
i n ( l ) . D

We mention without proof another property that recalls the oscillation properties
of the Sturm-Liouville equations.

Proposition 3. Assume λ < 0. Let x\ < x2 < X3 < , be the positive zeros
of u\{x) and 0 = x\ < x2 < xζ1 < , m = 1,2,3, be the {positive) zeros of
u\{x), u'({x) and [au"]f(x) respectively. We then have that u\(x) has infinitely many
positive {and therefore negative, by replacing x by —x) zeros and the interlacing
property holds namely

0 < x , < x f < x f < 4 1 ' < x 2 < xf < x f \ < x<'> < X3 < x < 3 ) < ••• .

Furthermore, all these zeros are simple.

3. The Band-Gap Structure of the Spectrum

We start by observing that Proposition 2 of the previous section implies that, if
λ > 0, we cannot have \η{λ)\ = 1, for all j = 1,2,3,4. Hence, by (5)

rj{λ)\ > 1, for some j , say 7 = 4 .

Now, let us assume that r^{λ) is not a positive real. Consider the corresponding
Floquet solution

/ 4 (x) = ew*xp4{x), w4 = β4 + ia4 .
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Since r4 = eW4b, we must have (n denotes an integer)

b; in particular 0(4 ΦO . (7)

Since λ is real, it follows that the complex conjugate / 4 of f^ is also a Floquet
solution of (1) and

M {/4} = <A*[9t {/*(*)} cos (α4*) - g {^(x)} sin(α4x)]

is a solution too.
Next, observe that 9ί {/4} determines the leading behavior of at least two of

the fundamental solutions. But, because of (7), 91 {/$} oscillates (alternates sign)
no matter how big x is. This is in contradiction with Proposition 2. Therefore

r4(A) > 1, for all λ > 0 .

This inequality, together with Proposition 2, imply that, if λ > 0, then /4OO never
vanishes. Changing x to —x, we obtain that the same is true about f\(x).

Let us now suppose that λ is moving continuously on the positive real axis
towards +00, initially being at 0, namely at the lowest point of S(a,p). If λ is
sufficiently close to 0, it must be in S(a,p), since there are no isolated points in
this spectrum. It follows that, at the beginning of λ's "journey" r2(λ) and r3(λ) move
on the unit circle, always being complex conjugates to each other, while r^{λ) is real
and always increasing (being, by definition, the largest Floquet multiplier). Initially,
i.e. at λ = 0, we have n(0) = r2(0) = r3(0) = r4(0) = 1. Now, as long as r2(λ) and
r3(Λ) move on the unit circle, they cannot switch direction (see [D-S], Sect. XIII.7,
p. 1493). The only time that λ will stop being in S(a,p) is when r2(λ) and r3(λ)
leave the unit circle. It follows that this can first happen when r2(λ) = r^(λ) = — 1.
We denote λ[ the first value of λ at which r2 = r3 = — 1. Then, as λ becomes bigger
than λ[,r2(λ) and r^{λ) can "escape" (from the unit circle) into the negative real
axis. As λ keeps increasing, r2(λ) and r^(λ) will enter again the unit circle, and the
only way to do that is through - 1 . We denote λ2 the corresponding value of λ at
which r2 and r3 enter the circle again, with the convention that, if r2(λ) and r3(/l)
stay on the unit circle for all λ £ (λ[9λ\ + ε), then we set λ2 = λ[. The next time
they can escape is when they become equal to 1. We denote λ\ the corresponding
value of λ. Then r2(λ) and r3(/l) can escape in the positive real axis. Eventually,
as λ keeps increasing, they will enter the unit circle again, this time through 1, and
let λ2 be the corresponding value of A, again with the convention that, if r2 and r3

do not leave the circle, then λ2 — λ\.
As λ keeps moving to +00, this process repeats itself again and again. Thus

we can define λ!2n-\ a n <^ ^Ίn^n = 1>2,3,... to be the values of λ at which r2(λ)
and r3(/l) leave and re-enter (respectively) the unit circle through —1, for the nth

time. Hence, r2{λ'2n_ι) = r3(λ'2n) = — 1. Of course, λ'2n_x ^ λ2n and our convention
is that equality holds if r2 and r3 do not leave the circle through - 1 during their
nth passage. In a similar way we define the numbers Λ,2«-i a n d λ2n,n — 1,2,3,...,
with the only difference that we now have r2(λ2n-\) = r3(λ2n) — 1. Since r2(0) =
r3(0) = 1, while r2(Λ,)φl when λ £ [0,oo), it makes sense to set λo — 0. Observe
that, since the periodic and antiperiodic spectra of (1), which we denote by Sp(a,p)
and Sa(a,p) respectively, are real and positive, we must have the set equations

Sp(a,p) = {λn:n = 0,1,2,3,...}, and Sa(a,p) = {λf

n : n - 1,2,3,...} .

We have thus established the following theorem.
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Theorem 1. The spectrum S(a,p) of (I) has the form

s(a,P) = [<UΊ] u [λ'^λx] u [λ2,λ£ u μ;,λ 3] u [λ4,λ'5] u . ,

where the numbers λ'n and λn,n = 1,2,3,..., are defined in the previous paragraph.
Ifλ G S(a9p), then \r2(λ)\ = \r3(λ)\ = 1. Ifλ2n-ι < λ < λ2m then 0 < rx(λ) <

r2(λ) < 1 < r3(λ) < r4(Λ), whereas if'λ'ln_x < λ < λ'2n, then r3(λ) < - 1 < r2(λ)
< 0 and \r3(λ)\ ^ r4(λ). (Reminder: n(λ)rΛ(λ) = r2(^)r3(λ) = \, for all λ e C).

Remarks, (a) At the endpoints ^2n-i^2« or ^ - i ' ^ 2 « ( w = 1) of a gap, r2(λ) and
Γ3(2) have square-root type branch points if and only if the gap is open (otherwise,
they do not have any singularity). Notice that r\(λ) and r 4 ( l ) do not have singu-
larities at the endpoints of the gaps. We remind the reader that, at λ — XQ — 0, all
Tj have a fourth-root branch point.

(b) From Theorem 1 it follows that the bands do not overlap.

Equation (6) implies (by setting r = 1) that the periodic eigenvalues, are the
zeros of the entire function

f+(λ) = B(λ) - 2A(λ) + 2 ,

while the antiperiodic eigenvalues are the zeros of (set r — — 1 in (6))

The quantity

Λ(λ) - 2[r2(λ) + r3(λ)] = A(λ) -

where

E(λ) = A(λ)2 - 4B(λ) + 8 (notice that E(0) - 0,^(0) > 0)

can be called the discriminant. If λ ^ 0, then Theorem 1 implies that Δ(λ) is real
(therefore E(λ) ^ 0) and

\Δ(λ)\ ^ 4 if and only if λ G S(a,p) .

When Δ(λ) = 4, λ is a periodic eigenvalue and when Δ(λ) = —4, λ is an antiperi-
odic eigenvalue. Notice that Δ(λ) has square-root branch points at the zeros of E(λ)
of odd multiplicity. Contrary to the case of the Hill's equation, here the periodic
(or antiperiodic) eigenvalues alone do not determine Δ(λ).

The entire function E(λ) is a little mysterious, since it does not have a coun-
terpart in the second order (i.e. Hill's equation) case. Its relation to the Floquet
multipliers is given by the formula

E(λ) = ±{[rx(λ) + r4(λ)] - [r2(λ) + r3(λ)]}2 .

If a(x) = p(x) ΞΞ 1, then

f£(λ) = 4[1 =F cosh(λι/4b)][\ T cos(λι/4b)] , (8)
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with zeros (of f$(λ) and f$(λ) respectively)

ôo = 0, λo,2n-i =h2n = (2nπ/b)\ ^ 2 π _ , = λ'^2n = [(2n + 1 )π/b]\n ^ 1 .

Also,
E0(λ) = 4tcosh(l1/4Z?) - cos(A1/4Z?)]2 ,

with zeros
loo = 0,!0,2/!-I,ΛΌ,2#! = -4(nπ/b)4, n ^ 1

(all zeros are double, except for λOo, !Oo which are simple) and finally

Proposition 4. The multiplicity of any zero of f+(λ) can be only 1 or 2. A zero
λ* of f+(λ) is double if and only if λ* = λ2n-\ = λ2n, far some n 7t 1 {i.e. the
corresponding gap is closed). In particular 0 is always a simple zero of f+(λ).
Similar statements are true for f~(λ\ with the obvious exception that /~(0)=t=0.

Proof We set a(x) = 1 + ά(x),ρ(x) = 1 + p(x), and introduce at{x) — 1 + tά(x)
and pt(x) = 1 + tp(x),0 ^ t ^ 1 (thus a\— a and p\ — p). Consider also ff(λ),
i.e. the entire function whose zeros are the periodic eigenvalues of the problem
with coefficients at(x) and pt(x) Now f?(λ) depends continuously in t. Therefore
the zeros of ft(λ) depend continuously on t. On the other hand, (8) implies that
the proposition is true for t — 0. The rest follows by Theorem 1 and a continuity
argument (since no band of the spectrum can ever collapse to a single point). D

Corollary 1. If λln-\ Φhn,^ g; 1, then, as λ —• X2n-\,

r2(λ)= 1 - a2n-\y/λ - λln-\ + O(λ - λ2n-ι)

and
r3(λ) - 1 + a2n-ι\/λ-λ2n-i +O(λ- λln-χ) ,

where a2n-\ > 0 and ^f~~ denotes the principal branch of the square-root function.

The behavior of r2 and r3 at λ2n is similar. If λ2n-\ = λ2n, then, as λ —• λ2n-\,

r2(λ) = 1 + ib2n-ι(λ - λ2n-i) + O [(λ - λ2n^)2}

and

Γ3(λ) = 1 - ib2n-l(λ - λ2n-i) + O [(λ - X2n-X)
2} ,

where b2n-\ > 0. The same result (with the necessary modifications) is true for
the antίperiodic eigenvalues.

Finally (case n — 0), as λ —> 0,

r2(λ) = 1 + ia0λ
ι/4 + O(λ), r3(λ) = 1 - ia0λ

ι/4 + O(λ) ,

where a$ > 0 and A1//4 denotes the principal branch of the fourth-root function.

Conjecture 1. For a given periodic (antiperiodic) eigenvalue λ*, we have coexistence
of two linearly independent periodic (antiperiodic) solutions if and only if A* =
λin-x — λ2n (λ* = λ'2n_ι — λ2n). This conjecture is in the spirit of the recent work
of F. Gesztesy and R. Weikard on Floquet theory (see [G-W]).
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Let us denote the zeros of E(λ) by λn, n = 0,1,2,3,... counting multiplicities
(since it has order 1/4, it must have infinitely many zeros). We always have that
λo = 0 is a simple zero. If λn φ 0 has odd multiplicity, then it is a square-root type
branch point where the sheets of r2 and r3 meet the sheets of r\ and rA. The
following proposition is quite surprising.

Proposition 5. If λn+0 is a zero of E(λ) of odd multiplicity, then λn is real and
negative. Furthermore, if there are functions a and p such that their corresponding
E(λ) has a nonreal zero {necessarily of even multiplicity), then there are different
a and p such that their corresponding E(λ) has a negative zero of multiplicity
2m, m ^ 2.

Proof Let λ be in the open upper half-plane and assume that all |ry(/l)| = ehb are
distinct, say β{(λ) < β2(λ) < β3(λ) < βA(λ).

We now introduce the "shifted" equation

(aξu")n = λpξu, where aξ(x) = a(x + ξ), pξ(x) = p(x + ξ) .

The Floquet solutions of the shifted equation are

Next, consider the solution φ(x;λ;ξ) of the shifted equation that satisfies the
conditions

φ(0; λ; ξ) = 1, φ(x; λ;ξ) = O (e^x), as x -+ oo .

Then, φ must have the form

e^Xpύx + ξ λ)
Φ{χ\ k ξ) = τjrγΛ

P\{ζA)
Differentiating with respect to x we get (primes denote the derivative with respect
to the first entry of the function)

Λ<( : ^ _ Mλ)ew^λ)xpι(x + ξ;λ) + ew^xp'(x + ξ;λ)
φ {X, A, ζ) —

Finally, for x — 0 the above formula becomes

The quantity m(?,;ξ) = φ'(O;λ;ξ) is an example of a Weyl-Kodaira m-function.
It is known (see [Y2, J or N, Part II, Sect. 21.4]) that, as a function of λ, m
is meromorphic in the (open) upper half-plane. On the other hand, the previous
equation gives

! / *

It follows that w\(λ) is meromorphic and therefore r\(λ) is analytic in the (open)
upper half-plane, since the only singularities that r\ can have are branch points.
Then the same is true for r4(λ) = r\{λ)~λ and r2(λ), r3(A), because r2, r3 have
common branch points with r\.
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Now, let λn be a zero of E(λ) with odd multiplicity. Then it is a branch point
of rj(λ). It follows that λn must be real. Furthermore λn cannot be positive, since
r3(2) and r4(/l) do not cross each other as long as λ > 0. Finally, if λn is a nonreal
zero of even multiplicity, then by a continuity argument and the fact that the zeros
of Eo(λ) are all real, it follows that there are functions a and p for which their
corresponding E(λ) has a negative zero of even multiplicity ^ 4 . D

The above proof is inspired by [J]. An immediate consequence of the above
proposition is that rj(λn) is real for all j . In the case ap = 1, it is not hard to see
that all the nonzero zeros of E(λ) are double.

Conjecture 2. The multiplicities of the zeros of E(λ) can be only one or two and,
furthermore, (counting multiplicities) they can be arranged so that

0 = λ0 < λ\ ^ λ2 < λ3 ^ λ4 < λ5 5Ξ λ6 < .

We have coexistence of four (two and two) linearly independent (proper) Floquet
solutions at λ = λn if and only if λn is a double zero. The intervals (hn-\,hn) can
be called "pseudogaps" or ι̂ -gaps and (as in the case of the standard gaps) if λ
is in such an interval, then Γj(λ) is real, for all j (at a double zero of E(λ) the

corresponding ψ-gsφ is "closed," i.e. empty). The asymptotics of η(λ), as λ —• λn,
are similar to the ones given in Corollary 1 for the case λ —> λn.

In fact, as λ moves on the negative real axis from 0 to — oo,r\(λ) (and r2\
if r\ £ R, then r2 = 7\) moves on a spiral (instead of the unit circle which
was the case when λ > 0) around 0 and inside the unit circle. When λ enters
a ψ-gsφ, r\(λ) leaves the spiral and enters the real axis, and the other r/s behave
similarly.

Indisputable numerical evidence indicates that, genetically, the ι/̂ -gaps are open.

4. Some Special Inverse Results

We start with the asymptotic behavior of the solutions of (1) for large \λ\, where
λ can be complex. Assuming that a,p e C2(R), one can write certain solutions of
(1) in the form

u = es,

where the asymptotics of S and its derivatives up to order 4, as \λ\ —> oc, are (see
[N], Part I, Sect. 4.6)

S{m\x) = ε-ιS(

o

m\x) + S[m\x) + εS^m\x) + o(ε), ε4 = - m = 0,1,2,3,4 .
A

Substituting this in (1) and comparing powers of ε we obtain

Thus
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and also

. lOaa'pp' - U{a')2p2 - 45a2{p;) + 24aa"p2 + 40a2pp"

Therefore

(ε has four values, thus we get four linearly independent solutions). The results that
follow are consequences of this nice formula.

Theorem 2. (a) If rj(λ) is a Floquet multiplier of ( I ) , then, as \λ\ —>• oc,

where {see (9))

*- ? ί M c m b

r5(a')2p2 + 6aapp + 5a\p)
K = 4 W - 52(0) = / ^ ^ ^ 5 dx

{the formula for ry covers all cases, since λχlA has four values).
(b) The asymptotics of the periodic eigenvalues are

(c) The asymptotics of the antiperiodic eigenvalues are

(d) If λn is the nth zero of E{λ) and we set λn = -sA

n, then

\fϊnπ K , _?N

S2n-l,S2n = 7 H -7= h O (« ZJ .
6 \/2wπ v y

/ Part (a) follows from (10). The second formula for K follows from (9) and
integration by parts. Then parts (b), (c) and (d) follow from (a). For example, (d)
follows from the fact that λn is a solution of the equation r\{λ) = r2{λ). D

Remark. Notice that

K ^ 0, K = 0 if and only if a' = p' ΈΞ 0

and, due to our normalization, a1 = p' = 0 implies a = p = 1.

The following corollary follows immediately from Theorem 2 and the above
remark. It recalls an old theorem of Borg for the Hill equation.

Corollary 2. (a) If the equation (1) has infinitely many periodic {antiperiodic)
eigenvalues in common with the unperturbed equation then a = p = 1.

(b) Let E{λ) correspond to (1). If E{λ) and E§{λ) have infinitely many zeros
in common, then again a = p = 1.
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We finish with a theorem which also recalls another old result of Borg con-
cerning the Hill's operator, namely that if all the spectral gaps are closed, then the
coefficient function in the Hill's equation is constant.

Theorem 3. If S(a,p) — [0,oo) and the nonzero zeros of E(λ) have even multi-
plicities, then a(x) = p(x) = 1.

Proof First observe that 0 is the only branch point of the Floquet multipliers,
therefore

where g(z) is entire. Since rj(λ) has order 1/4, g(z) is of order 1. Now rj(λ) has
no zeros (r\r2r3r4 = 1), and this implies that g(z) — c\eClZ{c\,c22iTZ constants), i.e.

rj(λ) = Cίe^14.

Thus, part (a) of Theorem 2 implies that K = 0 (and c\ = c2 = 1), hence a! =

Theorem 3 can give us some hints of how to formulate the general (periodic)
inverse problem for (1).

5. Remarks on the General Inverse Problem

A natural question arising from this work is how to formulate the inverse problem
for(l) .

Suppose we consider the equation (1) on L 2(-oo, ξ) ΘL2(ξ, oo) with boundary
condition u(ξ) = u"(ξ) = 0. Then the essential spectrum of this new problem is
again S(a,p), but this new problem may also have point spectrum, say {μn(ξ)}n.
Each μn(ξ) must be real by self-adjointness. Furthermore, all μn(ξ) must be strictly
positive, and it is not hard to see that the only places where these μΛ's can appear
are the spectral gaps.

Using the fundamental solutions we can construct a function F{λ\ ξ)9 analytic
in λ9 such that λ = μn is a zero of F(λ), for all n. In fact, if for convenience we
set ξ — 0, we can take

F(λ) = [H(n )K(r2) - H{r2)K{n )][H(r3)K(r4) - H(r4)K(r3)],

where

H(rj) =

and tjk is given by (2).
The "conjugate" function F*(λ) of F(λ) is

F*(λ) = [H{rλ)K{r,) - H(r3)K(rγ)][H(r2)K(r4) - H(r4)K(r2)],

so that F(λ)F*(λ) is entire. But there are zeros other than the μn's. In fact every
zero of E(λ) is a zero of F(λ)F*(λ). Furthermore, if 2* is a double periodic or
antiperiodic eigenvalue, then H(r2) = K(r2) — 0, thus λ* is a zero of F(λ)F*(λ).

t22 - η

hi

tAl

hi
hi

tAl

tlA

hA
t44 - Γj

t22-

u2

ri tl3 t24

f33 - 0 h4

t42 t44 —
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In the case a(x)p(x) Ξ I we have seen that (1) can be written as

L2u = λu, where Lu = — au" .

We set
z = Vλ, where Ή {Vλ} ^ 0

and consider the problems
Lv — zv,

with solutions v\,V2 such that V\(0) ~ v2(0) = 1, v\(0) = 1^(0) = 0, and

Lw = —zw,

with solutions w\,w2 such that wi(0) = w'2(0) = 1, wj(0) = w>2(0) = 0 (in fact,
for λή=0,V\,V2,w\ and w2 are linearly independent solutions of (1)). It follows
that

F(λ) - cVλ[wχ(b) + W2{b) -

where C is a constant. Of course, F*(λ) = —F(λ). Finally, notice that

[wι(b) + w'2{b) - υx{b) - υ'2{b)f = cE(λ)2 .

If, in particular, a(x) = p(x) = 1, then

λ). (11)

By applying a continuity argument to the above formulas it might be possible to
show that, in general, F(λ) has two zeros in each gap, one of which is a μn.

Next we need to derive determinant formulas (i.e. multiplicative analogs of trace
formulas - see for example [C] or [G-H-S-Z]). Here is a strategy for deriving such
a formula.

Since F*(λ; ξ)F(λ; ξ) is entire of order 1/4 we can write

F*(λ;ξ)F(λ;ξ) = -
τy(ζ)J

where the functional C = C[a,p] is invariant under shifts (i.e. C[aξ,pξ] — C[a,p])
and the set {τj(ξ)} contains the set {μn(ξ)}. Likewise (11) implies

o+yez
1 - —

τO /

where, for 7 > 0,% is the / h nonzero zero of/J"(A)/0 (/I) counting multiplicities,
while, for j < 0, τq/ is the / h nonzero zero of £Ό(^)4 counting multiplicities. These
zeros are given explicitly in Sect. 3. Dividing the above two equations and letting
\λ\ —> 00 we obtain

FZ(λ)F0(λ) ^Co τjξ)
F*{λξ)F{λξ) C 0 ^ z τOj
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On the other hand, using the asymptotics of Uj(b;λ) and Γj{λ) for large \λ\ (see
Theorem 2 and the discussion in the beginning of Sect. 4) we get

Combining the above two equations we have

% Co [a(ξ)p{ξ)f

This is a determinant formula. Notice that the product is independent of ξ if and
only if a(x)p(x) = 1. This agrees with the fact that in the Sturm-Liouville case,
the regularized product of the Dirichlet and Neumann eigenvalues is independent
of shifts.

One can do a little more. First

E(λ)4f+(λ)Γ(λ) = Diλ
5 Π

0=K/6Z L σj\

where D\ = D\[a,ρ] is again invariant under shifts and, for j > 0, σ7 is the fh

nonzero zero of f+(λ)f~(λ) counting multiplicities, while, for j < 0,σ7 is the / h

nonzero zero of E(λ)4 counting multiplicities. In particular

Thus

JE'O(Λ') fo (^)y"o (^) 256Co τ-τ °7

μ™«> E(λyf+(λ)f-(λ) = " D Γ o i / ^

Now, the asymptotics of uj(b λ) and ry(/l) for large \λ\ give

μHcx, E(λff+(λ)f-(λ)

and combining the above two equations

Π r̂  =
256C0 '

Finally, combining the above with (12) we get a second determinant formula,
namely

τj(ξ) _ 256C 1

where 256C/D\D2 is independent of £.
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